Data Retrieval and Aggregates in SQL*/NR

Yiu-Kai Ng
Nael Qaraeen
Computer Science Department
Brigham Young University
Provo, Utah 84602, U.S.A.
Email: ng@cs.byu.edu

Abstract

Standard S@QL is incapable of handling recursive database queries and nested rela-
tions. A proposed solution to allow recursion in SQ L was given in S¢) L* [KC93], while
a solution to allow nested relations in SQ L was given in SQ L /N F [RKB87]. However,
these two problems with S L were handled separately, and an extended 5S¢ L that
handles both recursive queries and nested relations is still lacking. To overcome this
shortcoming, we propose an extended SQ L, called SQL*/N R, that not only can han-
dle both recursive queries and nested relations, but also allows aggregate operators.
A query @ in SQL*/N R is processed by first transforming @ into rule expressions in
LDL/NR, a logic database language for nested relations, and the transformed rule
expressions are evaluated for retrieving the desired result of (). Transforming @) into
rule expressions in LDL/N R is desirable since LD L/N R handles recursion on nested
relations with a built-in mechanism for recursive query processing. In this paper, we
define SQL*/N R and include an approach for transforming SQL*/N R queries into
rule expressions in LDL/NR. SQL*/N R, as defined, enhances the expressive power
of standard SQL and SQL/N F and has the expressive advantage over SQ L.

Keywords: Recursion, nested relation, aggregates, logic programming, SQ) L

1 Introduction

SQL (Structured Query Language), a database query language that has been standardized,
has gained lots of popularity and has been supported by most relational database systems
since it was first introduced in the 1970’s. SQ L is widely accepted because it is a “user-
friendly” query language that has a simple, declarative syntax and semantics. However,
some database applications have revealed at least two limitations of SQ L. First, standard
SQL is incapable of handling recursive database queries (queries in which a relation is
defined in conjunction with its own definition [KC93]). Second, standard SQL cannot
handle nested relations that allow non-atomic (i.e., decomposable) attribute values. These
deficiencies in standard S L limit its expressive power and capability of handling complex
data, respectively.

A proposed solution to the first problem of SQL was given in [KC93] who defined
SQL* that extends standard SQ L to allow recursive queries. A solution to the second

problem of SQ L was proposed by [RKB87] who defined SQL/NF that extends standard
S@L to handle nested relations. However, these two problems with standard S@) L are not
handled by a single SQ L-type language. An extended SQL, called SQL*/NR, that can
handle both recursive queries and nested relations, is to be defined in this paper. The
development of SQL*/NR was motivated in part by the fact that the nested relational
model can be used for storing and retrieving complex data, while an extended S@L that
allows recursive queries on nested relations enriches the expressive power of standard SQ L
and SQL/NF, and has the expressive advantage of the nested relational structure over
S L* that operates on flat relations. Furthermore, SQL*/N R allows aggregate operators,
such as min, max, sum, etc., that makes the language similar to standard S and more
powerful. SQL*/NR, as defined, enhances database query languages in [RKB87, Uni9l]
and recursive query languages for flat relations [KC93] by providing better versatility and a
richer functionality for expressing complex data. Moreover, SQL*/N R incurs most, if not
all, of the standard S L’s advantageous features.

We present the details of SQL*/N R as follows. In Section 2 the basic set of constructs
in SQL*/NR are described. Extended SQL constructs in SQL*/N R, including subquery
components that specify the basis and recursive definitions of a recursive query, are used
for creating an SQL*/NR query. To evaluate an SQL*/NR query), we first transform
() into rule expressions in LDL/NR, a logic database language for nested relations. Rule
expressions in LDL/N R are chosen as an internal representation of () because they support
languages of declarative nature and handle recursion and nested relations. Formal definitions
of these rule expressions and justification for processing SQL*/N R queries by using a logic
database language are given in Section 2.3. In Section 3 SQL*/N R queries with aggregate
operators are introduced. In Section 4 we give a concluding remarks. In addition, we include
in Appendix A the formal syntax of SQL*/NR in BNF notations, and in Appendix B an
approach for the transformation of SQL*/NR queries with(out) aggregate operators into
rule expressions in LDL/NR.

2 SQL*/NR Queries and LDL/NR Rule Expressions

In this section we first describe SQL*/N R subqueries which comprise the basic constructs
of an SQL*/NR query. Hereafter, we present the structure of an SQL*/NR query, and
show how SQ L*/N R subqueries are embedded in an SQ L*/N R query. Finally, rule expres-
sions in LDL/N R, which are used for processing a given SQ L*/N R query, are introduced.
LDL/NR is of interest because it captures the constraints of nested relations precisely.
Furthermore, since for each complex-object type there is a nested-relation type with the
same “information capacity” [Hul86], LDL/N R can handle complex-data type queries.

2.1 SQL*/NR Subqueries

An SQL*/NR subquery (or subquery for short) allows the user to retrieve data from a
set of relations S. The subquery may comply with specific conditions or constraints that
are applied to certain attributes of the relations in S. This is similar to the functionality

provided by SELECT, FROM, and WHERF clauses of standard SQ L.

The Select-From-W here structure of an SQL*/N R subquery, which is a major con-
struct of SQL*/N R and is referred as a Select-From-Where-Expression or SEW-Expression

for short [RKB8T], is made up of the following clauses:

SELECT attribute-list
FROM relation-list
[WHERE boolean-expression]

This expression can handle queries for nested relations. Since an SQL*/N R subquery is
written as an SFW-Expression, a subquery and an SFW-Expression will be interchangeably
used throughout the remaining of this paper. Furthermore, we assume that all (atomic and
non-atomic) attribute names appearing at all levels of nesting in a nested relation are
unique, and apostrophe () is an invalid symbol in any subquery since it is reserved for the
transformation process of an SQL*/NR query.

2.1.1 The Select Clause

The Select clause, which is the first component of an SFW-Expression, allows the user to
specify data items to be included in the final result of a subquery by choosing attributes in
different relations referenced in the SFW-Expression. The Select clause is of the following
format:

SELECT atomuc-attry, ..., atomic-attr,, non-atomic-attry, ..., non-atomec-attr,,

The Select clause consists of the keyword SELECT, followed by a list of atomic and non-
atomic attributes. A non-atomic attribute can be a nested relation that is constructed
by an SFW-Expression called an incremental subquery [RKB87]. (See Example 4.) The
Select clause is used for specifying all the desired (atomic and non-atomic) attributes to
be included in the result of a subquery. It corresponds to the extended projection operation

in the extended relational algebra [RKS88].

Assume that Attr is an (atomic or non-atomic) attribute in nested relation r. If Attr
appears at the top level scheme of r, we can either include Attr in the Select clause, or
concatenate r (or its reference name which is also called tuple variable in [KS91]) with Attr
separated by a dot in the Select clause. Otherwise, Attr must be embedded one level deep
in r, and we specify Attr in the Select clause with its preceding (embedded) relations (or
their reference names) separated by dots. In addition, each chosen (atomic or non-atomic)
attribute C' can be referenced by a distinct, new column name to distinguish C' from other
chosen attributes. A new column name is specified by including the keyword AS and the
new name following a chosen attribute name.

