See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262653255

Serre class and the direct sums of modules

Article in Houston journal of mathematics · January 2005

CITATIONS	5	- READS
0		6
1 authoi	r:	
	M Saleh	
	BirzeitUniversity	
	52 PUBLICATIONS 239 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Project weak transitivity in devanys chaos View project

All content following this page was uploaded by M Saleh on 26 May 2016.

The user has requested enhancement of the downloaded file. All in-text references <u>underlined in blue</u> are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.

SERRE CLASS AND THE DIRECT SUMS OF MODULES

MOHAMMAD SALEH

Communicated by Johnny A. Johnson

ABSTRACT. The purpose of this paper is to further the study of weakly injective and weakly tight modules a generalization of injective modules. For a Serre class \mathcal{K} of modules, we study when direct sums of modules from \mathcal{K} satisfies a property $I\!\!P$ in \mathcal{K} . In particular, we get characterization of locally q.f.d. modules in terms of weak tightness.

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all modules are unitary. We denote the category of all right *R*-modules by Mod-*R* and for any $M \in \text{Mod-}R$, $\sigma[M]$ stands for the full subcategory of Mod-*R* whose objects are submodules of *M*-generated modules (see [28]). A class \mathcal{K} of modules is called a Serre class if it is closed under submodules, factor modules and extensions [9], [4]. The class $\sigma[M]$ is a Serre class [4]. Given a module X_R , the injective hull of X in Mod-*R* (resp., in $\sigma[M]$, in \mathcal{K}) is denoted by E(X) (resp., $\hat{X}, E_{\mathcal{K}}(X)$). The *M*-injective hull \hat{X} is the trace of M in E(X), i.e. $\hat{X} = \sum \{f(M), f \in$ $Hom(M, E(X))\}$ [3], [28].

The purpose of this paper is to further the study of the concepts of weak injectivity, tightness and weak tightness in a Serre class \mathcal{K} a generalization of $\sigma[M]$ studied in [4], [8], [21], [22], [23], [26], [29], [30]. In view of Theorem 2.9 every module X in \mathcal{K} is a direct summand of a weakly injective module in \mathcal{K} a result that generalizes 2.12, , 2.13, 2.14, in [16], 2.1, 2.2., and 2.3 in [18]. For a Serre class \mathcal{K} , we study when direct sums of modules from \mathcal{K} are weakly tight in \mathcal{K} . In particular, we get necessary and sufficient conditions for \sum -weak tightness of

²⁰⁰⁰ Mathematics Subject Classification. 16D50, 16D60, 16D70, 16P40.

Key words and phrases. Tight, weakly tight, weakly injective, Serre class, locally q.f.d., weakly semisimple.

⁷⁰⁷

the injective hull of a simple module. As a consequence, we get characterizations of *q.f.d.* rings by means of weakly injective (tight) modules given by A. Al-Huzali, S.K. Jain and S.R. López-Permouth.

Given two modules Q and $N \in \mathcal{K}$, we call Q weakly N-injective in \mathcal{K} if for every homomorphism $\varphi: N \to E_{\mathcal{K}}(Q)$, there exists a homomorphism $\widehat{\varphi}: N \to Q$ and a monomorphism $\sigma: Q \to E_{\mathcal{K}}(Q)$ such that $\varphi = \sigma \widehat{\varphi}$. Equivalently, there exists a submodule X of $E_{\mathcal{K}}(Q)$ such that $\varphi(N) \subset X \simeq Q$. A module $Q \in \mathcal{K}$ is called *weakly injective* in \mathcal{K} if for every finitely generated submodule N of the \mathcal{K} -injective hull $E_{\mathcal{K}}(Q)$, N is contained in a submodule Y of $E_{\mathcal{K}}(Q)$ such that $Y \simeq Q$. Equivalently, if Q is weakly N-injective for all finitely generated modules N in $E_{\mathcal{K}}(Q)$. A module X is N-tight in $E_{\mathcal{K}}(Q)$ if every quotient of N which is embeddable in the \mathcal{K} -injective hull of X is embeddable in X. A module is tight(R-tight) in \mathcal{K} if it is tight relative to all finitely generated (cyclic) submodules of its \mathcal{K} -injective hull, and Q is weakly tight (weakly R-tight) in \mathcal{K} if every finitely generated (cyclic) submodule N of $E_{\mathcal{K}}(Q)$ is embeddable in a direct sum of copies of Q. It is clear that every weakly injective module in \mathcal{K} is tight in \mathcal{K} , and every tight module in \mathcal{K} is weakly tight in \mathcal{K} , but weak tightness does not imply tightness, (see [4], [30]). A module M_R is called *locally q.f.d.* [3], [7], [17] in case every finitely generated (or cyclic) module $N \in \sigma[M]$ has finite uniform dimension. A module Q is called weakly (N-)injective (resp., tight, weakly (N-)tight) [16], [13], [14], [15] if it is weakly (N-)injective(resp., tight, weakly (N-)tight) in $\mathcal{K} = \text{Mod-}R$.

2. Preliminaries

The class of weak injectivity (tightness, weak tightness) in \mathcal{K} is closed under finite direct sums, and essential extensions. Also, the domains of the class of weak injectivity (tightness, weak tightness) in \mathcal{K} are closed under submodules, and quotients.

