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Internet Infrastructure

Ahmad AlSa’deh and Christoph Meinel | Hasso-Plattner-Institut

Secure Neighbor Discovery is designed as a countermeasure to Neighbor Discovery Protocol threats. 
The authors discuss Secure Neighbor Discovery implementation and deployment challenges and review 
proposals to optimize it.

T he Neighbor Discovery Protocol (NDP), one of 
the main protocols in the IPv6 suite, comprises 

Neighbor Discovery for IPv6 (Request for Comments 
[RFC] 48611) and IPv6 stateless address autoconfigu-
ration (SLAAC).2 It’s used for several critical func-
tionalities, such as discovering nodes on the same link, 
determining link-layer addresses, detecting duplicate 
addresses, finding routers, and maintaining reachability 
information about paths to an active neighbor. In addi-
tion, NDP plays a crucial role in mobile IPv6 (MIPv6) 
networks, eliminating the need for foreign agents and 
allowing mobile nodes to join new foreign networks.

However, NDP is prone to critical attacks.3 It 
assumes that all nodes on the link trust each other, 
but this assumption doesn’t hold for several scenarios, 
such as over a wireless network, in which anyone can 
join a local link with minimal or no link-layer authen-
tication. Consequently, malicious users could imper-
sonate legitimate nodes by forging NDP messages 
to generate attacks. As a result, RFC 3971, “Secure 
Neighbor Discovery (SEND),” became a standard.4 
SEND uses cryptographically generated addresses 
(CGAs),5 a digital signature, and an X.509 certifica-
tion to protect NDP. SEND was designed to ensure 
message integrity, prevent IPv6 address theft and 

replay attacks, and provide a mechanism to verify 
routers’ authority.

Although SEND is a promising technique to pro-
tect NDP and make IPv6 a safe protocol, its deploy-
ment isn’t easy. SEND lacks mature implementations 
by network device manufacturers and operating sys-
tem developers. It’s compute intensive and bandwidth 
consuming. Moreover, SEND itself can be vulnerable 
to some attacks. We discuss these implementation and 
deployment challenges and provide some directions 
and proposals for facilitating SEND deployment in IPv6 
networks, especially for devices with limited resources.

Neighbor Discovery Protocol 
NDP is part of the Internet Control Message Protocol 
for IPv6 (ICMPv6)6 and uses ICMPv6 message format. 
It was designed in this position of the IP protocol stack 
for simplicity and to benefit from IP services, such as 
security and multicasting. NDP messages consist of an 
ICMPv6 header, neighbor discovery (ND) message–
specific data, and ND message options, which provide 
additional information, such as link-layer addresses, on-
link network prefixes, on-link maximum transmission 
unit information, redirection data, mobility informa-
tion, and router specification. 
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NDP Messages and Functionalities
NDP uses the following five ICMPv6 messages:

 ■ router solicitation (RS), type 133—the IPv6 host 
sends RS to discover the default router and learn net-
work information, such as prefixes and Domain Name 
Server (DNS) addresses;

 ■ router advertisement (RA), type 134—the router 
that receives an RS message sends back an RA mes-
sage (solicited RA) and IPv6 routers send RAs peri-
odically (unsolicited multicast RAs);

 ■ neighbor solicitation (NS), type 135—NS resolves 
the neighbor node’s IPv6 address to its MAC address 
and verifies that the node is still reachable;

 ■ neighbor advertisement (NA), type 136—the node 
that receives an NS message sends back an NA mes-
sage with its own MAC address; and

 ■ redirect message (RM), type 137—the router uses 
RM to inform other nodes of a better first-hop toward 
a destination.

These messages achieve various functionalities, 
including router and prefix discovery, parameter dis-
covery, address autoconfiguration, address resolution, 
duplicate address detection (DAD), neighbor unreach-
ability detection, next-hop determination, and redirect. 

