Representations for Disjunctive Deductive Databases

Adnan Yahya!+* Jack Minker!?

nstitute for Advanced Computer Studies

2Computer Science Department
University of Maryland
College Park, MD 20742

*Electrical Engineering Department
Birzeit University

Birzeit, West Bank

Abstract

The concepts of the dual and complementary databases as alternative representations for
a given disjunctive deductive database, DB, are introduced. The dual database results from
interchanging the occurrences of OR and AND operators in the positive clause representation
of DB. The complementary database is defined to have as minimal models the complements of
the minimal models of DB relative to the underlying Herbrand base, H Bpp. The properties of
these derivative databases are studied. In particular, we show that the minimal models of DB
correspond to the minimally derivable clauses of the dual database and that the complementary
database defines the Extended Generalized Closed World Assumption (EGCW A) completion,
and consequently the Generalized Closed World Assumption (GCW A) completion, of DB. A
tree structure for minimally derivable clauses is defined and algorithms for constructing and
performing update and search operations on such trees are given.

1 Introduction

Minimal models and minimally derivable clauses are basic concepts in much of the work on disjunc-
tive deductive databases (DD DBs). Either of these forms can be used to represent a DDDB [16, 21].
Equivalent semantic (in terms of minimal models), and syntactic (in terms of minimal derivations)
definitions were given for the Generalized Closed World Assumption (GCW A) [13] and the Frtended
Generalized Closed World Assumption (EGCW A) [21] that are used to assume negative informa-
tion in DDDBs. These negation rules served to extend the Closed World Assumption, originally
introduced to deal with negative information in Horn databases, to the non-Horn case [13, 17, 21].

*This work was done while visiting at the University of Maryland Institute for Advanced Computer Studies.

Model trees and ordered model trees were used as structure sharing approaches to represent
information in DDDBs [7, 20]. Informally, a model tree for a DDDB, DB, is a tree structure in
which nodes are labeled by atoms of the Herbrand base of DB. With each branch (i.e. path from the
root to a leaf node) we associate the set of atoms encountered on that branch. Branches represent
models of DB. A minimal model tree is a model tree for which there 1s a one to one correspondence
between the minimal models of DB and the tree branches. Algorithms for constructing and updating
model trees as well as query answering algorithms operating on model trees were presented in [7]
and [20]. Whereas there may be many different model trees for a given disjunctive database, there
can be only one ordered model tree. Ordered model trees were introduced as a normal form for
disjunctive deductive databases. They can also be used to facilitate the computation of minimal
model trees and answering queries for disjunctive theories by exploiting an order on the Herbrand
base of the theory. There are several criteria that may be used to select an ordering of atoms of the
Herbrand base, such as the length of a clause in which the atom appears, the frequency of occurrence
of the atom in the database, as well as other criteria. We do not discuss this topic in this paper.

In this paper, for a given disjunctive deductive database, DB, we define its dual database, DB,
and its complementary databases, DB°®. The dual database is constructed by interchanging the
occurrences of logical OR and logical AND operations in the positive clause representation of DB.
The complementary database is constructed by complementing the minimal models of DB relative
to the Herbrand base of DB. We study the properties of these derivative databases. In particular,
we show that the minimal models of DB correspond to the minimally derivable clauses of its dual
database and that the complementary database defines the EGCW A completion, and consequently
the GCW A completion, of DB. A tree structure for minimally derivable clauses i1s defined and
algorithms for performing update and search operations on such trees are given.

The subject matter of disjunctive deductive databases is concerned with incomplete information.
Such information arises in every day experience. We know only a portion of the world and not all
of the facts. Thus, we may know that a certain person is a scientist, but we do not know for sure
which field the individual is in. We may know that the person is either a computer scientist or an
engineer. In a medical database, it may be known that a person may have one or more diseases,
but we do not know the precise disease except that it may be one of several different diseases. In
analyzing images from space, a certain object observed may be one of several possibilities. Current
relational and deductive database technologies do not adequately handle such data. In addition, it
has been shown that many problems that deal with nonmonotonic and commonsense reasoning can
be translated into disjunctive deductive databases [15]. Tt will be necessary to be able to understand
the meaning of disjunctive databases and how to respond to queries posed to them. A great deal is
known, however, about the semantics of disjunctive deductive databases [12, 5]. In this paper we
address alternative possible representations of such databases. There have been a number of papers
devoted to digjunctive deductive databases, see [5, 4, 6, 10, 11, 9, 14, 19] for a number of such papers.
A survey of the work described in many of these papers is contained in [12, 5].

The paper is organized as follows. In section 2 we give some definitions and background material
related to digjunctive deductive databases. In section 3 we define the dual database, investigate its
properties and give algorithms for the construction and update of minimal clause trees for positive
DDDBs and DDDBs with rules. In section 4 we define the complementary database and study
its properties. We conclude by discussing the possibilities for utilizing the reported results and the
possible directions for future research.

2 Notation and Background

A disjunctive deductive database (DDDB) DB is a set of clauses of the form:
AV - VA, — By,..., B,

where n > 0,k > 0 and the 4; and B; are atoms, defined using a FOL £ that does not contain
function symbols. In this work we will assume that all clauses in DB are ground.

If n = 0 for all clauses in DB, the database is called a positive disjunctive database. Otherwise
DB is said to contain rules. If £ = 1 for all clauses in DB, the database is called a a Horn deductive
database. If k > 1 for some clauses in DB, the database 1s called a ¢ non-Horn or a disjunctive
deductive database.

Where no confusion arises, a clause C will be referred to either as the set of its constituent literals
or as the disjunction of the elements of this set. So, the above clause will be referred to as the set

{Ala"'aAka_'Bla"'a_'Bn}~

or as the disjunction
AV VAL, VaB V---VaB,.

Definition 2.1 Let A be a ground atom, let DB be a DDDB and let C be a clause. Then
o A occurs positively (negatively) in C iff A (=A) is a literal of C.
o A occurs positively (negatively) in DB iff A occurs positively (negatively } in a clause of DB.
o A occurs in C (DB) iff A occurs positively or negatively in C' (DB).
e A is purely positive (purely negative) in DB iff A occurs only positively (negatively) in DB.

Given a DDDB, DB, the Herbrand base of DB, HBppg, is the set of all ground atoms that
can be formed using the predicate symbols and constants in the FOL £. A Herbrand interpretation
is any subset of HBppg. A Herbrand model of DB, M, is a Herbrand interpretation such that
M = DB (i.e. all clauses of DB are true in M). M is minimal if no proper subset of M is a model
of DB.

Definition 2.2 By M(DB) we denote the set of all models (not necessarily minimal) of DB and
by MM(DB) we denote the set of all minimal models of DB.

M={M:ME DB}

MM(DB) ={M : M € M(DB) and VM' C M, M' & M(DB)}

Clearly MM(DB) C M(DB). In addition for every element M € M(DB)3M’' € MM(DB) :
M'C M.

Definition 2.3 A positive clause (possibly non-ground) 3Q(Z) is called a query and is considered a
logical consequence of a DDDB, DB, iff there exisis a sel of ground substitutions {01, ...,0,} such
that Q(¥)01 V -- -V Q(Z)8,, is true in all minimal Herbrand models of DB, MM(DB). Q(Z)6, V
oV Q(E), or equivalently {61 + ...+ 0y} is said to be an answer to 3Q. We also write Q(Z)01 V
<V Q(E)0, is an answer to Q(X).

The notation used in Definition 2.3 follows that used by Reiter [17]. In general, a query may be
a digjunct of conjuncts. If the query is Q(¥) = Q1(Z) V...V Qi(¥), and each of the Q;(¥),i=1...k
are conjuncts, we may replace the query by Q(%) = ¢1(Z) V...V ¢;(Z) and enter the rules:

&

q1(¥) — Q1(¥)

04(F) — Qu(@)

in the database.
As noted in the definition of a query, predicates may have arbitrary arity. We limit the examples
to monadic predicates for simplicity.

Example 1 Let DB = {P(a)V P(b), P(c)V P(d)} and let Q(x) = A(P(x)). Then x = {a+ b} and
z={c+d} are answers to Q(x).

Definition 2.4 Let DBy and DBs be disjunctive deductive databases. Then
DB and DBy are said to be minimal model equivalent.

Clearly (=mm) is an equivalence relation.

