
Representations for Disjunctive Deductive DatabasesAdnan Yahya1;3� Jack Minker1;21Institute for Advanced Computer Studies2Computer Science DepartmentUniversity of MarylandCollege Park, MD 207423Electrical Engineering DepartmentBirzeit UniversityBirzeit, West BankAbstractThe concepts of the dual and complementary databases as alternative representations fora given disjunctive deductive database, DB, are introduced. The dual database results frominterchanging the occurrences of OR and AND operators in the positive clause representationof DB. The complementary database is de�ned to have as minimal models the complements ofthe minimal models of DB relative to the underlying Herbrand base, HBDB. The properties ofthese derivative databases are studied. In particular, we show that the minimal models of DBcorrespond to the minimally derivable clauses of the dual database and that the complementarydatabase de�nes the Extended Generalized Closed World Assumption (EGCWA) completion,and consequently the Generalized Closed World Assumption (GCWA) completion, of DB. Atree structure for minimally derivable clauses is de�ned and algorithms for constructing andperforming update and search operations on such trees are given.1 IntroductionMinimal models and minimally derivable clauses are basic concepts in much of the work on disjunc-tive deductive databases (DDDBs). Either of these forms can be used to represent aDDDB [16, 21].Equivalent semantic (in terms of minimal models), and syntactic (in terms of minimal derivations)de�nitions were given for the Generalized Closed World Assumption (GCWA) [13] and the ExtendedGeneralized Closed World Assumption (EGCWA) [21] that are used to assume negative informa-tion in DDDBs. These negation rules served to extend the Closed World Assumption, originallyintroduced to deal with negative information in Horn databases, to the non-Horn case [13, 17, 21].�This work was done while visiting at the University of Maryland Institute for Advanced Computer Studies.1

Model trees and ordered model trees were used as structure sharing approaches to representinformation in DDDBs [7, 20]. Informally, a model tree for a DDDB, DB, is a tree structure inwhich nodes are labeled by atoms of the Herbrand base of DB. With each branch (i.e. path from theroot to a leaf node) we associate the set of atoms encountered on that branch. Branches representmodels of DB. A minimal model tree is a model tree for which there is a one to one correspondencebetween the minimalmodels ofDB and the tree branches. Algorithms for constructing and updatingmodel trees as well as query answering algorithms operating on model trees were presented in [7]and [20]. Whereas there may be many di�erent model trees for a given disjunctive database, therecan be only one ordered model tree. Ordered model trees were introduced as a normal form fordisjunctive deductive databases. They can also be used to facilitate the computation of minimalmodel trees and answering queries for disjunctive theories by exploiting an order on the Herbrandbase of the theory. There are several criteria that may be used to select an ordering of atoms of theHerbrand base, such as the length of a clause in which the atom appears, the frequency of occurrenceof the atom in the database, as well as other criteria. We do not discuss this topic in this paper.In this paper, for a given disjunctive deductive database, DB, we de�ne its dual database, DBd,and its complementary databases, DBc. The dual database is constructed by interchanging theoccurrences of logical OR and logical AND operations in the positive clause representation of DB.The complementary database is constructed by complementing the minimal models of DB relativeto the Herbrand base of DB. We study the properties of these derivative databases. In particular,we show that the minimal models of DB correspond to the minimally derivable clauses of its dualdatabase and that the complementary database de�nes the EGCWA completion, and consequentlythe GCWA completion, of DB. A tree structure for minimally derivable clauses is de�ned andalgorithms for performing update and search operations on such trees are given.The subject matter of disjunctive deductive databases is concerned with incomplete information.Such information arises in every day experience. We know only a portion of the world and not allof the facts. Thus, we may know that a certain person is a scientist, but we do not know for surewhich �eld the individual is in. We may know that the person is either a computer scientist or anengineer. In a medical database, it may be known that a person may have one or more diseases,but we do not know the precise disease except that it may be one of several di�erent diseases. Inanalyzing images from space, a certain object observed may be one of several possibilities. Currentrelational and deductive database technologies do not adequately handle such data. In addition, ithas been shown that many problems that deal with nonmonotonic and commonsense reasoning canbe translated into disjunctive deductive databases [15]. It will be necessary to be able to understandthe meaning of disjunctive databases and how to respond to queries posed to them. A great deal isknown, however, about the semantics of disjunctive deductive databases [12, 5]. In this paper weaddress alternative possible representations of such databases. There have been a number of papersdevoted to disjunctive deductive databases, see [5, 4, 6, 10, 11, 9, 14, 19] for a number of such papers.A survey of the work described in many of these papers is contained in [12, 5].The paper is organized as follows. In section 2 we give some de�nitions and background materialrelated to disjunctive deductive databases. In section 3 we de�ne the dual database, investigate itsproperties and give algorithms for the construction and update of minimal clause trees for positiveDDDBs and DDDBs with rules. In section 4 we de�ne the complementary database and studyits properties. We conclude by discussing the possibilities for utilizing the reported results and thepossible directions for future research. 2

2 Notation and BackgroundA disjunctive deductive database (DDDB) DB is a set of clauses of the form:A1 _ � � � _Ak B1; : : : ; Bnwhere n � 0; k > 0 and the Ai and Bj are atoms, de�ned using a FOL L that does not containfunction symbols. In this work we will assume that all clauses in DB are ground.If n = 0 for all clauses in DB, the database is called a positive disjunctive database. OtherwiseDB is said to contain rules. If k = 1 for all clauses in DB, the database is called a a Horn deductivedatabase. If k > 1 for some clauses in DB, the database is called a a non-Horn or a disjunctivedeductive database.Where no confusion arises, a clause C will be referred to either as the set of its constituent literalsor as the disjunction of the elements of this set. So, the above clause will be referred to as the setfA1; � � � ; Ak;:B1; � � � ;:Bng:or as the disjunction A1 _ � � � _Ak _ :B1 _ � � � _ :Bn:De�nition 2.1 Let A be a ground atom, let DB be a DDDB and let C be a clause. Then� A occurs positively (negatively) in C i� A (:A) is a literal of C.� A occurs positively (negatively) in DB i� A occurs positively (negatively) in a clause of DB.� A occurs in C (DB) i� A occurs positively or negatively in C (DB).� A is purely positive (purely negative) in DB i� A occurs only positively (negatively) in DB.Given a DDDB, DB, the Herbrand base of DB, HBDB , is the set of all ground atoms thatcan be formed using the predicate symbols and constants in the FOL L. A Herbrand interpretationis any subset of HBDB . A Herbrand model of DB, M , is a Herbrand interpretation such thatM j= DB (i.e. all clauses of DB are true in M). M is minimal if no proper subset of M is a modelof DB.De�nition 2.2 By M(DB) we denote the set of all models (not necessarily minimal) of DB andbyMM(DB) we denote the set of all minimal models of DB.M = fM :M j= DBgMM(DB) = fM :M 2M(DB) and 8M 0 �M;M 0 62 M(DB)gClearlyMM(DB) � M(DB). In addition for every element M 2 M(DB) 9M 0 2 MM(DB) :M 0 �M .De�nition 2.3 A positive clause (possibly non-ground) 9Q(~x) is called a query and is considered alogical consequence of a DDDB, DB, i� there exists a set of ground substitutions f�1; : : : ; �ng suchthat Q(~x)�1 _ � � � _ Q(~x)�n is true in all minimal Herbrand models of DB, MM(DB). Q(~x)�1 _� � � _Q(~x)�n or equivalently f�1 + : : :+ �ng is said to be an answer to 9Q. We also write Q(~x)�1 _� � � _Q(~x)�n is an answer to Q(~x). 3

The notation used in De�nition 2.3 follows that used by Reiter [17]. In general, a query may bea disjunct of conjuncts. If the query is Q(~x) = Q1(~x)_ : : :_Qk(~x), and each of the Qi(~x), i = 1 : : :kare conjuncts, we may replace the query by Q(~x) = q1(~x) _ : : :_ qk(~x) and enter the rules:q1(~x) Q1(~x)...qk(~x) Qk(~x)in the database.As noted in the de�nition of a query, predicates may have arbitrary arity. We limit the examplesto monadic predicates for simplicity.Example 1 Let DB = fP (a) _P (b); P (c)_ P (d)g and let Q(x) = 9(P (x)). Then x = fa+ bg andx = fc+ dg are answers to Q(x).De�nition 2.4 Let DB1 and DB2 be disjunctive deductive databases. ThenDB1 =mm DB2 i�MM(DB1) =MM(DB2)DB1 and DB2 are said to be minimal model equivalent.Clearly (=mm) is an equivalence relation.Since most of the properties discussed in this paper are based on minimal model concepts theterms equivalent and minimal model equivalent are used interchangeably. However, databases withdi�erent syntax may be minimal model equivalent:Example 2 DB1 = fP (a) _ P (b); P (c)_ P (d); P (a) ^ P (c)g.and letDB2 = fP (a)_ P (b); P (c)_ P (d); P (b)_P (d)g.DB1 =mm DB2:De�nition 2.5 Let DB be a disjunctive deductive database. By S(DB) we denote the set of positiveclauses derivable from DB. That is, S(DB) = fC : C is positive and DB ` C, (C is true in everyminimal model of DB)g. Using the terminology of [16], S(DB) is a model state of DB.De�nition 2.6 Let DB be a disjunctive deductive database. By MS(DB) we denote the set ofpositive clauses minimally derivable from DB. That is,MS(DB) = fC : C is positive and DB ` Cand 8 C 0 � C; DB 6` C 0g. MS(DB) is the minimal model state of DB [16].Clearly, for a given database, DB, MS(DB) � S(DB). In addition 8C 2 S(DB) 9C 0 2MS(DB) such that C 0 � C.Lemma 1 [13, 16, 21] Let DB be a disjunctive deductive database. M is a model (minimal model)for DB if and only if M is a model (minimal model) forMS(DB).4