NDP Security and Privacy Implications
NDP has some basic protection mechanisms based on 
its scope. It’s a link-local protocol, so the source address 
must be either unspecified or a link-local address, and 
the hop limit must be set to 255. Also, the routers don’t 
forward link-local addresses. Thus, NDP messages can’t 
be injected into the network infrastructure from beyond 
directly connected layer-2 access networks. This shield 
isn’t enough to completely protect IPv6 local networks. 
Without securing NDP, IPv6 neighbor discovery is vul-
nerable to spoofing, denial-of-service (DoS), replay, 
redirect, and rogue router attacks. 

Spoofing. In a spoofing attack, a malicious node success-
fully uses another node’s address or identifier. Attackers 
can use spoofs to leverage man-in-the-middle (MITM) 
attacks, create DoS attacks, hide their identities, abuse 
the trust relation between legitimate nodes, and so 
forth. Address Resolution Protocol (ARP) spoofing is 
a well-known attack in IPv4 networks. Instead of ARP, 
IPv6 relies on NDP to carry out address resolution in 
addition to the other services. Without the IPv6 authen-
tication mechanism, attackers can generate crafted IPv6 
packets with spoofed source addresses and send them 
across the network.

Denial of service. DoS attacks prevent communication 

between the legitimate node and other nodes, using 
significant system resources. For instance, attackers 
can generate DoS on DAD to prevent a network node 
from obtaining a network address. DAD ensures that 
no address collision exists on the same link. A malicious 
node might hinder the legitimate host from getting a 
new IPv6 address by responding to every duplicate 
address detection attempt with a spoofed message say-
ing “I have this address.” Thus, victims would find out 
that every IPv6 address they try to use is in use by other 
nodes on the link and won’t be able to configure an IP 
address to access the network.

Replay. In replay attacks, attackers capture and change 
messages exchanged between two nodes. NDP mes-
sages are prone to replay attacks. For instance, when 
host 1 wants to communicate with host 2, it sends an 
NS message to retrieve host 2’s MAC address. Attack-
ers on the same link can capture the NS message and 
change it to take over the traffic flow between host 1 and 
host 2. Another example is RA message replay. Attack-
ers receive the RA, change its parameters, and resend 
this false router information on the link.

Redirect. Redirects are a class of attacks in which a mali-
cious node redirects packets away from the legitimate 

Abbreviations
ADD Authorization delegation discovery
ARP Address Resolution Protocol
CGA Cryptographically generated address
CPA Certificate path advertisement
CPS Certificate path solicitation
DAD Duplicate address detection
DHCPv6 Dynamic Host Configuration Protocol for IPv6
DoS Denial of service
ECC Elliptic curve cryptography
ICMPv6 Internet Control Message Protocol for IPv6
IID Interface identifier
IPsec IP Security
MITM Man in the middle
NA Neighbor advertisement
NDP Neighbor Discovery Protocol
NS Neighbor solicitation
RA Router advertisement
RM Redirect message
RS Router solicitation
SEND Secure Neighbor Discovery
SLAAC Stateless address autoconfiguration
WinSEND Windows Secure Neighbor Discovery
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receiver to another node. In IPv6, routers use RMs to 
inform nodes of better first-hop routers. Attackers can 
fabricate such a message and take over routing from the 
legitimate router, acting as an MITM and intercepting 
all messages between the two nodes.

Rogue router. In this type of attack, a malicious node 
injects rogue information to poison the routing tables, 
reroute traffic, or prevent victims from accessing the 
desired network. It’s simple for attackers to configure 
a rogue router on an unsecured link, but it’s difficult 
for a node to distinguish between fake and authorized 
RAs, especially for a newly connected node, which can’t 
validate the routers without an IP address to commu-
nicate. Thus, a malicious node can advertise itself as a 
router and send a bogus address prefix or advertise itself 
as a last-hop router to act as an MITM and effectively 
receive, drop, or replay the packets. Such attacks can 
cause serious problems because they affect all nodes 
connected to the same segment.

