
Data Retrieval and Aggregates in SQL�=NRYiu-Kai NgNael QaraeenComputer Science DepartmentBrigham Young UniversityProvo, Utah 84602, U.S.A.Email: ng@cs.byu.eduAbstractStandard SQL is incapable of handling recursive database queries and nested rela-tions. A proposed solution to allow recursion in SQL was given in SQL� [KC93], whilea solution to allow nested relations in SQL was given in SQL=NF [RKB87]. However,these two problems with SQL were handled separately, and an extended SQL thathandles both recursive queries and nested relations is still lacking. To overcome thisshortcoming, we propose an extended SQL, called SQL�=NR, that not only can han-dle both recursive queries and nested relations, but also allows aggregate operators.A query Q in SQL�=NR is processed by �rst transforming Q into rule expressions inLDL=NR, a logic database language for nested relations, and the transformed ruleexpressions are evaluated for retrieving the desired result of Q. Transforming Q intorule expressions in LDL=NR is desirable since LDL=NR handles recursion on nestedrelations with a built-in mechanism for recursive query processing. In this paper, wede�ne SQL�=NR and include an approach for transforming SQL�=NR queries intorule expressions in LDL=NR. SQL�=NR, as de�ned, enhances the expressive powerof standard SQL and SQL=NF and has the expressive advantage over SQL�.Keywords: Recursion, nested relation, aggregates, logic programming, SQL1 IntroductionSQL (Structured Query Language), a database query language that has been standardized,has gained lots of popularity and has been supported by most relational database systemssince it was �rst introduced in the 1970's. SQL is widely accepted because it is a \user-friendly" query language that has a simple, declarative syntax and semantics. However,some database applications have revealed at least two limitations of SQL. First, standardSQL is incapable of handling recursive database queries (queries in which a relation isde�ned in conjunction with its own de�nition [KC93]). Second, standard SQL cannothandle nested relations that allow non-atomic (i.e., decomposable) attribute values. Thesede�ciencies in standard SQL limit its expressive power and capability of handling complexdata, respectively.A proposed solution to the �rst problem of SQL was given in [KC93] who de�nedSQL� that extends standard SQL to allow recursive queries. A solution to the second1



problem of SQL was proposed by [RKB87] who de�ned SQL=NF that extends standardSQL to handle nested relations. However, these two problems with standard SQL are nothandled by a single SQL-type language. An extended SQL, called SQL�=NR, that canhandle both recursive queries and nested relations, is to be de�ned in this paper. Thedevelopment of SQL�=NR was motivated in part by the fact that the nested relationalmodel can be used for storing and retrieving complex data, while an extended SQL thatallows recursive queries on nested relations enriches the expressive power of standard SQLand SQL=NF , and has the expressive advantage of the nested relational structure overSQL� that operates on at relations. Furthermore, SQL�=NR allows aggregate operators,such as min, max, sum, etc., that makes the language similar to standard SQL and morepowerful. SQL�=NR, as de�ned, enhances database query languages in [RKB87, Uni91]and recursive query languages for at relations [KC93] by providing better versatility and aricher functionality for expressing complex data. Moreover, SQL�=NR incurs most, if notall, of the standard SQL's advantageous features.We present the details of SQL�=NR as follows. In Section 2 the basic set of constructsin SQL�=NR are described. Extended SQL constructs in SQL�=NR, including subquerycomponents that specify the basis and recursive de�nitions of a recursive query, are usedfor creating an SQL�=NR query. To evaluate an SQL�=NR query Q, we �rst transformQ into rule expressions in LDL=NR, a logic database language for nested relations. Ruleexpressions in LDL=NR are chosen as an internal representation of Q because they supportlanguages of declarative nature and handle recursion and nested relations. Formal de�nitionsof these rule expressions and justi�cation for processing SQL�=NR queries by using a logicdatabase language are given in Section 2.3. In Section 3 SQL�=NR queries with aggregateoperators are introduced. In Section 4 we give a concluding remarks. In addition, we includein Appendix A the formal syntax of SQL�=NR in BNF notations, and in Appendix B anapproach for the transformation of SQL�=NR queries with(out) aggregate operators intorule expressions in LDL=NR.2 SQL�=NR Queries and LDL=NR Rule ExpressionsIn this section we �rst describe SQL�=NR subqueries which comprise the basic constructsof an SQL�=NR query. Hereafter, we present the structure of an SQL�=NR query, andshow how SQL�=NR subqueries are embedded in an SQL�=NR query. Finally, rule expres-sions in LDL=NR, which are used for processing a given SQL�=NR query, are introduced.LDL=NR is of interest because it captures the constraints of nested relations precisely.Furthermore, since for each complex-object type there is a nested-relation type with thesame \information capacity" [Hul86], LDL=NR can handle complex-data type queries.2.1 SQL�=NR SubqueriesAn SQL�=NR subquery (or subquery for short) allows the user to retrieve data from aset of relations S. The subquery may comply with speci�c conditions or constraints thatare applied to certain attributes of the relations in S. This is similar to the functionalityprovided by SELECT, FROM, and WHERE clauses of standard SQL.The Select-From-Where structure of an SQL�=NR subquery, which is a major con-struct of SQL�=NR and is referred as a Select-From-Where-Expression or SFW-Expression2



for short [RKB87], is made up of the following clauses:SELECT attribute-listFROM relation-list[WHERE boolean-expression]This expression can handle queries for nested relations. Since an SQL�=NR subquery iswritten as an SFW-Expression, a subquery and an SFW-Expression will be interchangeablyused throughout the remaining of this paper. Furthermore, we assume that all (atomic andnon-atomic) attribute names appearing at all levels of nesting in a nested relation areunique, and apostrophe (') is an invalid symbol in any subquery since it is reserved for thetransformation process of an SQL�=NR query.2.1.1 The Select ClauseThe Select clause, which is the �rst component of an SFW-Expression, allows the user tospecify data items to be included in the �nal result of a subquery by choosing attributes indi�erent relations referenced in the SFW-Expression. The Select clause is of the followingformat:SELECT atomic-attr1, : : :, atomic-attrn, non-atomic-attr1, : : :, non-atomic-attrmThe Select clause consists of the keyword SELECT, followed by a list of atomic and non-atomic attributes. A non-atomic attribute can be a nested relation that is constructedby an SFW-Expression called an incremental subquery [RKB87]. (See Example 4.) TheSelect clause is used for specifying all the desired (atomic and non-atomic) attributes tobe included in the result of a subquery. It corresponds to the extended projection operationin the extended relational algebra [RKS88].Assume that Attr is an (atomic or non-atomic) attribute in nested relation r. If Attrappears at the top level scheme of r, we can either include Attr in the Select clause, orconcatenate r (or its reference name which is also called tuple variable in [KS91]) with Attrseparated by a dot in the Select clause. Otherwise, Attr must be embedded one level deepin r, and we specify Attr in the Select clause with its preceding (embedded) relations (ortheir reference names) separated by dots. In addition, each chosen (atomic or non-atomic)attribute C can be referenced by a distinct, new column name to distinguish C from otherchosen attributes. A new column name is speci�ed by including the keyword AS and thenew name following a chosen attribute name.Example 1 Let Student be the nested relation in Figure 1. To retrieve all the departmentsin Student, we enterSELECT Dept : : : or SELECT Student.Dept : : : .To retrieve all the children of a student, we enterSELECT Children : : : or SELECT Student.Children : : : .To retrieve all students' names and their children names, and reference a student's nameand his/her children names by Sname and Child-Name, respectively, we enterSELECT S.Name AS Sname, (SELECT Cname : : :) AS Child-Name : : :where S is the reference name of Student. 23