Since most of the properties discussed in this paper are based on minimal model concepts the
terms equivalent and minimal model equivalent are used interchangeably. However, databases with
different syntax may be minimal model equivalent:

Example 2 DBy = {P(a)V P(b), P(c)V P(d),— P(a) A P(c)}.
and let
DBy = {P(a)V P(b), P(c)V P(d), P(b) v P(d)}.

DBy =pm DBs.

Definition 2.5 Let DB be a disjunctive deductive database. By S(DB) we denote the set of positive
clauses derivable from DB. That is, S(DB) = {C : C is positive and DB+ C, (C is true in every
minimal model of DB)}. Using the terminology of [16], S(DB) is a model state of DB.

Definition 2.6 Let DB be a disjunctive deductive database. By MS(DB) we denote the set of
positive clauses minimally derivable from DB. That is, MS(DB) = {C : C is positive and DB+ C
and ¥V C' C C, DBY C'}. MS(DB) is the minimal model state of DB [16].

Clearly, for a given database, DB, MS(DB) C S(DB). In addition VC' € S(DB) IC" €
MS(DB) such that ¢ C C.

Lemma 1 [13, 16, 21] Let DB be a disjunctive deductive database. M is a model (minimal model)
for DB if and only if M is a model (minimal model) for MS(DB).

Corollary 1 Let DBy and DBy be DDDBs. Then:

Lemma 2 Let DB be a disjunctive deductive database. Then [13, 21]:

o A clause C € MS(DB) iff DB F C and VC' C C, C' is falsified by at least one minimal model
of DB.

o Ifaclause C = A1V AV VA, e MS(DB) then Vi€ {1,2,..,n}, 3 M € MM(DB) such
that A; e M ande;,gi, A]' ¢ M.

Definition 2.7 [20] Let DB be a ground disjunctive deductive database. A cluster C is a subset of
DB such that if a clause C' € C and C' contains an occurrence of atom A then every clause of DB
that contains an occurrence of A is also in C.

A cluster is minimal if no proper subset of it is a cluster. Any nonminimal cluster is the union
of more than one minimal cluster. In addition, minimal clusters are disjoint. No ground atom can
occur in two minimal clusters. Therefore, a minimal cluster can be referred to by one of the clauses
or atoms occurring in it [22].

Since clauses with pure negative literals do not contribute to the minimal models of a database,
we can remove these clauses and obtain a minimal model equivalent database [1].

We assume that a DDDB, DB is divided into two different sets of clauses: the extensional part
(Epp) and the intensional part (Ipp). Tt is easy to see that any DD DB that has predicates that
may be both intensional and extensional can be transformed into one in which the predicates are
either entirely extensional or entirely intensional. The division is such that:

1. Epp is a positive disjunctive database.
2. YA that occurs in Epp, A occurs purely negatively or does not occur at all in Ipg.
3. Epp is the largest positive digjunctive database that fulfills conditions 1-3.

The extensional part of DB can be equated to base relations of a relational database, it is the
place where the information is stored. The intensional part can be equated to view definitions.

Model Trees: Given that the meaning of a DD DB is defined by the set of its minimal Herbrand
models, Fernandez and Minker [7] defined an abstract data structure, called the model tree, to
represent the minimal models of the DDDB. They provide algorithms for the computation of
queries using model trees, where the minimal models of the DDDB are computed incrementally.
From the resulting model tree the answers to the query can be extracted by constructing an answer
tree representing the minimal answers. Formally, a model tree can be defined as follows:

Definition 2.8 [7] Let T be a finite set of Herbrand interpretations (models) over a FOL L. An
interpretation (model) tree for 7 is a tree structure where

e The root is labeled by the special symbol ¢.

Other nodes are labeled with atoms in T or the special symbol £.

A path from the root to a leaf node is called a branch
e No atom occurs more than once in a branch.
e 1T ¢ff by I={A: A € by} —{}f} where by is a branch in the iree.

The symbol £ is meant to stand for the absence of an atom for a node.

To capture the semantics of a DDDB, DB, a model tree must contain the minimal models of

DB.

Definition 2.9 Let DB be a DDDB and let M be a set of models of DB. Then Ty is called a
model tree of DB iff
VM’ = DB,AM e M, M C M’

We use the notation Tpp to refer to a model tree of DB.

Ordered model trees were introduced in [20] as a normal form to represent a DDDB. Next we
define this data structure:

Definition 2.10 Let S be a set of atoms. An order (>) on S is an assignment of a unique integer

O(A) to every ground atom A of S.

A> B iff O(A) > O(B) for A and B in S.

e B<AffA>B.

o A sequence of atoms (A1,..., An) is ordered iff Vic; A; > A; for A; and A; in S.
o R° denotes the ordered sequence containing the atoms wn the set R, where R C S.

We use the term ordered set R to refer to the ordered sequence R°.

Definition 2.11 Given an order (>) on a set S and ordered sets of atoms Ry = (A1, Aa, ..., AN)
and Ry = (B1, Bo, ..., Byr) with the A;s and B;s in S. Then:

e Ry > Ry off 3k > 0 such that Vi< A; = B; and either Ay > By, or M < k< N.
3 Rz < R1 ZﬁRl > Rz.

Definition 2.12 Given an order (>) on HBg, let T = {I1,...,In} be a set of interpretations
(models or minimal models) over L. Then, the ordered set of interpretations (models or minimal
models) of T is the sequence 1° = (I7 ..., I7) such that ¥ic; 1 > I3, I7 s referred to as the
ordered interpretation (model or minimal model) I;.

We use the term ordered Herbrand base H B, to refer to the ordered sequence HBZ. It com-
pletely specifies the total order (>).

P(e) P(e) P(e)

Figure 1: Ordered and Unordered Model Trees for Example 4

Example 3 Given a set of interpretations T = {{C, A, B},{A, D, B},{},{A, B}} over the or-
dered Herbrand base (D, C, B, A}, then the corresponding ordered set of interpretations of T, T° =
<<DaBaA>a<C’B’A>’<B’A>’<>>

Definition 2.13 Given an order (>) on HB;, let T be a set of interpretations (models, minimal
models) over T. Let Tr be a model tree for T. Let (by,...,b,) be a right-to-left enumeration of the
branches in Tz and let S; be the sequence (A1, ..., Aim,) corresponding to a root-to-leaf traversal
of the branch b;. Then, Tr is ordered iff T° = (S1,...,Sp). 71 is called the ordered interpretation
(model, minimal model) tree for Z, and is denoted as T;.

Example 4 Let DB = {P(a)V P(b), P(a)V P(c), P(c)V P(d), P(b)V P(c)}. Figure 1 shows: (a)
a nonminimal unordered model tree , (b) a minimal unordered model tree and (¢) a minimal ordered
model tree for DB with the order P(a) > P(b) > P(c) > P(d).

For a given order, the ordered model tree of a DD DB is unique [20]. In [20] algorithms are given
for building and updating minimal model trees for positive DDDBs and DDDBs with rules.

Negation in DDDBs: Usually there is asymmetry in the treatment of positive and negative
information in deductive databases. In most cases, negative information is not explicitly stored in
the database but is inferred using default rules for negation. One rule for definite (Horn) databases
is the Closed World Assumption (CW A). Under the CWA an atom, A, is assumed to be false if
and only if A is not in the unique Herbrand model of the database [17]. The CW A is not applicable
to DDDB since it may produce inconsistent results. For DD DBs, the rule used to define negated
atoms is the Generalized Closed World Assumption (GCW A) which is an extension of the CTV A rule
to the disjunctive case [13]. The GCW A is able to consistently define those atoms whose negation
can be assumed to be {rue in the database. The GC'W A is not sufficient for determining the truth or

falsity of a conjunction of atoms. In this case the Eztended Generalized Closed World Assumption
(EGCWA) can be used [21]. The default rules for disjunctive deductive databases are formally
defined as follows:

Definition 2.14 [13, 21] Let DB be a DDDB. Then:

GCWA(DB) ={-A: A€ HBpp and AM € MM(DB) such that A€ M}.

EGOWA(DB) = {~A,V=AsV -V =A, : A € HBpp and n> 0 and
AM € MM(DB) such that A; € M Vi€ {1,2,...,n}.

By MEGCW A(DB) we denote the minimal elements in EGCW A(DB). That is,
MEGCWA(DB) = {C € EGOCWA(DB) and YC' C,C" ¢ EGCW A(DB)}.