Combinations. Attackers can use several of these attack 
types simultaneously. For instance, spoofing and DoS 
can be used together: attackers can fabricate packets 
with a fake source IP address to hide their identity, 
which makes detecting the attack more difficult. 

RFC 3756, “IPv6 Neighbor Discovery (ND) Trust 
Models and Threats,” describes and categorizes some 
possible NDP attacks.3 In addition, the Hacker’s Choice 
IPv6 (http://thc.org/thc-ipv6) already implemented a 
toolset to attack IPv6. 

NDP Privacy Implications
SLAAC could lead to serious privacy issues. Generat-
ing the IPv6 interface identifier (IID) on the basis of 
the MAC address results in a static IID, which remains 
constant over time and across networks. Consequently, 
attackers can correlate the captured traffic from a spe-
cific IID to a certain device and track the node. Once 
attackers determine the user’s location and identity, they 
can target the user for identity theft or related crimes. 

RFC 4941, “Privacy Extensions for Stateless Address 
Autoconfiguration in IPv6,” introduces a solution by 
generating global scope addresses from IIDs that change 
over time.7 Changing IIDs over time makes it more diffi-
cult for eavesdroppers and other information collectors. 
However, RFC 4941 doesn’t protect against IP address 
spoofing attacks. 

CGAs can obscure the node IID to protect privacy 
and achieve anonymity.

IPsec for Securing NDP
Although the original NDP specification called for the 
use of IP Security (IPsec) to protect NDP messages, 

it didn’t specify how to use it. IPsec isn’t suitable for 
securing the NDP autoconfiguration process owing 
to a bootstrapping problem. With the Internet Key 
Exchange, the nodes must be addressable before IPsec 
can be used. With IPsec, Internet Key Exchange can 
automatically perform security associations exchange 
when a host already has a valid IPv6 address. Therefore, 
the Internet Engineering Task Force developed SEND 
as a countermeasure to NDP vulnerabilities.

Secure Neighbor Discovery 
RFC 3971 is a set of NDP enhancements.4 SEND offers 
three additional features to NDP: address ownership 
proof, message protection, and a router authorization 
mechanism. To achieve these enhancements, SEND 
comes with four new options (CGA, RSA signature, 
nonce, and Timestamp) and two ICMPv6 messages for 
identifying the router authorization process. 

Cryptographically generated address. The CGA option 
carries the associated CGA parameters so the receiver 
can validate the proper binding between the public key 
(used to verify the signature) and the CGA. 

The CGA is an essential part of SEND, proposed to 
prevent address stealing. It authenticates IPv6 addresses 
without requiring third-party or additional security 
infrastructure. CGAs are IPv6 addresses, in which a 
one-way hashing of the node’s public key and other 
auxiliary parameters generates an IID. Thus, a node’s 
IPv6 address is bound to its public key. The receiver can 
verify this binding by recomputing the hash value and 
comparing it to the sender’s IPv6 address’s IID. 

Figure 1 shows the CGA-generation algorithm (see 
RFC 3972 for more details5). CGA generation begins 
by determining the address owner’s public key and 
selecting the proper security-level (Sec) value, then 
continues the hash2 computation loop until finding the 
final modifier. The hash2 value is an SHA-1 hash value 
over the entire CGA Parameters data structure (the 
public key and Collision Counts are zeros). The address 
generator tries different modifier values until 16 × Sec-
leftmost-bits of hash2 equals zero. Once it finds a match, 
the loop for hash2 computation terminates. The final 
modifier value is saved and used as an input for hash1 
computation. The hash1 value is a hash of combination 
of the whole CGA parameter data structure. Then, IID 
is derived from hash1. The Sec value is encoded into the 
IID’s three leftmost bits. The seventh and eighth bits 
from the left of IID are u and g bits. The u bit (universal/
local bit) is set to 1 to indicate universal scope or to 0 to 
indicate local scope. The g bit is the individual/group bit 
(see RFC 4291 for more details8). Finally, DAD ensures 
that no address collisions are in the same subnet. 