StudentName SID Children DeptCname AgeJohn 5678 David 5 CSChris 10Bill 2134 Denise 8 ChemistryJim 16 Has takenSID CoursesCourse# Crhrs5678 CS 220 3PE 100 12134 Math 411 3Figure 1: Nested Relations Student and Has takenIf only certain attributes of a relation r (which is embedded in a nested relation s)along with some attributes in relations s1; : : : ; sn are to be included in an embedded relationin the result of a subquery Q, we could specify an incremental subquery SQ in Q. (It isassumed that s, s1; : : :, and sn are speci�ed in the FROM clause of SQ or Q.) An exampleof an incremental subquery is (SELECT Cname : : :) in Example 1. Upon evaluating SQ,the result of SQ includes the desired attributes in r, s1; : : : ; sn. SQ is speci�ed as anargument in the Select clause of Q, and the resultant relation of SQ is given a referencename (i.e., column-name) which is speci�ed after SQ and the keyword AS in the Selectclause.2.1.2 The From ClauseThe From clause includes a set of relations used for computing the result of an SFW-Expression. The format of the From clause is:FROM rel1; : : : ; relnThe From clause consists of the keyword FROM followed by a list of constructs reli; 1 �i � n, where reli denotes either a (an embedded) relation name (which could be followedby an optional reference name), a NEST operation, or an UNNEST operation. (Each ofthe NEST and UNNEST operations yields a relation.) The order in which the relationnames and the NEST and UNNEST operations may be arranged in the From clause is ofno importance. The From clause corresponds to the extended cartesian product operationin the extended relational algebra [RKS88].Example 2 To use the relation Student in Figure 1 in an SQL�=NR subquery Q, weinclude FROM Student in Q. To use Student, and Course# and Crhrs of the relationCourses embedded within the nested relation Has taken in Figure 1, we includeFROM Student S, (UNNEST Has taken ON Courses)in a subquery, where S becomes the reference name of Student. 2(Embedded) Relations that are listed in the From clause are referenced during the eval-uation of the SFW-Expression. An embedded relation r (such as Courses in Has taken)must be speci�ed in the FROM clause of an incremental subquery (such as (SELECTCname from Courses)) in a subquery Q, and the nested relation (such as Has taken)4



within which r is embedded must be included in the FROM clause of Q. Reference namesof relations (such as S for Student in Example 2) allow the user to specify multiple copies ofthe same relation and same attribute name appeared in di�erent relations that are includedin the From clause. NEST (resp. UNNEST ), an aggregating (resp. disaggregating) op-eration, allow the user to restructure a relation making it more aggregated (resp. atter),before such a relation is used by the Select or Where clause in the SFW-Expression. TheNEST and UNNEST operations have the following formats:(NEST <nested-relation-name> ON attribute-list AS <column-name>) and(UNNEST <nested-relation-name> ON <attribute-list>)where nested-relation-name and attribute-list in NEST and UNNEST reference a nestedrelation r and the attributes in r on which NEST and UNNEST are applied, respectively.The keyword AS in NEST allows the user to give a reference name (i.e., column-name) tothe resultant relation of the NEST operation.2.1.3 The Where ClauseWe use the Where clause in an SFW-Expression to specify conditions on attributes thatneed to be satis�ed. The Where clause is of the following format:WHERE Boolean-ExpressionThe Where clause, which is optional in an SQL�=NR subquery, consists of the key-word WHERE followed by a boolean expression that might include k di�erent componentsgrouped together using a combination of m di�erent logical ANDs and n di�erent logicalORs (0 � m;n � k � 1, and m+ n � k � 1). The clause references atomic and non-atomicattributes of the (embedded) relations in the From clause. These attributes are comparedto other attributes or constants using (set) comparison operators. The results of such com-parisons are grouped together using logical ANDs or logical ORs (if there are any), andits evaluation yields the �nal result of the boolean expression of the Where clause. TheWhere clause corresponds to the extended selection (except the set membership operators,in and notin) in the extended relational algebra that is recursively applied to deal withselections on di�erent levels of nesting in a nested relation, if such selections are required.Example 3 To construct a subquery Q based on Student in Figure 1 in which one of thetwo conditions must be satis�ed: either the age of a student's child is in between 1 and 5,or in between 12 and 15, inclusively, we includeWHERE (C.Age � 1 AND C.Age � 5) OR (C.Age � 12 AND C.Age � 15)in Q, where C is the reference name of the relation Children embedded within Student. 2The selections also handle the comparisons of atomic and non-atomic attributes of twonested relations involved in the extended natural join in the extended relational algebra.In the extended natural join of two nested relations s and s0, two tuples t 2 s and t0 2 s0are joinable if the extended intersection on the projections over common (atomic and non-atomic) attributes of t and t0 is non-empty. This constraint is similar to the constraint ofthe traditional natural join operation, i.e., two tuples contribute to the join if they agreeon common attributes. 5



2.2 SQL�=NR QueriesThis subsection describes the structure of an SQL�=NR query (or query for short) whichis constructed by using subqueries described in section 2.1.An SQL�=NR query Q, which can handle recursion on nested relations, consists of anINSERT INTO statement [KC93] that includes the keyword INSERT INTO followed bythe relation R (that is computed recursively), one subquery called the Basis-subquery, andn (0 � n) di�erent ALSO statements, each of which contains a subquery called Recursive-subquery. The format of Q is as follows:INSERT INTO RBasis-subqueryALSORecursive-subquery1: : :ALSORecursive-subquerynThe relation R referenced in the INSERT INTO statement of an SQL�=NR query Qis the relation to be computed recursively using itself and other relations r1; r2; : : : ; rn thatare speci�ed in the Basis-subquery or Recursive-subqueries of Q.A recursive query in SQL�=NR consists of at least two subqueries, a Basis-subqueryand a Recursive-subquery, which are SQL�=NR subqueries. The main di�erence betweenthe Basis-subquery and the Recursive-subqueries in a query Q is that any relation speci�edinQ can be referenced by any of these subqueries, except the computed relationR which canonly be referenced in the Recursive-subqueries but not in the Basis-subquery. Furthermore,all subqueries must yield compatible relation schemes1.Example 4 Let Connected be the nested relation in Figure 2 which contains the ightinformation about the group of cities that are connected directly with a particular cityby a ight and their respective distances. We specify the following SQL�=NR query thatgenerates the relation Reachable in Figure 2. Reachable contains the information abouta group of cities that can be reached, either through a direct or an indirect ight, from aparticular city.INSERT INTO ReachableSELECT Source-City, (SELECT Dest-CityFROM Route) AS CitiesFROM ConnectedALSO SELECT R.Source-City, (SELECT Dest-CityFROM RouteWHERE Dest-City 6= R.Source-City) AS CitiesFROM Connected C, Reachable RWHERE C.Source-City in R.Cities1Two relation schemes R1(A1; : : : ; An) and R2(B1; : : : ; Bn) are compatible if Ai 2 R1 and Bi 2 R2(1 � i � n) have the same domain and Ai = Bi. 6