Corollary 1 Let DB1 and DB2 be DDDBs. Then:DB1 =mm DB2 iff MS(DB1) =MS(DB2):Lemma 2 Let DB be a disjunctive deductive database. Then [13, 21]:� A clause C 2MS(DB) i� DB ` C and 8C 0 � C, C 0 is falsi�ed by at least one minimal modelof DB.� If a clause C = A1 _A2_ � � �_An 2MS(DB) then 8i 2 f1; 2; :::; ng; 9 M 2MM(DB) suchthat Ai 2M and8j 6=i; Aj 62M .De�nition 2.7 [20] Let DB be a ground disjunctive deductive database. A cluster C is a subset ofDB such that if a clause C 2 C and C contains an occurrence of atom A then every clause of DBthat contains an occurrence of A is also in C.A cluster is minimal if no proper subset of it is a cluster. Any nonminimal cluster is the unionof more than one minimal cluster. In addition, minimal clusters are disjoint. No ground atom canoccur in two minimal clusters. Therefore, a minimal cluster can be referred to by one of the clausesor atoms occurring in it [22].Since clauses with pure negative literals do not contribute to the minimal models of a database,we can remove these clauses and obtain a minimal model equivalent database [1].We assume that a DDDB, DB is divided into two di�erent sets of clauses: the extensional part(EDB) and the intensional part (IDB). It is easy to see that any DDDB that has predicates thatmay be both intensional and extensional can be transformed into one in which the predicates areeither entirely extensional or entirely intensional. The division is such that:1. EDB is a positive disjunctive database.2. 8A that occurs in EDB, A occurs purely negatively or does not occur at all in IDB .3. EDB is the largest positive disjunctive database that ful�lls conditions 1{3.The extensional part of DB can be equated to base relations of a relational database, it is theplace where the information is stored. The intensional part can be equated to view de�nitions.Model Trees: Given that the meaning of a DDDB is de�ned by the set of its minimal Herbrandmodels, Fern�andez and Minker [7] de�ned an abstract data structure, called the model tree, torepresent the minimal models of the DDDB. They provide algorithms for the computation ofqueries using model trees, where the minimal models of the DDDB are computed incrementally.From the resulting model tree the answers to the query can be extracted by constructing an answertree representing the minimal answers. Formally, a model tree can be de�ned as follows:De�nition 2.8 [7] Let I be a �nite set of Herbrand interpretations (models) over a FOL L. Aninterpretation (model) tree for I is a tree structure where� The root is labeled by the special symbol ". 5

� Other nodes are labeled with atoms in I or the special symbol 6 ".� A path from the root to a leaf node is called a branch� No atom occurs more than once in a branch.� I 2 I i� 9bI I = fA : A 2 bIg � f6 "g where bI is a branch in the tree.The symbol 6 " is meant to stand for the absence of an atom for a node.To capture the semantics of a DDDB, DB, a model tree must contain the minimal models ofDB.De�nition 2.9 Let DB be a DDDB and let M be a set of models of DB. Then TM is called amodel tree of DB i� 8M 0 j= DB; 9M 2M; M �M 0We use the notation TDB to refer to a model tree of DB.Ordered model trees were introduced in [20] as a normal form to represent a DDDB. Next wede�ne this data structure:De�nition 2.10 Let S be a set of atoms. An order (>) on S is an assignment of a unique integerO(A) to every ground atom A of S.� A > B i� O(A) > O(B) for A and B in S.� B < A i� A > B.� A sequence of atoms hA1; : : : ; AN i is ordered i� 8i<jAi > Aj for Ai and Aj in S.� Ro denotes the ordered sequence containing the atoms in the set R, where R � S.We use the term ordered set R to refer to the ordered sequence Ro.De�nition 2.11 Given an order (>) on a set S and ordered sets of atoms R1 = hA1; A2; : : : ; AN iand R2 = hB1; B2; : : : ; BM i with the Ais and Bjs in S. Then:� R1 > R2 i� 9k > 0 such that 8i<kAi = Bi and either Ak > Bk or M < k � N .� R2 < R1 i� R1 > R2.De�nition 2.12 Given an order (>) on HBL, let I = fI1; : : : ; Ing be a set of interpretations(models or minimal models) over L. Then, the ordered set of interpretations (models or minimalmodels) of I is the sequence Io = hIos1 ; : : : ; Iosni such that 8i<jIosi > Iosj . Ioi is referred to as theordered interpretation (model or minimal model) Ii.We use the term ordered Herbrand base HBL, to refer to the ordered sequence HBoL. It com-pletely speci�es the total order (>). 6

���� l l ll l @ @ @������ @ @ @ @%%%\ \ \���@ @ @ @���l l l l���P (c) "P (d) P (c)P (b)P (c)P (a)P (b)a
"P (d)P (b) P (c) P (c)P (a) P (b)cP (c)P (b)P (d)P (c) "P (b)P (a)bFigure 1: Ordered and Unordered Model Trees for Example 4Example 3 Given a set of interpretations I = ffC;A;Bg; fA;D;Bg; fg; fA;Bgg over the or-dered Herbrand base hD;C;B;Ai, then the corresponding ordered set of interpretations of I, Io =hhD;B;Ai; hC;B;Ai; hB;Ai; hii.De�nition 2.13 Given an order (>) on HBL, let I be a set of interpretations (models, minimalmodels) over I. Let TI be a model tree for I. Let hb1; : : : ; bni be a right-to-left enumeration of thebranches in TI and let Si be the sequence hAi1; : : : ; Aimii corresponding to a root-to-leaf traversalof the branch bi. Then, TI is ordered i� Io = hS1; : : : ; Sni. TI is called the ordered interpretation(model, minimal model) tree for I, and is denoted as T oI .Example 4 Let DB = fP (a)_ P (b); P (a) _ P (c); P (c)_ P (d); P (b)_ P (c)g. Figure 1 shows: (a)a nonminimal unordered model tree , (b) a minimal unordered model tree and (c) a minimal orderedmodel tree for DB with the order P (a) > P (b) > P (c) > P (d).For a given order, the ordered model tree of a DDDB is unique [20]. In [20] algorithms are givenfor building and updating minimal model trees for positive DDDBs and DDDBs with rules.Negation in DDDBs: Usually there is asymmetry in the treatment of positive and negativeinformation in deductive databases. In most cases, negative information is not explicitly stored inthe database but is inferred using default rules for negation. One rule for de�nite (Horn) databasesis the Closed World Assumption (CWA). Under the CWA an atom, A, is assumed to be false ifand only if A is not in the unique Herbrand model of the database [17]. The CWA is not applicableto DDDB since it may produce inconsistent results. For DDDBs, the rule used to de�ne negatedatoms is the Generalized Closed World Assumption (GCWA) which is an extension of the CWA ruleto the disjunctive case [13]. The GCWA is able to consistently de�ne those atoms whose negationcan be assumed to be true in the database. The GCWA is not su�cient for determining the truth or7