A CGA’s main disadvantage is its computational cost. 



www.computer.org/security 29

CGA computations can take a long time, especially for 
high Sec values. In fact, satisfying the hash2 condition is 
the most computationally expensive part of the CGA’s 
generation algorithm. Multiple hashes are computed 
over the CGA parameter data structure by increment-
ing the modifier each time (see Figure 1).

RSA signature. SEND uses the RSA signature option to 
authenticate the sender’s identity. Initially, each node 
must generate or obtain a public/private RSA pair before 
it can claim an address. The sender signs the outgoing 
messages with the private key, which corresponds to the 
public key used in CGA’s generation algorithm. This sig-
nature prevents attackers from spoofing CGA addresses.

Nonce. The nonce option uses a random number to 
ensure that an advertisement is a fresh response to a 
node’s solicitation. SEND includes a nonce option in 
the solicitation message and requires advertisements 
to include a matching option. This prevents a replay 
attack in solicited messages, such as NS/NA and RS/
RA, which can be used for two-way communication but 
not for one-way communication messages. 

Timestamp. SEND uses the Timestamp option to ensure 
replay protection against unsolicited advertisements, 

such as periodic RAs and RMs. Here, the assumption 
is that all nodes have synchronized clocks, so the node 
can prevent replay attacks by carrying out a time-stamp-
checking algorithm.

Router authorization. SEND uses authorization delega-
tion discovery (ADD) to validate and authorize IPv6 
routers to act as default gateways and specifies IPv6 
prefixes that a router is authorized to announce on its 
link. ADD relies on an electronic certificate issued by a 
trusted third party. Before any node can accept a router 
as its default, the node must be configured with a trust 
anchor that can certify the router via certificate paths. 
So, the node requests that the router provide its X.509 
certificate path to a trust anchor, which is preconfigured 
on the node. The router shouldn’t be trusted if it fails to 
provide the path to the trust anchor. Figure 2 shows a 
simplified view of the router authorization mechanism.9

SEND offers two new ICMPv6 messages to identify 
the router authorization process: certificate path solici-
tation (CPS) and certificate path advertisement (CPA). 
A host sends a CPS message, ICMPv6 type 148, during 
the ADD process to request a certification path between 
a router and one of the host’s trust anchors. The CPA 
message, ICMPv6 type 149, is sent in reply to the CPS 
message and contains the router certificate. 

Figure 1. A cryptographically generated address’s generation algorithm. The address owner (generator) generates or obtains an RSA key pair 
and selects the proper security-level (Sec) value, then continues the hash2 computation loop until finding the final modifier, which satisfies 
the condition that 16 × Sec-leftmost-bits of hash2 equals zero. The hash1 value is a hash of combination of the whole CGA parameter data 
structure. IID is derived from hash1, and the Sec value is encoded into the IID’s three leftmost bits.
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SEND Deployment Challenges 
SEND faces limitations in several areas, including com-
putation, implementation, deployment, and security, 
which might prevent CGA and SEND use and leave 
NDP messages vulnerable to potential attacks. 

CGA and SEND Security Constraints
The CGA mechanism can prevent theft of another 
node’s address, because attackers must find a crypto-
graphic hash value (hash1) collision. However, CGA 
can’t provide assurance about the real node’s iden-
tity, and it isn’t sufficient to guarantee that the CGA 
address is used by the appropriate node. Because 
CGAs aren’t certified, attackers can create new valid 
addresses from their own public keys and start the 
communication. For more security, a certificate 
authority is necessary to validate the keys. However, 
address owners use the corresponding private keys to 
assert their ownership and sign NDP messages sent 
from the address. Therefore, attackers can imperson-
ate other node addresses from a valid public key but 
can’t sign the others’ messages.