Example 1 Let Student be the nested relation in Figure 1. To retrieve all the departments
in Student, we enter

SELECT Dept ... or SELECT Student.Dept . ..
To retrieve all the children of a student, we enter

SELECT Chidren ... or SELECT Student.Children ...

To retrieve all students’ names and their children names, and reference a student’s name
and his/her children names by Sname and Child-Name, respectively, we enter

SELECT S.Name AS Sname, (SELECT Cname ...) AS Child-Name . ..

where S is the reference name of Student. O

Student
Name | SID Children Dept Has_taken
Cname ‘ Age SID Courses
John | 5678 | David | 5 S Course## | Crhrs
Chris 10 5678 CS 220 3
Bill | 2134 | Denise 8 Chemistry PE 100 1
Jim 16 2134 | Math 411 3

Figure 1: Nested Relations Student and Has_taken

If only certain attributes of a relation r (which is embedded in a nested relation s)
along with some attributes in relations sq, ..., s, are to be included in an embedded relation
in the result of a subquery), we could specify an incremental subquery SQ in Q. (It is
assumed that s, s1,..., and s, are specified in the FROM clause of SQ or ().) An example
of an incremental subquery is (SELECT Cname ...) in Example 1. Upon evaluating SQ),
the result of S includes the desired attributes in r, sy,...,s,. SQ is specified as an
argument in the Select clause of (), and the resultant relation of S@) is given a reference
name (i.e., column-name) which is specified after S¢) and the keyword AS in the Select
clause.

2.1.2 The From Clause

The From clause includes a set of relations used for computing the result of an SFW-
Expression. The format of the From clause is:

FROM relq, ..., rel,

The From clause consists of the keyword FROM followed by a list of constructs rel;, 1 <
i < n, where rel; denotes either a (an embedded) relation name (which could be followed
by an optional reference name), a NEST operation, or an UNNFEST operation. (Each of
the NEST and UNNEST operations yields a relation.) The order in which the relation
names and the NEST and UNN EST operations may be arranged in the From clause is of
no importance. The From clause corresponds to the extended cartesian product operation

in the extended relational algebra [RKS88].

Example 2 To use the relation Student in Figure 1 in an SQL*/NR subquery @), we
include FROM Student in (). To use Student, and Course# and Crhrs of the relation

Courses embedded within the nested relation Has_taken in Figure 1, we include
FROM Student S, (UNNEST Has_taken ON Courses)

in a subquery, where S becomes the reference name of Student. O

(Embedded) Relations that are listed in the From clause are referenced during the eval-
uation of the SFW-Expression. An embedded relation r (such as Courses in Has_taken)
must be specified in the FROM clause of an incremental subquery (such as (SELECT

Cname from Courses)) in a subquery (), and the nested relation (such as Has_taken)

within which r is embedded must be included in the FROM clause of (). Reference names
of relations (such as S for Student in Example 2) allow the user to specify multiple copies of
the same relation and same attribute name appeared in different relations that are included
in the From clause. NEST (resp. UNNEST'), an aggregating (resp. disaggregating) op-
eration, allow the user to restructure a relation making it more aggregated (resp. flatter),
before such a relation is used by the Select or Where clause in the SFW-Expression. The
NEST and UNNES'T operations have the following formats:

(NEST <nested-relation-name> ON attribute-list AS <column-name>) and
(UNNEST <nested-relation-name> ON <attribute-list>)

where nested-relation-name and attribute-list in NEST and UNNEST reference a nested
relation r and the attributes in r on which NEST and UNNEST are applied, respectively.
The keyword AS in NEST allows the user to give a reference name (i.e., column-name) to
the resultant relation of the NEST operation.

2.1.3 The Where Clause

We use the Where clause in an SFW-Expression to specify conditions on attributes that
need to be satisfied. The Where clause is of the following format:

WHERE Boolean-Expression

The Where clause, which is optional in an SQL*/NR subquery, consists of the key-
word WHERE followed by a boolean expression that might include & different components
grouped together using a combination of m different logical ANDs and n different logical
ORs (0 <m,n < k—1,and m+n <k —1). The clause references atomic and non-atomic
attributes of the (embedded) relations in the From clause. These attributes are compared
to other attributes or constants using (set) comparison operators. The results of such com-
parisons are grouped together using logical ANDs or logical ORs (if there are any), and
its evaluation yields the final result of the boolean expression of the Where clause. The
Where clause corresponds to the extended selection (except the set membership operators,
in and notin) in the extended relational algebra that is recursively applied to deal with
selections on different levels of nesting in a nested relation, if such selections are required.

Example 3 To construct a subquery () based on Student in Figure 1 in which one of the
two conditions must be satisfied: either the age of a student’s child is in between 1 and 5,
or in between 12 and 15, inclusively, we include

WHERE (C.Age > 1 AND C.Age < 5) OR (C.Age > 12 AND C.Age < 15)

in (), where C is the reference name of the relation Children embedded within Student. O

The selections also handle the comparisons of atomic and non-atomic attributes of two
nested relations involved in the extended natural join in the extended relational algebra.
In the extended natural join of two nested relations s and s', two tuples ¢ € s and ¢’ € &
are joinable if the extended intersection on the projections over common (atomic and non-
atomic) attributes of ¢ and ¢’ is non-empty. This constraint is similar to the constraint of
the traditional natural join operation, i.e., two tuples contribute to the join if they agree
on common attributes.

2.2 SQL*/NR Queries

This subsection describes the structure of an SQL*/NR query (or query for short) which
is constructed by using subqueries described in section 2.1.

An SQL*/NR query (), which can handle recursion on nested relations, consists of an
INSERT INTO statement [KC93] that includes the keyword INSERT INTO followed by
the relation R (that is computed recursively), one subquery called the Basis-subquery, and
n (0 < n) different ALSO statements, each of which contains a subquery called Recursive-
subquery. The format of () is as follows:

INSERT INTO R
Basis-subquery
ALSO
Recursive-subqueriy,
ALSO
Recursive-subquery,
The relation R referenced in the INSERT INTO statement of an SQL*/NR query

is the relation to be computed recursively using itself and other relations ry,7q,...,r, that
are specified in the Basis-subquery or Recursive-subqueries of ().

A recursive query in SQL*/NR consists of at least two subqueries, a Basis-subquery
and a Recursive-subquery, which are SQL*/N R subqueries. The main difference between
the Basis-subquery and the Recursive-subqueries in a query () is that any relation specified
in () can be referenced by any of these subqueries, except the computed relation R which can
only be referenced in the Recursive-subqueries but not in the Basis-subquery. Furthermore,

all subqueries must yield compatible relation schemes?.