ConnectedSource-City RouteDest-City DistChicago New York 750New York Chicago 750Los Angeles 1970Boston Chicago 550 ReachableSource-City CitiesDest-CityChicago f New York, Los Angeles gNew York f Chicago, Los Angeles gBoston f Chicago, New York, Los Angeles gFigure 2: Nested Relations Connected and ReachableNote that the SFW-Expression, (SELECT Dest-City FROM Route : : :) AS Cities, is anincremental subquery. 2Further note that tuples in the resultant relation R generated by the evaluation ofan SQL�=NR query have unique atomic components, i.e., tuples with the same atomiccomponents are merged, and duplicate tuples are removed with set equality holding onnon-atomic attributes. These constraints are applied to each level of nesting in R.2.3 Rule Expressions in LDL=NRRule expressions in LDL=NR are chosen as the internal representation of an SQL�=NRquery Q since there exists an e�cient implementation of recursion in higher-order logicdatabase systems (LDL=NR is a higher-order logic database language) that guaranteestermination and preserves completeness of Q [LN95a]. A logic (deductive) database system,which has a built-in reasoning capability, may be used both as an inference system and asa representation language [GN90, GM92]. Moreover, the syntax and semantics of higher-order logic, which form the theoretical foundation of a deductive database language, aresimple, well-understood, and formally well-de�ned. We take the advantages of the built-inrecursive query processing mechanism provided by deductive database systems to processour SQL�=NR queries through the transformation of an SQL�=NR query Q into ruleexpressions in LDL=NR which are evaluated to yield the answer of Q.LDL=NR restrictsHILOG [CC90] to nested relations, and is simpler in notation thanHILOG-R [CK91] which requires type and named attribute to be attached to each argu-ment of a type declaration and named attribute to each data value in a tuple. Furthermore,LDL=NR is more complete than LDL [STZ92] which allows only nested tuples rather thannested sets.2.3.1 Syntax of Rule Expressions in LDL=NRRule expressions REs in LDL=NR are based on the notions of type, term, and formulawhich in turn are de�ned on an alphabet in LDL=NR. Constants and variables in REs areof atomic type. There are two other types, set type and tuple type, in REs.De�nition 1 A type in REs is inductively de�ned as follows: (i) an atomic type is a type,(ii) a set type is a type, and for a set-type sfrg, r is of either atomic type or tuple type,and (iii) a tuple type is a type, and for a tuple-type p(s1; : : : ; sn), si (1 � i � n) is of eitheratomic type or set type. 2 7



Tuple type and set type can be used alternatively to form complex data types, asin [CC90, CK91]. The type declaration dept(Dname, projectsfPnameg, employeesfemployee(Ename, EID)g) de�nes dept which is of tuple type with components Dname,which is of atomic type, and projects and employees, which are of set type.De�nition 2 Objects of atomic type are called atomic terms. A term is inductively de�nedas follows: (i) a constant is a term, (ii) a variable is a term, (iii) for a set-type sfrg, aninstance sft1; : : : ; tmg is a term called set term, where ti (1 � i � m) is of type r, and (iv)for a tuple-type p(s1; : : : ; sn), an instance p(t1; : : : ; tn) is a term called tuple term, where tiis of type si, 1 � i � n.2Example 5 An instance of the tuple-type dept isdept(cs, projectsfdb; se; lpg, employeesfemployee(smith;123), employee(jones, 567)g). 2De�nition 3 A (well-formed) formula, which is constructed by terms, is inductively de-�ned as follows: (i) a tuple term or set term is a formula, (ii) if T and S are terms whichform the arguments of a (set) comparison operation �, then T�S is a formula, written as�(T; S), (iii) if F is a formula and X is a variable, then 9X F and 8X F are formulas, and(iv) if F and G are formulas, so are :F , F _ G, F ^ G, F ! G, and F $ G. 2A tuple term, set term, or (set) comparison operator with arguments is called anatom. A ground formula (term) is a formula (term) without variables. A closed formula isa formula with no free occurrence of any variable.De�nition 4 A rule (expression) is of the form head : { body, where head is an atom andbody is a conjunction of atoms. A unit rule is a rule with an empty body. A fact is a groundunit rule. 2Example 6 The following rule retrieves all employees who work on one other projectbesides the db project:works on pj(Ename) : { employee(Ename, EID), works on(EID, wprojsfPname; dbg). 22.3.2 Semantics of Rule Expressions in LDL=NRThe declarative semantics of rule expressions in LDL=NR is given by the usual semanticsof formulas in LDL=NR. Meaning for each symbol in a formula should be assigned in orderto discuss the truth or falsity of the formula. The various quanti�ers and connectives havea �xed meaning, but the meaning assigned to each term can vary [Llo87]. We �rst de�neLDL=NR universe and LDL=NR base.De�nition 5 Given an instance L of LDL=NR, the LDL=NR universe U of L, denotedUL, is the set of all ground atomic terms (constants) of L, and the LDL=NR base B of L,denoted BL, is the set of all ground unit rules of L. 2To de�ne formally the meaning of a fact as a logical consequence of a set of factsand LDL=NR rules, we introduce the concepts of LDL=NR interpretation and LDL=NRmodel. 8