CGA verification vulnerabilities. Attackers can perform 
DoS attacks against CGA-DAD messages using CGAs 
or non-CGAs. Attackers can use non-CGAs to respond 
to each CGA-DAD message, with “I have this address.” 
If the collision count reaches 2, CGA generation 

fails. Therefore, the CGA algorithm might need to be 
extended to verify the DAD message responses before 
the increment of the collision count. But in this case, all 
nodes should support CGA or discard the DAD mes-
sages that come from non-CGAs as well as give priority 
to new CGA addresses rather than non-CGA addresses.

Attackers can capture ND messages and change 
the sender’s CGA parameters, so the CGA verification 
process at the receiver side will fail. In this scenario, 
attackers prevent communication between sender and 
receiver; however, this can happen with other security 
protocols. For example, if attackers insert a bogus IPsec 
datagram, the IPsec at the receiver drops the datagram 
because the integrity check is bogus. Therefore, we 
don’t see this attack as a major drawback of CGAs.

Time-memory trade-off attacks. CGAs are vulnerable 
to global time-memory trade-off attacks. Attackers can 
generate a table of valid public/private key pairs in the 
precomputation phase to reduce the time complexity of 
the attack on the cost of memory. Researchers proposed 
a more secure version, called CGA++, to resist this type 
of attack.10 In CGA++, the subnet prefix is included in 
the hash2 calculation, and all the modifier, collision 
count, and subnet prefix values are signed by the pri-
vate key corresponding to the public key used. This way, 
time-memory trade-off attacks can’t be applied glob-
ally. Attackers could perform a brute-force search for 
each address prefix separately. However, it’s not easy 
to impersonate a random node in a network owing to 
the ample storage necessary to carry out this attack. In 
addition, CGA++ comes with an added cost due to the 
signature verifications, and it requires much more time 
than CGA generation for the same Sec value.

Attacks on router authorization. DoS attacks can target 
router authorization mechanisms. This requires per-
forming many operations for generating, verifying, and 
signing NDP messages, which can affect the routers’ 
performance. Attackers might target hosts by sending 
unnecessary certification paths, forcing hosts to spend 
useless memory and verification resources on them. 
The host’s numerous computations to generate and ver-
ify CGAs and the certificates chain make it vulnerable 
to DoS attacks.

Additional limitations. SEND doesn’t guarantee confi-
dentiality or provide protection against address scan-
ning. It doesn’t offer information about the node’s 
privileges on the network; if this functionality is neces-
sary, another infrastructure, such as 802.1X, is required.

CGA Privacy Constraints 
Owing to CGA’s high computation complexity, it’s 

Figure 2. Router authorization process.9 The host sends a certificate path 
solicitation (CPS) to ask the router to provide a valid certificate. The router 
responds with the certificate path advertisement (CPA) that contains the 
certificate. The host verifies router legitimacy; if it’s valid, the host accepts the 
router as the default router. 
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likely that once a node generates an acceptable CGA, 
it will continue to use it at that subnet. Consequently, 
nodes using CGAs are still susceptible to privacy-related 
attacks. However, this issue can be solved by setting a 
lifetime for CGA addresses. If the lifetime passes, a new 
CGA with a new CGA parameter should be generated. 
To avoid the long CGA generation time, we don’t rec-
ommend choosing a Sec value greater than 1 for current 
applications. There should be a balance between life-
time and security level. 

CGA can achieve privacy protection for a mobile 
node. When a node moves to a new subnet, hash1 
should be recalculated using the new subnet prefix. 
Consequently, new IPv6 addresses with new IIDs will 
be generated without needing to recalculate hash2. The 
process of generating new addresses costs only one hash 
calculation. The only concern is the possibility of attack-
ers tracking the node on the basis of its public key if it 
remains fixed. But tracking the node using its public key 
isn’t easy. Normally, tracking nodes over the Internet is 
done using an IP address. 

Computation Exhaustion  
and Bandwidth Consumption
The average CGA address-generation time depends on 
Sec bits. However, it’s impossible to tell exactly how 
much time CGA generation will take when Sec isn’t 
zero; it could vary significantly. Theoretically, the com-
putational complexity of hash2 consumption increases 
by 216 for each Sec value. 