First, we list below some basic results on weak injectivity (tightness, weak tightness) in \mathcal{K} that generalizes those known results in $\sigma[M]$ that will be needed through this paper (c.f.[4], [21], [22], [23], [29], [30]).

Lemma 2.1. Given modules $N, X \in \mathcal{K}$. If X is quasi-injective and weakly N-injective in \mathcal{K} , then X is N-injective in \mathcal{K} .

PROOF. Let $\phi : N \to E_{\mathcal{K}}(X)$. It is enough to show that $\phi(N) \subseteq X$. By weak injectivity of X, there exist a homomorphism $\varphi : N \to X$ and a monomorphism $\sigma : X \to E_{\mathcal{K}}(X)$ such that $\phi = \sigma \varphi$. Also Since X is quasi-injective, $\sigma(X) \subseteq X$ and thus $\phi(N) \subseteq X$, proving that X is N-injective Corollary 2.2. A quasi-injective and weakly R-injective module is injective.

Remark 2.3. Weak injectivity in Lemma 2.1 and Corollary 2.2 could be replaced by tightness but we don't know if it could be replaced by weak tightness.

Lemma 2.4. Given $X, N \in \mathcal{K}$, X is weakly N-injective in \mathcal{K} iff

- (i) for every submodule K of N and for every monomorphism $\varphi : N/K \to E_{\mathcal{K}}(X)$, there exists a monomorphism $\widehat{\varphi} : N/K \to X$ and a monomorphism $\sigma : X \to E_{\mathcal{K}}(X)$ such that $\varphi = \sigma \widehat{\varphi}$; and
- (ii) for every complement C of $\widehat{\varphi}(N/K)$ in X there exists $C' \subseteq E_{\mathcal{K}}(X)$ such that $C' \cap \sigma(N/K) = 0$ and $C' \simeq C$.

PROOF. (i) is clear from the definition. To prove (ii) let C be a complement of $\widehat{\varphi}(N/K)$ in X. Then $C' = \sigma(C)$ is isomorphic to C and independent from $\sigma(N/K)$, proving (ii). Conversely, assume that (i) and (ii) hold and let $\phi: N/K \to E_{\mathcal{K}}(X)$ be a monomorphism. By (i) there exists a monomorphism $\widehat{\varphi}: N/K \to X$. Let C be a complement of $\widehat{\varphi}(N/K)$ in X. Using (ii), we get a monomorphism $\alpha: \widehat{\varphi}(N/K) \bigoplus C \to E_{\mathcal{K}}(X)$. Since $\widehat{\varphi}(N/K) \bigoplus C \subseteq' X$, we may extend α to a monomorphism $\beta: X \to E_{\mathcal{K}}(X)$. It follows that $\beta \widehat{\varphi} = \sigma$, proving that X is weakly N-injective in \mathcal{K} .

Corollary 2.5. A uniform module $X \in \mathcal{K}$ is tight in \mathcal{K} iff X is weakly injective in \mathcal{K} .

Lemma 2.6. A finite direct sums of weakly injective (tight, weakly tight) in \mathcal{K} is weakly injective (tight, weakly tight) in \mathcal{K} , and an essential extension of a weakly injective (tight, weakly tight) module in \mathcal{K} is weakly injective (tight, weakly tight) in \mathcal{K} .

Lemma 2.7. A uniform module $X \in \mathcal{K}$ is weakly tight (weakly *R*-tight) in \mathcal{K} iff X is weakly injective (weakly *R*-injective) in \mathcal{K} .

PROOF. Let X be uniform and weakly tight in \mathcal{K} , and let N be a finitely generated submodule of $E_{\mathcal{K}}(X)$. Then N is embeddable in $X^{(\alpha)}$ via a monomorphism, say, ϕ . Let $\pi_i : X^{(\alpha)} \to X$ be the *i*th projection map. Then $\bigcap_{i \in \alpha} ker(\pi_i \phi) \subseteq \ker \phi = 0$. Since X is uniform then $ker(\pi_i \phi) = 0$, and thus N embeds in X, proving that X is tight. By Corollary 2.5, X is weakly injective in \mathcal{K} . The other case is similar. \Box

Lemma 2.8. Let \mathcal{K} be a Serre class. Then every tight module in \mathcal{K} is weakly injective in \mathcal{K} .

PROOF. The proof follows from [16, Theorem 2.8].

In [18], it is shown that any semisimple module is a direct summand of a weakly injective module, the next lemma shows that in fact any module is a direct summand of a weakly injective module.

Theorem 2.9. Every module in \mathcal{K} is a direct summand of a weakly injective module in \mathcal{K} .

