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Abstract
In this paper we introduce a new generalizations of §—closed and
§—open sets. Using these sets, we obtain a new characterization of
H —closed spaces. Among other results, it is shown that an N-compact
space over which every one point set is #—closed is 2 completely regular
normal space.

1. Introduction. The concepts of é—closure and 8—closure operators

were first introduced by Velicko [16]. Although f—interior and #—closure
operators are not idempotents, the collection of all é—~open sets in a topo-
logical space {X,T') forms a topology I'; on X, called the semiregularization
“topology of I weaker than I and the class of all regular open sets in I' forms
an open basis for T',, and the collection of all f—open sets in a topological
space (X,T) forms a topology I's on X weaker than T;. So far, numerous
- applications of such operators have been found in studying different types of
cortinuous like maps, axioms of separation, and above all, o many impor-
tant types of compact like properties. For a set 4 in a space X, let us denote
" by Int(A) or A® and cls{A) or A for the interior and the closure of A in X,
respectively.

Following Velicko, 2 point z of a space X is called a §—adherent point of
a subset A of X iff Int(clsU)N A # 0, for every open set U containing z.
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The set of all §—adherent points of A is called the é—closure of A, den
by cissA. A subset A of a space X is called 6—closed iff A = clsga Th
complement of a §—closed set is called §—open. A point = of a space X is
called a §--adherent point of a subset A of X if clslU N A £ 0, for every
open set U containing z. The set of all §—adherent points of A is calleq
the B-closure of A, denoted by cls;A. A subset A of a space X is calleq

0—closed iff A = ¢lsgA. The complement of a 8—closed set is called #~open .-
A topological property P is semi-regular provided that a topological spage *
(X,T) has property P iff (X, I'.) has property P. A space (X,T) is calleq -
semi-reguleriff I' = T and it is called almost regularif T, is regular. Clearly

every & — closed(§ — open) set is closed (open)-but not conversely ( see[16]).
Over a semi- regular space the converse is also true. A set A ina topologica]
space Cﬁ.g is called semiopen if I'ntrA C A C clsp(IntrA). A space X i
called Urysohn if for every z |.Nm ¥ € X, there exist open sets I/, VV containing
Z,y respectively, such that UNV = §. It is well-known that one of the
most weaker forms of compactness is closure compactness (QHC). Also,
it is well-known that closure compactness and near compactness are semj.
regular properties. A closure compact Hausdorff space is called H— closed,
first defined by Alexandroff and Urysohn.

The motivation of this paper is to derive certain characterizations of QHC

spaces by the applications of two types of sets, introduced here in terms of

§—~closure and §—interior operators. We get similar results to some of those
contained in [3,4,5,8,11,14, 15, 16]. It is well-known that a compact subset
of a Hausdorff space is closed but not conversely. It is easy to see that a
space X over which, for every ¢ £ y € X either {z} or {y} is f—closed must
be Hausdorffl. Moreover, a space X is Hausdorf Iff every compact subset is
f—closed. Also, if every one point set of an N-compact space X is f—closed
then X is a completely regular normal space. Also, we show that a space X
1s Urysohn iff every H-closed subset of X is f—closed.

2. Basic results.

Clearly clsA C clssA, but not equal even over a Urysohn space as it
is shown in the next example. Over a semi- regular space, it is clear that
clsA = elsg A,

Example 2.1. Let X = R with the topology & generated by a basis with

oted:
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. members of the form (,b) and (a,6) — K, where K = {1 : n € Z*}. Then

P

K is closed but not §~closed.

Definition 2.2. A set A in a space X is called
(a) @ 8° — set iff A = IntsB, for some B C X,
(b} a &° — set iff A = clsgB, for some B C X.

Remarks 2.3.
(I) It is easy to see that for a set A in a space X, clss(X—A) = X—IntsA.

Thus a set A in X is q §° — set if X —Ais ad®— set.

(II) 1t is well-known that clss(AU B) = clssA U clsgB, for any subsets

A, B of X. Thus Ints(AN B) = Ints AN IntsB, for any subsets A, BofX.

(III) Let Bs = {IntsA: A C X}, then B; forms a basis for some topology
(Bs) on ;un.
(IV) For an open set U, clssl/ = clsplU = clsU. Moreover, clsU is

§ — closed.

It is well-known that every regularly open set is § — open and thus §°—
set. Consequently, the above remarks lead to the following.

Proposition 2.4.  For a space (X,T), T(8s) = Ty, and thus Bs forms
an open bastis for the semiregularization topology T’y on X.

Recall that A C X is called N-closed relative to X or nearly compact
iff every open cover of X has a finite subcollection whose interiors of their
closures cover X. Equivalently, A is nearly compact iff every cover of regularly
open sets of X has a finite subcover of A. A space X is called an S-closed
subset iff for every semi-open cover {U,la € A} of X there exists a finite
subcollection {Uy]¢ = 1,...,n} such that the unions of their closures cover
X.