Minimal Model Representation of Databases: We discuss the transition from the minimal
model representation of a DD DB to its clausal form representation.

Theorem 1 Let DB, be ¢ DDDB and MM(DB) = {My, Ms, ..., M,}. Let A; ; Vj € {1,2,..., k;},
be the atoms of M;. Let DB; = (Al,l A A1,2 AN Al,kl) vV (A2,1 A Azyz AN A27k2) V..V (An,l A
Apo AN ANAg k). Then: DBy =, DBy.

Proof: DB, isin its disjunctive normal form (DNF). A model of D B; must satisfy at least one of the
disjuncts. The minimal models of D B; are those models that satisfy exactly one of the disjuncts
of DB; for otherwise it will be possible to shrink the model to satisfy only one of the disjuncts
contradicting the minimality condition. The minimal models of DB, satisfying exactly one of
the disjuncts of DB; are the minimal models of DB, namely the set {M;, Ma, ..., M,}.

Every minimal model, M;, of DB, must have all 4;; for j € {1,2,..., k;}. It satisfies DB; by
making exactly one of its disjuncts true. All minimal models are distinct and no subset of M;
satisfies a digjunct in DB; by construction. []

We can transform DB, from DNF into DB; in conjunctive normal form (CNF), or clausal form,
by forming all the possible clauses that include an element from each disjunct of DB;. That is, every
clause of DB must contain at least one element of every minimal model of DB;. Equivalently, every
clause of DB} contains an atom from every root-to-leaf branch of the minimal model tree of DB,
and every such clause is either in DB; or subsumed by a clause in DB;.

DB; is positive and DBy =, DB;. Every clause of DB; is satisfied by the minimal models
of DB, by construction. For every interpretation that is not a model for DB; there is a clause of
DB falsified by that interpretation.

The transformation from a minimal model tree to clausal form can be performed directly by
generating all the possible clauses resulting from including an atom from every minimal model
(branch) of the tree.

Corollary 2 Let DB, be a DDDB. The set MM(DB) defines a positive DDDB, DBy, minimal
model equivalent to DB,, (DB, =.m DBy).

Proof: The procedure outlined in Theorem 1 describes the construction process of the positive
database DB;. |

3 Dual Databases

In this section we emphasize the strong connection between the models of a database and the set of
clauses derivable from it. We introduce the concept of the dual database corresponding to a given
disjunctive deductive database and study its properties.

Definition 3.1 Let DB be a disjunctive deductive database with MM(DB) = {My, M, ..., M,}.
Let A;; for j = 1,2,... ki, be the atoms in M;. DB = (A1 AA1oA o AA1)V (Az1 AAss A
o NAs)V LV (At AAp s AL AN A k). Define the dual database as DB? = (A1 VA2V V
Al g)A (A1 VAoV VA)AL A (A1 VA2V LV Ay g,). Another way to define DB is
that it is the database we get by replacing every logical V by a logical N and vice versa in the positive
clause representation of DB.

If DB is inconsistent (has no models) then its dual is the empty database. If DB has the empty
set as its only minimal model then its dual is the inconsistent database (the empty clause).

We may also elect to perform minimization on DB? by deleting duplicate atoms in individual
clauses and removing subsumed clauses.

3.1 Properties of Dual Databases

Recall that we can refer to a clause either as a disjunction of its literals or as the set of these literals.
Therefore, the set of minimal clauses derivable from a disjunctive deductive database, DB
MS(DB) = {C : DB minimally derives C'} or
MS(DB) = {{41,As,..., A} : DB minimally derives C'= A, V A2 V...V A, }.

Theorem 2 Let DB be a DDDB and let DB® be its dual database. Let MS(DB) denote the set
of minimal positive clauses derivable from DB. Then:

MM(DB*) = MS(DB) and MM(DB) = MS(DB*).

Or, equivalently M = {Ay, As, ..., A} € MM(DB) iff C = AV A3V ...V Ay € MS(DBY) and
C=AVAV..VA, € MS(DB) iff M = {Ay, As, ..., A} € MM(DB?).
Proof: Part 1: MM(DB?) = MS(DB).

We first prove that MM(DBY) C M(DB)

Let M = {A}, Az, ..., A} € MM(DB?). M satisfies every clause in DB?. By definition of
DB? M must contain an atom from every minimal model of DB. DB F A1V A3V ...V A,
and A VAsV...V A, € S(DB). Let M be a nonminimal clause of DB. There exists M’ C M
such that DB + M’. M’ has an atom from every minimal model of DB. M’ satisfies every
clause in DB?%. M is not a minimal model of DB%. A contradiction.

Now we show that MS(DB) C MM(DB?).
Let C = A1 VAV .. VA, € MS(DB)
We show that {4y, As, ..., A} € MM(DB?).

Since €' is minimally derivable from DB, by Lemma 2 there must exist a set of minimal models
of DB, {M;, : Ay € M;, such that A; ¢ M;, Vj # k}. That is, for each atom A; there is a

minimal model in which only A; is true and all the other atoms of the clause C' are false.

Let these minimal models be M;,, M;,, ..., M;, . All of them are clauses in DB% by construction
and therefore they must be {rue in every minimal model of DB?. C satisfies the clauses in

DB resulting from the models M;,, M;,, ..., M;, .
As for the other models of DB each of them contains one or more A; and are therefore satisfied
by C. So C is a model of DB?. Removing atom A}, from this model will falsify the clause of

DB corresponding to the model M;, . Therefore C' is a minimal clause for DB<.
Part 2: We prove that MM (DB) = MS(DB?).

We first show that MM(DB) C MS(DB?).

Let M = {A;, Ay, ..., A} € MM(DB). We show that M € MS(DB?).

M € S(DB?) by construction. We need only to show that M € MS(DB?). Assume M ¢
MS(DB?). There exists M’ C M such that M’ € MS(DB?). Every minimal model of DB?
contains an atom of M’. As a result of the first part of the ongoing proof, every clause in
MS(DB) is a minimal model of DB? and therefore must contain an atom of M’. M’ is a
model of DB. A contradiction.

Finally we show that MS(DB%) C MM(DB).
Let C = Ay V Ay V...V A, € MS(DB?). We show that ¢ € MM(DB). C is true in

every minimal model of DB? since it has at least one element from every minimal model of
DB? and consequently C' is a model of DB. Let C be a nonminimal model of DB. 3 C' C
C such that C' € MM(DB). The clause C’ C C'is in S(DB?). A contradiction. [

Example 5 Let

DB = {P(a)V P(b),
P(a)V P(c),
P(c) v P(d),
P(b)V P(c)

MM(DB) = {{P(a), P(b), P(d)},{P(a), P(c)},{P(b), P(c)}}.
DB = {P(a)V P(b) vV P(d), P(a) V P(c), P(b) V P(c)}.

Theorem 3 Let DB be a disjunctive deductive database and let DB? be its dual database. Then:
M(DB?) = 8(DB) and M(DB) = S(DB?).

Proof: The proof follows directly from Theorem 2 and the observation that every model contains
a minimal model and every derivable clause contains a minimally derivable clause. []

Theorem 4 Let DBy and DBy be disjunctive deductive databases. Then:

DBy =pm DBy iff DBY =, DBY.

10

Proof: DB{ =,,, DB4 iff both have the same set of minimal models MM(DB¢) = MM(DBS).
By Theorem 2 this means that MS(DB;) = MS(DBz) and consequently, by Lemma 2
DBy =pm DBs.

The other side follows directly from the definition of the dual database. []

Theorem 5 Let DB be a DDDB and let DB? be its dual database. Then (DB =,,,, DB. That
18, the double application of the duality rules will always lead to a database equivalent to the original.

Proof: The dual transformation was defined in terms of minimal models. Double application of the
dual transformation will define a database with the same minimal models as DB. []

Theorem 6 Let DB be a DDDB. Lel DB have the partition {DBy, DBs, ..., DBy}. That is,
DB = DB1UDByU...UDBy, and DB;NDB; =0 Y i # j and DB; is a cluster of DBY i € {1,..., k}.
Let DBE be the dual of the partition blocks DB;. Then: DB* = DB{ Vv DBV ...v DBg. That 1s,
DB? = {C : OC=C1vOyV.. .V, where C; € DBZd}

Proof: MM(DB) = {M : M = UZ¥M;, whereM; € MM(DB;) Vi € {1,2,....k}}. That is, the

set of minimal models of DB is the cartesian union of the minimal models of its partitions [22].