Example 4 Let Connected be the nested relation in Figure 2 which contains the flight
information about the group of cities that are connected directly with a particular city
by a flight and their respective distances. We specify the following SQL*/N R query that
generates the relation Reachable in Figure 2. Reachable contains the information about
a group of cities that can be reached, either through a direct or an indirect flight, from a
particular city.

INSERT INTO Reachable
SELECT Source-City, (SELECT Dest-City
FROM Route) AS Cities
FROM Connected
ALSO
SELECT R.Source-City, (SELECT Dest-City
FROM Route
WHERE Dest-City # R.Source-City) AS Cities
FROM Connected €, Reachable R
WHERE C'.Source-City in R.Cities

!Two relation schemes Ri(A1,...,A,) and Ro(Bi,..., B,) are compatible if A; € Ry and B; € Rs
(1 <i < n) have the same domain and 4; = B;.

Connected Reachable
Source-City Route Source-C'ity Cities
Dest-Clty ‘ Dust Dest-Clty
Chicago New York | 750 Chicago { New York, Los Angeles }
New York Chicago 750 New York { Chicago, Los Angeles }
Los Angeles | 1970 Boston { Chicago, New York, Los Angeles }
Boston Chicago 550

Figure 2: Nested Relations C'onnected and Reachable

Note that the SFW-Expression, (SELECT Dest-City FROM Route ...) AS Cities, is an

incremental subquery. O

Further note that tuples in the resultant relation R generated by the evaluation of
an SQL*/NR query have unique atomic components, i.e., tuples with the same atomic
components are merged, and duplicate tuples are removed with set equality holding on
non-atomic attributes. These constraints are applied to each level of nesting in R.

2.3 Rule Expressions in LDL/NR

Rule expressions in LDL/NR are chosen as the internal representation of an SQL*/NR
query () since there exists an efficient implementation of recursion in higher-order logic
database systems (LDL/NR is a higher-order logic database language) that guarantees
termination and preserves completeness of () [LN95a]. A logic (deductive) database system,
which has a built-in reasoning capability, may be used both as an inference system and as
a representation language [GN90, GM92]. Moreover, the syntax and semantics of higher-
order logic, which form the theoretical foundation of a deductive database language, are
simple, well-understood, and formally well-defined. We take the advantages of the built-in
recursive query processing mechanism provided by deductive database systems to process
our SQL*/NR queries through the transformation of an SQL*/NR query @ into rule
expressions in LDL/NR which are evaluated to yield the answer of Q).

LDL/NR restricts HI LOG [CC90] to nested relations, and is simpler in notation than
HILOG-R [CK91] which requires type and named attribute to be attached to each argu-
ment of a type declaration and named attribute to each data value in a tuple. Furthermore,
LDL/NR is more complete than LDL [STZ92] which allows only nested tuples rather than

nested sets.

2.3.1 Syntax of Rule Expressions in LDL/NR

Rule expressions REs in LDL/NR are based on the notions of type, term, and formula
which in turn are defined on an alphabet in LDL/NR. Constants and variables in RFEs are
of atomic type. There are two other types, set type and tuple type, in RESs.

Definition 1 A type in RESs is inductively defined as follows: (i) an atomic type is a type,
(ii) a set type is a type, and for a set-type s{r}, r is of either atomic type or tuple type,
and (iii) a tuple type is a type, and for a tuple-type p(s1,...,8,), s; (1 <@ < n) is of either
atomic type or set type. O

Tuple type and set type can be used alternatively to form complex data types, as
in [CC90, CK91]. The type declaration dept(Dname, projects{Pname}, employees{
employee(Ename, EI1D)}) defines dept which is of tuple type with components Dname,
which is of atomic type, and projects and employees, which are of set type.

Definition 2 Objects of atomic type are called atomic terms. A term is inductively defined
as follows: (i) a constant is a term, (ii) a variable is a term, (iii) for a set-type s{r}, an
instance s{ty,...,t,} is a term called set term, where t; (1 <t < m) is of type r, and (iv)
for a tuple-type p(si,...,s,), an instance p(ty,...,1,) is a term called tuple term, where t;
is of type s;, 1 <1 < n.O

Example 5 An instance of the tuple-type dept is
dept(cs, projects{db, se,lp}, employees{employee(smith,123), employee(jones, 567)}). O

Definition 3 A (well-formed) formula, which is constructed by terms, is inductively de-
fined as follows: (i) a tuple term or set term is a formula, (ii) if 7" and S are terms which
form the arguments of a (set) comparison operation @, then 705 is a formula, written as

o(T,S), (iii) if F'is a formula and X is a variable, then 3X F' and VX F' are formulas, and
(iv) if /' and G are formulas, so are =F, FV G, FAG, F — G, and F < (. O

A tuple term, set term, or (set) comparison operator with arguments is called an
atom. A ground formula (term) is a formula (term) without variables. A closed formula is
a formula with no free occurrence of any variable.

Definition 4 A rule (expression) is of the form head :— body, where head is an atom and
body is a conjunction of atoms. A wunit rule is a rule with an empty body. A factis a ground
unit rule. O

Example 6 The following rule retrieves all employees who work on one other project
besides the db project:

works_on_pj(Ename) : — employee(Ename, EID), works_on(EID, wprojs{ Pname, db}). O

2.3.2 Semantics of Rule Expressions in LDL/NR

The declarative semantics of rule expressions in LDL/N R is given by the usual semantics
of formulas in LDL/N R. Meaning for each symbol in a formula should be assigned in order
to discuss the truth or falsity of the formula. The various quantifiers and connectives have
a fixed meaning, but the meaning assigned to each term can vary [L1o87]. We first define

LDL/NR universe and LDL/N R base.

Definition 5 Given an instance L of LDL/NR, the LDL/NR universe U of L, denoted
Up, is the set of all ground atomic terms (constants) of L, and the LDL/NR base B of L,
denoted By, is the set of all ground unit rules of L. O

To define formally the meaning of a fact as a logical consequence of a set of facts
and LDL/N R rules, we introduce the concepts of LDL/N R interpretation and LDL/NR

model.

Definition 6 Given an instance L of LDL/NR, an interpretation for L is an LDL/NR
interpretation if the following conditions are satisfied: (a) the domain of the interpretation
is the LDL/NR universe U, (b) constants in L. are assigned to “themselves” in Uy, (c) for
a set term s{ty,...,t,,} in L, the assignment of s is a mapping from UJ" to {true, false},
and (d) for a tuple term p(sy,...,s,) in L, the assignment of p is a mapping from U} to
{true, false}. O

Definition 7 Given an LDL/NR interpretation [of an instance L of LDL/NR and a
closed formula F' of L, [is an LDL/N R model, which is a subset of By, for F if I is true
with respect to I (or [is a model for F'). If S is a set of closed formulas of L, then I is an
LDL/NR model for S if I is a model for every formula of S. O

A set term s{X}, where X is a variable, denotes a set term of arbitrary cardinal-
ity. As in [CC90], it is assumed that the satisfaction of s{ei,...,e,} by an LDL/NR
interpretation I implies the satisfaction of s{X} by I, where X C {ey,...,¢,}. Further-
more, the satisfactions of s{a1,...,a,} and s{by,...,b,} by [imply the satisfaction of
s{ar, ..., a,,b1,....0,} by 1.