PROOF. For any module $X \in \mathcal{K}$, $L = X \oplus (E_{\mathcal{K}}(X))^{(\alpha)}$, where α is an infinite cardinal, is weakly injective in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(L) = (E_{\mathcal{K}}(X))^{(\alpha)}$. Then N is contained in $(E_{\mathcal{K}}(X))^{(n)}$, for some finite n. Since $X \subseteq E_{\mathcal{K}}(X)$, there exists $M \subseteq E_{\mathcal{K}}(X)$ such that $X \simeq M$. Let $Y = (E_{\mathcal{K}}(X))^{(\alpha)} \oplus M \oplus (E_{\mathcal{K}}(X))^{(n)} \subseteq L$. Then $N \subseteq Y \simeq L$, proving that L is weakly injective. \Box

Theorem 2.9 answers an open question in [16] and generalizes 2.12, 2.13, 2.14, in [16], 2.1, 2.2., and 2.3 in [18].

- **Example 2.10.** (i) [16, Example 2.11], [18]. Let R be the ring of endomorphisms of an infinite dimensional vector space V over a field F. Then $M = Soc(R_R) \oplus R$ is tight but not weakly injective.
- (ii) [4]. Let R = Z and $X = (Q/Z) \oplus (Z/pZ)$. Then X is weakly tight in $\sigma[M]$ but not tight.

(iii) [16, Example 4.4(d)]. Let F be a field. Then $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ is weakly

injective but the summand $S = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ as an *R*-module is not weakly injective.

The above results show that the classes of weakly injective, tight, and weakly tight modules are quite large.

A Serre class \mathcal{K} is called *weakly semisimple (weakly R-semisimple)* iff every module $N \in \mathcal{K}$ is weakly injective (weakly *R*-injective) in \mathcal{K} . As a direct applications of the above results, we state the following characterizations of semisimple and weakly (*R*-)semisimple modules in terms of weak injectivity, tightness, and weak tightness without proof.

Theorem 2.11. For a Serre class \mathcal{K} , the following are equivalent:

- (a) \mathcal{K} is semisimple;
- (b) every weakly injective module in \mathcal{K} is (quasi-)discrete;
- (c) every weakly injective module in \mathcal{K} is (quasi-)continuous;

(d) every direct summand of a weakly injective module in K is quasi-injective in K.

Theorem 2.12. For a Serre class \mathcal{K} , the following are equivalent:

- (a) \mathcal{K} is weakly semisimple (resp., weakly *R*-semisimple);
- (b) every direct summand of a weakly injective (or tight, weakly tight) (resp., weakly R-injective) (or R-tight, weakly R-tight) module in K is weakly injective (or tight, weakly tight) (resp., weakly R-injective) (or R-tight, weakly R-tight) in K.

In case $\mathcal{K} = R$ in the above two theorems we get characterizations of semisimple, weakly semisimple, and weakly *R*-semisimple rings.

3. Direct sums of classes of modules.

For a module X_R and a module property $I\!\!P$, X is said to be $\sum -I\!\!P$ in case every direct sum of copies of X enjoys the property $I\!\!P$. A class \mathcal{K} of modules is called a Serre class if it is closed under submodules, factor modules and extensions. The class $\sigma[M]$ is a Serre class [4].

Theorem 3.1. For a Serre class \mathcal{K} , the following implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f)$ always hold.

- (a) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of injectives in \mathcal{K} is weakly injective in \mathcal{K} ;
- (b) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of weakly injective modules in \mathcal{K} is weakly injective in \mathcal{K} ;
- (c) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of weakly injective modules in \mathcal{K} is tight in \mathcal{K} ;
- (d) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of tight modules in \mathcal{K} is tight in \mathcal{K} ;
- (e) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of tight modules in \mathcal{K} is weakly tight in \mathcal{K} ;
- (f) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of weakly tight modules in \mathcal{K} is weakly tight in \mathcal{K} .

PROOF. (a) \Rightarrow (b). Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of weakly injective modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X)$. By (a), the direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ is weakly injective in \mathcal{K} and $X = \bigoplus_{\Lambda} M_{\lambda} \subseteq' \bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}) \subseteq' E_{\mathcal{K}}(\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}))$. Thus by (a) there exists a submodule $Y \subseteq E_{\mathcal{K}}(\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}))$ such that $N \subseteq Y \cong \bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$. Write $Y = \bigoplus_{\Lambda} E_{\mathcal{K}}(Y_{\lambda})$, where $Y_i \cong M_i, i \in \Lambda$. Since N is finitely generated, there exists a finite subset $\Gamma = \{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$ such that $N \subseteq \bigoplus_{\Gamma} E_{\mathcal{K}}(Y_{\lambda}) = E_{\mathcal{K}}(\bigoplus_{\Gamma}(Y_{\lambda}))$. Since Y_{λ_1} ,..., Y_{λ_m} are weakly injective in \mathcal{K} , the finite direct sum $Y_{\lambda_1} \oplus \cdots \oplus Y_{\lambda_m}$ is weakly injective in \mathcal{K} . Therefore, there exists $X_1 \cong \bigoplus_{\Gamma} Y_{\lambda} \cong \bigoplus_{\Gamma} M_{\lambda}$ such that $N \subseteq X_1 \subseteq E_{\mathcal{K}}(\bigoplus_{\Gamma} Y_{\lambda})$. Thus $N \subseteq X_1 \oplus \bigoplus_{\lambda \notin \Gamma} Y_{\lambda} \simeq X$, proving that X is weakly injective in \mathcal{K} . $(c) \Rightarrow (d)$. Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of tight modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X) = E_{\mathcal{K}}(\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}))$. By (c) the direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ is tight in \mathcal{K} . Thus N embeds in $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ via a monomorphism, say, φ . Also $\varphi(N)$ is finitely generated and thus $N \subset E_{\mathcal{K}}(M_{\lambda_1}) \oplus \cdots \oplus E_{\mathcal{K}}(M_{\lambda_m}) = \bigoplus_{\lambda=1}^{\lambda=m} E_{\mathcal{K}}(M_{\lambda})$ for some finite $\{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$. Since $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$ is tight then $N \simeq \varphi(N)$ embeds in the finite direct sums $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$, proving that X is tight in \mathcal{K} .