The proof follows immediately. []

Example 6 Let DB = {P(a)V
DBy ={P(a)V P(b), P(a) V
DBy ={P(d)V P(f),P(e)V
DB = {P(a)V P(d) V P(e),

(b), P(a) V P(c), P(d)V
(c)} and DB = {P(a),
(f)} and DBY = {P(d)
(a) vV P(f), P(b)V P(c)

Definition 3.2 A disjunctive deductive database DB is self-dual iff DB® =,,,, DB.
For a self-dual database DB we have MM (DB) = MS(DB) and MM(DB?) = MS(DB?)

Example 7 Let DB; = {P(a)}.
MM(DBy) = {{P(a)}}

Let DBy = {P(a)V P(b), P(a)V P(c), P(b)V P(c)}.
MM(DB3) = {{P(a), P(b)},{P(a), P(c)},{P(b), P(c)}}.

Let

DBy = {P(a)V P(b)V P(c),
P(a)V P(b)V P(d),
P(a)V P(b)V P(e),
P(a)V P(c)V P(d),
P(a)V P(c)V P(e),
P(a)V P(d)V P(e),
P(b)V P(c)V P(d),
P(b)Vv P(c)V P(e),
P(b)Vv P(d)V P(e),
P(e)V P(d)V P(e)}

MM(DB3) = {{P(a), P(b), P(c)},{P(a), P(b), P(d)}, {P(a), P(b), P(e)}, {P(a), P(c), P(d)},
{P(a), P(c), P(e)}, {P(a), P(d), P (b), P(c), P :
{P(c), P(d), P(e)}}-

Let DBy = {P(a)V P(b), P(a)V P(c), P(a) V P b)
MM(DBy) = {{P(a), P(b)},{P(a), P(c)},{P(a), P(d)},{

—

Let DBs = {P(a)V P(b)}.
MM(DBs) = {{P(a)}, {P(b)}}

DB, DBy, DB3 and DBy are self-dual. Their minimal clauses and minimal models coincide
when treated as sets of atoms. DBy is not self-dual

Given a DDDB, DB, and S C HBppg such that | S |= n, where n is an odd number, it is
possible to construct a self dual database consisting of all possible clauses of length (n 4+ 1)/2. To
see this note that each clause has to contain an atom of every other clause since two sets of (n41)/2
atoms each, have at least one atom in common for otherwise | S |> n. So, every clause is also a
model of this database. On the other hand, minimal models of this database are all of cardinality
(n+1)/2. This is so since S’ C S, such that | 5’ |= (n+1)/2 will satisfy all database clauses because
it intersects with each of them. Any S” C S’ (an interpretation of size m < n + 1) will falsify the
clauses consisting entirely of atoms not in S”. Another interesting property of this class of databases
is its extremely bad behavior in terms of the number of minimal models generated. However, this is
not the only class of self dual databases as demonstrated by DB, in Example 7.

The class of self-dual databases is characterized by the interchangeability of their models and
clauses. Given any of these representations it is straightforward to determine the other. However,
it 1s not trivial to determine self-duality of a given database.

3.2 Tree Structures for Dual Databases

Given a digjunctive deductive database, DB, the above discussion establishes the strong relationship
between its set of minimal models MM (DB), and its set of minimally derivable positive clauses
MS(DB) through the dual database DB?.

Model trees were introduced as a structure sharing approach to represent information in dis-
junctive deductive databases in the form of minimal models [7]. The efficiency of answering queries
and performing update operations in disjunctive deductive databases depends on the nature of the
databases, the type of operations and queries considered and the database representation selected.
Queries and updates expressed in terms of models can be handled efficiently using minimal model
trees. However, queries and updates expressed in terms of database clauses are inherently more
difficult to handle in model trees. They have to be translated into minimal model operations before
accessing the tree structure. A way around this problem is to have a minimal clause tree repre-
sentation for the disjunctive deductive database. This is a structure sharing approach to specifying
the set of clauses minimally derivable from a database. Informally, a clause tree for a disjunctive
deductive database DB is a tree structure in which nodes are labeled by atoms of the Herbrand
base of DB. With each branch of the tree we associate the set of atoms encountered on that branch.

12

Branches from the root to leaf nodes represent clauses derivable from DB. A minimal clause tree
is a clause tree for which there i1s a one to one correspondence between minimally derivable clauses
(elements of MS(DB)) and branches from the root to leaf nodes. The tree is ordered if the root-
to-leaf traversal of each branch produces the ordered sequence corresponding to that branch and a
left-to-right enumeration of the branches produces the ordered sequence corresponding to the set of
ordered branches (see Definition 2.13).

Given a digjunctive deductive database, DB, two approaches to build the ordered minimal clause
tree for DB, ’T/{J/IS(DB), are possible: an indirect, two step solution, by constructing the ordered

minimal model tree for the dual database DB? using the algorithms developed for constructing
minimal model trees in [5, 20] and the properties of dual databases mentioned above. The other
approach is to directly construct the minimal clause tree corresponding to DB.

The following two step algorithm can be used to construct the minimal clause tree of a DD DB,
DB, using the first approach:

e Step I: Build the ordered minimal model tree for DB using any of the algorithms given in [20].
Call the resulting tree /{)/IM(DB). The branches of TX/{M(DB) correspond to the clauses of the

positive database DB?.

o Step 2: Use the clauses of DB? represented by the branches of ’T/&M(DB)

minimal ordered model tree of DB, ’T/&M(DBd), using the algorithm given in [20]. From the
results on the properties of dual databases it is easy to see that the resulting tree is the ordered
minimal clause tree for DB, ’T/{J/IS(DB).

to construct the

Note that this approach works for positive and nonpositive DDDBs. We do not need to mate-
rialize DB? in order to build its model tree. We can operate directly on the branches of ’T/&M(DB).
Theorem 2, together with the correctness of the minimal model tree building algorithms given in [20],
guarantee the correctness of the minimal clause tree construction process.

Note also that in the second step we always deal with the positive database DB?. The rules
are taken care of in step 1. Therefore, the model tree construction process is generally simplified.
We can also exploit the order in the tree constructed at the first stage, ’T/&M(DB), to achieve better
performance for Step 2.

Note also that the (minimal) model tree can be viewed as an OR-AND tree of the database DB,
where the AND is between the a node and each of its children and the OR is between the siblings
of a node. The same structure, when viewed as an AND-OR tree (the roles of the logical operators
reversed), represents the clause tree of the dual database DB<.

The second approach is discussed in the following paragraphs.

3.3 Building Ordered Clause Trees

Here we describe the minimal clause tree construction process directly from the clauses of DB.
We consider two classes of disjunctive deductive databases. The first class is positive disjunctive
deductive databases where we assume that the database is ground with no negative occurrences of
atoms. The second class is digjunctive deductive databases with rules. When translated into clausal
form the rules will generate negative literals.

13

3.3.1 Positive Databases

In the construction of a clause tree for a positive database, we recursively decompose the database
by extracting, on each step, the largest atom (in the order >) that occurs in the database, and
generating two new smaller databases to be processed further.

At each step, the current database, DB, is decomposed to construct subtrees underneath a
particular node A of the tree (initially £, the root). Moreover, no atom in the path from the root
to N occurs in DB.

Let DB be a ground positive DDDB and let (4;1,..., Ay) be the ordered Herbrand base un-
derlying DB. Assume that A € {A;,..., Ay} is the largest atom that occurs positively in DB and
N is the node under expansion (N > A or ¢ = A).

Let DB = {Fy,...,F,,C1,...,Cpn} where the F; are the clauses that contain A, the Cj are
clauses free of A and let F/ = F; — A (i.e. the result of removing the literal A from the clause F;).

We extract the common literal A from the F; clauses by rewriting DB as {(AV (Ff A--- A
F/)),Ch,...,Cn} and decompose DB into the two subsets of clauses DB.4 = {C4,...,Cp,} and
DBy ={F|,...,F/}.

The leftmost child of A is the node A with the database DBy to be expanded underneath A. The
database DB- 4 will be expanded underneath A" and to the right of A (it will generate the subtrees
of NV to the right of A). The process is recursively applied to these two databases (Figure 2-a).