2.4 Transforming SQL*/NR Queries into LDL/N R Rule Expres-
sions

We give a few examples below; each of these examples includes an SQL*/N R query) and
the rule expressions in LDL/N R transformed from). (The description of an approach for
transforming an SQ L*/N R query into LDL/N R rule expressions is given in Appendix B.2.)

Example 7 The transformed rule expressions for the SQL*/N R query in Example 4 are:

reachable(Source-Cityy, cities{ Dest-City,}) :-
connected(Source-Cityy, route{route’(Dest-City,, Disty)}).

reachable(Source-Citys, cities{ Dest-City,}) :-
connected(Source-Cityy, route{route’(Dest-C'ity,, Disty)}),
reachable(Source-Citys, cities{ Dest-Citys}),
in(Source-Cutyy, cities{ Dest-C'ity,}),
Dest-City; # Source-Clitys,.

Subscripted attributes, such as Source-City; and Source-Cityy, can be used for distin-
guishing attributes with the same name from different relations. O

Example 8 Let Parent be the nested relation in Figure 3, and let) be the following
SQL*/NR query that retrieves all the people who are related to others. The resultant
relation Related of () is shown in Figure 3. It is assumed that Person A is related to person
B if either (i) A and B are sibling, (ii) B’s parent is related to A, or (iii) A’s parent is
related to B.

Note that any reference name N assigned to an atomic attribute A in a Select clause
does not actually change A to N in the rule expressions transformed from (). It is because
N is used in () only to satisfy the constraint of compatible relation scheme or denote a new
reference name of A in (). This assumption holds for each of the following examples.

Related
Parent Person Relatives
- Steve Mary Relative
Pname Children
Person / \ / \ Amy { Tim, Bob, Joe }
Steve | { Amy, Tim } Amy Tim Sally Tim { Amy, Sally, Karen }
Mar { Tim 7Sall T / \ | Sally { Tim, Bob, Joe }
Timy { Bo][; Joey} Bob Joe Karen Bob { Joe, Amy, Sally, Karen }
Sally { Ka;’en 1 Joe { Bob, Amy, Sally, Karen }
Karen { Tim, Bob, Joe }

Figure 3: Nested Relations Parent (and Its Graph Form) and Related

INSERT INTO Related
SELECT P;.Children.Person, (SELECT Person AS Relative
FROM PF,.Children
WHERE Relative # P;.Children.Person) AS Relatives
FROM Parent P;, Parent P,
WHERE P,.Pname = P,.Pname
ALSO
SELECT R.Person, (SELECT Person AS Relative
FROM Children) AS Relatives
FROM Parent P, Related R
WHERE P.Pname in R.Relatives
ALSO
SELECT Children.Person, (SELECT Relative
FROM Relatives) AS Relatives
FROM Parent P, Related R
WHERE Pname = R.Person

The transformed rule expressions of () are:

related(Persony, relatives{ Personsy}) :- parent(Pnamey, children{Person;}),
parent(Pnames, children{Persons}),
Pname; = Pnamey, Persony # Person;.

related(Persony, relatives{ Person,}) :- parent(Pnamey, children{Person;}),
related(Persony, relatives{ Relative,}),
in(Pnamey, relatives{ Relatives}).

related(Persony, relatives{ Relative,}) :- parent(Pnamey, children{Person,}),

related(Persony, relatives{ Relatives}).
Pname; = Persong. O

Example 9 Let Parent be the nested relation in Figure 3, and let Married be the flat
relation in Figure 4. Let @) be the following SQL*/N R query that retrieves all groups of

10

people who are of the same generation, and the resultant relation Same-Generation of () is
shown in Figure 4.

It is assumed that a person P and a group of people (i are of the same generation if P’s
parent and a parent of a person in (G are of the same generation or are respectively of the
same generation as a married couple. It is further assumed that P is of the same generation
as himself, and every person who is either a child or a parent is in the flat relation People
(which is a relation with a single attribute person).

In @, a set operation UNITON, which is an infix operator in SQL*/N R, is used in the
following format:

SEFW-Expression UNION SFW-Expression.

(The syntax, semantics, and transformation steps of UNION in SQL*/NR are easily de-
termined.)

INSERT INTO Same-Generation
SELECT (SELECT Person AS Sg-Person /* create tuples with singular value */
FROM P-Grp) AS Sg-Grp
FROM (NEST People on Person AS P-G'rp)
ALSO
SELECT (SELECT Person AS Sg-Person
FROM P, .Children
UNION
SELECT Person AS Sg-Person
FROM P,.Children) AS Sg-Grp
FROM Parent Py, Parent P,, Same-Generation SG
WHERE P;.Pname in SG.Sg-Grp AND F,.Pname in SG.S5g-Grp
ALSO
SELECT (SELECT Person AS Sg-Person
FROM P, .Children
UNION
SELECT Person AS Sg-Person
FROM P,.Children) AS Sg-Grp
FROM Parent Py, Parent P,, Same-Generation SG4, Same-Generation SGy, Married
WHERE P;.Pname in SG1.Sg-Grp AND P .Pname in SG5.Sg-Grp AND
Spouse-A in SG1.5g-Grp AND Spouse-B in SG5.Sg-Grp

The transformed rule expressions of (), in which sg denotes the resultant nested relation
Same-Generation, are:

sg(sg-grp{ Persony }) :- people(p-grp{ Person, }).

sg(sg-grp{ Persony, Persony}) :- parent(Pnamey, children{Persons}),
parent(Pnames, children{ Personsy}),
sa(se-2rp{Sg- Persons)).
in(Pnamey, sg-grp{Sg-Persons}),
in(Pname,y, sg-grp{Sg-Persons}).

11

Same-Generation
Sqg-Grp
Married Sg-Person
Spouse-A ‘ Spouse-B { Steve }
Steve Mary { Mary }
Mary Steve { Amy, Tim, Sally }
{ Bob, Joe, Karen }

Figure 4: A Flat Relation Married and a Nested Relation Same-Generation

sg(sg-grp{ Persony, Persony}) :- parent(Pnamey, children{Persons}),
parent(Pnames, children{ Personsy}),
<a(se-2rp{Sg- Persons)).
<e(se-2rp{Sg- Persons).
married(Spouse-As, Spouse-Bs),
in(Pnamey, sg-grp{Sg-Persons}),
in(Pname,y, sg-grp{Sg-Persony}),

in(Spouse-As, sg-grp{Sg-Persons}),

in(Spouse-Bs, sg-grp{Sg-Persony}). O

3 SQL"/NR Queries with Aggregates

In this section we discuss the inclusion of aggregate operators, namely avg, min, max, sum,
and count, in SQL*/NR. The inclusion of aggregates in SQL*/NR offers a wider range
of queries in SQL*/N R that makes the language more appealing to standard SQL users.
Furthermore, supporting aggregates in SQL*/NR also provides a form of data storage
reduction by allowing SQ)L*/N R users the ability to evaluate aggregates on attributes in a
database relation “on the fly” instead of storing the values generated by such operators in
the database.