 $(e) \Rightarrow (f)$. Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of weakly tight modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X) = E_{\mathcal{K}}(\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}))$. By (e) the direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ is weakly tight in \mathcal{K} . Thus N embeds in $(\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda}))^{(\aleph_0)}$ via a monomorphism, say, φ . Also $\varphi(N)$ is finitely generated and thus $N \subset E_{\mathcal{K}}(M_{\lambda_1}) \oplus \cdots \oplus E_{\mathcal{K}}(M_{\lambda_m}) = \bigoplus_{\lambda=1}^{\lambda=m} E_{\mathcal{K}}(M_{\lambda})$ for some finite $\{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$. Since $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$ is weakly tight then $N \simeq E_{\mathcal{K}}(N)$ embeds in a direct sums of copies of $(M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m})$ and thus embeds in a direct sums of X, proving that X is weakly tight in \mathcal{K} .

Clearly, $(b) \Rightarrow (c)$ and $(d) \Rightarrow (e)$.

The next theorem provides several characterizations of a Serre class \mathcal{K} which extends the main results in [24, Theorem 2.7, Corollary 2.8], [25, Theorem 1.10, Theorem 1.11]. Consequently, we get the main result in [2, Theorem] as a corollary to the main results of this section.

Theorem 3.2. For a Serre class \mathcal{K} , the following conditions are equivalent:

- (a) every cyclic module in \mathcal{K} has finite uniform dimension;
- (b) every finitely generated module in \mathcal{K} has finite uniform dimension;
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of injectives in \mathcal{K} is weakly injective in \mathcal{K} ;
- (d) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of tight modules in \mathcal{K} is tight in \mathcal{K} ;
- (e) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of weakly tight modules in \mathcal{K} is weakly tight in \mathcal{K} ;
- (f) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of weakly tight modules in \mathcal{K} is weakly N-tight \mathcal{K} , for every cyclic module N in \mathcal{K} ;
- (g) every direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(P_{\lambda})$, where P_{λ} is simple in \mathcal{K} , is weakly N-tight in \mathcal{K} , for every cyclic module N in \mathcal{K} .

PROOF. $(a) \Rightarrow (b)$. Follows by an argument similar to that in [7].

 $(b) \Rightarrow (c)$. Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of injective modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X)$. By (b), N contains as an essential submodule a finite direct sum of uniform submodules $\bigoplus_{\Lambda} U_{\lambda}$. Since X is essential in $E_{\mathcal{K}}(X)$, for each i, choose $0 \neq x_i \in U_i \cap X$. Then $\bigoplus_{i=1}^{i=n} x_i R \subseteq \bigoplus_{i=1}^{i=n} M_{\lambda_i}$ for some λ'_i s and $\bigoplus_{i=1}^{i=n} x_i R \subseteq' \bigoplus_{\Lambda} U_{\lambda} \subseteq' N$. It follows

that $\bigoplus_{i=1}^{i=n} M_{\lambda_i}$ contains an \mathcal{K} -injective hull E of $\bigoplus_{i=1}^{i=n} x_i R$. Since E is injective in \mathcal{K} and contained in X, we may write $X = E \oplus K$, for some submodule K of X. On the other hand, let $E_{\mathcal{K}}(N)$ be an \mathcal{K} -injective hull of N in $E_{\mathcal{K}}(X)$. Then $E_{\mathcal{K}}(N) = E_{\mathcal{K}}(\bigoplus_{i=1}^{i=n} x_i R \cong E)$. Since $\bigoplus_{i=1}^{i=n} x_i R$ is essential in $E_{\mathcal{K}}(N)$, it follows that $E_{\mathcal{K}}(N) \cap K = 0$. So let $Y = E_{\mathcal{K}}(N) \oplus K \cong E \oplus K = X$. Then $N \subseteq Y \cong X$, proving that X is weakly injective in \mathcal{K} .

 $(c) \Rightarrow (d)$. Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of tight modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X)$. By (c) the direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ is tight in \mathcal{K} and thus N embeds in $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ via a monomorphism, say, φ . Also $\varphi(N)$ is finitely generated and thus $N \subset E_{\mathcal{K}}(M_{\lambda_1}) \oplus \cdots \oplus$ $E_{\mathcal{K}}(M_{\lambda_m})$ for some finite $\{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$. Since $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$ is tight then $N \simeq \varphi(N)$ embeds in $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$ and thus embeds in X, proving that X is tight \mathcal{K} .