By performing 1,000 tests on an Intel Duo2 2.67-
GHz CPU, we found that the average CGA generation 
time is 402 milliseconds for Sec = 1. For Sec = 2, our test 
on an unrepresentative set of five samples gave an aver-
age CGA generation time of 5,923,857 milliseconds (1 
hour and 39 minutes). Accordingly, we don’t recom-
mend Sec values higher than 1 because they require a lot 
of processing power and time using current technolo-
gies. If the generation and verification values exceed 0.5 
second, DAD would fail because it expects to send and 
receive two ND messages in less than 1 second, as RFC 
4861 indicates.1

Table 1 presents a summary of CGA generation 
times reported in several studies.10–12 Each study mea-
sured CGA on different device specifications. Some of 

these studies considered the whole CGA generation 
time, and others considered only hash2 calculation 
time.

Router authorization and certificate validation can be 
heavyweight and complicated. Any node trying to verify 
router authorization must be prepared beforehand with 
the anchor certificate. In addition, routers are provisioned 
with certificates that prove their identity. Because this 
relationship can be a long chain of trust, ADD requires 
an end node to store and retrieve all the certificates in 
the certification path to verify the authorized router. 
Thus, the node requires verification of the lengthy certifi-
cates chain, and transporting all the certificates and keys 
between routers and hosts increases local network traffic. 
Also, the certification path information transformation 
requires many CPS/CPA messages, especially if an error 
occurs on the network and retransmission is required.

SEND requires each node to include the public key 
and other parameters with the message and to affix its 
signature with every signaling packet it generates, which 
means that more than 1 Kbyte is added to each packet. 
This increases communication overhead and consumes 
network bandwidth and computational resources.

Lack of Sophisticated Implementation
Most operating systems support NDP but lack sup-
port for SEND. Even though some major vendors, 
such as Cisco and Juniper, have various levels of sup-
port for SEND in their routers, no major operating sys-
tem provides a good level of support. Current SEND 
implementations for specific OS distribution, such as 
Debian Linux, are basically proofs of concept rather 
than production-ready software. Some of these imple-
mentations—send-0.2, NDprotector, Easy-SEND, and 
Windows Secure Neighbor Discovery (WinSEND)—
are done in the user space, and others—send-0.3 and 
ipv6-send-cga—at the kernel level.

DoCoMo’s SEND implementation (send-0.2). NTT 
DoCoMo USA Labs implemented the first open source 
SEND. Its implementation (send-0.2) works on Free 
Berkeley Software Distribution (FreeBSD), using the 
Berkeley Packet Filter interface embedded in a netgraph 
node for transferring packets between the kernel and 
the user-space daemon. The user-space daemon handles 

Table 1. CGA generation time for different security-level values.

Device specifications Sec = 0 Sec = 1 Sec = 2 Sec = 3

Modern PC (AMD64)10 n/a 0.2 s 3.2 hours n/a (theoretically, 24 years)

Machine with 2.67-GHz CPU11 93.41 ms 401.99 ms 1.65 hours n/a (theoretically, 12 years)

Duo2 (2.53-GHz) workstation12 100 µs 60 ms 2,000 s n/a (theoretically, more than 30,000 hours)
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the SEND options. The communication between the 
NDP stack in the kernel and the SEND daemon flows 
through the chain of netgraph nodes rather than passing 
through normal layer processing. 

The send-0.2 implementation has some limita-
tions. First, all network traffic must traverse through 
packet-filtering hooks, which introduce significant pro-
cessing overhead. Second, 
send-0.2 depends on 
a netgraph subsystem, 
which is available for 
the FreeBSD oper-
ating system family, 
making it importable 
for other operating 
systems. Users need 
to have good knowledge of firewall rules (ip6tables), 
because it’s essential for the application’s configuration. 
Finally, DoCoMo USA Labs is no longer maintaining 
the SEND project—source code is no longer available 
for download and support has been canceled.