falsity of a conjunction of atoms. In this case the Extended Generalized Closed World Assumption(EGCWA) can be used [21]. The default rules for disjunctive deductive databases are formallyde�ned as follows:De�nition 2.14 [13, 21] Let DB be a DDDB. Then:GCWA(DB) = f:A : A 2 HBDB and 6 9M 2 MM(DB) such that A 2Mg:EGCWA(DB) = f:A1 _ :A2 _ � � � _ :An : Ai 2 HBDB and n > 0 and6 9M 2 MM(DB) such that Ai 2M 8i 2 f1; 2; :::; ng:By MEGCWA(DB) we denote the minimal elements in EGCWA(DB). That is,MEGCWA(DB) = fC 2 EGCWA(DB) and 8C 0 � C;C 0 62 EGCWA(DB)g:Minimal Model Representation of Databases: We discuss the transition from the minimalmodel representation of a DDDB to its clausal form representation.Theorem 1 Let DBs be a DDDB andMM(DB) = fM1;M2; :::;Mng. Let Ai;j 8j 2 f1; 2; :::; kig,be the atoms of Mi. Let DBt = (A1;1 ^ A1;2 ^ :::^A1;k1) _ (A2;1 ^A2;2 ^ :::^A2;k2) _ :::_ (An;1 ^An;2 ^ :::^An;kn). Then: DBs =mm DBt.Proof: DBt is in its disjunctive normal form (DNF). A model ofDBt must satisfy at least one of thedisjuncts. The minimalmodels ofDBt are those models that satisfy exactly one of the disjunctsof DBt for otherwise it will be possible to shrink the model to satisfy only one of the disjunctscontradicting the minimality condition. The minimal models of DBt satisfying exactly one ofthe disjuncts of DBt are the minimal models of DBs namely the set fM1;M2; :::;Mng.Every minimal model,Mi, of DBs must have all Ai;j for j 2 f1; 2; :::; kig. It satis�es DBt bymaking exactly one of its disjuncts true. All minimal models are distinct and no subset of Mtsatis�es a disjunct in DBt by construction.We can transform DBt from DNF into DBf in conjunctive normal form (CNF), or clausal form,by forming all the possible clauses that include an element from each disjunct ofDBt. That is, everyclause ofDBf must contain at least one element of every minimalmodel ofDBs. Equivalently, everyclause of DBf contains an atom from every root-to-leaf branch of the minimal model tree of DBsand every such clause is either in DBf or subsumed by a clause in DBf .DBf is positive and DBf =mm DBs. Every clause of DBf is satis�ed by the minimal modelsof DBs by construction. For every interpretation that is not a model for DBs there is a clause ofDBs falsi�ed by that interpretation.The transformation from a minimal model tree to clausal form can be performed directly bygenerating all the possible clauses resulting from including an atom from every minimal model(branch) of the tree.Corollary 2 Let DBs be a DDDB. The setMM(DB) de�nes a positive DDDB, DBf , minimalmodel equivalent to DBs, (DBs =mm DBf).Proof: The procedure outlined in Theorem 1 describes the construction process of the positivedatabase DBf . 8

3 Dual DatabasesIn this section we emphasize the strong connection between the models of a database and the set ofclauses derivable from it. We introduce the concept of the dual database corresponding to a givendisjunctive deductive database and study its properties.De�nition 3.1 Let DB be a disjunctive deductive database with MM(DB) = fM1;M2; :::;Mng.Let Ai;j for j = 1; 2; :::; ki, be the atoms in Mi. DB = (A1;1 ^ A1;2 ^ ::: ^ A1;k1) _ (A2;1 ^ A2;2 ^:::^A2;k2) _ :::_ (An;1 ^An;2 ^ :::^An;kn). De�ne the dual database as DBd = (A1;1 _A1;2 _ :::_A1;k1) ^ (A2;1 _A2;2 _ :::_ A2;k2) ^ :::^ (An;1 _ An;2 _ ::: _An;kn). Another way to de�ne DBd isthat it is the database we get by replacing every logical _ by a logical ^ and vice versa in the positiveclause representation of DB.If DB is inconsistent (has no models) then its dual is the empty database. If DB has the emptyset as its only minimal model then its dual is the inconsistent database (the empty clause).We may also elect to perform minimization on DBd by deleting duplicate atoms in individualclauses and removing subsumed clauses.3.1 Properties of Dual DatabasesRecall that we can refer to a clause either as a disjunction of its literals or as the set of these literals.Therefore, the set of minimal clauses derivable from a disjunctive deductive database, DBMS(DB) = fC : DB minimally derives Cg orMS(DB) = ffA1; A2; :::; Amg : DB minimally derives C = A1 _A2 _ :::_Amg.Theorem 2 Let DB be a DDDB and let DBd be its dual database. Let MS(DB) denote the setof minimal positive clauses derivable from DB. Then:MM(DBd) =MS(DB) andMM(DB) =MS(DBd):Or, equivalently M = fA1; A2; :::; Amg 2 MM(DB) i� C = A1 _ A2 _ ::: _Am 2 MS(DBd) andC = A1 _A2 _ :::_Am 2MS(DB) i� M = fA1; A2; :::; Amg 2MM(DBd).Proof: Part 1: MM(DBd) =MS(DB).We �rst prove thatMM(DBd) �M(DB)Let M = fA1; A2; :::; Amg 2 MM(DBd). M satis�es every clause in DBd. By de�nition ofDBd , M must contain an atom from every minimal model of DB. DB ` A1 _ A2 _ :::_ Amand A1_A2_ :::_Am 2 S(DB). LetM be a nonminimal clause of DB. There exists M 0 �Msuch that DB ` M 0. M 0 has an atom from every minimal model of DB. M 0 satis�es everyclause in DBd . M is not a minimal model of DBd . A contradiction.Now we show thatMS(DB) �MM(DBd).Let C = A1 _A2 _ :::_Am 2 MS(DB).We show that fA1; A2; :::; Amg 2MM(DBd).9

Since C is minimally derivable fromDB, by Lemma 2 there must exist a set of minimalmodelsof DB, fMik : Ak 2 Mik such that Aj 62 Mik8j 6= kg. That is, for each atom Ai there is aminimal model in which only Ai is true and all the other atoms of the clause C are false.Let these minimalmodels beMi1 ;Mi2; :::;Mim. All of them are clauses inDBd by constructionand therefore they must be true in every minimal model of DBd. C satis�es the clauses inDBd resulting from the models Mi1 ;Mi2 ; :::;Mim.As for the other models ofDB each of them contains one or more Ai and are therefore satis�edby C. So C is a model of DBd. Removing atom Ak from this model will falsify the clause ofDBd corresponding to the modelMik . Therefore C is a minimal clause for DBd.Part 2: We prove thatMM(DB) =MS(DBd).We �rst show thatMM(DB) �MS(DBd).Let M = fA1; A2; :::; Amg 2MM(DB). We show that M 2MS(DBd).M 2 S(DBd) by construction. We need only to show that M 2 MS(DBd). Assume M 62MS(DBd). There exists M 0 �M such that M 0 2 MS(DBd). Every minimal model of DBdcontains an atom of M 0. As a result of the �rst part of the ongoing proof, every clause inMS(DB) is a minimal model of DBd and therefore must contain an atom of M 0. M 0 is amodel of DB. A contradiction.Finally we show thatMS(DBd) �MM(DB).Let C = A1 _ A2 _ ::: _ Am 2 MS(DBd). We show that C 2 MM(DB). C is true inevery minimal model of DBd since it has at least one element from every minimal model ofDBd and consequently C is a model of DB. Let C be a nonminimal model of DB. 9 C 0 �C such that C 0 2MM(DB). The clause C 0 � C is in S(DBd). A contradiction.Example 5 Let DB = fP (a) _P (b);P (a) _ P (c);P (c) _ P (d);P (b) _ P (c)gMM(DB) = ffP (a); P (b); P (d)g;fP (a); P (c)g; fP (b); P (c)gg.DBd = fP (a) _ P (b) _P (d); P (a)_ P (c); P (b)_ P (c)g.Theorem 3 Let DB be a disjunctive deductive database and let DBd be its dual database. Then:M(DBd) = S(DB) andM(DB) = S(DBd):Proof: The proof follows directly from Theorem 2 and the observation that every model containsa minimal model and every derivable clause contains a minimally derivable clause.Theorem 4 Let DB1 and DB2 be disjunctive deductive databases. Then:DB1 =mm DB2 iff DBd1 =mm DBd2 :10