Built-in aggregate operators supported by SQ L*/N R are embedded within a subquery,
called Aggregate-subquery. Attributes in a nested relation can be chosen as arguments of
aggregate operators that apply to different groups of tuples. We define aggregates and a
grouping construct? in SQL*/NR queries, and include an approach for transforming an

SQL*/NR query with aggregates into LDL/N R rule expressions.

3.1 Aggregate Subqueries

An Aggregate-subquery is an SQL*/N R subquery as discussed in Section 2.1 with the
inclusion of aggregate operators in the Select clause and a group by construct. An
Aggregate-subquery, referenced as the Select-From-Where-GroupBy Expression (SFWGB-
Expression for short), is of the form:

SELECT attribute-list-with-aggregates

2A grouping construct includes a grouping operator, i.e., group-by, that collects a number of tuples in
a nested relation based on a subset of attributes in these tuples that have the same value.

12

FROM relation-list
[WHERE boolean-expression]

Group By column-names

The Select clause in an SFWGB-Expression has the following syntax:

SELECT atomuc-attry, ..., atomic-attr,, non-atomic-attry, ..., non-atomuic-attr,,,
agg-stry, ..., agg-str,

where atomic-attr; (1 < ¢ < n) and non-atomic-attr; (1 < j < m) are as defined in
Section 2.1.1, and agg-strgy, 1 < k < p, is of the form:

Agg ([DISTINCT] [relation-name.] attribute-name) AS agg-attr

where Agg is either min, max, sum, count or avg which is applied to attribute-name.
There is an AS clause which specifies a reference name (i.e., agg-attr) to the result generated
from the aggregation. The DISTINCT keyword, which is optional, eliminates duplicates
before the aggregate operator is applied.

The difference between an SFW-Expression and an SFWGB-Expression lies in the fact
that a Select clause in an SFWGB-Expression contains aggregate operators that is applied
to one or more attributes on the same level of nesting in a nested relation. For example,
to retrieve the average age of the children of each student, where the Student relation in as
shown in Figure 1, we enter:

SELECT ... avg(Student.Children.Age) AS Children-Age-Avg,

Furthermore, there exists a group-by construct in an SFWGB-Expression but not in
any SFW-Expression. In an SFWGB-Expression, the group-by construct is of the form:

Group By atomic-attry, ..., atomic-attr,

where all atomic-attr;, 1 < ¢ < n, are atomic attributes at the same level of nesting in a
nested relation to which the Group By operation is applied. These attributes specified in
the Group By clause are used to form groups of tuples. Tuples that have the same value
on all the attributes atomuc-attry, ..., atomic-attr, specified in the Group By clause are
placed in one group. These groups are then used by the aggregate operators given in the
Select clause of an SFWGB-Expression.

3.2 SQL*/NR Queries with Aggregate Subqueries

An SQL*/NR query with aggregates is an extended version of the SQL*/NR query dis-
cussed in Section 2.2 with the addition of an Aggregate-subquery included in a THEN
INTO statement. The format of an SQL*/N R query with aggregates is as follows:

INSERT INTO R,
Basis-subquery
ALSO
Recursive-subqueriy,
ALSO

13

Parent Temp
PName Children A-Name Descendants
C-Name ‘ C-Age D-Name ‘ D-Age
Daniel | Tom | 60 Daniel | Tom | 60 Dec-Info
Merle 55 Merle B A-Name ‘ D-Avg-Age
Merle Steve 30 Steve 30 ‘ Daniel ‘ 35 ‘
Ann 25 Ann 25
Steve Joseph 5 Joseph 5

Figure 5: Relations Parent, Temp, and Dec-Info

Recursive-subquery,
THEN INTO R,
Aggregate-subgquery

where the THEN INTO statement includes the keyword THEN INTO and a nested
relation R followed by an Aggregate-subquery (an SEFWGB-Expression). Ry, which is the
resultant relation generated by the INSERT INTO statement, is treated as a temporary
(input) relation to which the Aggregate-subquery applies to yield the final desired relation
R,. The following example includes an SQL*/N R query with aggregates.

Example 10 Let Parent be the nested relation in Figure 5. We specify the following query
that generates the relation Dec-info in Figure 5. Dec-in fo contains the average age of all
the descendants of Daniel.

INSERT INTO Temp
SELECT PName AS A-Name, (SELECT C-Name AS D-Name, C-Age AS D-Age
FROM Children) AS Descendants
FROM Parent
WHERE PName = “Daniel”
ALSO
SELECT T.A-Name, (SELECT C-Name AS D-Name, C-Age AS D-Age
FROM Children) AS Descendants
FROM Parent P, Temp T
WHERE P.PName in T .Descendants.D-Name
THEN INTO Dec-Info
SELECT A-Name, AVG(D-Age) AS D-Avg-Age
FROM Temp
Group By A-Name O

As shown in Figure 5, the temporary relation temp is generated as a result of eval-
uating the recursive query which retrieves all the descendants of “Daniel”. Applying the
Aggregate-subgquery in the THEN INTO statement to temp yields the desired resultant
relation Dec-in fo.

14

3.3 Transforming SQL*/NR Queries with Aggregates into Rule
Expressions in LDL/NR

The transformation of the INSERT INTO statement of an SQL*/NR query) with
aggregates to LDL/NR rule expressions is similar to that used for an SQL*/NR query
without aggregates. The description of an approach for transforming the THEN INTO
statement with an Aggregate-subquery in () into LDL/NR rule expressions is given in
Appendix B.1.4. In this subsection we give an example to show the rule expressions in

LDL/NR transformed from an SQL*/N R with aggregates.

Example 11 Let @) be the SQL*/NR query with aggregates given in Example 10. The
transformed rule expressions of () are:

temp(Pname, descendants{descendants’(C-Name, C-Age)}) :-
parent(Pname, children{children’(C-Name, C-Age)}),

Pname = “Daniel”.

temp(A-namesy, descendants{descendants’(C-Namey, C-Ageq)}) :-
parent(Pnamey, children{children’(C-Namey, C-Ageq)}),
temp(A- Names, descendants{descendants’(D-Namey, D-Ages)}),
in(Prnamey, descendants{descendants’(D-Name,)}).

dec-info(A-Name, D-Avg-Age) :-
group-by(temp(A-Name, descendants{descendants’(D-Namey, D-Agey)}),
[A-Name],
[D-Avg-Age = AVG(D-Age,)]). O

4 Summary and Future Work

We have proposed an extended SQL, called SQL*/NR, that not only can handle both
recursive queries and nested relations, but also allows aggregate operators. An approach,
which transforms an SQL*/N R query) into rules expressions in LDL/N R which can be
evaluated to retrieve the desired answers to (), has also been presented in Appendix B.
The proposed SQL*/N R constructs, which includes query and subquery, have been imple-
mented [Qar95]. The implementation includes accepting an SQL*/NR query) (defined
according to the syntax described in Appendix A), transforming @ into rule expressions
REs in LDL/NR (according to the transformation approach described in Appendix B),
and evaluating RFE's to yield the desired result of ().

