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Abstract

A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series
representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvec-
tor directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors

contributing significantly to the collective protein motion.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, a method for extracting the deterministic and sto-
chastic contributions from time series has been developed [1,2]
and applied to analyze many interesting physical systems [3—
7]. Tt is based on the application of the Langevin differential
equation [8]

d
EX(t) =g(X ), 1) +h(X (@), t)T ) 1))

where X (¢) is the state of the system at time ¢, the nonlin-
ear function g provides the deterministic change, the function
h gives the amplitude of the stochastic part, and I"(t) pro-
vides an uncorrelated white noise term with an average value of
zero. This equation applies only to stationary, Markovian sys-
tems [9]. Time series resulting from molecular dynamics simu-
lations offer another application for this new technique, where
the deterministic and probabilistic contributions can be deter-
mined directly from the time series. This is a significant ap-
plication because atomic motions in protein molecules play an
important role in the function of the protein. This is especially
true of correlated motions of groups of atoms in the protein
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molecule. Principal component analysis (PCA) is a standard
tool used to investigate correlated protein motions and is also
known as the essential dynamics (ED) method [10,11]. It was
first reported in [12] and has been used extensively since then
in studying protein motions [13—16]. ED is able to separate ran-
dom protein motions from correlated motions. In other words,
small-amplitude Gaussian fluctuations are separated from the
essential subspace of large an-harmonic motions. The PCA
technique consists of the diagonalization of the covariance ma-
trix given by

Cij =cij (2
with

1
cij = Z(xl- 0 = (6 O)) (x; O = {x; (1)) (3)
where T is the total number of configurationst=1,2,3,..., T,

x; (t) are the position coordinates withi =1,2,3,...,3N, N is
the number of C* atoms, (x;(¢)) is the ensemble average over
all configurations [15]. The diagonalization produces eigenvec-
tors and eigenvalues. Each eigenvector defines a direction of
concerted atomic motion in the 3N-dimensional space. The
eigenvalue gives the total mean square fluctuation of the protein
motion along that eigenvector. The trajectory can be projected
along any of the resulting eigenvectors. This results in a time
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Fig. 1. A typical time series showing the trajectory projection along the second
eigenvector PC2.

series showing the fluctuations of the projection for a certain di-
rection (Fig. 1). In this work a set of time series resulting from
projecting a 4 ns molecular dynamics trajectory of the protein
BPTI along a set of directions given by eigenvectors found us-
ing PCA are analyzed.

2. Computational methods

The molecular dynamics simulation and analysis were per-
formed using the program not another molecular dynamics
(NAMD) [17] and visual molecular dynamics (VMD) [18]. The
starting X-ray structure for the simulation (6PTI) was obtained
from the protein data bank [19]. The principal components
analysis (PCA) was performed using the MATLAB package
(The MathWorks, Natick, MA 01760-2098, USA). Each time
series consisted of 8000 points with a time step of 0.5 picosec-
onds. The set of time series investigated in this work consisted
of two groups: the ‘significant’ group containing the first five
eigenvectors with the five largest eigenvalues, making up 80%
of all protein motion, and the ‘insignificant’ group containing
the 10th, 20th, and 50th eigenvectors contributing a very small
percentage of the correlated protein motions.

A difference form of the Langevin equation (1) can be used
to model the system:

X(t+1)=X0)+g(X®):t)+h(X@®); 7)) 4)

where t is the lag time. Eq. (4) gives the differential equa-
tion (1) in the limit T — 0. In this work, however, there is a
minimum 7 where Eq. (4) can be used to model the system.
A similar limit was reported in a study of heart rate fluctua-
tions [7]. The technique for finding g(x) and h(x) from Eq. (4)
is the following: the projection values in the time series are di-
vided into bins, with the middle value of the bin, x, being the
representative value. Given any value X (¢#) within the bounds
of a bin, the future value X (r + 7) is stored. All future values
for a bin form a distribution. The average value for this distrib-
ution is x + g(x). The deviation value for the distribution gives
h(x) [2].

The time series investigated were stationary. The Markovian
property for each series was checked by comparing the one-step
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Fig. 2. A scatter plot showing the one-step and two-step conditional probability
densities. The plot shows large agreement between the two functions.
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Fig. 3. The deterministic and stochastic contributions to the projection of the
time series along PC2.

and the two-step conditional probability densities. Agreement
of the two would point to a lack of memory effects [2].

3. Analysis and discussion

The behavior of the second eigenvector (PC2) is discussed in
this section. It showed a bi-stable behavior reported in the lit-
erature for a time series dealing with heart rate fluctuations [7].
The time lag used was 100 steps, or 50 picoseconds. The num-
ber of bins used to define the distributions was 100. To insure
that the system is Markovian, the one-step and two-step con-
ditional probability densities were calculated using histograms
and compared (Fig. 2). The two functions agreed significantly,
pointing to the lack of memory effects.

The deterministic function g(x) and the stochastic function
h(x) are shown in Fig. 3.