Proof: DBd1 =mm DBd2 i� both have the same set of minimal modelsMM(DBd1) =MM(DBd2).By Theorem 2 this means that MS(DB1) = MS(DB2) and consequently, by Lemma 2DB1 =mm DB2.The other side follows directly from the de�nition of the dual database.Theorem 5 Let DB be a DDDB and let DBd be its dual database. Then (DBd)d =mm DB. Thatis, the double application of the duality rules will always lead to a database equivalent to the original.Proof: The dual transformation was de�ned in terms of minimalmodels. Double application of thedual transformation will de�ne a database with the same minimal models as DB.Theorem 6 Let DB be a DDDB. Let DB have the partition fDB1; DB2; :::; DBkg. That is,DB = DB1[DB2[:::[DBk and DBi\DBj = ; 8 i 6= j and DBi is a cluster of DB 8 i 2 f1; :::; kg.Let DBdi be the dual of the partition blocks DBi. Then: DBd = DBd1 _DBd2 _ :::_DBdk . That is,DBd = fC : C = C1 _C2 _ :::_Ck; where Ci 2 DBdi g.Proof: MM(DB) = fM : M = [i=ki=1Mi; whereMi 2 MM(DBi) 8i 2 f1; 2; :::; kgg. That is, theset of minimalmodels ofDB is the cartesian union of the minimalmodels of its partitions [22].The proof follows immediately.Example 6 Let DB = fP (a) _ P (b); P (a)_ P (c); P (d)_ P (f); P (e) _ P (f)g.DB1 = fP (a)_ P (b); P (a)_ P (c)g and DBd1 = fP (a); P (b)_ P (c)g.DB2 = fP (d)_ P (f); P (e) _ P (f)g and DBd2 = fP (d)_ P (e); P (f)g.DBd = fP (a)_ P (d) _ P (e); P (a)_ P (f); P (b)_ P (c) _ P (d) _ P (e); P (b)_ P (c) _P (f)g.De�nition 3.2 A disjunctive deductive database DB is self-dual i� DBd =mm DB.For a self-dual database DB we haveMM(DB) =MS(DB) andMM(DBd) =MS(DBd)Example 7 Let DB1 = fP (a)g.MM(DB1) = ffP (a)ggLet DB2 = fP (a) _ P (b); P (a)_ P (c); P (b)_P (c)g.MM(DB2) = ffP (a); P (b)g; fP (a); P (c)g; fP (b); P (c)gg.Let DB3 = fP (a)_ P (b) _ P (c);P (a) _ P (b)_ P (d);P (a) _ P (b)_ P (e);P (a) _ P (c)_ P (d);P (a) _ P (c)_ P (e);P (a) _ P (d)_ P (e);P (b) _P (c) _ P (d);P (b) _P (c) _ P (e);P (b) _P (d) _ P (e);P (c) _ P (d)_ P (e)g11

MM(DB3) = ffP (a); P (b); P (c)g;fP (a); P (b); P (d)g; fP (a); P (b); P (e)g; fP (a); P (c); P (d)g;fP (a); P (c); P (e)g; fP (a); P (d); P (e)g; fP (b); P (c); P (d)g; fP (b); P (c); P (e)g; fP (b); P (d); P (e)g;fP (c); P (d); P (e)gg.Let DB4 = fP (a) _ P (b); P (a)_ P (c); P (a)_ P (d); P (b)_ P (c) _ P (d)g.MM(DB4) = ffP (a); P (b)g; fP (a); P (c)g; fP (a); P (d)g;fP (b); P (c); P (d)gg.Let DB5 = fP (a) _ P (b)g.MM(DB5) = ffP (a)g; fP (b)ggDB1; DB2; DB3 and DB4 are self-dual. Their minimal clauses and minimal models coincidewhen treated as sets of atoms. DB5 is not self-dual.Given a DDDB, DB, and S � HBDB such that j S j= n, where n is an odd number, it ispossible to construct a self dual database consisting of all possible clauses of length (n + 1)=2. Tosee this note that each clause has to contain an atom of every other clause since two sets of (n+1)=2atoms each, have at least one atom in common for otherwise j S j> n. So, every clause is also amodel of this database. On the other hand, minimal models of this database are all of cardinality(n+1)=2. This is so since S0 � S; such that j S0 j= (n+1)=2 will satisfy all database clauses becauseit intersects with each of them. Any S00 � S0 (an interpretation of size m < n + 1) will falsify theclauses consisting entirely of atoms not in S00. Another interesting property of this class of databasesis its extremely bad behavior in terms of the number of minimal models generated. However, this isnot the only class of self dual databases as demonstrated by DB4 in Example 7.The class of self-dual databases is characterized by the interchangeability of their models andclauses. Given any of these representations it is straightforward to determine the other. However,it is not trivial to determine self-duality of a given database.3.2 Tree Structures for Dual DatabasesGiven a disjunctive deductive database, DB, the above discussion establishes the strong relationshipbetween its set of minimal modelsMM(DB), and its set of minimally derivable positive clausesMS(DB) through the dual database DBd.Model trees were introduced as a structure sharing approach to represent information in dis-junctive deductive databases in the form of minimal models [7]. The e�ciency of answering queriesand performing update operations in disjunctive deductive databases depends on the nature of thedatabases, the type of operations and queries considered and the database representation selected.Queries and updates expressed in terms of models can be handled e�ciently using minimal modeltrees. However, queries and updates expressed in terms of database clauses are inherently moredi�cult to handle in model trees. They have to be translated into minimal model operations beforeaccessing the tree structure. A way around this problem is to have a minimal clause tree repre-sentation for the disjunctive deductive database. This is a structure sharing approach to specifyingthe set of clauses minimally derivable from a database. Informally, a clause tree for a disjunctivedeductive database DB is a tree structure in which nodes are labeled by atoms of the Herbrandbase of DB. With each branch of the tree we associate the set of atoms encountered on that branch.12

Branches from the root to leaf nodes represent clauses derivable from DB. A minimal clause treeis a clause tree for which there is a one to one correspondence between minimally derivable clauses(elements ofMS(DB)) and branches from the root to leaf nodes. The tree is ordered if the root-to-leaf traversal of each branch produces the ordered sequence corresponding to that branch and aleft-to-right enumeration of the branches produces the ordered sequence corresponding to the set ofordered branches (see De�nition 2.13).Given a disjunctive deductive database, DB, two approaches to build the ordered minimal clausetree for DB, T oMS(DB), are possible: an indirect, two step solution, by constructing the orderedminimal model tree for the dual database DBd , using the algorithms developed for constructingminimal model trees in [5, 20] and the properties of dual databases mentioned above. The otherapproach is to directly construct the minimal clause tree corresponding to DB.The following two step algorithm can be used to construct the minimal clause tree of a DDDB,DB, using the �rst approach:� Step 1: Build the ordered minimalmodel tree for DB using any of the algorithms given in [20].Call the resulting tree T oMM(DB). The branches of T oMM(DB) correspond to the clauses of thepositive database DBd .� Step 2: Use the clauses of DBd represented by the branches of T oMM(DB) to construct theminimal ordered model tree of DBd, T oMM(DBd), using the algorithm given in [20]. From theresults on the properties of dual databases it is easy to see that the resulting tree is the orderedminimal clause tree for DB, T oMS(DB).Note that this approach works for positive and nonpositive DDDBs. We do not need to mate-rialize DBd in order to build its model tree. We can operate directly on the branches of T oMM(DB).Theorem 2, together with the correctness of the minimalmodel tree building algorithms given in [20],guarantee the correctness of the minimal clause tree construction process.Note also that in the second step we always deal with the positive database DBd . The rulesare taken care of in step 1. Therefore, the model tree construction process is generally simpli�ed.We can also exploit the order in the tree constructed at the �rst stage, T oMM(DB), to achieve betterperformance for Step 2.Note also that the (minimal) model tree can be viewed as an OR-AND tree of the database DB,where the AND is between the a node and each of its children and the OR is between the siblingsof a node. The same structure, when viewed as an AND-OR tree (the roles of the logical operatorsreversed), represents the clause tree of the dual database DBd.The second approach is discussed in the following paragraphs.3.3 Building Ordered Clause TreesHere we describe the minimal clause tree construction process directly from the clauses of DB.We consider two classes of disjunctive deductive databases. The �rst class is positive disjunctivedeductive databases where we assume that the database is ground with no negative occurrences ofatoms. The second class is disjunctive deductive databases with rules. When translated into clausalform the rules will generate negative literals. 13