The next two results follow immediately from the well-known characteri-
zations of nearly compact and S-closed spaces in terms of regularly open sets.
The proof follows directly from [14, Theorem 2.1] and [15, Theorem 2.

Theorem 2.5. For a space X, the following are equivalent:
(a) X is nearly compact,
(b) Bvery cover of X by 6° — sets has a finite subcover,
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HHCwnynNmH\u_.MCwﬂ&mQﬂH Uiny Us, since Uy, s are closed sets. Con-
versely, let the given condition holds for a space X, and U be an open cover
of X. For each z € X, there exists Uz € U such that z € U,. Since U, is
open, ¢lsUz = ¢lsgl, and thus clsU; is a §° — set, say, Vs for each z & X_
Then {Vz :z € X} is a cover of X by 6 — sets with the stated property. By
our hypothesis, X = ULV, = U2 elsU,,, for a finite subset {Z1, ey @n} of
= X, proving that X H-closed.

(c) Every family of §° — sets with the finite intersection property has nog,.
void intersection.

Theorém 2.6. For a space X, the Jollowing are equivalent:

(a) X is S-closed,

(b) Every cover of X by &% — sets has q finite subcover, .

{¢) Every family of §° — sets with the finite intersection property has non-
void intersection.

Definition 3.2. A family F of sets in a space (X,T) is seid to have
§°—FIP iff every finite intersections of members of F has non-void § —
‘interior,

Corollary 2.7. For a space X, the following are equivalent:

a) X s nearly compact,

(b) Every cover of X by & — open sets has o finite subcover,

(c) Bvery family of & — closed sets with the findte intersection property
has non-véid intersection.

Theorem 3.3. A Hausdorff space (X,T) s H-closed iff every femily of
§¢ — sets with §°~FIP has non-null intersections.

Corollary 2.8. For a space X, the following are equivalent:

(a) X is S-closed,

(b) Every cover of X by § — closed sets has a finite subcover,

(c) Every family of § — open sets with the finite intersection property has
non-voud intersection.

Proof.  Let X be H-closed and {F, : & € A} be a family of §° — sets

in X with §°—FIP. If @> Fo=f then U = {X - F, . a ¢ A} is a

cover of X by §° — sets. Since X is H-closed, I has a finite subcollec-
tion, say, {X - F; : { = 1,..,n} and X = Uk els{X — F). Thus § =
X — Uk els{X = F) = n IntF, = Ny Ints F; = Ints(NZ, FY), contradict-
ing the hypothesis that {F, : o € A} has §°—FIP. Conversely, let the given
condition holds for a space X, we first show that (X,Ts) is H-closed. Since
62 — sets form an open basis for T's, it is enough to show that every cover of
X by 6° — sets has a finite T', — prozimate cover. So Jet V={Va:aec A}
be 2 cover of X by &° — sets. Then {X=V.:aeA)isa family of
& — sets with N{(X ~ V.} : @ € A} = 0, and thus this family cannot have
§°~FIP. Thus there exists fiitely many sets (X — Vae) it = 1,..,n such
that Ints(ME, (X — V4,)) = 0. Hence X = X — Ints(NZ (X - V) =
elsg(UR, (Vo) = ea(elseVa,) = Ut (elsp, Vi), proving that (X, T,) is H-
closed. Since H-closeness is a semi-regular property, it follows that (X,T)is
H-closed.

3. H-closed spaces

Recall that 4 C X is called closure compact( QHC' or quasi H-closed)
if every open cover of X has a finite proximate subcover (every open cover
has 2 finite subfamily whose closures cover the space X). A closure compact
Hausdorff space is called H-closed.

Theorem 3.1. A Hausdorff space (X, T) is H-closed iff wheneverld is a
cover of X by &° — sets, such that for each z of X some member of U is a
neighborhood of z, then I has a fintte subcover.

Proof. Let X be H-closed and I/ be a cover of X by §° — sets with the
given property. For each z € X » there exists some U, € I and an open
set V such that z € V, C Uz Then {V, : z € X} is an open cover of
A Since X is H-closed, there is a finite subset {#1,..., 20} of X such that

Definition 3.4. Let {U,: « € D} be a net of §° — sets in a space X
with the directed set (D,2) as its domain. A point = of X is said to be g
§°—adherent point of the net iff for cach o & D, and for every open neigh-
borhood U of z, there is a B € D with B 2 a such that Uz N clsU s 0.
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Theorem 3.5. A Hausdorff space (X, 1) is H-closed

iff every net of
8° — sets has a 6° — adherent point.