De�nition 6 Given an instance L of LDL=NR, an interpretation for L is an LDL=NRinterpretation if the following conditions are satis�ed: (a) the domain of the interpretationis the LDL=NR universe UL, (b) constants in L are assigned to \themselves" in UL, (c) fora set term sft1; : : : ; tmg in L, the assignment of s is a mapping from UmL to ftrue; falseg,and (d) for a tuple term p(s1; : : : ; sn) in L, the assignment of p is a mapping from UnL toftrue; falseg. 2De�nition 7 Given an LDL=NR interpretation I of an instance L of LDL=NR and aclosed formula F of L, I is an LDL=NR model, which is a subset of BL, for F if F is truewith respect to I (or I is a model for F ). If S is a set of closed formulas of L, then I is anLDL=NR model for S if I is a model for every formula of S. 2A set term sfXg, where X is a variable, denotes a set term of arbitrary cardinal-ity. As in [CC90], it is assumed that the satisfaction of sfe1; : : : ; eng by an LDL=NRinterpretation I implies the satisfaction of sfXg by I, where X � fe1; : : : ; eng. Further-more, the satisfactions of sfa1; : : : ; ang and sfb1; : : : ; bmg by I imply the satisfaction ofsfa1; : : : ; an; b1; : : : ; bmg by I.2.4 Transforming SQL�=NR Queries into LDL=NR Rule Expres-sionsWe give a few examples below; each of these examples includes an SQL�=NR query Q andthe rule expressions in LDL=NR transformed from Q. (The description of an approach fortransforming an SQL�=NR query into LDL=NR rule expressions is given in Appendix B.2.)Example 7 The transformed rule expressions for the SQL�=NR query in Example 4 are:reachable(Source-City1, citiesfDest-City1g) :-connected(Source-City1, routefroute'(Dest-City1, Dist1)g).reachable(Source-City2, citiesfDest-City1g) :-connected(Source-City1, routefroute'(Dest-City1, Dist1)g),reachable(Source-City2, citiesfDest-City2g),in(Source-City1, citiesfDest-City2g),Dest-City1 6= Source-City2.Subscripted attributes, such as Source-City1 and Source-City2, can be used for distin-guishing attributes with the same name from di�erent relations. 2Example 8 Let Parent be the nested relation in Figure 3, and let Q be the followingSQL�=NR query that retrieves all the people who are related to others. The resultantrelation Related of Q is shown in Figure 3. It is assumed that Person A is related to personB if either (i) A and B are sibling, (ii) B's parent is related to A, or (iii) A's parent isrelated to B.Note that any reference name N assigned to an atomic attribute A in a Select clausedoes not actually change A to N in the rule expressions transformed from Q. It is becauseN is used in Q only to satisfy the constraint of compatible relation scheme or denote a newreference name of A in Q. This assumption holds for each of the following examples.9



ParentPname ChildrenPersonSteve f Amy, Tim gMary f Tim, Sally gTim f Bob, Joe gSally f Karen g . �� @@ @@��

 JJSteveAmy Tim MarySallyKarenJoeBob RelatedPerson RelativesRelativeAmy f Tim, Bob, Joe gTim f Amy, Sally, Karen gSally f Tim, Bob, Joe gBob f Joe, Amy, Sally, Karen gJoe f Bob, Amy, Sally, Karen gKaren f Tim, Bob, Joe gFigure 3: Nested Relations Parent (and Its Graph Form) and RelatedINSERT INTO RelatedSELECT P1.Children.Person, (SELECT Person AS RelativeFROM P2.ChildrenWHERE Relative 6= P1.Children.Person) AS RelativesFROM Parent P1, Parent P2WHERE P1.Pname = P2.PnameALSOSELECT R.Person, (SELECT Person AS RelativeFROM Children) AS RelativesFROM Parent P , Related RWHERE P .Pname in R.RelativesALSOSELECT Children.Person, (SELECT RelativeFROM Relatives) AS RelativesFROM Parent P , Related RWHERE Pname = R.PersonThe transformed rule expressions of Q are:related(Person1, relativesfPerson2g) :- parent(Pname1, childrenfPerson1g),parent(Pname2, childrenfPerson2g),Pname1 = Pname2, Person2 6= Person1.related(Person2, relativesfPerson1g) :- parent(Pname1, childrenfPerson1g),related(Person2, relativesfRelative2g),in(Pname1, relativesfRelative2g).related(Person1, relativesfRelative2g) :- parent(Pname1, childrenfPerson1g),related(Person2, relativesfRelative2g).Pname1 = Person2. 2Example 9 Let Parent be the nested relation in Figure 3, and let Married be the atrelation in Figure 4. Let Q be the following SQL�=NR query that retrieves all groups of10



people who are of the same generation, and the resultant relation Same-Generation of Q isshown in Figure 4.It is assumed that a person P and a group of people G are of the same generation if P 'sparent and a parent of a person in G are of the same generation or are respectively of thesame generation as a married couple. It is further assumed that P is of the same generationas himself, and every person who is either a child or a parent is in the at relation People(which is a relation with a single attribute person).In Q, a set operation UNION , which is an in�x operator in SQL�=NR, is used in thefollowing format: SFW-Expression UNION SFW-Expression.(The syntax, semantics, and transformation steps of UNION in SQL�=NR are easily de-termined.)INSERT INTO Same-GenerationSELECT (SELECT Person AS Sg-Person /* create tuples with singular value */FROM P -Grp) AS Sg-GrpFROM (NEST People on Person AS P -Grp)ALSOSELECT (SELECT Person AS Sg-PersonFROM P1.ChildrenUNIONSELECT Person AS Sg-PersonFROM P2.Children) AS Sg-GrpFROM Parent P1, Parent P2, Same-Generation SGWHERE P1.Pname in SG.Sg-Grp AND P2.Pname in SG.Sg-GrpALSOSELECT (SELECT Person AS Sg-PersonFROM P1.ChildrenUNIONSELECT Person AS Sg-PersonFROM P2.Children) AS Sg-GrpFROM Parent P1, Parent P2, Same-Generation SG1, Same-Generation SG2, MarriedWHERE P1.Pname in SG1.Sg-Grp AND P2.Pname in SG2.Sg-Grp ANDSpouse-A in SG1.Sg-Grp AND Spouse-B in SG2.Sg-GrpThe transformed rule expressions of Q, in which sg denotes the resultant nested relationSame-Generation, are:sg(sg-grpfPerson1g) :- people(p-grpfPerson1g).sg(sg-grpfPerson1, Person2g) :- parent(Pname1, childrenfPerson1g),parent(Pname2, childrenfPerson2g),sg(sg-grpfSg-Person3g),in(Pname1, sg-grpfSg-Person3g),in(Pname2, sg-grpfSg-Person3g).11