3.3.1 Positive DatabasesIn the construction of a clause tree for a positive database, we recursively decompose the databaseby extracting, on each step, the largest atom (in the order >) that occurs in the database, andgenerating two new smaller databases to be processed further.At each step, the current database, DB, is decomposed to construct subtrees underneath aparticular node N of the tree (initially ", the root). Moreover, no atom in the path from the rootto N occurs in DB.Let DB be a ground positive DDDB and let hA1; : : : ; AN i be the ordered Herbrand base un-derlying DB. Assume that A 2 fA1; : : : ; ANg is the largest atom that occurs positively in DB andN is the node under expansion (N > A or " = N).Let DB = fF1; : : : ; Fn; C1; : : : ; Cmg where the Fi are the clauses that contain A, the Cj areclauses free of A and let F 0i = Fi � A (i.e. the result of removing the literal A from the clause Fi).We extract the common literal A from the Fi clauses by rewriting DB as f(A _ (F 01 ^ � � � ^F 0n)); C1; : : : ; Cmg and decompose DB into the two subsets of clauses DB:A = fC1; : : : ; Cmg andDBA = fF 01; : : : ; F 0ng.The leftmost child of N is the node A with the database DBA to be expanded underneath A. Thedatabase DB:A will be expanded underneath N and to the right of A (it will generate the subtreesof N to the right of A). The process is recursively applied to these two databases (Figure 2-a).DBA and DB:A are smaller thanDB in the sense that DBA has less clauses and/or fewer literalsin its clauses than DB, and DB:A contains fewer clauses than DB. Two terminating conditionsare possible:1. No atom occurs in DB (e.g. DB is empty). The branch represents a clause, not necessarilyminimal, of the original database.2. DB contains the empty clause, 2, (the clause with no literals). In this case, some clauses arenonminimal and no further expansion is needed.The resulting tree is ordered. This results from expanding the children of a particular node fromleft to right in an increasing order of the atoms and processing all clauses in a subtree containingthat atom simultaneously so that the atom occurs in all clauses in the left subtree and is absentfrom all clauses in the right subtree. This guarantees that depth �rst search will always yield theordered clauses of the database.The resulting tree is not necessarily minimal. A minimization step is needed. The tree con-struction process guarantees that a clause is nonminimal if and only if it is a superset of a clauseappearing to its right in the tree. This is so since the tested clause contains at least one atom (thetop node) not present in clauses to its right. A clause in the tree may subsume other clauses toits left only. The rightmost clause generated is minimal since it can have no clauses to subsume it.If we elect to generate right clauses �rst then we can limit our checking to already found minimalclauses.Example 8 Let DB = fP (a) _ P (c) _ P (d); P (a)_ P (b) _ P (c); P (c)_ P (d); P (b)_ P (d)g.We build an ordered model tree for DB assuming the following order of atoms P (a) > P (b) >P (c) > P (d).We start with P (a). 14

������� C C C C C C CJ J J J J J JL L L L L L@ @ @ @ @ @������ J J J J,,,,����E E E E E,,,,,, �������� T T T T T T T T.. "P (b) P (d)P (d)" P (c)P (b)P (a) P (d) P (d)P (b) P (c)P (d) P (a) P (b) P (c)P (c)P (c) _ P (d)P (b)_ P (c)P (c)a b cADBA = NDB:A =fC1; :::;CmgfF 01; :::; F 0nFigure 2: Building the Clause Tree for Positive Databases (a-General; b,c-for Example 8)DB1 = DBP (a) = fP (c) _ P (d); P (b)_ P (c)g andDB2 = DB:P (a) = fP (c) _ P (d); P (b)_ P (d)g.Next we expand DB2 on P (b) to get DB2P (b) = fP (d)g and DB3 = DB2:P (b) = fP (c)_P (d)g.DB3P (c) = fP (d)g and DB3:P (c) = fg. So the children of the root are P(a), P(b) and P(c) andthe associated subtrees are fP (c) _ P (d); P (b) _ P (c)g, fP (d)g and fP (d)g, respectively. The treethat needs further expansion is DB1.DB1P (b) = fP (c)g andDB4 = DB1:P (b) = fP (c)_ P (d)g.DB4P (c) = fP (d)g, and DB4:P (c) = fgIn the resulting tree we have one nonminimal clause P (a)_P (c)_P (d) which is to be deleted asshown in Figure 2-b,c.3.3.2 Clause Tree Construction for Databases with RulesTo construct the minimal clause tree for a database with rules, DB, we �rst build the minimalclause tree for the positive part of DB (DB without the rules, EDB). Next, for every rule C in DBwe try resolving C against each of the branches of the current clause tree. The resolvent clauseswill have fewer negative literal. If a positive clause is generated as a result of these resolutions thenit is added to the minimal ordered clause tree using the clause addition algorithm to be describedlater. If no resolutions are possible or if the resolutions result in no positive clauses then no updateis performed on the minimal clause tree. After each positive clause addition the rule applicationprocess is repeated until no new positive clauses are possible and therefore no new updates to thetree are generated. The order in the tree can be exploited to facilitate the resolution process.Example 9 Let 15

B B B B Bl l l l l ���� @ @ @ @ @b b b b b b b b@ @ @ @ @�����

 """""""" " bP (a)P (c) P (e) P (d) P (f) P (e)P (d)P (c)"aP (a) P (b) P (c)P (c) P (d) P (b) P (f)P (e)Figure 3: Building the Clause Tree for Databases with Rules for Example 9DB = fP (e) P (b) ^ P (c);P (a) _ P (b);P (a) _ P (c);P (c) _ P (d);P (b);P (f) P (a) ^ P (d)gWe build an ordered model tree for DB assuming the alphabetical order of atoms which consistsof the original clauses minus the clause P (a) _ P (b) which is subsumed by P (b).Employing the rules we generate the additional clausesP (a) _ P (e); P (d)_P (e); P (f) _ P (c); P (f)_ P (e)which are added to the original tree to get the tree shown Figure 3.It is worthwhile to note that in constructing DBd the only relevant atoms of the HBDB are thoseoccurring in DB. Other atoms of HBDB do not contribute to the minimal model structure or tothe minimal clause structure of DB or DBd. In addition, de�nite atoms of HBDB (atoms occurringin every minimal model) will occur in every clause of DBd and vice versa. Therefore, we need topay attention to the set of inde�nite atoms of HBDB (atoms present in some, but not all, minimalmodels; atoms occurring in minimal inde�nite clauses). The inde�nite atoms are the determiningfactor in the size of the resulting minimal model trees and the minimal clause trees for DB andDBd. They de�ne the branching of the tree and therefore its complexity. The de�nite atoms on theother hand constitute the common part of all branches. Under the proper order selection each ofthem can be made to appear only once in the tree. Note also that the set of de�nite atoms and theset of inde�nite atoms of a DDDB are disjoint (their intersection is empty).16

3.4 Operations on Ordered Clause TreesIn this section we discuss the problem of performing update operations on ordered minimal clausetrees. We assume that the tree is minimal before the start of the update. Each branch representsa minimally derivable clause in DB and every minimally derivable clause in DB has a root to leafbranch in the minimal clause tree.The operations we discuss are adding a clause to DB and removing a clause from DB. Thedecision to add or remove a clause is external to our update algorithms. It can result, among otherfactors, from applying the rules to the extensional database or update operations to the database.We may elect to use the standard algorithms reported in [7, 20] to update the minimal modeltree of the database and then reconstruct the minimal clause tree to reect the introduced updates.However, this approach may be costly and here we describe how to perform updates directly on theminimal clause tree.3.4.1 Clause AdditionLet C be the clause to be added to the DDDB, DB. Order the atoms in C and search for an exactmatch in the branches of the minimal clause tree for DB.If C is a branch in the tree then do nothing. The clause is already in the tree.If C is not a clause in the tree then add C at the proper location in the tree to preserve the orderand perform clause minimization to remove any nonminimal clauses.If C is added to the tree then check for compliance with the rules, if any. Add the appropriateclauses until no further additions are needed.Example 10 Let DB = fP (a) _ P (b); P (a)_P (c); P (f) P (d)g.First add the clause P (e) _P (d).DB1 = fP (a)_ P (b); P (a)_ P (c); P (e)_ P (d); P (f) P (d)g.The application of the rule to DB1 will result in the addition of the clause P (e) _ P (f).DB2 = fP (a)_ P (b); P (a)_ P (c); P (f) P (d); P (e)_ P (d); P (e)_ P (f)gwhich complies with the database rules.Next add the unit clause P (d) to DB2. The clause P (e) _ P (d) becomes nonminimal and istherefore deleted to giveDB3 = fP (a)_ P (b); P (a)_ P (c); P (f) P (d); P (d); P (e)_ P (f)g.The application of the rule to DB3 results in the additional clause P (f).DB4 = fP (a)_ P (b); P (a)_ P (c); P (f) P (d); P (d); P (e)_ P (f); P (f)g.The clause P (e) _ P (f) is not minimal and is therefore deleted to obtain the �nal DB5 =fP (a)_ P (b); P (a)_ P (c); P (f) P (d); P (d); P (f)g. The steps are shown in Figure 4.3.4.2 Clause DeletionLet C be the clause to be deleted from the database. Order the atoms in C and search for an exactmatch in the tree branches. If C is not in the tree then do nothing.If there is a branch in the tree corresponding to C then delete that branch.Check for database compliance with the rules, if any. Modify the database accordingly. We mayneed to remove additional clauses to accomplish the update. This process may be nondeterministic:17

���� l l l l B B B BQ Q Q Q Q QT T T T ���� S S S SQ Q Q Q Q QT T
���� @ @ @ @ ���� l l l l A A A Ae e e e" "P (b) P (f)P (d)P (c)c dP (a)P (a)P (b) P (c) P (e)P (d) P (f)P (e)P (f)6 "

P (a)" P (c)P (b) "P (b) P (c) P (e)a bP (a) P (d) P (f)P (e)
Figure 4: Clause Addition to a Minimal Clause Tree for Example 10