Proof.  Let {Uy : @ € D} be a net of §° — sets in H-closed X. For each
a €D, let Fy=clss({UUp: fehand f > a}). Then F = {F,:a ¢ Dlisa
family of §°— sets with §°—FIP. By Theorem 3.3, there exists an z € N F,.

oeD
Then for any open nbhd U of z and any & € D, &mqDQCanmmkwn:&mN

cr}) # 0. Thus thereis 2 § € D with § > @ such that clsU N Us # 0. Hence
thenet {Us : o€ D} of §°—setsin X has a §° — adherent point in X. Con-
versely, let F be a collection of §°—sets in X with §°—FIP. Let F* denote the
family of all finite intersections of members of F directed by the relation >
where R > RIf R CF (R, Fe F*). For each F € F~, we assign the set
IntsF, which is none empty, as F has §°—FIP. Then {IntsF : Fe(F,2)
1s a net of 6° — sets in X. By our hypothesis, some z of X is a §° — adherent
point of this net. In view of Theorem 3.3, it is enough to show that z eNF .

In fact, let F € F and V be an open nbhd of z. Since F € & ", there oﬂmwmﬂ.m
G € F* with G > F such that Int;G N elsV # 0, and thus Int;F Nels V
# 0. Thus 7 € clss(IntsF) = cls(IntF) C F, since F, beicg a §° — set, is
closed. Thus z € F, for each F € F, and consequently, z € mQ.qu_n ;

4. N-compactness and §—closed sets.

It is well-known that a compact subset of 2 Hausdorff space is closed but
not conversely. It is easy to see that a space X is a Hausdorff space iff for
every € X, {z} is 8~closed. Moreover, a closure compact subset of a Haus-
dorfl space is §—closed. The next result is similar for nearly compact subsets.

Theorem 4.1. A nearly compact subset of ¢ Hausdorff space X is f~closed.

Proof.  Let A be a nearly compact subset of a Hausdorff space X and
Wmﬂ z & A. Then for each a € A there exist Ue,e and V, such that /... N

ead - e
V. = 0. The collection {V, :a € A} is a cover by regularly open sets of

A. Therefore, there exists a finite subcollection Vi Vo that cover A. Let
U= UiN..."U,. Then UNA = 0. Thus = ¢ clsg A, proving that A is 8—closed.
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Indeed over a compact space a stronger result is obtained if we assume
all one point sets are f—closed as it is shown in the next theorem.

Definition 4.2. A space X is said to be N-compact if every closed subset
of X 15 N-closed relative to X.

Cleazly every compact space is N-compact but not conversely as the space
of reals with the cocountable topology is N-compact but not compact.

Theorem 4.3. An N-compact space X is o compact completely regular
normal space if every one point set is §—closed.

Proof.  First of all we will show that X is regular. Let A4 be a closed subset
of X and let z ¢ A. Since {z} is f—closed, for every a € A,a & eclsp{z}.
Hence for every a € A there exisis an open neighborhood V, of a such that
Vo 0{z} = 0. This implies that z ¢ V,. Let C = {V.:a& A}. Then C is
a cover of A by regularly open sets. Since A is closed, A is N-closed relative
to X. Therefore, there exists a finite subcover of A, say, ﬂﬂ.w: , .:.w\:ms. Hence,
z ¢ Vo, U...UV,,. Therefore, there exists U an open nbhd of z such that
Un(V, U..uV; ) =0, proving that X is a regular space. But since one
point sets are f—closed, then X is Ty. Therefore, X is a Ti—regular space.
Thus X is a compact Hausdorff space.” It follows by Theorem 5.4.6 in [17)
that X is a completely regular normal space.

As consequences of Theorem 4.3 we get the following corollaries.

Corollary 4.4. Let X be a Hausdorff space such that every closed subset

of X is N-closed relative to X. Then X is a compact end completely regular
normal spece.

Corollary 4.5. A Hausdorff N-compact space X is compact.

Corollary 4.6. A compact space X is normal end completely regular
space iff every-one point set is f—closed.

Corollary 4.7. If X is compact and every one point set is f—closed, then
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a subset A of X is 8—closed iff it is closed.

It is natural to ask if Corollary 4.7 still holds over a closure compact space
X, the answer is no, Example 4.8 (d) in [13] is such an examnple.

In [4, 2.4] it is pointed out that a space X is regular iff for every A C
X, A = clyA. The next result is a sharper one.

Theorem 4.8. Let X be a space such that every closed subset is 0— closed.
Then X is a regular space.

Proof.  Let A be a closed subset of X and let z ¢ A. Since A is 6—closed,
there exists a nbhd U of z such that /N A = 0. Hence, for every ¢ € A there
exists a neighborhood V, of ¢ such that V, NU = . Let V = U,z V,. Then
UnV =0, proving that X is a regular space.