 $(d) \Rightarrow (e)$. Consider the module $X = \bigoplus_{\Lambda} M_{\lambda}$ a direct sum of weakly tight modules in \mathcal{K} . Let N be a finitely generated submodule of $E_{\mathcal{K}}(X)$. By (d)the direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ is tight in \mathcal{K} . Thus N embeds in $\bigoplus_{\Lambda} E_{\mathcal{K}}(M_{\lambda})$ via a monomorphism, say, φ . Also $\varphi(N)$ is finitely generated and thus $N \subset E_{\mathcal{K}}(M_{\lambda_1}) \oplus$ $\cdots \oplus E_{\mathcal{K}}(M_{\lambda_m})$ for some finite $\{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$. Since $M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m}$ is weakly tight then $N \simeq \varphi(N)$ embeds in a finite direct sums of $(M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m})$ and thus embeds in a finite direct sums of X, proving that X is weakly tight in \mathcal{K} .

Clearly, $(e) \Rightarrow (f) \Rightarrow (g)$.

 $(g) \Rightarrow (a)$. Let *C* be a cyclic module in \mathcal{K} , and suppose *C* is not finite dimensional. Then *C* contains an essential submodule which is a direct sum of infinitely many nonzero uniform submodules $\bigoplus_{\Lambda} U_{\lambda}$. Then $E_{\mathcal{K}}(C) = \bigoplus_{\Lambda} E_{\mathcal{K}}(U_{\lambda})$ = $E_{\mathcal{K}}(\bigoplus_{\Lambda} E_{\mathcal{K}}(U_{\lambda}))$. By $(g), \bigoplus_{\Lambda} E_{\mathcal{K}}(U_{\lambda})$ is weakly *C*-tight. Therefore, *C* is embeddable in $(\bigoplus_{\Lambda} E_{\mathcal{K}}(U_{\lambda}))^{(\aleph_0)}$. Then *C* is embeddable in $\bigoplus_{\Gamma} E_{\mathcal{K}}(U_{\lambda})$, for some finite subset $\Gamma = \{\lambda_1, ..., \lambda_m\} \subseteq \Lambda$. Thus $E_{\mathcal{K}}(C)$ embeds in $\bigoplus_{\Gamma} E_{\mathcal{K}}(U_{\lambda})$, showing that $U_{\lambda} = 0$ for all $\lambda \notin \Gamma$, a contradiction.

Combining Theorem 3.1 and Theorem 3.2 we get the following

Theorem 3.3. For a Serre class \mathcal{K} , the following conditions are equivalent:

- (a) every cyclic module in \mathcal{K} has finite uniform dimension;
- (b) every finitely generated module in \mathcal{K} has finite uniform dimension;
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of injectives in \mathcal{K} is weakly injective (or tight, weakly tight, Weakly R-injective, R-tight, weakly R-tight) in \mathcal{K} ;
- (d) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of weakly injectives in \mathcal{K} is weakly injective (or tight, weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight) in \mathcal{K} ;

- (e) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of tight modules in \mathcal{K} is tight (or weakly tight, *R*-tight, weakly *R*-tight) in \mathcal{K} ;
- (f) every direct sum $\bigoplus_{\Lambda} M_{\lambda}$ of weakly tight modules in \mathcal{K} is weakly tight (or weakly *R*-tight) in \mathcal{K} ;
- (g) every direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(P_{\lambda})$, where P_{λ} is simple in \mathcal{K} , is weakly N-tight for every cyclic module N in \mathcal{K} ;
- (h) every direct sum $\bigoplus_{\Lambda} E_{\mathcal{K}}(P_{\lambda})$, where P_{λ} is simple in \mathcal{K} , is weakly R-tight in \mathcal{K} .

Taking $\mathcal{K} = \sigma[M]$, *M*-singular modules in $\sigma[M]$ in Theorem 3.3 we get [24, Theorem 2.7, Corollary 2.8], [25, Theorem 1.10] as a corollary. Recall that a module *M* is called *q.f.d.(g.q.f.d.)* if every finitely *M*-generated (every finitely *M*-generated *M*-singular) module in $\sigma[M]$ has finite uniform dimension.

Corollary 3.4. [24, Theorem 2.7] For a module M_R , the following conditions are equivalent:

- (a) *M* is q.f.d.;
- (b) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of injectives in $\sigma[M]$ is weakly injective (or tight, weakly tight, weakly R-tight, R-tight, weakly R-tight) in $\sigma[M]$;
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of weakly injective in $\sigma[M]$ is weakly injective (or tight, weakly tight, weakly R-tight, R-tight, weakly R-tight) in $\sigma[M]$;
- (d) every direct sum of tight modules in σ[M] is tight (or weakly tight, R-tight, weakly R-tight) in σ[M];
- (e) every direct sum of weakly tight modules in σ[M] is weakly tight (or weakly R-tight) in σ[M];
- (f) every direct sum $\bigoplus_{\Lambda} \widehat{P_{\lambda}}$, where each P_{λ} is simple, is weakly N-tight for every cyclic module N in $\sigma[M]$;
- (g) every direct sum $\bigoplus_{\lambda} \widehat{P_{\lambda}}$, where each P_{λ} is simple, is weakly R-tight in $\sigma[M]$.