MarriedSpouse-A Spouse-BSteve MaryMary Steve Same-GenerationSg-GrpSg-Personf Steve gf Mary gf Amy, Tim, Sally gf Bob, Joe, Karen gFigure 4: A Flat Relation Married and a Nested Relation Same-Generationsg(sg-grpfPerson1, Person2g) :- parent(Pname1, childrenfPerson1g),parent(Pname2, childrenfPerson2g),sg(sg-grpfSg-Person3g),sg(sg-grpfSg-Person4g),married(Spouse-A5, Spouse-B5),in(Pname1, sg-grpfSg-Person3g),in(Pname2, sg-grpfSg-Person4g),in(Spouse-A5, sg-grpfSg-Person3g),in(Spouse-B5, sg-grpfSg-Person4g). 23 SQL�=NR Queries with AggregatesIn this section we discuss the inclusion of aggregate operators, namely avg, min, max, sum,and count, in SQL�=NR. The inclusion of aggregates in SQL�=NR o�ers a wider rangeof queries in SQL�=NR that makes the language more appealing to standard SQL users.Furthermore, supporting aggregates in SQL�=NR also provides a form of data storagereduction by allowing SQL�=NR users the ability to evaluate aggregates on attributes in adatabase relation \on the y" instead of storing the values generated by such operators inthe database.Built-in aggregate operators supported by SQL�=NR are embedded within a subquery,called Aggregate-subquery. Attributes in a nested relation can be chosen as arguments ofaggregate operators that apply to di�erent groups of tuples. We de�ne aggregates and agrouping construct2 in SQL�=NR queries, and include an approach for transforming anSQL�=NR query with aggregates into LDL=NR rule expressions.3.1 Aggregate SubqueriesAn Aggregate-subquery is an SQL�=NR subquery as discussed in Section 2.1 with theinclusion of aggregate operators in the Select clause and a group by construct. AnAggregate-subquery, referenced as the Select-From-Where-GroupBy Expression (SFWGB-Expression for short), is of the form:SELECT attribute-list-with-aggregates2A grouping construct includes a grouping operator, i.e., group-by, that collects a number of tuples ina nested relation based on a subset of attributes in these tuples that have the same value.12



FROM relation-list[WHERE boolean-expression]Group By column-namesThe Select clause in an SFWGB-Expression has the following syntax:SELECT atomic-attr1, : : :, atomic-attrn, non-atomic-attr1, : : :, non-atomic-attrm,agg-str1, : : :, agg-strpwhere atomic-attri (1 � i � n) and non-atomic-attrj (1 � j � m) are as de�ned inSection 2.1.1, and agg-strk, 1 � k � p, is of the form:Agg ([DISTINCT] [relation-name.] attribute-name) AS agg-attrwhere Agg is eithermin, max, sum, count or avg which is applied to attribute-name.There is anAS clause which speci�es a reference name (i.e., agg-attr) to the result generatedfrom the aggregation. The DISTINCT keyword, which is optional, eliminates duplicatesbefore the aggregate operator is applied.The di�erence between an SFW-Expression and an SFWGB-Expression lies in the factthat a Select clause in an SFWGB-Expression contains aggregate operators that is appliedto one or more attributes on the same level of nesting in a nested relation. For example,to retrieve the average age of the children of each student, where the Student relation in asshown in Figure 1, we enter:SELECT : : : avg(Student.Children.Age) AS Children-Age-Avg,Furthermore, there exists a group-by construct in an SFWGB-Expression but not inany SFW-Expression. In an SFWGB-Expression, the group-by construct is of the form:Group By atomic-attr1, : : :, atomic-attrnwhere all atomic-attri, 1 � i � n, are atomic attributes at the same level of nesting in anested relation to which the Group By operation is applied. These attributes speci�ed inthe Group By clause are used to form groups of tuples. Tuples that have the same valueon all the attributes atomic-attr1, : : :, atomic-attrn speci�ed in the Group By clause areplaced in one group. These groups are then used by the aggregate operators given in theSelect clause of an SFWGB-Expression.3.2 SQL�=NR Queries with Aggregate SubqueriesAn SQL�=NR query with aggregates is an extended version of the SQL�=NR query dis-cussed in Section 2.2 with the addition of an Aggregate-subquery included in a THENINTO statement. The format of an SQL�=NR query with aggregates is as follows:INSERT INTO R1Basis-subqueryALSORecursive-subquery1: : :ALSO 13



ParentPName ChildrenC-Name C-AgeDaniel Tom 60Merle 55Merle Steve 30Ann 25Steve Joseph 5 TempA-Name DescendantsD-Name D-AgeDaniel Tom 60Merle 55Steve 30Ann 25Joseph 5 Dec-InfoA-Name D-Avg-AgeDaniel 35Figure 5: Relations Parent, Temp, and Dec-InfoRecursive-subquerynTHEN INTO R2Aggregate-subquerywhere the THEN INTO statement includes the keyword THEN INTO and a nestedrelation R2 followed by an Aggregate-subquery (an SFWGB-Expression). R1, which is theresultant relation generated by the INSERT INTO statement, is treated as a temporary(input) relation to which the Aggregate-subquery applies to yield the �nal desired relationR2. The following example includes an SQL�=NR query with aggregates.Example 10 Let Parent be the nested relation in Figure 5. We specify the following querythat generates the relation Dec-info in Figure 5. Dec-info contains the average age of allthe descendants of Daniel.INSERT INTO TempSELECT PName AS A-Name, (SELECT C-Name AS D-Name, C-Age AS D-AgeFROM Children) AS DescendantsFROM ParentWHERE PName = \Daniel"ALSO SELECT T .A-Name, (SELECT C-Name AS D-Name, C-Age AS D-AgeFROM Children) AS DescendantsFROM Parent P , Temp TWHERE P .PName in T .Descendants.D-NameTHEN INTO Dec-InfoSELECT A-Name, AVG(D-Age) AS D-Avg-AgeFROM TempGroup By A-Name 2As shown in Figure 5, the temporary relation temp is generated as a result of eval-uating the recursive query which retrieves all the descendants of \Daniel". Applying theAggregate-subquery in the THEN INTO statement to temp yields the desired resultantrelation Dec-info. 14



3.3 Transforming SQL�=NR Queries with Aggregates into RuleExpressions in LDL=NRThe transformation of the INSERT INTO statement of an SQL�=NR query Q withaggregates to LDL=NR rule expressions is similar to that used for an SQL*/NR querywithout aggregates. The description of an approach for transforming the THEN INTOstatement with an Aggregate-subquery in Q into LDL=NR rule expressions is given inAppendix B.1.4. In this subsection we give an example to show the rule expressions inLDL=NR transformed from an SQL�=NR with aggregates.Example 11 Let Q be the SQL�=NR query with aggregates given in Example 10. Thetransformed rule expressions of Q are:temp(Pname, descendantsfdescendants'(C-Name, C-Age)g) :-parent(Pname, childrenfchildren'(C-Name, C-Age)g),Pname = \Daniel".temp(A-name2, descendantsfdescendants'(C-Name1, C-Age1)g) :-parent(Pname1, childrenfchildren'(C-Name1, C-Age1)g),temp(A-Name2, descendantsfdescendants'(D-Name2, D-Age2)g),in(Pname1, descendantsfdescendants'(D-Name2)g).dec-info(A-Name, D-Avg-Age) :-group-by(temp(A-Name, descendantsfdescendants'(D-Name1, D-Age1)g),[A-Name],[D-Avg-Age = AVG(D-Age1)]). 24 Summary and Future WorkWe have proposed an extended SQL, called SQL�=NR, that not only can handle bothrecursive queries and nested relations, but also allows aggregate operators. An approach,which transforms an SQL�=NR query Q into rules expressions in LDL=NR which can beevaluated to retrieve the desired answers to Q, has also been presented in Appendix B.The proposed SQL�=NR constructs, which includes query and subquery, have been imple-mented [Qar95]. The implementation includes accepting an SQL�=NR query Q (de�nedaccording to the syntax described in Appendix A), transforming Q into rule expressionsREs in LDL=NR (according to the transformation approach described in Appendix B),and evaluating REs to yield the desired result of Q.For future work, we plan to examine the optimization of LDL=NR rule expressionsthat are generated from an SQL�=NR query by adopting the \magic sets" approach. Thisoptimization approach is a rewriting method that takes the advantages of the e�ciency ofthe top-down evaluation strategy (which considers only \necessary" results). The simplicityand dependability of the bottom-up evaluation strategy in [LN95b], which uses set-termmatching instead of uni�cation, can be adopted for evaluating rewritten rules expressionsin LDL=NR generated by the \magic sets" method.15