In {16] it is shown that over a Urysohn H-closed space the class of H-
closed sets coincides with the class of #—closed sets. The next two results
are a generalization of [16, Theorem 4].

Theorem 4.9. A §—closed subset of nearly compact is nearly compact.

Proof. Let A be a é—closed subset of a nearly compact space X and
let € be a cover of A by regularly open sets. Since X\A is §—open, for
each * € X\A there exists an open set U, such that U, € X\A. Thus
V=CU{U, :z € X\A} is a cover of X by regularly open sets. Since X
is nearly compact, there exists a finite subcollection I of V that cover X.

Hence, & N C is a finite subcollection of C that cover A, proving that 4 is
nearly compact.

Corollary 4.10. Every clopen subset of ¢ nearly compact space is nearly
compact.

Theorem 4.11. A quasi-H-closed space X is Urysohn iff every quasi
H-closed subset is 6—closed.
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Proof.  Let A be a quasi H-closed subset of a Urysohn space X and let
z ¢ A. Then for each a & A there exist Uy, and V, such that U,,. NV, = 0.
The collection {V, : @ € A} is an open cover of A. Therefore, there exists a
finite subcollection V4, ..., V,, whose closures cover A. Let I/ = Uhn..nt,.
Since U N (UL, V) CUR,(TiNTV) =8, TNA =0 Thus z ¢ clsgA, proving
that A4 is §—closed. Conversely, since one point sets are compact it follows
that X is Hausdorff. Let z % y € X. Then there exists an open set con-
taining 2 such that y ¢ U. By [13, 4.8(e)] it follows that U is quasi H-closed
and thus § — closed. Thus there exists an open set ¥V contalning y such that
UNV =0, proving that X is Urysohn.

Recall that a function f : X — Y is weakly continvous {resp., closure
continuous) if for every open set V of ¥ there exists an open set U of X such

that f(U) €V (zesp., f(U) C V).

Theorem 4.12. Let f : X — Y be weakly continuous 1 — 1, onto. IfX
is compact, ¥ Urysohn then the image of every open set is 0—open.

Proof. Let U be an open subset of X, and thus X\U is a closed subset
of X. Hence, X\U is compact. Since f is weakly continuous, HESYART

closure compact. Therefore, f(X\U) = Y\F(U) is §—closed, and thus F
1s f—open. ,

Following as in the proof of Theorem 4.13 we get the following results.

Theorem 4.13. Let f : X — Y be weakly continuous. If X is compact,
Y Urysohn then the image of every closed set is 6—closed.

Theorerm. 4.14. Let f : X — Y be closure continuous 1 — i, onto. If X
is closure compact, ¥ Urysohn then the image of every 6—open set is f—open.

Theorem 4.13. Let f : X — Y be closure continuous. If X is closure
compact, ¥ Urysohn then the image of every 8—closed set is 6— closed.

Theorem 4.16. Let f : X — Y be closure continuous 1 — 1, onto. IFXx
is closure compact, ¥ Hausdorff then the image of every 6—open set is open.
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Theorem 4.17. Let f : X —» Y be closure continuous. If X is closure
compact, ¥ Hausdorff then the image of every 8—closed set is closed

Recall that o Hausdorff space is called C -compact if each closed set in X
is closure compact.

Theorem 4.18. Let f : X = Y be continuous and let X be C-compact

and Y is @ Hausdorff space. If f is bijective, then X is homeomorphic to ¥V
and Y is C-compact.

Proof.  Since f is one-to-one and Y is Havsdorff, X is Hausdorff. Let A
be a closed subset of X. Since X is C-compact, A is closure compact. Since
f is continuous, it follows that f (A) is closure compact and thus a closed
subset of Y. It follows that f is a bijective closed continuous map and thus
a homeomorphism. Now it follows easily that ¥ is C-compact.

‘The next theorem follows from the fact that an inverse image of 2 f~closed
subset under a closure continuous is —closed and from Theorern 2.1 in 18]
A function f : X — Y is called quasi 0—continuous if the inverse image

of every f—open is §—open. Notice that every closure continuous is quasi
§-—continuous.

Theorem 4.19. Let X be o Hausdorff space and A C X. Then the
following are equivalent:

(a) A is §~closed in X;

(b) X/A is HausdorfF:

(¢) A is the inverse image of a O-closed subset of e continuous funclion
from X into a Hausdorff space;

(d) A is ihe point inverse of a continuous funetion from X into o Haus-
dorff space;

(e) A is the inverse image of a 9-closed subset of a closure continuous
function from X into a Hausdorff space;

(f) A is the. point inverse of a closure continuous function from X into a
Hausdorff space;

(g) A is the inverse image of a f-closed subset of a quast §—continuous
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function from X into « Hausdorff space;

(R) A is the point inverse of a quasi 0~ continuous function from X into

a Hausdorff space.
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