Corollary 3.5. [25, Theorem 1.10] For a module M_R , the following conditions are equivalent:

- (a) M is g.q.f.d.;
- (b) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of nonsingular injectives in $\sigma[M]$ is weakly injective (or tight, weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight) in $\sigma[M]$;
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of nonsingular weakly injective in $\sigma[M]$ is weakly injective (or tight, weakly tight, weakly R-injective, R-tight, weakly R-tight) in $\sigma[M]$;
- (d) every direct sum of nonsingular tight modules in $\sigma[M]$ is tight (or weakly tight, *R*-tight, weakly *R*-tight) in $\sigma[M]$;

- (e) every direct sum of nonsingular weakly tight modules in $\sigma[M]$ is weakly tight (or weakly R-tight) in $\sigma[M]$;
- (f) every direct sum $\bigoplus_{\Lambda} \widehat{P_{\lambda}}$, where each P_{λ} is nonsingular simple, is weakly N-tight for every cyclic module N in $\sigma[M]$;
- (g) every direct sum $\bigoplus_{\Lambda} \widehat{P_{\lambda}}$, where each P_{λ} is nonsingular simple, is weakly *R*-tight in $\sigma[M]$.

In case $M = R_R$ in Corollaries 3.4, 3.5 we obtain characterizations of q.f.d. rings that generalizes Theorem 2.6 and Corollary 2.7 in [29] and the main theorem in [2].

Corollary 3.6. [24, Corollary 2.8] For a ring R, the following conditions are equivalent:

- (a) R is q.f.d.;
- (b) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of injectives is weakly injective (or tight, weakly tight);
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of weakly injective is weakly injective (or tight, weakly tight);
- (d) every direct sum of tight modules is tight (or weakly tight);
- (e) every direct sum of weakly tight module is weakly tight (or weakly R-tight);
- (f) every direct sum $\bigoplus_{\Lambda} E(P_{\lambda})$, where each P_{λ} is simple, is weakly N-tight for every cyclic module N;
- (g) every direct sum $\bigoplus_{\Lambda} E(P_{\lambda})$, where each P_{λ} is simple, is weakly R-tight.

Corollary 3.7. [25, Theorem 1.11] For a module M_R , the following conditions are equivalent:

- (a) R is g.q.f.d.;
- (b) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of nonsingular injectives is weakly injective (or tight, weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight);
- (c) every direct sum $\bigoplus_{\Lambda} E_{\lambda}$ of nonsingular weakly injective is weakly injective (or tight, weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight);
- (d) every direct sum of nonsingular tight modules is tight (or weakly tight, R-tight, weakly R-tight);
- (e) every direct sum of nonsingular weakly tight modules is weakly tight (or weakly R-tight);
- (f) every direct sum $\bigoplus_{\Lambda} E(P_{\lambda})$, where each P_{λ} is nonsingular simple, is weakly N-tight for every cyclic module N;
- (g) every direct sum $\bigoplus_{\Lambda} E(P_{\lambda})$, where each P_{λ} is nonsingular simple, is weakly *R*-tight.

A class \mathcal{K} is called q.f.d. if every cyclic module in \mathcal{K} has finite uniform dimension or equivalently if it satisfies any of the equivalent conditions in Theorem 3.3.

Theorem 3.8. A q.f.d. Serre class \mathcal{K} is weakly semisimple (weakly *R*-semisimple) iff every uniform cyclic in \mathcal{K} is weakly injective or tight, or weakly tight (resp., weakly *R*-injective, or *R*-tight, or weakly *R*-tight) in \mathcal{K} .

PROOF. Since \mathcal{K} is *q.f.d.* it follows that any X in \mathcal{K} contains as an essential submodule a finite direct sums of cyclic uniforms and thus weakly injective (resp., tight, or weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight) submodules and thus the sum is weakly injective (resp., tight, or weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight). By Lemma 2.6, it follows that X is weakly injective (resp., tight, or weakly tight, weakly *R*-injective, *R*-tight, weakly *R*-tight) in \mathcal{K} , proving that \mathcal{K} is weakly semisimple (resp., weakly *R*-semisimple). The converse is trivial.

A module X in \mathcal{K} is called compressible (resp., *R*-compressible) if it is embeddable in its essential (cyclic essential) submodules. A module X in \mathcal{K} is called strongly compressible (resp., strongly *R*-compressible) if for essential (cyclic essential) submodule N of X there exists $Y \subseteq E_{\mathcal{K}}(X)$ such that $X \subseteq Y \simeq N$.

Lemma 3.9. Let \mathcal{K} be a Serre class. Then every (uniform)cyclic in \mathcal{K} is weakly injective (or tight, or weakly tight) (resp., weakly R-injective or R-tight, weakly R-tight) in \mathcal{K} iff every (uniform) cyclic is compressible (R-compressible).

PROOF. Let X be a uniform cyclic module and let N be an essential submodule of X. By weak tightness of X, it follows that X is embeddable in N, proving that X is compressible. Conversely, assume X is a uniform cyclic and thus a compressible module. Let xR be a cyclic submodule of $E_{\mathcal{K}}(X)$. Since $xR \cap X$ is an essential submodule of xR, xR embeds in $xR \cap X$, and thus embeds in X, proving that X is tight and thus by Lemma 2.6 it is weakly injective in \mathcal{K} . Similarly for the other case.