AppendixA SQL�=NR BNFThe following is a modi�ed BNF de�nition of the queries in SQL�=NR. Non-distinguishedsymbols are enclosed with \<>". The structure [: : :] indicates an optional entry, and thestructure f: : :g indicates an additional zero or more repetitions of the entry.<query expression> ::- INSERT INTO <nested-relation-name> <basis-subquery>[fALSO <recursive-subquery>g][THEN INTO <nested-relation-name> <aggregate-subquery>]<basis-subquery>, <recursive-subquery> ::- SELECT <attribute-list>FROM <relation-list>[WHERE <boolean-expression>]<aggregate-subquery> ::- SELECT <attribute-list-with-aggregates>FROM <relation-list>[WHERE <boolean-expression>]GROUP BY <column-name> f<column-name>g<attribute-list> ::- f<atomic-attr>gf<non-atomic-attr>g<atomic-attr> ::- [<relation-name>.] <attribute-name> [AS <column-name>]<non-atomic-attr> ::- [<rel-name>.] <embedded-relation-name> [AS <column-name>] j(<basis-subquery>) AS <column-name><relation-name> ::- <rel-name> j <rel-name>.<rel-name><rel-name> ::- <nested-relation-name> j <embedded-relation-name> j <reference-name><relation-list> ::- <relation> f<relation>g<relation> ::- <nested-relation-name> [<reference-name>] j[<nested-relation-name> j <reference-name> .]<embedded-relation-name> [<reference-name>] j(NEST <nested-relation-name> ON attribute-list AS <column-name>) j(UNNEST <nested-relation-name> ON <attribute-list>)<boolean-expression> ::- (<boolean-expression> <bool-optr> <boolean-expression>) j<boolean-expression> <bool-optr> <boolean-expression> j<LR-OP> <Comp-P> <RR-OP> j<LS-OP> <Comp-SetM> <RS-OP><bool-optr> ::- AND j OR<LR-OP>, <RR-OP> ::- <nested-rel-attr> j <constant><LS-OP> ::- <nested-rel-attr><RS-OP> ::- <nested-relation><nested-rel-attr> ::- <attribute-name> j <rel-name>.<nested-rel-attr><nested-relation> ::- <rel-name> j <rel-name>.<nested-relation><Comp-P> ::- < j > j � j � j = j 6=<Comp-SetM> ::- in j notin<attribute-name>,<column-name>, <embedded-relation-name>, <nested-relation-name>,<reference-name> ::- alphabetic-character falphanumeric-characterg<attribute-list-with-aggregates> ::- <attribute-list><agg> ([DISTINCT] [<relation-name>.] <attribute-name>) AS <attribute-name>f<agg> ([DISTINCT] [<relation-name>.] <attribute-name>) AS <attribute-name>g<agg> ::- MIN j MAX j SUM j COUNT j AVG16



B A Transformation ApproachThis section, which includes an approach for the transformation of an SQL�=NR query Qinto rule expressions in LDL=NR, is divided into two subsections. First, we discuss howto transform each of the Select, From, Where, and Group By clauses in a subquery ofQ into a subexpression of a rule expression in LDL=NR. (Of course, any subquery of Qwithout Where or Group By clause can be handled accordingly.) Then, we describe thetransformation of the INSERT INTO,ALSO, and THEN INTO statements in Q whichare based on the transformation of the subqueries of Q proposed in the �rst subsection. Acomplete transformation algorithm is given in [Qar95].B.1 Transforming an SQL�=NR Subquery SQ into a Rule Ex-pression REB.1.1 Transforming the From Clause of SQThe syntax of the From clause, as described in Section 2.1.2, consists of the keywordFROM followed by a list of arguments r1; : : : ; rn, where rp (1 � p � n) may reference arelation, an embedded relation, a NEST or an UNNEST operation. For the tuple termsgenerated from the transformation of relations speci�ed in the From clause of a subquerySQ, variables (attributes) having the same name in more than one tuple term (relation)must be distinguishable. To accomplish that, we append the subscript p in rp (1 � p � n)to all the atomic attributes in rp during the transformation of rp. Each rp in the Fromclause is transformed accordingly as follows:1. rp is the relation rn with attributes A1; : : : ; Am and an optional reference name.rn is included as a tuple term in the body of the resultant rule expression RE withA1p; : : : ; Amp as its arguments. If Ai (1 � i � m) is an atomic attribute, then thesubscript p in rp is appended to Ai to yieldAip; otherwise, Aip = Ai. Each non-atomicattribute (i.e., embedded relation) Ai with attributes B1; : : : ; Bj becomes the set termAifA0i(B1; : : : ; Bj)g, and the transformation process of Ai is recursively applied to eachlevel of nesting in Ai. (If j = 1, then A0i is ignored, and the transformed set termis AifB1g.) Any reference name speci�ed in rp is recorded as an alias of rn in thelook-up table which is used during the transformation process. The transformationof rp yields rn(A1p; : : : ; Amp).2. rp is the embedded relation ern with an optional reference name.rp must be speci�ed in the From clause of an incremental subquery ISQ in SQ.We �rst determine the subscript s associated with the relation rel within which ernis embedded as an attribute, and rel must be included as a relation in the Fromclause of SQ. We associate s with ern in the look-up table which allows the Selector Where clause of ISQ to reference attributes in ern, and append s to all thevariables which are transformed from the atomic attributes in ern.17