18

����� l l l l l B B B B B E E E E ���� @ @ @ @. l l l l l l Q Q��P (b) P (c)P (b)P (f) P (a)baP (c)P (a) " "P (e)P (d) P (e)Figure 5: Clause Deletion from a Minimal Clause Tree for Example 11more than one choice can accomplish the deletion. However, we may elect to reject the deletionif the resulting database does not obey the rules. The choice depends on the application underconsideration.If as a result, additional clauses were added to the tree then check for clause minimality inthe tree and remove any nonminimal clauses. No minimality check is needed if deletion was theonly operation performed. We may elect to reject the deletion of a clause that necessitates furtherupdates.Example 11 Let DB = fP (a) _ P (b); P (a)_P (c); P (f) P (d); P (e)_ P (d); P (e)_P (f)g.First delete the clause P (e) _ P (f). The resulting database isDB1 = fP (a)_ P (b); P (a)_ P (c); P (f) P (d); P (e)_ P (d)g.DB1 does not comply with the rule P (f) P (d).To make it comply we need either to add the clause P (e) _ P (f) and thus undo the update or todelete the additional clause P (e) _ P (d) and preserve the update and get the �nal databaseDB2 = fP (a) _ P (b); P (a) _ P (c); P (f) P (d)g which accomplishes the required deletion andcomplies with the rules. If we are restricted to the deletion of the single clause P (e)_P (f) then theupdate cannot be accomplished. The original and resulting trees when the update succeeds are shownin Figure 5-a and Figure 5-b respectively. We could also delete the rule itself. However, since therules generally serve as view de�nitions we do not pursue this option.The following example demonstrates that clause deletion can be performed in more than oneway.Example 12 Let DB = fP (a); P (b); P (c) P (a) ^ P (b)g. The original tree contains the de�niteclauses P (a); P (b), and P (c). Deleting P (c) can be accomplished by removing the P (c) branch andone (or both) of the branches corresponding to P (a) and P (b).Note also that in general the clause tree update operations need not be reversible. Adding aclause and deleting it may not take us back to the original database as a result of update propagation.19

For example if DB = fP (a) _ P (b)g and the clause P (b) is added then the resulting database willbe DB1 = fP (b)g. Clearly deleting P (b) will result in the empty database. Our interpretationof updates is not the only one possible. The detailed discussion of the topic of clause additionand deletion is beyond the scope of this paper. Several papers on database updates address thisissue [2, 8, 18].3.5 Query Answering in Minimal Clause TreesIn [5] algorithms were described to extract answers to queries from minimal model trees. While thesame algorithms are applicable to minimal ordered model trees [20] performance improvements canbe achieved by modifying the algorithms to account for the order in the tree.We would like to develop answer extraction mechanisms for minimal clause trees. We considertwo cases: disjunctive queries and conjunctive queries.3.5.1 Disjunctive QueriesA disjunctive query Q(x) is a query of the form Q(x) = P1(x) _ P2(x) _ ::: _ Pn(x), where Pi is apredicate in DB for all i 2 f1; 2; :::; ng. To answer such a query we need to �nd a clause (branch)in the minimal clause tree that is an instance of this query or that subsumes an instance of thequery. The substitution set resulting from all such tree branches is the answer set to the queryQ(x). Alternatively, we can negate the query Q(x) to get :P1(x) ^ :P2(x) ^ ::: ^ :Pn(x). Everysubstitution that generates the empty clause from any one of the tree branches is an answer to Q(x).If no derivation of the empty clause is possible then the query has no answers.Basically the disjunctive query answering process in minimal clause trees is a tree search for theanswers in the branches of the tree.Example 13 Let DB = fP (e); P (a)_R(d); P (a)_P (c); R(a)_R(b)g and let Q(x) = P (x)_R(x).Then, e; a+ d; a+ c; a+ b 2 ANSWER(Q(x)).Note that the empty clause 2 is generated from the negation of the query :P (x)^:R(x) and theclauses P (e); P (a)_R(d); P (a)_P (c); and R(a)_R(b), respectively, to generate the above answers.The inde�nite answer, a + d, to the query Q(x) denotes that P (a) _ R(a) _ P (d) _ R(d) is ananswer. That is, it is entailed by the database since it is subsumed by P (a) _ R(d), which is a factin the database. If the user desires to know the smallest answer that satis�es the query, it could bedetermined by asking if subqueries of the answer were satis�ed.3.5.2 Conjunctive QueriesA conjunctive query Q(x) is a query of the form Q(x) = P1(x)^P2(x) ^ :::^Pn(x). The process ofconjunctive query evaluation is more complex. A simple search is not su�cient.To answer Q(x) we add a new rule to the database with the head corresponding to the queryQ(x) P1(x)^P2(x)^ :::^Pn(x). We update the minimal clause tree to add all the positive clausescontaining the new predicate Q. Clauses pure in predicate Q are all the possible answers to thequery Q(x). Mixed clauses generate no answers to Q(x).20

Example 14 Let DB = fP (a)_P (b); P (a)_R(b); R(a)_R(b); P (b)_R(a); P (a)_P (c); R(a)_R(c)g.The new rule added is Q(x) P (x)^R(x).The new positive clauses generated are fP (b)_Q(a); P (a)_Q(b);R(b)_Q(a); R(a)_Q(b); P (b)_Q(a) _ P (c); R(b)_Q(a) _ P (c); P (b)_Q(a) _R(c); R(b) _Q(a) _R(c)g.Further application of the rule generates the additional new clauses fQ(a)_Q(b)g. Clauses purein Q generate the answer a+ b. No other answers are generated.4 Complementary DatabasesGiven a DDDB, DB, we de�ne another derivative database corresponding to it, the complementarydatabase, DBc. The de�nition of DBc is based on the minimal model representation of DB. Westudy the properties of the complementary database and its possible utility for computing databasecompletions.De�nition 4.1 Let DB be a DDDB with the set of minimal models fM1;M2; :::;Mng. The com-plementary database, DBc, is the database with the set of minimal models: fM 01;M 02; :::;M 0ng, whereM 0i = HBDB nMi for all i 2 f1; 2; :::; ng.Note that all elements inMM(DBc) = fM 01;M 02; :::;M 0ng, are distinct and minimal for otherwisethere must exist two modelsM 0i andM 0j such that i 6= j andM 0i �M 0j . In this case (HBDB nM 0j) �(HBDB nM 0i). M 0j � M 0i contradicting the minimality of the elements of MM(DB). Therefore,DBc is well de�ned. We may also elect to perform minimization on DBc by deleting duplicate atomsin individual clauses and removing subsumed clauses.Example 15 Let DB = fP (a) _ P (b); P (a)_P (c); P (c)_ P (d); P (b)_ P (c)g.MM(DB) = ffP (a); P (b); P (d)g;fP (a); P (c)g;fP (b); P (c)gg.HBDB = fP (a); P (b); P (c); P (d)g.MM(DBc) = ffP (c)g; fP (b); P (d)g; fP (a); P (d)gg.DBc = P (c) _ (P (b) ^ P (d))_ (P (a) ^ P (d)).Expanding we get DBc = fP (a)_ P (b) _ P (c); P (c)_ P (d)g.De�nition 4.2 Let DB be a DDDB. By DB: we denote the set of clauses resulting from replacingall atom occurrences in DB by their negations.If DB is positive then the negative database DB: has the empty set, ;, as its only minimalmodel. In this case, it may be more reasonable to talk about maximal models of DB: . That is, theset XM(DB:) = fM :M j= DB: and 8M 0 �M;M 0 6j= DB:g.For a positive database, DB, it is easy to show that XM(DB:) = MM(DBc). To see thatnote that the maximal models of DB: are exactly the complements of the minimal models of DBrelative to HBDB .Example 16 For the database in Example 15DB: = f:P (a)_ :P (b);:P (a)_ :P (c);:P (c)_ :P (d);:P (b)_ :P (c)g.XM(DB:) = ffP (c)g; fP (b); P (d)g;fP (a); P (d)gg =MM(DBc).21