Lemma 3.10. Let \mathcal{K} be a Serre class, and let $X \in \mathcal{K}$ be finite dimensional. Then X is compressible iff X is strongly compressible.

PROOF. Let X be compressible and let N be an essential submodule of X. Then X embeds in N via, say, φ . Thus φ is extended by $\psi : E_{\mathcal{K}}(N) \to E_{\mathcal{K}}(X)$. Since X is finite dimensional, ψ is an isomorphism. Let $Y = \psi^{-1}(X) \subseteq E_{\mathcal{K}}(N)$. Then $X \subseteq Y \simeq N$, proving that X is strongly compressible.

Theorem 3.11. For a Serre class \mathcal{K} , the following conditions are equivalent:

- (a) \mathcal{K} is weakly semisimple;
- (b) K is q.f.d. and every finitely generated module in K is weakly injective (tight, weakly tight) in K;
- (c) K is q.f.d. and every cyclic module in K is weakly injective (tight, weakly tight) in K;
- (d) K is q.f.d. and every uniform cyclic module in K is weakly injective (tight, weakly tight) in K;
- (e) \mathcal{K} is q.f.d. and every uniform cyclic module in \mathcal{K} is compressible;
- (f) \mathcal{K} is q.f.d. and every uniform finitely generated module in \mathcal{K} is compressible;
- (g) \mathcal{K} is q.f.d. and every uniform finitely generated module in \mathcal{K} is strongly compressible;
- (h) \mathcal{K} is q.f.d. and every finitely generated module in \mathcal{K} is strongly compressible.

PROOF. $(a) \Rightarrow (b)$. Follows from Theorem 3.3.

Clearly, $(b) \Rightarrow (c) \Rightarrow (d)$, and $(f) \Rightarrow (e)$, $(d) \iff (e)$ by Lemma 3.9

 $(d) \Rightarrow (f)$. Let N be a finitely generated module in \mathcal{K} and let $K \subset' N$. Since \mathcal{K} is q.f.d., N has finite uniform dimension. Thus there exists cyclic uniform submodules $U_i, i = 1, ..., n$, of N such that $\bigoplus_{i=1}^{i=n} U_i \subset' K \subset N$. Since each U_i is uniform it follows that each U_i is weakly injective in \mathcal{K} and thus $\bigoplus_{i=1}^{i=n} U_i$ is weakly injective in \mathcal{K} and thus $D_i = 0$ is uniform it \mathcal{K} . Lemma 2.6 implies that K is weakly injective in \mathcal{K} and thus N embeds in K, proving that N is compressible.

 $(d) \Rightarrow (a)$. Follows from Theorem 3.8.

As a consequence of Theorem 3.11 we get Theorem 3.1 in [8].

In case $\mathcal{K} = R$ we obtain characterizations of weakly semisimple rings that generalizes those known results.

Corollary 3.12. For a ring R, the following conditions are equivalent:

- (a) R is weakly semisimple;
- (b) R is q.f.d. and every finitely generated module is weakly injective (tight, weakly tight);
- (c) R is q.f.d. and every cyclic module in is weakly injective (tight, weakly tight);
- (d) R is q.f.d. and every uniform cyclic module in is weakly injective (tight, weakly tight);
- (e) R is q.f.d. and every uniform cyclic module is compressible;
- (f) R is q.f.d. and every uniform finitely generated module is compressible;
- (g) R is q.f.d. and every uniform finitely generated module is strongly compressible;
- (h) R is q.f.d. and every finitely generated module is strongly compressible.

Following similar arguments as in Theorem 3.11, we get

Theorem 3.13. For a Serre class \mathcal{K} , the following conditions are equivalent:

- (a) \mathcal{K} is weakly *R*-semisimple;
- (b) K is q.f.d. and every finitely generated module in K is weakly R-injective (R-tight, weakly R-tight) in K;
- (c) K is q.f.d. and every cyclic module in K is weakly R-injective (R-tight, weakly R-tight) in K;
- (d) K is q.f.d. and every uniform cyclic module in K is weakly R-injective (R-tight, weakly R-tight) in K;
- (e) \mathcal{K} is q.f.d. and every uniform cyclic module in \mathcal{K} is R-compressible;
- (f) \mathcal{K} is q.f.d. and every uniform finitely generated module in \mathcal{K} is R-compressible;
- (g) \mathcal{K} is q.f.d. and every uniform finitely generated module in \mathcal{K} is strongly *R*-compressible;
- (h) \mathcal{K} is q.f.d. and every finitely generated module in \mathcal{K} is strongly R-compressible.

In case $\mathcal{K} = R$ we obtain characterizations of weakly *R*-semisimple rings that generalizes those known results.