NDprotector. NDprotector (http://amnesiak.org/ND 
protector) is another implementation of CGA and 
SEND for Linux based on Scapy6 and is limited to the 
Linux platform owing to its dependency on iproute2, 
ip6table, and netfilter queue. Implementation can be 
divided into initialization and runtime phases. During 
initialization, CGA addresses are set up and ip6table rules 
are defined. These rules route all NDP messages to spe-
cific netfilter queues. NDprotector’s runtime component 
takes the NDP messages out of these queues and secures 
the outgoing NDP messages or verifies the incoming 
ones. NDprotector supports elliptic curve cryptography 
(ECC) keys in addition to standard RSA keys. It’s imple-
mented in Python and therefore uses a Python wrapper 
to access netfilter. For packet manipulation, NDprotector 
uses a modified version of Scapy6 (scapy6send).

Easy-SEND. Easy-SEND is another Linux user-space 
implementation of SEND developed in Java.13 Easy-
SEND is an open source project developed for edu-
cational purposes. Easy-SEND doesn’t implement 
router authorization.

WinSEND. WinSEND, a user-space implementation 
developed in Microsoft .NET, is the first SEND imple-
mentation for Windows.14 WinSEND works as a service 
for Windows families with a user interface to set secu-
rity parameters for the proper network interface card. 

The user-space implementations have some advan-
tages, such as avoiding kernel crashing. However, this 
means emulating the behavior of a kernel structure, 
which isn’t always possible. Therefore, there are some 

trial implementations to integrate the SEND with NDP 
code at the kernel.

Native SEND kernel API for BSD (send-0.3). This imple-
mentation aims to overcome the major drawbacks of 
DoCoMo’s implantation by implementing a new kernel- 
user-space API for SEND and eliminating the use of 

netgraph and the Berkeley 
Packet Filter.15 Avoid-
ing netgraph reduces 
overhead, speeds up 
packet processing, and 
makes the implemen-
tation more portable 
to other operating sys-
tems. Send-0.3 uses 

routing control sockets to exchange messages between 
the kernel and the user space. It handles the packets that 
might be affected by SEND rather than processing all 
packets, and lets the existing kernels handle the other 
packets. This implementation uses a kernel module that 
acts as a gateway between the network stack and the 
user-space interface. 

Huawei and BUPT (ipv6-send-cga). Huawei and Beijing 
University of Post and Telecommunications (BUPT) 
introduced a SEND implementation (www.ohloh.net/p/
ipv6-send-cga) in the Linux kernel IPv6 module. The C 
code is partially built into the real NDP code at the kernel, 
where direct access to neighboring caches and the rout-
ing table is available. However, cryptographic processing 
remains in the user space. This work is a research proto-
type under development and lacks interoperability test-
ing. Bugs that could cause the kernel to crash are expected. 

Proposals to Facilitate SEND Deployments
Researchers have proposed ways to optimize and facili-
tate SEND deployment. In “Significantly Improved Per-
formances of the Cryptographically Generated Addresses 
Thanks to ECC and GPGPU,” Tony Cheneau and his 
colleagues proposed an improved method for generating 
CGA by using an ECC key instead of a standardized RSA 
key.16 For the same security level, ECC has shorter keys, 
which leads to smaller packet sizes. Accordingly, ECC use 
is more suitable in resource- limited environments.

Another potential idea is delegating the expensive 
computation to a powerful machine. In “A Quick CGA 
Generation Method,” a key server performs the com-
putation on behalf of the nodes in advance or offline.17 
The work in “Configuring Cryptographically Gener-
ated Addresses (CGA) Using DHCPv6” proposed 
using the Dynamic Host Configuration Protocol for 
IPv6 (DHCPv6) server to manage CGA.18 DHCPv6 
is extended to propagate the parameters that a host 

Reducing the threats against the IPv6 
network by enhancing SEND security and 

making it a lightweight and deployable 
authentication mechanism is important.
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needs to generate CGA. A host might send a request to 
a DHCPv6 server to compute the CGA for it. However, 
these approaches return to a centralized model in which 
the server might be the target of DoS attacks.