4.1 Properties of Complementary DatabasesTheorem 7 Let DB be a disjunctive deductive database and let DBc be its complementary database.Then (DBc)c = DB:Proof: The proof follows from observing that HBDB nM 0i =Mi.Theorem 8 Let DB1 and DB2 be disjunctive deductive databases with the same Herbrand base,HBDB. Then: DB1 =mm DB2 iff DBc1 =mm DBc2:Proof: DB1 =mm DB2 iff MM(DB1) =MM(DB2). M 2 MM(DB1) iff M 2 MM(DB2).fM 0 :M 0 = HBDB nM; 8M 2 MM(DB1)g = fM 0 :M 0 = HBDB nM; 8M 2 MM(DB2)g.MM(DBc1) =MM(DBc2). DBc1 =mm DBc2.Theorem 9 Let DB be a DDDB and let DBc be its complementary database. Then:C = A1 _A2 _ :::_Am 2 MS(DBc) i� C: = :A1 _ :A2 _ :::_ :Am 2MEGCWA(DB).Proof: Let C = A1 _A2 _ :::_Am be inMS(DBc). We show that C: = :A1 _:A2_ :::_:Am 2MEGCWA(DB).Let M 0 2 MM(DBc). 9 A 2 (M \ C). The corresponding minimal model of DB isM = HBDB nM 0 and A 62M . Therefore, :A1_:A2_ :::_:Am is true inM and consequently,in every minimal model of DB. By Lemma 2, for every atom Ai of C there is a minimalmodelof DBc,M 0i , containing Ai but none of the other atoms of C. All other minimalmodels of DBchave one or more atoms of C. Assume that a subclause of C:, say C 0:, is in EGCWA(DB).Let Ai 2 (C n C 0) and let M 0i be the minimal model of DBc such that M 0i \ C = fAig. Thesubclause C 0: is false in Mi. A contradiction.Let C: = :A1_:A2_ :::_:Am 2 EGCWA(DB). We show that C = fA1_A2_ :::_Amg 2MS(DBc).Let M 2 MM(DB). 9 Ai 2 C and Ai 62 M . By de�nition, Ai 2 (HBDB nM). That is,every minimal model of DBc has an atom of C in it. C is true in every minimal model ofDBc. We need only show that it is minimal. Assume it is not. There exists a subclause ofC, say C 0 2 MS(DBc). By the �rst part of the ongoing proof C 0: is in EGCWA(DB). Acontradiction.Example 17 Let DB = fP (a) _ P (b); P (a)_P (c); P (c)_ P (d); P (b)_ P (c)g.MM(DB) = ffP (a); P (b); P (d)g;fP (a); P (c)g;fP (b); P (c)gg.MM(DBc) = ffP (c)g; fP (b); P (d)g; fP (a); P (d)gg.EGCWA(DB) = f:P (a)_ :P (b) _:P (c);:P (c)_ :P (d)g.MS(DBc) = fP (a)_ P (b) _ P (c); P (c)_ P (d)g.:EGCWA(DB) =MS(DBc) 22

Theorem 10 Let DB be a disjunctive deductive database. Given EGCWA(DB) it is possible toconstruct DB0 such that DB0 =mm DB.Proof: Construct DB0 such that DB0 = (MEGCWA(DB):)c. We show that DB0 =mm DB.By Theorem 9 (MEGCWA(DB):)c = (MS(DBc))c.By Corollary 1 (MS(DBc))c =mm (DBc)c.By Theorem 7 (DBc)c =mm DB.An therefore, DB =mm (MEGCWA(DB):)c.Example 18 Given EGCWA(DB) = f:P (a) _ :P (b)_ :P (c);:P (c)_ :P (d)g.EGCWA(DB): = fP (a) _ P (b) _ P (c); P (c)_P (d)g =MS(DBc).MM(DBc) = ffP (c)g; fP (b); P (d)g; fP (a); P (d)gg.MM(DB) = ffP (a); P (b); P (d)g;fP (a); P (c)g;fP (b); P (c)gg.DB0 = fP (a)_ P (b); P (a)_ P (c); P (c)_ P (d); P (b)_P (c)g.DB0 is the same as DB in Example 17.Theorem 11 Let DB1 and DB2 be disjunctive deductive databases. Then:DB1 =mm DB2 iff EGCWA(DB1) = EGCWA(DB2):Proof: DB1 =mm DB2 i� MM(DB1) = MM(DB2), i� DBc1 =mm DBc2 (Theorem 8), i�MS(DBc1) =MS(DBc2) (Corollary 1), i� EGCWA(DB1) = EGCWA(DB2) (Theorem 9).Corollary 3 Given a DDDB, DB, then DBd, DBc, MM(DB), MS(DB), EGCWA(DB) arealternative representations of DB. Given any of these representations it is possible to reconstructDB0 such that DB0 =mm DB and it is possible to construct any of the other representations.De�nition 4.3 A disjunctive deductive database DB is self-complementary i� DBc = DB.Example 19 Let DB1 = fP (a)_ P (b); P (a)_ P (c)g. MM(DB2) = ffP (a)g; fP (b); P (c)ggLet DB2 = fP (a)_P (b); P (c)_P (d)g. MM(DB2) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g;fP (b); P (d)gg.Let DB3 = fP (a) _ P (b) _ P (c)g. MM(DB3) = ffP (a)g; fP (b)g; fP (c)gg.DB1 and DB2 are self-complementary while DB3 is not.It is not hard to show that given an even number of atoms n it is possible to construct a selfcomplementary database having as its set of minimalmodels all the possible interpretations of lengthn=2. To see this note that the complement of each minimal model is also a minimal model sinceit is an interpretation of length n=2. However this is not the only class of self dual databases asdemonstrated by DB1 in Example 19.Theorem 12 Let DB be a disjunctive deductive database with the partition fDB1; DB2; :::; DBkg;That is, DB = DB1 [DB2 [::: [DBk ,and DBi \ DBj = ; 8 i 6= j and DBi is a cluster ofDB 8i 2 f1; :::; kg. Let ATM (DBi) denote the set of atoms that occur in DBi (in a sense, a23

localized Herbrand base of DBi). Let DBci , be the database with the minimal modelsMM(DBci) =fM 0 :M 2MM(DBi) and M 0 = ATM (DBi) nMg.Then DBc1; DBc2; :::; DBck are partition blocks of DBc. In addition DBc has the block containingall the atoms of the set HBDB n ([i=ki=1AT (DBi)).Proof: The proof is along the same lines of the proof of Theorem 6. It follows from the disjointnessof the local Herbrand bases of the individual blocks and the fact that each minimal model ofDB contains exactly one minimal model of each block [20].Example 20 Let DB = fP (a) _ P (b); P (a)_P (c); P (d)_ P (f); P (e) _ P (f); P (e) _ :P (g)g.Let HBDB = fP (a); P (b); P (c); P (d); P (e); P (f); P (g); P (h)gDB1 = fP (a)_ P (b); P (a)_ P (c)g.MM(DB1) = ffP (a)g; fP (b); P (c)gg.MM(DBc1) = ffP (b); P (c)g; fP (a)gg.DB2 = fP (d)_ P (f); P (e) _ P (f); P (e) _ :P (g)g.MM(DB2) = ffP (d); P (e)g; fP (f)gg.MM(DBc2) = ffP (g); P (f)g; fP (g); P (d); P (e)gMM(DBc) = ffP (b); P (c); P (g); P (f); P (h)g; fP (b); P (c); P (d); P (e); P (g); P (h)g,fP (a); P (g); P (f); P (h)g; fP (a); P (d); P (e); P (g); P (h)gg.The size of the Herbrand base of the database DB may be much larger than the number of atomsoccurring in the database. In constructing complementary databases the atoms of interest for usare those contributing to the minimal model structure of DB. Other atoms of the Herbrand basecan be ignored during the processing. For example, atoms not occurring in the database or thoseoccurring only in clauses with pure negative literals cannot contribute to the model structure of DBand therefore such atoms can be ignored [1, 20]. In Example 20 the atoms P (g) and P (h) appearedin every minimal model of DBc since none of them contributed to the model structure of DB. P (g)appeared only in clauses with pure negative literals and P (h) did not occur in DB.4.2 Tree Structures for Complementary DatabasesGiven a database DB with a corresponding minimal model tree it is possible to construct the modeltree for the complementary database, DBc, simply by replacing every model by its complement.Direct application of the de�nition of the complementary database shows that if the original tree isminimal then the resulting complementary tree is also minimal. However, even if the original tree isordered the complementary model tree need not be ordered.In constructing the minimal complementary tree we must start from a minimal tree for theoriginal database. If the original model tree is not minimal then the resulting complementary modeltree will not be minimal either. Direct minimizationon the complementary tree cannot be performed.It will result in removing the needed models rather than the unnecessary ones.Example 21 Let DB = fP (a) _ P (b); P (a)_ P (c); P (c)_ P (d); P (b)_ P (c)g. The minimal modeltree of DB and the minimal model tree of the complementary database DBc are given in Figure 6.Consider the set of models ffP (a); P (b); P (d)g;fP (a); P (c)g;fP (b); P (c)g; fP (a); P (b); P (c)gg.It contains the nonminimal model fP (a); P (b); P (c)g.24

e e e e����J J J J @ @ @ @ @

T T T TT T T T ,,,,, J J J J b b b b b b b

 S S S S......