Corollary 3.14. For a ring R, the following conditions are equivalent:

- (a) R is weakly R-semisimple;
- (b) R is q.f.d. and every finitely generated module is weakly R-injective (R-tight, weakly R-tight);
- (c) R is q.f.d. and every cyclic module is weakly R-injective (R-tight, weakly R-tight);
- (d) R is q.f.d. and every uniform cyclic module is weakly R-injective (R-tight, weakly R-tight);
- (e) R is q.f.d. and every uniform cyclic module is R-compressible;
- (f) R is q.f.d. and every uniform finitely generated module is R-compressible;
- (g) R is q.f.d. and every uniform finitely generated module is strongly R-compressible;
- (h) R is q.f.d. and every finitely generated module is strongly R-compressible.

References

- [1] T. Albu and C. Nastasescu, Relative Finiteness in Module Theory, Marcel Dekker 1984.
- [2] A. Al-Huzali, S. K. Jain and S. R. L'opez-Permouth, Rings whose cyclics have finite Goldie dimension, J. Algebra 153(1992) 37-40.
- [3] D. Berry, Modules whose cyclic submodules have finite dimension, Can. Math. Bull., 19(1976) 1-6.

- [4] G. Brodskii, M. Saleh, L. Thuyet, and R. Wisbauer, On weak injectivity of direct sums of modules, Vietnam J. Math., 26 (1998) 121-127.
- [5] G. Brodskii, Denumerable distributivity, linear compactness and the AB5^{*} condition in modules, Russian Acad. Sci. Dokl. Math., 53(1996) 76-77.
- [6] G. Brodskii, The Grothendieck condition AB5* and generalizations of module distributivity, Russ. Math. 41 (1997) 1-11.
- [7] V. P. Camillo, Modules whose quotients have finite Goldie dimension, Pacific J. Math., 69(1977) 337-338.
- [8] S. Dhompong, J. Sanwong, S. Plubtieng, and H. Tansee, On modules whose singular subgenerated modules are weakly injective, Algebra Colloq. 8 (2001) 227-236.
- [9] C. Faith, Algebra I: Rings, Modules, and Categories, Springer-Verlag, 1981.
- [10] V.K. Goel, and S. K. Jain, π -injective modules and rings whose cyclic modules are π -injective, Comm. Algebra, 6 (1978) 59-73.
- [11] J. S. Golan and S. R. Lop'ez -Permouth, QI-filters and tight modules, Comm. Algebra, 19(1991) 2217-2229.
- [12] S. K. Jain, S. R. Lopez -Permouth, Rings whose cyclics are essentially embeddable in projective modules, J. Algebra, 128(1990) 257-269.
- [13] S. K. Jain, S. R. Lop'ez -Permouth and M. Saleh, On weakly projective modules, In: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, 200-208.
- [14] S. K. Jain, S. R. Lopez-Permouth, K. Oshiro and M. Saleh, Weakly projective and weakly injective modules, Can. J. Math., 34(1994) 972-981.
- [15] S. K. Jain, S. R. Lopez -Permouth and S. Singh, On a class of QI-rings, Glasgow J. Math., 34(1992) 75-81.
- [16] S. K. Jain, and S. R. Lopez-Permouth, A survey on the theory of weakly injective modules, In: Computational Algebra, 205-233, Lecture notes in pure and applied mathematics, Marcel Dekker, Inc., New York, 1994.
- [17] A. P. Kurshan, Rings whose cyclic modules have finitely generated socle, J. Algebra, 14(1970) 376-386.
- [18] S. R. Lopez-Permouth, Rings characterized by their weakly injective modules, Glasgow Math. J, 34(1992) 349-353.
- [19] S. Malik and N. Vanaja, Weak relative injective M-subgenerated modules, Advances in Ring Theory, Birkhauser, 1997, 221-239.
- [20] S. Mohamed, B. Muller, and S. Singh, *Quasi-dual continuous modules*, J. Austral, Math. Soc., Ser A **39**(1985) 287-299.
- [21] M. Saleh and A. Abdel-Mohsen, On weak injectivity and weak projectivity, In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196-207.
- [22] M. Saleh, A note on tightness, Glasgow Math. J., 41(1999) 43-44.
- [23] M. Saleh and A. Abdel-Mohsen, A note on weak injectivity, FJMS, 11(2)(2003) 199-206.
- [24] M. Saleh, On g.f.d. modules and g.f.d. rings, Houston J.M., to appear.
- [25] M. Saleh, S.K. Jain, ans S. R. Lopez -Permouth, On generalized q.f.d. modules, to appear.
- [26] N.V. Sanh, K.P. Shum, S. Dhompongsa, and S. Wongwai, On quasi-principally injective modules, Algebra Colloq. 6(1999) 296-276.

MOHAMMAD SALEH

- [27] N.V. Sanh, S. Dhompongsa, and S. Wongwai, On generalized q.f.d. modules and rings, Algebra and Combinatorics, (1999) 367-272.
- [28] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
- [29] Y. Zhou, Notes on weakly semisimple rings, Bull. Aust. Math. Soc., 52(1996) 517-525.
- [30] Y. Zhou, Weak injectivity and module classes, Comm. Algebra, 25(1997) 2395-2407.

Received April 1, 2003

Department of Mathematics, Birzeit University, P.O.Box 14, West Bank, Palestine E-mail address: msaleh@birzeit.edu

720