For future work, we plan to examine the optimization of LDL/NR rule expressions
that are generated from an SQL*/N R query by adopting the “magic sets” approach. This
optimization approach is a rewriting method that takes the advantages of the efficiency of
the top-down evaluation strategy (which considers only “necessary” results). The simplicity
and dependability of the bottom-up evaluation strategy in [LN95b], which uses set-term
matching instead of unification, can be adopted for evaluating rewritten rules expressions
in LDL/NR generated by the “magic sets” method.

15

Appendix
A SQL*/NR BNF

The following is a modified BNF definition of the queries in SQ L*/N R. Non-distinguished
symbols are enclosed with “<>”. The structure [...] indicates an optional entry, and the
structure {...} indicates an additional zero or more repetitions of the entry.

<query expression> ::- INSERT INTO <nested-relation-name> <basis-subquery>
[{ALSO <recursive-subquery>}]
[THEN INTO <nested-relation-name> <aggregate-subquery>]
<basis-subquery>, <recursive-subquery> ::- SELECT <attribute-list>
FROM <relation-list>
[WHERE <boolean-expression>]
<aggregate-subquery> ::- SELECT <attribute-list-with-aggregates>
FROM <relation-list>
[WHERE <boolean-expression>]
GROUP BY <column-name> {<column-name>}
<attribute-list> ::- {<atomic-attr>}{<non-atomic-attr>}
<atomic-attr> ::- [<relation-name>.] <attribute-name> [AS <column-name>]
<non-atomic-attr> ::- [<rel-name>.] <embedded-relation-name> [AS <column-name>] |
(<basis-subquery>) AS <column-name>
<relation-name> ::- <rel-name> | <rel-name>.<rel-name>
<rel-name> ::- <nested-relation-name> | <embedded-relation-name> | <reference-name>
<relation-list> ::- <relation> {<relation>}
<relation> ::- <nested-relation-name> [<reference-name>] |
[<nested-relation-name> | <reference-name> .]
<embedded-relation-name> [<reference-name>] |
(NEST <nested-relation-name> ON attribute-list AS <column-name>) |
(UNNEST <nested-relation-name> ON <attribute-list>)
<boolean-expression> ::- (<boolean-expression> <bool-optr> <boolean-expression>) |
<boolean-expression> <bool-optr> <boolean-expression> |
<LR-OP> <Comp-P> <RR-OP> |
<LS-0OP> <Comp-SetM> <RS-OP>
<bool-optr> ::- AND | OR
<LR-OP>, <RR-OP> ::- <nested-rel-attr> | <constant>
<LS-OP> ::- <nested-rel-attr>
<RS-OP> ::- <nested-relation>
<nested-rel-attr> ::- <attribute-name> | <rel-name>.<nested-rel-attr>
<nested-relation> ::- <rel-name> | <rel-name>.<nested-relation>
<Comp-P>:-< | > | < | > | = | #
<Comp-SetM> ::- in | notin
<attribute-name>,<column-name>, <embedded-relation-name>, <nested-relation-name>>,
<reference-name> ::- alphabetic-character {alphanumeric-character}
<attribute-list-with-aggregates> ::- <attribute-list>
<agg> ([DISTINCT] [<relation-name>.] <attribute-name>) AS <attribute-name>
{<agg> ([DISTINCT] [<relation-name>.] <attribute-name>) AS <attribute-name>}
<agg> - MIN | MAX | SUM | COUNT | AVG

16

B A Transformation Approach

This section, which includes an approach for the transformation of an SQL*/N R query)
into rule expressions in LDL/NR, is divided into two subsections. First, we discuss how
to transform each of the Select, From, Where, and Group By clauses in a subquery of
() into a subexpression of a rule expression in LDL/NR. (Of course, any subquery of @)
without Where or Group By clause can be handled accordingly.) Then, we describe the
transformation of the INSERT INTO, ALSO, and THEN INTO statements in () which
are based on the transformation of the subqueries of () proposed in the first subsection. A
complete transformation algorithm is given in [Qar95].

B.1 Transforming an SQL*/NR Subquery S into a Rule Ex-
pression RE

B.1.1 Transforming the From Clause of SQ

The syntax of the From clause, as described in Section 2.1.2, consists of the keyword
FROM followed by a list of arguments ry,...,r,, where r, (I < p < n) may reference a
relation, an embedded relation, a NEST or an UNNEST operation. For the tuple terms
generated from the transformation of relations specified in the From clause of a subquery
S@Q, variables (attributes) having the same name in more than one tuple term (relation)
must be distinguishable. To accomplish that, we append the subscript p in r, (1 < p <n)
to all the atomic attributes in r, during the transformation of r,. Each r, in the From
clause is transformed accordingly as follows:

1. r, is the relation rn with attributes Ay,..., A, and an optional reference name.

rn is included as a tuple term in the body of the resultant rule expression RE with
Ai,,... Ay, as its arguments. If A; (1 <7 < m) is an atomic attribute, then the
subscript p in r, is appended to A; to yield A; ; otherwise, A; = A;. Each non-atomic
attribute (i.e., embedded relation) A; with attributes By, ..., Bj becomes the set term
A{AL(B,...,Bj)}, and the transformation process of A; is recursively applied to each
level of nesting in A;. (If j = 1, then A! is ignored, and the transformed set term
is A;{{B1}.) Any reference name specified in r, is recorded as an alias of rn in the
look-up table which is used during the transformation process. The transformation

of r, yields rn(Ay,,..., An,).

2. r, is the embedded relation ern with an optional reference name.

r, must be specified in the From clause of an incremental subquery 15¢) in SQ.
We first determine the subscript s associated with the relation rel within which ern
is embedded as an attribute, and rel must be included as a relation in the From
clause of S¢). We associate s with ern in the look-up table which allows the Select
or Where clause of 15@) to reference attributes in ern, and append s to all the
variables which are transformed from the atomic attributes in ern.

17

3. r, is the relation(reference)-name.embedded-relation-name rn.ern with an optional
reference name.

Same as Case 2.

4. r, is a NEST operation of the format
(NEST Nested-Relation-Name ON Attribute-List AS Column-Name).