DB4 and DB_ 4 are smaller than DB in the sense that D B4 has less clauses and/or fewer literals
in its clauses than DB, and DB_4 contains fewer clauses than DB. Two terminating conditions
are possible:

1. No atom occurs in DB (e.g. DB is empty). The branch represents a clause, not necessarily
minimal, of the original database.

2. DB contains the empty clause, O, (the clause with no literals). In this case, some clauses are
nonminimal and no further expansion is needed.

The resulting tree is ordered. This results from expanding the children of a particular node from
left to right in an increasing order of the atoms and processing all clauses in a subtree containing
that atom simultaneously so that the atom occurs in all clauses in the left subtree and is absent
from all clauses in the right subtree. This guarantees that depth first search will always yield the
ordered clauses of the database.

The resulting tree 1s not necessarily minimal. A minimization step is needed. The tree con-
struction process guarantees that a clause is nonminimal if and only if it 1s a superset of a clause
appearing to its right in the tree. This is so since the tested clause contains at least one atom (the
top node) not present in clauses to its right. A clause in the tree may subsume other clauses to
its left only. The rightmost clause generated is minimal since it can have no clauses to subsume it.
If we elect to generate right clauses first then we can limit our checking to already found minimal
clauses.

Example 8 Let DB = {P(a)V P(¢)V P(d), P(a)V P(b)V P(c), P(c) vV P(d), P(b)V P(d)}.

We build an ordered model tree for DB assuming the following order of atoms P(a) > P(b) >
P(c) > P(d).

We start with P(a).

14

Figure 2: Building the Clause Tree for Positive Databases (a-General; b,c-for Example 8)

DB1 = DBp(ay = {P(c)V P(d), P(b)V P(c)} and

DB2 = DB_pay = {P(c)V P(d), P(b)V P(d)}.

Next we expand DB2 on P(b) to get DB2py) = {P(d)} and DB3 = DB2_p@)y = {P(c)V P(d)}.
DB3py = {P(d)} and DB3_py = {}. So the children of the root are P(a), P(b) and P(c) and
the associated subtrees are {P(c) V P(d), P(b)V P(c)}, {P(d)} and {P(d)}, respectively. The tree
that needs further expansion is DB1.

DBl1py)y = {P(c)} and

DBA = DBl.py, = {P(c)V P(d)}.

DBAp(,y = {P(d)}, and DBAp(.) = {}

In the resulting tree we have one nonminimal clause P(a)V P(c)V P(d) which is to be deleted as
shown in Figure 2-b,c.

3.3.2 Clause Tree Construction for Databases with Rules

To construct the minimal clause tree for a database with rules, DB, we first build the minimal
clause tree for the positive part of DB (DB without the rules, Epp). Next, for every rule C'in DB
we try resolving C' against each of the branches of the current clause tree. The resolvent clauses
will have fewer negative literal. If a positive clause is generated as a result of these resolutions then
it i1s added to the minimal ordered clause tree using the clause addition algorithm to be described
later. If no resolutions are possible or if the resolutions result in no positive clauses then no update
is performed on the minimal clause tree. After each positive clause addition the rule application
process is repeated until no new positive clauses are possible and therefore no new updates to the
tree are generated. The order in the tree can be exploited to facilitate the resolution process.

Example 9 Let

15

DB = {P(e) — P(b) A P(c),
P(a) Vv P(b),
P(a)V P(c),
P(e) v P(d),
P(b),
P(f) = P(a) A P(d)}

We build an ordered model tree for DB assuming the alphabetical order of atoms which consists
of the original clauses minus the clause P(a) VvV P(b) which is subsumed by P(b).

Employing the rules we generate the additional clauses

P(a)V P(e), P(d)V P(e), P(f) Vv P(¢), P(f)V P(e)

which are added to the original tree to get the tree shown Figure 3.

It is worthwhile to note that in constructing DB? the only relevant atoms of the H Bp g are those
occurring in DB. Other atoms of H Bpp do not contribute to the minimal model structure or to
the minimal clause structure of DB or DB?. In addition, definite atoms of H Bpp (atoms occurring
in every minimal model) will occur in every clause of DB? and vice versa. Therefore, we need to
pay attention to the set of indefinite atoms of H Bpp (atoms present in some, but not all, minimal
models; atoms occurring in minimal indefinite clauses). The indefinite atoms are the determining
factor in the size of the resulting minimal model trees and the minimal clause trees for DB and
DB?. They define the branching of the tree and therefore its complexity. The definite atoms on the
other hand constitute the common part of all branches. Under the proper order selection each of
them can be made to appear only once in the tree. Note also that the set of definite atoms and the
set of indefinite atoms of a DDDB are disjoint (their intersection is empty).

16

3.4 Operations on Ordered Clause Trees

In this section we discuss the problem of performing update operations on ordered minimal clause
trees. We assume that the tree is minimal before the start of the update. Each branch represents
a minimally derivable clause in DB and every minimally derivable clause in DB has a root to leaf
branch in the minimal clause tree.

The operations we discuss are adding a clause to DB and removing a clause from DB. The
decision to add or remove a clause is external to our update algorithms. It can result, among other
factors, from applying the rules to the extensional database or update operations to the database.

We may elect to use the standard algorithms reported in [7, 20] to update the minimal model
tree of the database and then reconstruct the minimal clause tree to reflect the introduced updates.
However, this approach may be costly and here we describe how to perform updates directly on the
minimal clause tree.

3.4.1 Clause Addition

Let C' be the clause to be added to the DDDB, DB. Order the atoms in C and search for an exact
match in the branches of the minimal clause tree for DB.

If C' is a branch in the tree then do nothing. The clause is already in the tree.

If C'is not a clause in the tree then add C' at the proper location in the tree to preserve the order
and perform clause minimization to remove any nonminimal clauses.

If C' is added to the tree then check for compliance with the rules, if any. Add the appropriate
clauses until no further additions are needed.

Example 10 Let DB = {P(a)V P(b), P(a)V P(c), P(f) — P(d)}.

First add the clause P(e) VvV P(d).

DB = {P(a)V P(b), P(a)V P(c), P(e) V P(d), P(f) — P(d)}.

The application of the rule to DB will result in the addition of the clause P(e)V P(f).

DB? = {P(a)V P(b), P(a)V P(c), P(f) — P(d), P(e) vV P(d), P(e) V P(f)}
which complies with the database rules.

Next add the unit clause P(d) to DB*. The clause P(e) V P(d) becomes nonminimal and is
therefore deleted to give

DB? = {P(a)V P(b), P(a)V P(c), P(f) — P(d), P(d), P(e) vV P(f)}.

The application of the rule to DB? results in the additional clause P(f).

DB = {P(a) v P(b), P(a) v P(e), P(f) — P(d), P(d), P(e) v P(f), PU)}-

The clause P(e) V P(f) is not minimal and is therefore deleted to obtain the final DB® =
{P(a)V P(b), P(a)V P(c), P(f) — P(d), P(d), P(f)}. The steps are shown in Figure 4.

3.4.2 Clause Deletion

Let C' be the clause to be deleted from the database. Order the atoms in (' and search for an exact
match in the tree branches. If C' is not in the tree then do nothing.

If there is a branch in the tree corresponding to C' then delete that branch.

Check for database compliance with the rules, if any. Modify the database accordingly. We may
need to remove additional clauses to accomplish the update. This process may be nondeterministic:

17

P(a) RP(@ P(e)
P(b) P(e) PO) ple) P(e) PP

)
Q
~ ™
T

(
I\ P(d) P(f)
P(b) P(c) P(e) P(f) P(b) P(c)
. d

Figure 4: Clause Addition to a Minimal Clause Tree for Example 10

18

Figure 5: Clause Deletion from a Minimal Clause Tree for Example 11

more than one choice can accomplish the deletion. However, we may elect to reject the deletion
if the resulting database does not obey the rules. The choice depends on the application under
consideration.

If as a result, additional clauses were added to the tree then check for clause minimality in
the tree and remove any nonminimal clauses. No minimality check is needed if deletion was the
only operation performed. We may elect to reject the deletion of a clause that necessitates further
updates.

Example 11 Let DB = {P(a)V P(b), P(a)V P(c), P(f) — P(d), P(e) vV P(d), P(e) V P(f)}.