The function g(x) shows three fixed points where it crosses
the x-axis. The two points on the outside are stable points.
A change of the system in either direction attracts the system
back to the stable point. In particular, any change away from
the region bounded by the two stable points is met by a steep in-
crease or decrease by the system to bring it back to that region.
The inside fixed point is unstable. A change in either direction
is encouraged by the deterministic contribution. The random
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Fig. 4. (a) The deterministic function g(x) versus lag time. (b) The stochastic function /(x) versus lag time.

function A (x) is mainly flat except for a pronounced maximum
in the region surrounding the unstable fixed point. A local max-
imum is also apparent at one of the stable fixed points. One
can conclude that the system is more deterministic at the stable
fixed points, while being more stochastic in nature near the un-
stable point. The maximum stochastic value near the unstable
point could signal a large random ‘kick’ that might transfer the
system from the unstable point to one of the stable points. The
stable points signify two conformations of the protein molecule,
and it appears that the system oscillates between the two, using
the unstable fixed point as an intermediary step. The determin-
istic function g(x) shows considerable independence off the lag
time (Fig. 4(a)). The stochastic function 4 (x) shows a similar
behavior in general, but a steady increase in the peaks centered
at the unstable fixed point and one of the stable fixed points is
apparent for large time steps.

A representative value of g(—6) was plotted for lag times
from 1 picoseconds to 500 picoseconds (10 steps to 1000 steps)
(see Fig. 5). It is clear from the graph that the function is almost
independent off the lag time in this range, except for the region
of small lag times. This divergence may indicate the presence
of measurement noise [20].

The behavior of the deterministic function g(x) was com-
pared for the five elements of the ‘significant’ eigenvector set,
and the three elements of the ‘insignificant’ set (Fig. 6).

The elements of the significant set show nonlinear behavior
of varying complexity. The first eigenvector (case 1) shows one
clear stable fixed point. The second fixed point is not well pro-
nounced. It could actually point to two fixed points. One expla-
nation could be that the space around these two poorly defined
fixed points is not well explored in the time series. The third
eigenvector (case 3) shows one clear stable fixed point. The
local minimum to the left of this fixed point could also point
to another unexplored region. The protein seems to fluctuate
randomly about an average value of zero. The fourth eigenvec-
tor (case 4) shows multiple fixed points. Again, some of these
fixed points are not very well represented in the time series. The
fifth eigenvector (case 5) also shows multiple fixed points, and
closely resembles the behavior of the fourth eigenvector. The
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Fig. 5. A representative value of g(—6) as a function of lag time.

2 2 23 2
O L2 .3 4
13 :
e . 2
£2 5 w
LY I :
A P 4 ;
c P %
t Y B :
_2 d - -

— -2 2
5 10-12 -6 0 -7 O

2 205 2 2
T s L6 o7 8
: : p :
Ux % B o\
o ¥® | o of % 0
;S ¥ Y
g S 4
: : .
-2 - o - b —

= -2 2 2
-8 -1 6 -5 0 5 -5 0 5 -2 0 2
X (Angstroms)
Fig. 6. The deterministic function g(x) for the elements of the significant and

insignificant sets. The cases 1-5 are the first five eigenvectors, respectively. The
cases 68 are the 10th, 20th, and 50th eigenvectors, respectively.



500 W.I. Karain et al. / Physics Letters A 354 (2006) 497-500

8 :
. Wt
* L T Pt g i+
*e, R ?wtr*&?* P S
+ ot g £ +* +
N
+F T,
oF 4. "-'..\ _
) "-“. -,
o et ,.‘..‘ .
+  Deterministic e
+  Stochastic 3
_8 1
-12 -6 0
X (Angstroms)
(@)

4 ¥ T ¥
+
+
. * +
L + +: it
+
+ e, WA
. + e L4
.t + i
o + +
* 4?‘-}+, W¢+ oy T +
gt T+
s,
. .
ot R .’....,v.......“,—,?‘ ............ 4o

Deterministic .

+  Stochastic .
_4 L
-12 -6 0
X(Angstroms)
(®)

Fig. 7. The deterministic and stochastic contributions for the time series broken up into equal segments and remixed randomly, with segment lengths (a) 30 steps,

(b) 300 steps.

cases 6-8 all show one stable fixed point without any nonlin-
ear behavior. The behavior of the stochastic function A (x) for
the first five cases shares a common trait of maxima in the non-
linear region of the function g(x). The last three cases show no
such behavior with the function being flat throughout.

To insure that this behavior is not a statistical artifact, the
time series for PC2 was broken up into equally sized segments,
and then remixed randomly (Fig. 7).

For a time segment that is shorter than the lag time (Fig. 7(a)),
the nonlinear behavior described above (Fig. 3) disappears. For
segment lengths longer than the time lag length (Fig. 7b), the
dynamic behavior stays practically the same. This proves that
the behavior of the system is inherent in its dynamics.

4. Conclusion

The deterministic and stochastic contributions to time se-
ries of correlated protein motions show a rich and complex
nonlinear behavior only for projections along directions that
contribute a significant percentage of the protein correlated mo-
tions. This behavior provides another tool in the analysis of
protein motions, and can provide clues to how proteins jump
between different conformations. The method reported in this
work can also be used to differentiate between significant and
insignificant principal components through the behavior of their
deterministic and stochastic contributions.
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