Assume that the Nested-Relation-Name is rn which has attributes Ay, ..., A,, and the
Attribute-List consists of attributes By, ..., B,, where {By,..., B,} C{A,...,A,}.
Let {C1,...,Cx} = {A1,...,An} -{B1,.... B} T C,1 < i<k (B;,1 <j<n)
is an atomic attribute, then the subscript p in r, is appended to C; (B;) to yield
Cs, (B;,); otherwise, C;, = C; (B;, = B;). This process is applied to each level of
nesting in attribute C; (B;) that is non-atomic. rn is then included in the body of
RE with arguments C,...,C}, and the set term Column-Name cn which contains
the tuple term cn’ with arguments By,,..., B,, (If n = 1, then ¢n' is ignored.). The
transformation of r, yields either

rn(Chyy ..oy Cryyen{en’(By,, ..., By,)}) or rn(Ch,,. .., Ch,,cn{By,})
which is then included in the body of RFE.

5. r, is an UNNEST operation of the format
(UNNEST Nested-Relation-Name ON Attribute-List).

Assume that the Nested-Relation-Name is rn which has attributes Ay, ..., A,, besides
the embedded relations rq, ..., r. specified in the Attribute-List. Further assume that
each r; (1 < ¢ < k) has attributes Bi,Bé,...,ij. If A1 <qg<m(B;,1<s<
k,1 < ¢ < sj) is an atomic attribute, then the subscript p in r, is appended to A,
(B;) to yield A,, (B;p); otherwise, A, = A, (qup = B?). This process is applied to
each level of nesting in each attribute A, (B;) that is non-atomic. The transformation
of r, thus yields

1 1 k k
rn(Alp,...,Amp,...,Blp,...,Bljp,...,Blp,...,Bkj)

P

which is then included in the body of RFE.

B.1.2 Transforming the Where Clause of 5@

To transform the boolean expression BE in the Where clause of SQ), two cases should be
considered:

1. BE = LR-OP Comp-P RR-OP or LS-OP Comp-SetM RS-OP

BE is transformed according to the type of comparison (relational or set membership)
operator in BE.

(a) BE is LR-OP Comp-P RR-OP

LR-OP A (RR-OP B) must be either an (embedded) attribute name or a con-
stant. If A (B) is a constant, then A (B) remains unchanged; otherwise, all

18

relation names or reference names preceding A (B) are stripped which yields A’
(B'), and the subscript i (7) is appended to A’ (B’) to yield Al (B}), where i (j)
is the subscript associated with the relation within which A (B) is embedded,
and this subscript was assigned during the transformation of the From clause in
S@. The resultant transformation of BFE yields the subexpression . Comp-P
R, where L is either A or A}, and R is either B or B!.

(b) BE is LS-OP Comp-SetM RS-OP

LS-OP A must be a list of one or more (embedded) attributes Attry, ..., Attr,,
and RS-OP B is an (embedded) nested relation. To transform A (B), we
strip all the relation names or reference names (if there are any) preceding
Attry, ..., Attr, (B) to yield Attr,,..., Attr! (B'). Hereafter, the subscript i
associated with the nested relation within which Attrq,..., Attr, are embedded
is appended to Attry,..., Attr, or Attry, ... Attr. to yield Attry,, ..., Attr,,
or Attr;i,...,Attr;i. The subscript j associated with the nested relation B
or with the relation within which B’ is embedded is appended recursively to
every atomic attribute Cy,1 < k < m, in B (B'). (Subscripts ¢ and j are as-
signed during the transformation of the From clause in S@Q.) The resultant
transformation of BF yields the subexpression in(notin)(L, R), where L is ei-
ther (Attry,, ..., Attr,,) or Attrlli, cee Attr;i, R is either B(Cy,,...,Cy,) or
B/(Clj, ..., Cn,), and in(notin) is a built-in predicate in LDL/NR.

2. BE = (BFE; AND/OR BE;) or BE; AND/OR BE,

BE; and BE; are recursively processed until they become the basic boolean expres-
sions EXP (i.e., LR-OP Comp-P RR-OP or LS-OP Comp-SetM RS-OP), and
Case 1 is applied to EX P to yield all the desired subexpressions. During the recur-
sive process, the logical AND and logical OR are replaced by ’,” and ’;’, respectively.
Furthermore, the precedence of evaluation specified by the parentheses, i.e., (), (if
there is any) is retained in the transformed boolean expression which produces a list
of predicates to be included in the body of RFE.

B.1.3 Transforming the Select Clause of S(¢) without Aggregate Operators

As described in Section 2.1.1, the Select clause has the following format:
SELECT Ay,...,A,, Ci,....C,

For each (embedded) attribute Attr; specified in A; (1 < ¢ < n) in the Select clause,
the subscript p, which is given to the relation within which Attr; is embedded during the
transformation of the From clause in S@, is appended to Attr; to yield Attr; . Any optional
reference name N specified in A; does not affect the transformation of Attr; since N is used
in S only to satisfy the constraint of compatible relation scheme or denote a new reference
name of Attr;. Attr;, is included in the head tuple term of RE as shown below.

r(Attry,, ... Attry,, . .)

19

where r is the relation name following the keyword INSERT INTO in the given query @)
that includes SQ.

On the other hand, for each non-atomic attribute N A; specified in C; (1 < j < m)
in the Select clause, there are two different cases (depending on the type of NA;) to be
considered.

1. NA; is the Embedded-Relation-Name ern with attributes By, ..., B,,.

ern is transformed into a set term which forms an argument ern of the head tuple
term r. The subscript ¢, which is given to the relation s within which ern is embedded
during the transformation of the From clause in S(), should have been appended to
attributes By,..., B, in ern to yield By, ..., By, . This occurs because s must be
specified in the FROM clause of S@, and the subscript ¢in B; ,1 <1 < m, is handled
as discussed earlier. By, ..., B, are included as arguments of the tuple term ern/,
that is generated by the transformation algorithm, in ern (If m = 1, then ern’ is
ignored.). Once again, the optional reference name specified in C; does not affect the
transformation of VA; for the same reason mentioned in the case of transforming A;.
Hence, the transformed C; yields either

ern{ern’(By,, ..., By,)} or ern{B,}
inr(...,ern{ern’(By,, ..., By)},...)or (... ern{By},...).
2. C;is an (SFW-Expression) AS Column-Name.

The Select clause of the SFW-Expression (which is an incremental subquery) 1.5Q) in
S is transformed into a structure called inc-select which has the set term Column-
Name ¢n. The attributes Attq, ..., Att,, which are transformed from the attributes
specified in the Select clause of 15¢) according to the transformation approach dis-
cussed in this subsection, are included as arguments of the tuple term ¢n’ in en. (If
n = 1, then en’ is ignored.) [Inc-select is then included as an argument of the head
tuple term r of RE. Each embedded relation r; (1 < ¢ < n) listed in the From clause
of 15() is associated with a subscript which is given to the relation within which r; is
embedded during the transformation of the FROM clause in SQ. If 1.5¢) includes a
Where clause W, then W is transformed and included in the body of RE as detailed

in the transformation of the Where clause. Hence, the transformed C; yields either

r(...,en{en(Atty, ..., Att,)},...) + —..., [transformed-where-clause], ...
or

r(...,en{Atty},...): — ..., [transformed-where-clause], ...
in RE.