First delete the clause P(e)V P(f). The resulting database is

DB = {P(a)V P(b), P(a)V P(c), P(f) — P(d), P(e) vV P(d)}.

DB does not comply with the rule P(f) — P(d).

To make it comply we need either to add the clause P(e)V P(f) and thus undo the update or to
delete the additional clause P(e)V P(d) and preserve the update and get the final database

DB? = {P(a)V P(b), P(a)V P(c), P(f) — P(d)} which accomplishes the required deletion and
complies with the rules. If we are restricted to the deletion of the single clause P(e)V P(f) then the
update cannot be accomplished. The original and resulting trees when the update succeeds are shown
wm Figure 5-a and Figure 5-b respectively. We could also delete the rule itself. However, since the
rules generally serve as view definitions we do not pursue this option.

The following example demonstrates that clause deletion can be performed in more than one
way.

Example 12 Let DB = {P(a), P(b), P(¢) — P(a) A P(b)}. The original tree contains the definite
clauses P(a), P(b), and P(c). Deleting P(c) can be accomplished by removing the P(c) branch and
one (or both) of the branches corresponding to P(a) and P(b).

Note also that in general the clause tree update operations need not be reversible. Adding a
clause and deleting it may not take us back to the original database as a result of update propagation.

19

For example if DB = {P(a)V P(b)} and the clause P(b) is added then the resulting database will
be DB* = {P(b)}. Clearly deleting P(b) will result in the empty database. Our interpretation
of updates is not the only one possible. The detailed discussion of the topic of clause addition
and deletion is beyond the scope of this paper. Several papers on database updates address this

issue [2, 8, 18].

3.5 Query Answering in Minimal Clause Trees

In [5] algorithms were described to extract answers to queries from minimal model trees. While the
same algorithms are applicable to minimal ordered model trees [20] performance improvements can
be achieved by modifying the algorithms to account for the order in the tree.

We would like to develop answer extraction mechanisms for minimal clause trees. We consider
two cases: disjunctive queries and conjunctive queries.

3.5.1 Disjunctive Queries

A disjunctive query Q(x) is a query of the form Q(z) = Pi(z) V Pa(z) V ...V Py(2), where P; is a
predicate in DB for all ¢ € {1,2,...,n}. To answer such a query we need to find a clause (branch)
in the minimal clause tree that is an instance of this query or that subsumes an instance of the
query. The substitution set resulting from all such tree branches is the answer set to the query
Q(z). Alternatively, we can negate the query Q(#) to get =Pi(x) A =Pa(x) A ... A Py(x). Every
substitution that generates the empty clause from any one of the tree branches is an answer to Q(z).
If no derivation of the empty clause i1s possible then the query has no answers.

Basically the disjunctive query answering process in minimal clause trees is a tree search for the
answers in the branches of the tree.

Example 13 Let DB = {P(e), P(a)V R(d), P(a) V P(c), R(a) V R(b)} and let Q(z) = P(x)V R(x).
Then, e,a+d,a+c,a+ b€ ANSWER(Q(x)).

Note that the empty clause O is generated from the negation of the query =P(x) A—R(x) and the
clauses P(e), P(a)V R(d), P(a)V P(c), and R(a)V R(b), respectively, to generate the above answers.
The indefinite answer, a + d, to the query Q(x) denotes that P(a) V R(a) V P(d) V R(d) is an
answer. That is, it is entailed by the database since it is subsumed by P(a)V R(d), which is a fact
i the database. If the user desires to know the smallest answer that satisfies the query, it could be
determined by asking if subqueries of the answer were satisfied.

3.5.2 Conjunctive Queries

A conjunctive query Q(#) is a query of the form Q(z) = Py(x) A Pa(®) A ... A Py(2). The process of
conjunctive query evaluation is more complex. A simple search is not sufficient.

To answer Q(z) we add a new rule to the database with the head corresponding to the query
Q(z) — Pi(x)APa(x)A...APp(2). We update the minimal clause tree to add all the positive clauses
containing the new predicate). Clauses pure in predicate) are all the possible answers to the
query @(z). Mixed clauses generate no answers to Q(z).

20

Example 14 Let DB = {P(a)VP(b), P(a)VR(b), R(a)VR(b), P(b)VR(a), P(a)VP(e), R(a)VR(c)}.

The new rule added is Q(x) — P(x) A R(x).

The new positive clauses generated are {P(b)V Q(a), P(a)V Q(b), R(b)V Q(a), R(a)V Q(b), P(b)V
Q(a) v P(e), RV Q(a) v P(e), P(b) v Q(a) v (), R(D) v Q(a) v R(e)}.

Further application of the rule generates the additional new clauses {Q(a)V Q(b)}. Clauses pure
m Q) generate the answer a +b. No other answers are generated.

4 Complementary Databases

Given a DDDB, DB, we define another derivative database corresponding to it, the complementary
database, DB*®. The definition of DB* is based on the minimal model representation of DB. We
study the properties of the complementary database and its possible utility for computing database
completions.

Definition 4.1 Let DB be a DDDB with the set of minimal models {My, Ms, ..., M,,}. The com-
plementary database, DB®, is the database with the set of minimal models: {M{, M}, ..., M)}, where
M!=HBpp \ M; for allie{1,2,....,n}.

Note that all elements in MM(DB®) = {M7, M4, ..., M/}, are distinct and minimal for otherwise
there must exist two models M, and M such that i # j and M C M. In this case (H Bpp \ M;) C
(HBpp \ M]). Mj C M; contradicting the minimality of the elements of MM(DB). Therefore,
DB is well defined. We may also elect to perform minimization on DB°® by deleting duplicate atoms
in individual clauses and removing subsumed clauses.

Example 15 Let DB = {P(a)V P(b), P(a)V P(c), P(c)V P(d), P(b)V P(c)}.
MM(DB) = {{P(a), P(b), P()},{Pla), P(e)}, {P(D), Pe)}).
HBpp = {P(a), P(b), P(c), P(d)}.
MM(DB) = {{P(e)}, {P(b), P}, {P(a), P},
DB® = P(c)V(P(b)AP(d))V (P(a) A P(d)).
FExpanding we get DB® = {P(a)V P(b)V P(c), P(c)V P(d)}.

Definition 4.2 Let DB be a DDDB. By DB™ we denote the set of clauses resulling from replacing
all atom occurrences in DB by their negations.

If DB is positive then the negative database DB™ has the empty set, 0, as its only minimal
model. In this case, it may be more reasonable to talk about maximal models of DB™. That is, the
set YM(DB™)={M : M = DB™ and VM' D M, M' }£ DB }.

For a positive database, DB, it is easy to show that Y M(DB™) = MM(DB®). To see that
note that the maximal models of DB™ are exactly the complements of the minimal models of DB
relative to H Bpp.

Example 16 For the database in Example 15

DB~ = {~P(a)V =P(b), ~P(a)V =P(c), ~P(c) V =P(d), ~P(b) V ~P(c)}.
AM(DB™) = {{P(c)}, {P(b), P(d)},{P(a), P(d)}} = MM(DB*).

21

4.1 Properties of Complementary Databases
Theorem 7 Let DB be a disjunctive deductive database and let DB® be its complementary database.
Then
(DB%)* = DB.
Proof: The proof follows from observing that HBpp \ M! = M. n

Theorem 8 Let DBy and DBy be disjunctive deductive databases with the same Herbrand base,
HBDB. Then:

DBy =mm DBy iff DB =pm DBS.

{M':M' = HBpg \ M,YM € MM(DBy)} = {M': M' = HBpp \ M,YM € MM(DB,)}.
MM(DBS) = MM(DBS). DB§ = DBS. n

Theorem 9 Let DB be a DDDB and let DB be its complementary database. Then:

C

=AVAV.. VA, EMS(DB®) iff C7 ==A1 VoA V...V oA, € MEGCWA(DB).

Proof: Let C'= A1V Ay V...V Ay, be in MS(DB®). We show that C7 = =41 VAV .. V-4, €

MEGCW A(DB).

Let M' € MM(DB®). 3 A € (MnC). The corresponding minimal model of DB is
M = HBpp\M’ and A & M. Therefore, =A1V—-A45V...V=A,, is true in M and consequently,
in every minimal model of DB. By Lemma 2, for every atom A; of C' there is a minimal model
of DB®, M/, containing A; but none of the other atoms of C'. All other minimal models of DB®
have one or more atoms of C'. Assume that a subclause of €7, say C'™, is in EGCW A(DB).
Let A; € (C'\ C") and let M/ be the minimal model of DB® such that M/ N C = {A;}. The
subclause C'™ is false in M;. A contradiction.