"P (a) P (b)P (c)P (c)P (d)P (b) P (d)P (b) P (d)P (a)P (c)"
b : Nonminimal TreesP (c) P (c)P (b)P (d) P (c)" P (d)P (c) P (b)P (d) P (d)P (a)"P (a)P (b)
a : Minimal Trees

Figure 6: Model Trees for Complementary Databases for Example 21
25

HBDB = fP (a); P (b); P (c); P (d)g. fM 0 : HBDB n Mg = ffP (c)g; fP (b); P (d)g;fP (a); P (d)g;fP (d)gg. This set contains the nonminimal models fP (b); P (d)g and fP (a); P (d)g. The nonmini-mal trees for DB and DBc are also given in Figure 6. Minimization results in the following set ofmodels ffP (c)g; fP (d)gg rather than the set in Example 17.However, if we start from a nonminimal model tree to obtain a nonminimal complementarytree we can still achieve the minimal complementary tree by removing models that are subsetsof other models (in a sense reverse minimization). This procedure is correct since M1 � M2 i�(HBDB n M2) � (HBDB n M1). Therefore reverse minimization in the complementary tree isequivalent to conventional minimization in the original tree.Given a database DB and its minimal model tree it is possible to construct its complementarymodel tree as explained earlier and then construct the dual of DBc, (DBc)d. The resulting treehas as branches the minimal elements of EGCWA(DB). Clauses of length 1 are the elements ofGCWA(DB). The maximal depth of the tree is also the limit of the length of possible minimalnegative clauses in EGCWA(DB)The construction of the complementary tree may be complicated by the large size of the Herbrandbase as compared with the number of ground atoms occurring in the model tree. We can limit ourattention to the elements of the Herbrand base occurring in the model tree since all other atoms willappear as de�nite clauses in the complementary tree and therefore have no e�ect on the disjunctivecomponents of the tree. We can even go a step further. Since de�nite atoms (those occurring inevery minimal model) are always absent from the minimal models of DBc and atoms not occurringat all in DB are always in every minimal model of DBc then we can restrict our attention to atomsof the Herbrand base occurring in minimal inde�nite clauses (in some, but not all, minimal modelsof DB). These are the source of the branching in the resulting trees.5 ConclusionIn this paper we introduced the concepts of dual and complementary databases for a given disjunctivedeductive databases, DB. We investigated the properties of these databases and their relationshipto the original database and its completions. We showed that several representations can be usedto specify a database DB including the dual database (DBd), the complementary database (DBc),the set of minimal models MM(DB), the set of minimally derivable clauses MS(DB) and theExtended Generalized Closed World Assumption EGCWA(DB) and showed how to transform onerepresentation into the other. We also described algorithms to construct minimal clause trees for agiven database and to perform addition and deletion operations on these trees. The minimal clausetree and the minimal model tree for the complementary database can be used for e�cient queryevaluation and for evaluating of the completion of the database. Additional properties of the databasesuch as the maximal length of minimal disjunctive answers and the maximal length of elementsof EGCWA(DB) can also be determined from the tree structures for dual and complementarydatabases.Each of the representations discussed in this paper is su�cient to characterize the semanticsof the disjunctive deductive database and each can be converted into the other. However, thetransformation can be computationally expensive - exponential in the size of the number of clausesin the database. 26

The selection of a particular representation for a DDDB depends upon the type of query mostfrequently requested in a particular application. For example, queries based on clause searches(disjunctive queries) can be handled easily by using the Dual (minimal ordered clause tree) repre-sentation for the database. In this case a search for an instance of the clause (query) reduces to astring matching operation in the tree branches which can be accomplished in linear time in the sizeof the Herbrand base (assuming an order on the underlying Herbrand base). Similar reasoning canbe applied to the case of minimal model-based operations and ordered minimal model trees.While the paper is concerned with the study of the theoretical aspects ofDDDB representations,the underlying motivation for the study is to enable the selection of the appropriate representationfor an application under consideration.In general, dealing with disjunctive databases is computationally expensive. At the worst, if theentire database consists exclusively of disjuncts, and there are N disjuncts of length greater thanone, it may take time exponential in N to answer a query. However, we believe that most realisticdatabases are primarily de�nite, with a small fraction of the database being disjunctive. Hence, theexponential size of the database refers to the size of the set of disjuncts. Even here, the size maybe reduced by considering clusters of disjuncts. The amount of time to answer a query can be thesize of an individual cluster and be insigni�cant with respect to the database size. In addition, ifthe sizes of the disjuncts are restricted to at most two (that is, clauses such as P (a) _ P (b) may bein the database, but larger disjuncts such as P (c) _ P (d) _ P (e) do not appear, answers to queriesmay be found in polynomial time [3].Topics to be addressed in the future include the extension of the results to larger classes ofdatabases and to various semantics of disjunctive deductive databases.
27

AcknowledgementsWe greatly appreciate the �nancial support of the National Science Foundation, provided under thegrant Nr. IRI-89-16059, the Air Force O�ce of Scienti�c Research, provided under the grant Nr.AFOSR-91-0350, and the Fulbright Scholar Program that made this work possible. This work wascarried out while the �rst author was a visiting scientist at the University of Maryland Institute forAdvanced Computer Studies (UMIACS). The support of UMIACS is also appreciated.References[1] C.-L. Chang and C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press,1973.[2] R. Fagin, J. Ullman, and M. Vardi. Contributions to the view update problem. In Proc. of theSixth Intl. Conf. on Logic Programming, pages 398{415, 1989.[3] J.A. Fernandez, Z.A. Khandakar, and J. Minker. A tractable class of disjunctive deductivedatabases. In Proc. Workshop on Deductive Databases, Joint International Conference andSymposium on Logic Programming (JICSLP'92), Washington, D.C., Nov. 1992.[4] J.A. Fern�andez and J. Minker. Disjunctive deductive database. In 3rd International Conferenceon Logic Programming and Automated Reasoning, pages 332{356, July 1992. Invited Paper.[5] J.A. Fern�andez and J. Minker. Semantics of disjunctive deductive databases. In Proceedings ofthe International Conference on Database Theory, pages 332{356, 1992. (Invited Paper).[6] J.A. Fern�andez and J. Minker. Theory and algorithms for disjunctive deductive databases. Pro-grammirovanie, N 3:5{39, 1993. (also appears as University of Maryland Technical Report,CS-TR-3223, UMIACS-TR-94-17,1994. Invited Paper in Russian).[7] Jos�e Alberto Fern�andez and Jack Minker. Bottom-up evaluation of Hierarchical DisjunctiveDeductive Databases. In Koichi Furukawa, editor, Logic Programming Proceedings of the EighthInternational Conference, pages 660{675. MIT Press, 1991.[8] J. Grant, J. Horty, J. Lobo, and J. Minker. View updates in strati�ed disjunctive databases.Journal Automated Reasoning, 11:249{267, March 1993.[9] J. Grant and J. Minker. Answering queries in inde�nite databases and the null value problem.In P. Kanellakis, editor, Advances in Computing Research: The Theory of Databases, pages247{267. 1986.[10] K.C. Liu and R. Sunderraman. Inde�nite and maybe information in relational databases. ACMTransactions on Database Systems, 15(1):1{39, 1990.[11] K.C. Liu and R. Sunderraman. On representing inde�nite and maybe information in relationaldatabases. In Proceedings of IEEE Data Engineering, pages 495{502, Los Angeles, 1990.28

[12] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MITPress, 1992.[13] J. Minker. On inde�nite databases and the closed world assumption. In Proceedings of 6thConference on Automated Deduction, pages 292{308, New York, 1982.[14] J. Minker. Toward a foundation of disjunctive logic programming. In Proc. North AmericanConference on Logic Programming, pages 1215{1235, 1989. (Invited Paper).[15] J. Minker. An overview of nonmonotonic reasoning and logic programming. Journal of LogicProgramming, 17(2, 3, and 4):95{126, November 1993.[16] A. Rajasekar, J. Lobo, and J. Minker. Skeptical reasoning and disjunctive programs. In Pro-ceedings of First International Conference on Knowledge Representation and Reasoning, pages349{357. Morgan-Kaufmann, 1989.[17] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and DataBases, pages 55{76. Plenum, New York, 1978.[18] F. Rossi and S. Naqvi. Contributions to the view update problem. In International Conferenceon Logic Programming, pages 398{415, Lisbon, 1989.[19] M. Suchenek. First-order syntactic characterizations of minimal entailment, and Herbrandentailment. Journal of Automated Reasoning, 10:237{263, 1993.[20] A. Yahya, J. A. Fernandez, and J. Minker. Ordered model trees: a normal form for disjunctivedeductive databases. Technical Report UMIACS{TR{93{14 and CS{TR{3034, University ofMaryland Institute for Advance Computer Studies, College Park, MD 20742, 1993.[21] A. Yahya and L.J. Henschen. Deduction in Non-Horn Databases. J. Automated Reasoning,1(2):141{160, 1985.[22] A. Yahya and J. Minker. Query answering in partitioned disjunctive deductive databases.Technical Report UMIACS{TR{93{14 and CS{TR{3034, University of Maryland Institute forAdvance Computer Studies, College Park, MD 20742, 1993.
29