B.1.4 Transforming SQL*/NR subqueries with Aggregates into Rule Expres-
sions

The process of transforming the From and Where clauses of an SQL*/NR subquery
with aggregates is exactly the same as that for an SQL*/N R subquery without aggregates
as discussed in the previous subsections. We choose to adopt similar notation used by

20

[SRI1, Gel93] to represent the group by construct and aggregate operators inan LDL/NR
rule expression. The following is the general form of a group by subgoal (tuple term) that
is to be included in the body of a rule expression RFE. This subgoal contains the transformed
aggregate constructs specified as arguments in the Select clause of the Aggregate-subquery:

sroup-by(e(t), [X1. .., Xol, [Vs = Aggr (DISTINCT] (Attr)), ...
Y, = Agg, ([DISTINCT] (Attr,)])

where

r is the relation to which the grouping is applied and is included in the From clause
of the Aggregate-subgquery.

- t represents the arguments in r which are either constants, variables, or set terms.

- The grouping list Xy, ..., X,, consists of one or more variables that must appear in
t and on which the grouping is based. (Xi,...,X,, are the attributes specified in the
group by clause of the Aggregate-subquery.)

- The list of Y7, ..., Y, is the aggregation list. Each Y¥;, 1 < ¢ < n, is a new variable
(attribute) which is the reference name following an aggregate operator and the AS
keyword in the Select clause of the Aggregate-subquery. Yy, ..., Y, are included as
arguments in the head tuple term of RF.

- Attry, ..., Attr, are attribute names in r to which aggregate operators Ag¢y, ...,
Agg, (e.g. sum and count) are applied, respectively. A built-in predicate for each
one of the aggregate operators that is represented by Agg1, ..., Agg, (e.g., MIN,
MAX, SUM, AVG, and COUNT), respectively, in the group by subgoal is provided
in LDL/NR.

- Within the body of RFE, the group by subgoal represents a relation over attributes
(variables) Xi, ..., X, in the grouping list and attributes (variables) Y7, ..., Y, in
the aggregation list.

B.2 Transforming an SQL*/NR Query into Rule Expressions

As mentioned in Section 2.2, an SQL*/NR query) without aggregates consists of one
Basis-subquery and n (0 < n) different Recursive-subqueries. Since Basis-Subquery and
Recursive-subqueries are both SQL*/N R subqueries, each one of these subqueries is trans-
formed as discussed in Section B.1. The relation name R in the INSERT INTO statement
of () denotes the name of the resultant relation, and is used as the head tuple term of every
rule expression generated for each subquery of () as mentioned in Appendix B.1.3.

The transformation of the Basis-subquery and Recursive-subquery in the INSERT
INTO statement of an SQL*/N R query) with aggregates is exactly the same as discussed
in the previous paragraph. The transformation of the Aggregate-subquery in the THEN
INTO statement of () has been described in the previous subsection. The relation name R,
specified after the THEN INTO keyword denotes the name of the resultant relation which

21

is constructed by using the temporary relation R; specified in the INSERT INTO state-
ment, and is used as the head tuple term of the rule expression resulting from transforming
the Aggregate-subquery in (). The attributes of Ry include all the atomic, non-atomic, and
aggregate-attributes specified in the Select clause of the Aggregate-subquery.

22

References

[CC90]

[CKI1]

[Gel93]

[GM92]

[GN9O]

[Huls6)
[KC93]
[KS91]
[L1o87]

[LN95a]

[LNO5b]

[Qar95]

[RKBS7]

[RKSSS]

[SR91]

[STZ92]

[Uni9l]

Q. Chen and W. Chu. Deductive and Object-Oriented Database, chapter HILOG:
A High-order Logic Programming Language for Non-1NF Deductive Databases,
pages 431-452. Elsevier Science Publishers, 1990. W. Kim, et al. (Editors).

Q. Chen and Y. Kambayashi. Nested Relation Based Database Knowledge Rep-
resentation. In Proceedings of 1991 ACM SIGMOD International Conference on
Management of Data, pages 328-337. ACM, 1991.

A. V. Gelder. Foundation of Aggregation in Deductive Databases. In Proceedings
of the 3rd Intl. Conference on Deductive and Object-Oriented Databases, pages
13-33. Springer-Verlag, 1993. Lecture Notes in Computer Science, 470.

J. Grant and J. Minker. The Impact of Logic Programming on Databases. Com-
munications of ACM, 35(3):67-81, March 1992.

H. Gallaire and J.-M. Nicolas. Logic and databases: An assessment. In the Third
International Conference on Database Theory, pages 177-186. Springer-Verlag,
December 1990. Lecture Notes in Computer Science, 470.

Richard Hull. Relative Information Capacity of Simple Relational Database
Schemata. SIAM Journal of Computing, 15(3):856-886, August 1986.

K. Koymen and Q. Cai. SQL*: A Recursive SQL. Information Systems,
18(2):121-128, 1993.

H. Korth and A. Silberschatz. Database System Concepts, Second Fdition.
McGraw-Hill, Auckland, 1991.

J. W. Lloyd. Foundations of Logic Programming, Second, Fxtended Fdition.
Spring-Verlag, New York, 1987.

S.J. Lim and Y-K Ng. Set-Term Matching in a Logic Database Language. In Pro-
ceedings of the 4th International Conference on Database Systems for Advanced
Applications, pages 189-196, Singapore, April 1995.

S. J. Lim and Y-K Ng. Set-Term Unification in a Logic Database Language.
In Proceedings of the 1st Annual International Computing and Combinatorics
Conference (to appear), Xian, China, August 1995. Springer-Verlag.

N. Qaraeen. SQL*/NR: A Recursive Query Language for Nested Relations. Mas-
ter’s thesis, Brigham Young University, Provo, Utah, May 1995.

M. Roth, H. Korth, and D. Batony. SQL/NF: A Query Language for =1NF
Relational Databases. Information Systems, 12(1):99-114, 1987.

M. Roth, H. Korth, and A. Silberschatz. Fxtended Algebra and Calculus
for Nested Relational Databases. ACM Transactions on Database Systems,
13(4):389-417, December 1988.

S. Sudarshan and R. Ramakrishman. Aggregation and Relevence in Deductive

Databases. In Proceedings of 17th VLDB., pages 501-511, Barcelona, Spain, 1991.

O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set Terms in the Logic Data
Language (LDL). Logic Programming, 12(1):89-119, 1992.

UniSQL. UniSQL/X Database Management System User’s Manual. UniSQL Inc.,
Austin, Texas, 1991.

23