Let C7 = —2A1V-AyV ...V —A, € EGCWA(DB). We show that C = {41 VA2V ..VA,} €
MSE(DB°).

Let M € MM(DB). 3 A; € C and A; ¢ M. By definition, A; € (HBpp \ M). That is,
every minimal model of DB has an atom of C' in it. C'is true in every minimal model of
DB*¢. We need only show that i1t is minimal. Assume it 1s not. There exists a subclause of
C, say C' € MS(DB°). By the first part of the ongoing proof C'™ is in EGCWA(DB). A

contradiction. [

Example 17 Let DB = {P(a)V P(b), P(a)V P(c), P(c)V P(d), P(b)V P(c)}.

MM(DB) = {{P(a), P(b), P(d)},{P(a), P(c)}, {P(b), P(c)}}.

MM(DB) = {{P(c)},{P(b ,Pb()d)}, {P(a), P(d)}}.

EGCW A(DB) = {=P(a)V —P(
MS(DB*) = {P(a)V P(b

v)
)V J)D(c), P(c) v P(d)}.

~EGCWA(DB) = MS(DB*

22

Theorem 10 Let DB be a disjunctive deductive database. Given EGCW A(DB) it is possible to
construct DB’ such that DB’ =,,,, DB.

Proof: Construct DB’ such that DB’ = (M EGCW A(DB)™)¢. We show that DB’ =, DB.
By Theorem 9 (M EGCWA(DB)™)* = (MS(DB®))°.
By Corollary 1 (MS(DB))¢ =pm (DB)°.
By Theorem 7 (DB®)¢ =pm DB.
An therefore, DB = (MEGCWA(DB)™)C. []

Example 18 Given EGCWA(DB) = {—=P(a) V =P(b)V =P(c),=P(c) vV =P(d)}.
EGCWA(DB)” ={P(a) Vv P(b)V P(c),P(c)V P(d)} = MS(DB).
MM(DB®) = {{P(c)}, {P(b), P(d)}, {P(a), P(d)}}.
MM(DB) = {{P(a), P(b), P(d)},{P(a), P(c)},{P(b), P(c)}}.
DB’ = {P(a)V P(b), P(a) vV P(c), P(c) V P(d), P(b) V P(c)}.
DB’ is the same as DB in Frample 17.

—~

Theorem 11 Let DBy and DBy be disjunctive deductive databases. Then:
DBy =pmm DBy iff EGCWA(DB,) = EGCWA(DBs).

Proof: DBy, =mm DBs iff MM(DBy) = MM(DBs), ift DB} =, DB5 (Theorem 8), iff
MSE(DB{) = MS(DBS) (Corollary 1), iff EGCWA(DB;) = EGCW A(DB2) (Theorem 9).
n

Corollary 3 Given a DDDB, DB, then DB, DB, MM(DB), MS(DB), EGCW A(DB) are
alternative representations of DB. Given any of these representations it is possible to reconstruct
DB’ such that DB’ =,,,, DB and it is possible to construct any of the other representations.

Definition 4.3 A disjunctive deductive database DB is self-complementary iff DB = DB.

Example 19 Let DBy = {P(a)V P(b), P(a)V P(¢)}. MM(DBz) = {{P(a)},{P(b),P(c)}}

Let DBy = {P(a)V P(b), P(c)V P(d)}. MM(DB2) = {{P(a), P(c)}. {P(a). P(d)}. {P(8), P(e)},
(P@), P()).

Let DBs = {P(a)V P(b)V P(¢)}. MM(DBs) ={{P(a)},{P(b)},{P(ec)}}.

DBy and DBy are self-complementary while DBz ts not.

It is not hard to show that given an even number of atoms n it is possible to construct a self
complementary database having as its set of minimal models all the possible interpretations of length
n/2. To see this note that the complement of each minimal model is also a minimal model since
it is an interpretation of length n/2. However this is not the only class of self dual databases as
demonstrated by DBy in Example 19.

Theorem 12 Let DB be a disjunctive deductive database with the partition {DBy, DBy, ..., DBy};
That s, DB = DBy UDBy U ..U DBy ,and DB; N DB; = OV i+ 5 and DB; is a cluster of
DB Vi € {1,...,k}. Let ATM(DB;) denote the set of atoms that occur in DB; (in a sense, a

23

localized Herbrand base of DB;). Let DB¢, be the database with the minimal models MM(DB{) =
(M': M € MM(DB;) and M' = ATM(DB;)\ M}.

Then DBY,DB5, ..., DB{ are partition blocks of DB°. In addition DB has the block containing
all the atoms of the set HBpp \ (UIZXAT(DB;)).

Proof: The proof is along the same lines of the proof of Theorem 6. It follows from the disjointness
of the local Herbrand bases of the individual blocks and the fact that each minimal model of
DB contains exactly one minimal model of each block [20]. |

Example 20 Let DB = {P(a)V P(b), P(a)V P(c), P(d)V P(f),P(e) V P(f), P(e) vV =~P(g)}.

A

Let H Bpp = {P(a), P(b), P(c), P(d), P(e), P(]), P(g), P(h))
DB, = {P(a)V P(b), P(a) V P(¢)).

MM(DB,) = {{P(a)}, {P(b), P(c)}).

MM(DBS) = {{P(b), P(0)), {P(a)}).

DBy = {P(d)V P(f), P(e) V P(f), P(¢) V ~P(g)}.

MM(DBy) = {{P(d), P(e)}, {P(1)}).

MM(DB3) = {{P(g), P(N}. {P(9), P(d), P(e)}
MM(DB) = {{P(b), P(c), P(g). P(f), P(h)}. {P(b), P(c), P(d), P(e), P(g), P()},
{P(a), P(g). P(f), P()}, {P(a), P(d), P(e), P(g), P(h)}}.

The size of the Herbrand base of the database DB may be much larger than the number of atoms
occurring in the database. In constructing complementary databases the atoms of interest for us
are those contributing to the minimal model structure of DB. Other atoms of the Herbrand base
can be ignored during the processing. For example, atoms not occurring in the database or those
occurring only in clauses with pure negative literals cannot contribute to the model structure of DB
and therefore such atoms can be ignored [1, 20]. In Example 20 the atoms P(g) and P(h) appeared
in every minimal model of DB since none of them contributed to the model structure of DB. P(g)
appeared only in clauses with pure negative literals and P(h) did not occur in DB.

4.2 Tree Structures for Complementary Databases

Given a database DB with a corresponding minimal model tree it is possible to construct the model
tree for the complementary database, DB®, simply by replacing every model by its complement.
Direct application of the definition of the complementary database shows that if the original tree is
minimal then the resulting complementary tree i1s also minimal. However, even if the original tree is
ordered the complementary model tree need not be ordered.

In constructing the minimal complementary tree we must start from a minimal tree for the
original database. If the original model tree is not minimal then the resulting complementary model
tree will not be minimal either. Direct minimization on the complementary tree cannot be performed.
It will result in removing the needed models rather than the unnecessary ones.

Example 21 Let DB = {P(a)V P(b), P(a)V P(c), P(¢) vV P(d), P(b)V P(c)}. The minimal model
tree of DB and the minimal model tree of the complementary database DB® are given wn Figure 6.

Consider the set of models {{P(a), P(b), P(d)},{P(a), P(c)},{P(b), P(c)},{P(a), P(b), P(c)}}.
It contains the nonminimal model {P(a), P(b), P(c)}.

24

P(d)
P(b)
P(a)
P(b P(c) P(c)
P(dN\P(c) b : Nonminimal Trees

Figure 6: Model Trees for Complementary Databases for Example 21

25

HBpp = {P(a), P(b), P(c), P(d)}. {M' : HBpp \ M} = {{P(c)},{P(b), P(d)},{P(a), P(d)},
{P(d)}}. This set contains the nonminimal models {P(b), P(d)} and {P(a), P(d)}. The nonmini-
mal trees for DB and DB® are also given wn Figure 6. Minimization results in the following set of

models {{P(c)},{P(d)}} rather than the set in Example 17.