3. rp is the relation(reference)-name.embedded-relation-name rn:ern with an optionalreference name.Same as Case 2.4. rp is a NEST operation of the format(NEST Nested-Relation-Name ON Attribute-List AS Column-Name).Assume that the Nested-Relation-Name is rn which has attributes A1, : : :, Am and theAttribute-List consists of attributes B1; : : : ; Bn, where fB1; : : : ; Bng � fA1; : : : ; Amg.Let fC1; : : : ; Ckg = fA1; : : : ; Amg - fB1; : : : ; Bng. If Ci; 1 � i � k (Bj; 1 � j � n)is an atomic attribute, then the subscript p in rp is appended to Ci (Bj) to yieldCip (Bjp); otherwise, Cip = Ci (Bjp = Bj). This process is applied to each level ofnesting in attribute Ci (Bj) that is non-atomic. rn is then included in the body ofRE with arguments C1p; : : : ; Ckp and the set term Column-Name cn which containsthe tuple term cn0 with arguments B1p; : : : ; Bnp (If n = 1, then cn0 is ignored.). Thetransformation of rp yields eitherrn(C1p; : : : ; Ckp; cnfcn0(B1p; : : : ; Bnp)g) or rn(C1p; : : : ; Ckp; cnfB1pg)which is then included in the body of RE.5. rp is an UNNEST operation of the format(UNNEST Nested-Relation-Name ON Attribute-List).Assume that the Nested-Relation-Name is rn which has attributes A1, : : :, Am besidesthe embedded relations r1; : : : ; rk speci�ed in the Attribute-List. Further assume thateach ri (1 � i � k) has attributes Bi1; Bi2; : : : ; Biij . If Aq; 1 � q � m (Bsq ; 1 � s �k; 1 � q � sj) is an atomic attribute, then the subscript p in rp is appended to Aq(Bsq) to yield Aqp (Bsqp); otherwise, Aqp = Aq (Bsqp = Bsq). This process is applied toeach level of nesting in each attribute Aq (Bsq) that is non-atomic. The transformationof rp thus yieldsrn(A1p; : : : ; Amp; : : : ; B11p; : : : ; B11jp ; : : : ; Bk1p; : : : ; Bkkjp )which is then included in the body of RE.B.1.2 Transforming the Where Clause of SQTo transform the boolean expression BE in the Where clause of SQ, two cases should beconsidered:1. BE = LR-OP Comp-P RR-OP or LS-OP Comp-SetM RS-OPBE is transformed according to the type of comparison (relational or set membership)operator in BE.(a) BE is LR-OP Comp-P RR-OPLR-OP A (RR-OP B) must be either an (embedded) attribute name or a con-stant. If A (B) is a constant, then A (B) remains unchanged; otherwise, all18



relation names or reference names preceding A (B) are stripped which yields A0(B 0), and the subscript i (j) is appended to A0 (B 0) to yield A0i (B0j), where i (j)is the subscript associated with the relation within which A (B) is embedded,and this subscript was assigned during the transformation of the From clause inSQ. The resultant transformation of BE yields the subexpression L Comp-PR, where L is either A or A0i, and R is either B or B 0j .(b) BE is LS-OP Comp-SetM RS-OPLS-OP A must be a list of one or more (embedded) attributes Attr1; : : : ; Attrn,and RS-OP B is an (embedded) nested relation. To transform A (B), westrip all the relation names or reference names (if there are any) precedingAttr1; : : : ; Attrn (B) to yield Attr01; : : : ; Attr0n (B 0). Hereafter, the subscript iassociated with the nested relation within which Attr1; : : : ; Attrn are embeddedis appended to Attr1; : : : ; Attrn or Attr01; : : : ; Attr0n to yield Attr1i; : : : ; Attrnior Attr01i; : : : ; Attr0ni. The subscript j associated with the nested relation Bor with the relation within which B 0 is embedded is appended recursively toevery atomic attribute Ck; 1 � k � m, in B (B 0). (Subscripts i and j are as-signed during the transformation of the From clause in SQ.) The resultanttransformation of BE yields the subexpression in(notin)(L, R), where L is ei-ther (Attr1i; : : : ; Attrni) or Attr01i, : : : , Attr0ni, R is either B(C1j ; : : : ; Cmj) orB 0(C1j ; : : : ; Cmj ), and in(notin) is a built-in predicate in LDL=NR.2. BE = (BE1 AND/OR BE2) or BE1 AND/OR BE2BE1 and BE2 are recursively processed until they become the basic boolean expres-sions EXP (i.e., LR-OP Comp-P RR-OP or LS-OP Comp-SetM RS-OP ), andCase 1 is applied to EXP to yield all the desired subexpressions. During the recur-sive process, the logical AND and logical OR are replaced by ',' and ';', respectively.Furthermore, the precedence of evaluation speci�ed by the parentheses, i.e., (), (ifthere is any) is retained in the transformed boolean expression which produces a listof predicates to be included in the body of RE.B.1.3 Transforming the Select Clause of SQ without Aggregate OperatorsAs described in Section 2.1.1, the Select clause has the following format:SELECT A1; : : : ; An; C1; : : : ; CmFor each (embedded) attribute Attri speci�ed in Ai (1 � i � n) in the Select clause,the subscript p, which is given to the relation within which Attri is embedded during thetransformation of the From clause in SQ, is appended to Attri to yieldAttrip. Any optionalreference name N speci�ed in Ai does not a�ect the transformation of Attri since N is usedin SQ only to satisfy the constraint of compatible relation scheme or denote a new referencename of Attri. Attrip is included in the head tuple term of RE as shown below.r(Attr1p; : : : ; Attrnp; : : :)19



where r is the relation name following the keyword INSERT INTO in the given query Qthat includes SQ.On the other hand, for each non-atomic attribute NAj speci�ed in Cj (1 � j � m)in the Select clause, there are two di�erent cases (depending on the type of NAj) to beconsidered.1. NAj is the Embedded-Relation-Name ern with attributes B1; : : : ; Bm.ern is transformed into a set term which forms an argument ern of the head tupleterm r. The subscript q, which is given to the relation s within which ern is embeddedduring the transformation of the From clause in SQ, should have been appended toattributes B1; : : : ; Bm in ern to yield B1q ; : : : ; Bmq . This occurs because s must bespeci�ed in the FROM clause of SQ, and the subscript q in Biq ; 1 � i � m, is handledas discussed earlier. B1q ; : : : ; Bmq are included as arguments of the tuple term ern0,that is generated by the transformation algorithm, in ern (If m = 1, then ern0 isignored.). Once again, the optional reference name speci�ed in Cj does not a�ect thetransformation of NAj for the same reason mentioned in the case of transforming Ai.Hence, the transformed Cj yields eitherernfern0(B1q ; : : : ; Bmq )g or ernfB1qgin r(: : : ; ernfern0(B1q ; : : : ; Bmq)g; : : :) or r(: : : ; ernfB1qg; : : :).2. Cj is an (SFW-Expression) AS Column-Name.The Select clause of the SFW-Expression (which is an incremental subquery) ISQ inSQ is transformed into a structure called inc-select which has the set term Column-Name cn. The attributes Att1; : : : ; Attn, which are transformed from the attributesspeci�ed in the Select clause of ISQ according to the transformation approach dis-cussed in this subsection, are included as arguments of the tuple term cn0 in cn. (Ifn = 1, then cn0 is ignored.) Inc-select is then included as an argument of the headtuple term r of RE. Each embedded relation ri (1 � i � n) listed in the From clauseof ISQ is associated with a subscript which is given to the relation within which ri isembedded during the transformation of the FROM clause in SQ. If ISQ includes aWhere clauseW , then W is transformed and included in the body of RE as detailedin the transformation of the Where clause. Hence, the transformed Cj yields eitherr(: : : ; cnfcn0(Att1; : : : ; Attn)g; : : :) : � : : :, [transformed-where-clause], : : : .orr(: : : ; cnfAtt1g; : : :) : � : : :, [transformed-where-clause], : : : .in RE.B.1.4 Transforming SQL�=NR subqueries with Aggregates into Rule Expres-sionsThe process of transforming the From and Where clauses of an SQL�=NR subquerywith aggregates is exactly the same as that for an SQL�=NR subquery without aggregatesas discussed in the previous subsections. We choose to adopt similar notation used by20