Other solutions use cryptographic accelerator cards 
to compute CGA faster or use parallelized algorithms 
to compute the CGA modifier. “Multicore-Based Auto-
Scaling SEcure Neighbor Discovery for Windows 
Operating Systems” proposed implementing a parallel-
ized CGA-generation algorithm to speed up CGA com-
putation.19 With the parallel approach, the speed-up 
time increased substantially by increasing the number 
of cores in the computing device. 

To avoid unexpected delays in CGA generation, 
using a time termination condition can be a practical 
approach.20 For example, on the basis of the CPU speed, 
the algorithm  recommends a proper value for Sec or a 
time termination condition. The termination condi-
tion also depends on the application requirement; for 
example, MIPv6 needs to finish the address generation 
within hundreds of milliseconds. “Stopping Time Con-
dition for Practical IPv6 Cryptographically Generated 
Addresses” proposed a modified CGA-generation algo-
rithm called time-based CGA, which limits the maxi-
mum time that the user/application can invest for CGA 
generation.11 Time-based CGA takes the upper bound 
of the CGA running time as an input and determines 
the Sec value as an output of the brute-force computa-
tions. This paper also suggested reducing security- level 
granularity from 16 to 8 to increase the chances of hav-
ing a better Sec value within the time limit. 

Other approaches tried to avoid SEND’s deployment 
complexity by using alternative protection models. 
RFC 6105, “IPv6 Router Advertisement Guard,” pro-
posed using filters at layer 2 to avoid router authoriza-
tion and certificate validation complexity.21 It counters 
the rogue RA problem by applying a layer-2 switching 
device to identify and block invalid RAs. However, IPv6 
RA-Guard still can’t prevent IP address theft if deployed 
alone. A combination of CGA and RA-Guard might be 
a solution to secure the IPv6 network. 

Other approaches, such as NDPMon (http://ndp 
mon.sourceforge.net) and RAmond (http://ramond.
sourceforge.net) tools, protect the local network by 
monitoring the NDP messages to detect malicious 
activity. However, monitoring techniques can’t prevent 
attacks; moreover, an attack might damage a network 
before the administrator can respond. Also, determin-
ing the attack node isn’t easy, because attackers can use 
spoofed addresses.

W e offer the following recommendations and com-
ments regarding CGA and SEND deployments:

 ■ Don’t use CGA with a Sec value greater than 1, 
because higher values are impractical for most users 
and applications with current CPU speeds.

 ■ A parallelizing CGA algorithm can alleviate the 
required time for CGA generation by speeding up 
CGA computations and investing the available CPU 
in CGA computation, especially when the device has 
multiple cores.

 ■ Generate key pairs on the fly using a CGA-generation 
program to make it easier for the user and to avoid 
storing the keys in a particular path before starting 
the application. This way, the keys won’t be vulner-
able to theft.

 ■ Because there’s no guarantee of stopping CGA gen-
eration after a certain time for a Sec value greater than 
zero, we recommend using time-based CGA to limit 
the CGA generation time.11 

 ■ Because of the router authorization mechanism’s com-
plexity, it’s necessary to find an easy certificate deploy-
ment model for SEND. We recommend using a CGA 
compound with complementary approaches—for 
example, using CGA with another detection or moni-
toring mechanism, such as NDPMon or RAmond. 
Using CGA with RA-Guard prevents address theft 
and detects fake RAs—CGA protects the local link 
from address theft, and the RA-Guard protects the 
local link from fake RAs.

 ■ For a very secure IPv6 local network, we recommend 
that all nodes use SEND. Therefore, we ask the oper-
ating systems’ vendors to implement SEND.

Reducing and eliminating the threats and attacks 
against the IPv6 network by enhancing SEND secu-
rity and making it a simple, lightweight, and deployable 
authentication mechanism is important. Without these 
security measures, IPv6 network will be left vulnerable 
to IP spoofing-related attacks. 
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