However, if we start from a nonminimal model tree to obtain a nonminimal complementary
tree we can still achieve the minimal complementary tree by removing models that are subsets
of other models (in a sense reverse minimization). This procedure is correct since My C My iff
(HBpp \ M2) C (HBpp \ M1). Therefore reverse minimization in the complementary tree is
equivalent to conventional minimization in the original tree.

Given a database DB and its minimal model tree it is possible to construct its complementary
model tree as explained earlier and then construct the dual of DB®, (DB¢)%. The resulting tree
has as branches the minimal elements of EGCW A(DB). Clauses of length 1 are the elements of
GCWA(DB). The maximal depth of the tree is also the limit of the length of possible minimal
negative clauses in EGCW A(DB)

The construction of the complementary tree may be complicated by the large size of the Herbrand
base as compared with the number of ground atoms occurring in the model tree. We can limit our
attention to the elements of the Herbrand base occurring in the model tree since all other atoms will
appear as definite clauses in the complementary tree and therefore have no effect on the digjunctive
components of the tree. We can even go a step further. Since definite atoms (those occurring in
every minimal model) are always absent from the minimal models of DB* and atoms not occurring
at all in DB are always in every minimal model of D B¢ then we can restrict our attention to atoms
of the Herbrand base occurring in minimal indefinite clauses (in some, but not all, minimal models
of DB). These are the source of the branching in the resulting trees.

5 Conclusion

In this paper we introduced the concepts of dual and complementary databases for a given disjunctive
deductive databases, DB. We investigated the properties of these databases and their relationship
to the original database and its completions. We showed that several representations can be used
to specify a database DB including the dual database (DB?), the complementary database (DB¢),
the set of minimal models MM (DB), the set of minimally derivable clauses MS(DB) and the
Extended Generalized Closed World Assumption EGCW A(DB) and showed how to transform one
representation into the other. We also described algorithms to construct minimal clause trees for a
given database and to perform addition and deletion operations on these trees. The minimal clause
tree and the minimal model tree for the complementary database can be used for efficient query
evaluation and for evaluating of the completion of the database. Additional properties of the database
such as the maximal length of minimal disjunctive answers and the maximal length of elements
of EGCWA(DB) can also be determined from the tree structures for dual and complementary
databases.

Each of the representations discussed in this paper is sufficient to characterize the semantics
of the disjunctive deductive database and each can be converted into the other. However, the
transformation can be computationally expensive - exponential in the size of the number of clauses
in the database.

26

The selection of a particular representation for a DD DB depends upon the type of query most
frequently requested in a particular application. For example, queries based on clause searches
(disjunctive queries) can be handled easily by using the Dual (minimal ordered clause tree) repre-
sentation for the database. In this case a search for an instance of the clause (query) reduces to a
string matching operation in the tree branches which can be accomplished in linear time in the size
of the Herbrand base (assuming an order on the underlying Herbrand base). Similar reasoning can
be applied to the case of minimal model-based operations and ordered minimal model trees.

While the paper is concerned with the study of the theoretical aspects of DD DB representations,
the underlying motivation for the study is to enable the selection of the appropriate representation
for an application under consideration.

In general, dealing with disjunctive databases is computationally expensive. At the worst, if the
entire database consists exclusively of disjuncts, and there are N disjuncts of length greater than
one, it may take time exponential in NV to answer a query. However, we believe that most realistic
databases are primarily definite, with a small fraction of the database being disjunctive. Hence, the
exponential size of the database refers to the size of the set of disjuncts. Even here, the size may
be reduced by considering clusters of disjuncts. The amount of time to answer a query can be the
size of an individual cluster and be insignificant with respect to the database size. In addition, if
the sizes of the disjuncts are restricted to at most two (that is, clauses such as P(a) VvV P(b) may be
in the database, but larger disjuncts such as P(c)V P(d) V P(e) do not appear, answers to queries
may be found in polynomial time [3].

Topics to be addressed in the future include the extension of the results to larger classes of
databases and to various semantics of disjunctive deductive databases.

27

Acknowledgements

We greatly appreciate the financial support of the National Science Foundation, provided under the
grant Nr. TRI-89-16059, the Air Force Office of Scientific Research, provided under the grant Nr.
AFOSR-91-0350, and the Fulbright Scholar Program that made this work possible. This work was
carried out while the first author was a visiting scientist at the University of Maryland Institute for
Advanced Computer Studies (UMITACS). The support of UMIACS is also appreciated.

References

(1]

[2]

C.-L. Chang and C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press,
1973.

R. Fagin, J. Ullman, and M. Vardi. Contributions to the view update problem. In Proc. of the
Swth Intl. Conf. on Logic Programmang, pages 398-415, 1989.

J.A. Fernandez, Z.A. Khandakar, and J. Minker. A tractable class of disjunctive deductive
databases. In Proc. Workshop on Deductive Databases, Joint International Conference and
Symposium on Logic Programming (JICSLP’92), Washington, D.C., Nov. 1992.

J.A. Fernandez and J. Minker. Disjunctive deductive database. In 3rd International Conference
on Logic Programming and Automated Reasoning, pages 332-356, July 1992. Invited Paper.

J.A. Fernandez and J. Minker. Semantics of disjunctive deductive databases. In Proceedings of
the International Conference on Database Theory, pages 332-356, 1992. (Invited Paper).

J.A. Fernandez and J. Minker. Theory and algorithms for disjunctive deductive databases. Pro-
grammirovanie, N 3:5-39, 1993. (also appears as University of Maryland Technical Report,CS-
TR-3223, UMTACS-TR-94-17,1994. Invited Paper in Russian).

José Alberto Fernandez and Jack Minker. Bottom-up evaluation of Hierarchical Disjunctive
Deductive Databases. In Koichi Furukawa, editor, Logic Programming Proceedings of the Eighth
International Conference, pages 660-675. MIT Press, 1991.

J. Grant, J. Horty, J. Lobo, and J. Minker. View updates in stratified disjunctive databases.
Journal Automated Reasoning, 11:249-267, March 1993.

J. Grant and J. Minker. Answering queries in indefinite databases and the null value problem.
In P. Kanellakis, editor, Advances in Computing Research: The Theory of Databases, pages
247-267. 1986.

K.C. Liu and R. Sunderraman. Indefinite and maybe information in relational databases. ACM
Transactions on Database Systems, 15(1):1-39, 1990.

K.C. Liu and R. Sunderraman. On representing indefinite and maybe information in relational
databases. In Proceedings of IEEE Data Engineering, pages 495-502, Los Angeles, 1990.

28

[12]

[13]

[14]

[15]

[16]

[17]

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT
Press, 1992.

J. Minker. On indefinite databases and the closed world assumption. In Proceedings of 6th
Conference on Automated Deduction, pages 292-308, New York, 1982.

J. Minker. Toward a foundation of disjunctive logic programming. In Proc. North American
Conference on Logic Programming, pages 1215-1235, 1989. (Invited Paper).

J. Minker. An overview of nonmonotonic reasoning and logic programming. Journal of Logic
Programming, 17(2, 3, and 4):95-126, November 1993.

A. Rajasekar, J. Lobo, and J. Minker. Skeptical reasoning and disjunctive programs. In Pro-
ceedings of First International Conference on Knowledge Representation and Reasoning, pages

349-357. Morgan-Kaufmann, 1989.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 55-76. Plenum, New York, 1978.

F. Rossi and S. Naqvi. Contributions to the view update problem. In International Conference
on Logic Programming, pages 398-415, Lisbon, 1989.

M. Suchenek. First-order syntactic characterizations of minimal entailment, and Herbrand
entailment. Journal of Automated Reasoning, 10:237-263, 1993.

A. Yahya, J. A. Fernandez, and J. Minker. Ordered model trees: a normal form for disjunctive
deductive databases. Technical Report UMIACS-TR-93-14 and CS-TR-3034, University of
Maryland Institute for Advance Computer Studies, College Park, MD 20742, 1993.

A. Yahya and L.J. Henschen. Deduction in Non-Horn Databases. J. Automated Reasoning,
1(2):141-160, 1985.

A. Yahya and J. Minker. Query answering in partitioned disjunctive deductive databases.
Technical Report UMIACS-TR-93-14 and CS-TR-3034, University of Maryland Institute for
Advance Computer Studies, College Park, MD 20742, 1993.

29