[SR91, Gel93] to represent the group by construct and aggregate operators in an LDL=NRrule expression. The following is the general form of a group by subgoal (tuple term) thatis to be included in the body of a rule expressionRE. This subgoal contains the transformedaggregate constructs speci�ed as arguments in the Select clause of theAggregate-subquery:group-by(r(t), [X1, : : : , Xm], [Y1 = Agg1 ([DISTINCT] (Attr1)), : : :,Yn = Aggn ([DISTINCT] (Attrn)])where- r is the relation to which the grouping is applied and is included in the From clauseof the Aggregate-subquery.- t represents the arguments in r which are either constants, variables, or set terms.- The grouping list X1, : : : , Xm consists of one or more variables that must appear int and on which the grouping is based. (X1; : : : ;Xm are the attributes speci�ed in thegroup by clause of the Aggregate-subquery.)- The list of Y1, : : : , Yn is the aggregation list. Each Yi, 1 � i � n, is a new variable(attribute) which is the reference name following an aggregate operator and the ASkeyword in the Select clause of the Aggregate-subquery. Y1, : : : , Yn are included asarguments in the head tuple term of RE.- Attr1, : : : , Attrn are attribute names in r to which aggregate operators Agg1, : : : ,Aggn (e.g. sum and count) are applied, respectively. A built-in predicate for eachone of the aggregate operators that is represented by Agg1, : : : , Aggn (e.g., MIN,MAX, SUM, AVG, and COUNT), respectively, in the group by subgoal is providedin LDL=NR.- Within the body of RE, the group by subgoal represents a relation over attributes(variables) X1, : : : , Xm in the grouping list and attributes (variables) Y1, : : : , Yn inthe aggregation list.B.2 Transforming an SQL�=NR Query into Rule ExpressionsAs mentioned in Section 2.2, an SQL�=NR query Q without aggregates consists of oneBasis-subquery and n (0 � n) di�erent Recursive-subqueries. Since Basis-Subquery andRecursive-subqueries are both SQL�=NR subqueries, each one of these subqueries is trans-formed as discussed in Section B.1. The relation name R in the INSERT INTO statementof Q denotes the name of the resultant relation, and is used as the head tuple term of everyrule expression generated for each subquery of Q as mentioned in Appendix B.1.3.The transformation of the Basis-subquery and Recursive-subquery in the INSERTINTO statement of an SQL�=NR query Q with aggregates is exactly the same as discussedin the previous paragraph. The transformation of the Aggregate-subquery in the THENINTO statement of Q has been described in the previous subsection. The relation nameR2speci�ed after the THEN INTO keyword denotes the name of the resultant relation which21



is constructed by using the temporary relation R1 speci�ed in the INSERT INTO state-ment, and is used as the head tuple term of the rule expression resulting from transformingthe Aggregate-subquery in Q. The attributes of R2 include all the atomic, non-atomic, andaggregate-attributes speci�ed in the Select clause of the Aggregate-subquery.

22



References[CC90] Q. Chen and W. Chu. Deductive and Object-Oriented Database, chapter HILOG:A High-order Logic Programming Language for Non-1NF Deductive Databases,pages 431{452. Elsevier Science Publishers, 1990. W. Kim, et al. (Editors).[CK91] Q. Chen and Y. Kambayashi. Nested Relation Based Database Knowledge Rep-resentation. In Proceedings of 1991 ACM SIGMOD International Conference onManagement of Data, pages 328{337. ACM, 1991.[Gel93] A. V. Gelder. Foundation of Aggregation in Deductive Databases. In Proceedingsof the 3rd Intl. Conference on Deductive and Object-Oriented Databases, pages13{33. Springer-Verlag, 1993. Lecture Notes in Computer Science, 470.[GM92] J. Grant and J. Minker. The Impact of Logic Programming on Databases. Com-munications of ACM, 35(3):67{81, March 1992.[GN90] H. Gallaire and J.-M. Nicolas. Logic and databases: An assessment. In the ThirdInternational Conference on Database Theory, pages 177{186. Springer-Verlag,December 1990. Lecture Notes in Computer Science, 470.[Hul86] Richard Hull. Relative Information Capacity of Simple Relational DatabaseSchemata. SIAM Journal of Computing, 15(3):856{886, August 1986.[KC93] K. Koymen and Q. Cai. SQL�: A Recursive SQL. Information Systems,18(2):121{128, 1993.[KS91] H. Korth and A. Silberschatz. Database System Concepts, Second Edition.McGraw-Hill, Auckland, 1991.[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second, Extended Edition.Spring-Verlag, New York, 1987.[LN95a] S. J. Lim and Y-K Ng. Set-TermMatching in a Logic Database Language. In Pro-ceedings of the 4th International Conference on Database Systems for AdvancedApplications, pages 189{196, Singapore, April 1995.[LN95b] S. J. Lim and Y-K Ng. Set-Term Uni�cation in a Logic Database Language.In Proceedings of the 1st Annual International Computing and CombinatoricsConference (to appear), Xian, China, August 1995. Springer-Verlag.[Qar95] N. Qaraeen. SQL*/NR: A Recursive Query Language for Nested Relations. Mas-ter's thesis, Brigham Young University, Provo, Utah, May 1995.[RKB87] M. Roth, H. Korth, and D. Batony. SQL/NF: A Query Language for :1NFRelational Databases. Information Systems, 12(1):99{114, 1987.[RKS88] M. Roth, H. Korth, and A. Silberschatz. Extended Algebra and Calculusfor Nested Relational Databases. ACM Transactions on Database Systems,13(4):389{417, December 1988.[SR91] S. Sudarshan and R. Ramakrishman. Aggregation and Relevence in DeductiveDatabases. In Proceedings of 17th VLDB., pages 501{511, Barcelona, Spain, 1991.[STZ92] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set Terms in the Logic DataLanguage (LDL). Logic Programming, 12(1):89{119, 1992.[Uni91] UniSQL. UniSQL/X Database Management System User's Manual. UniSQL Inc.,Austin, Texas, 1991. 23


