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ON AN INVERSE DIFFUSION PROBLEM”
ALAEDDIN ELAYYAN? AND VICTOR ISAKOVT

Abstract. In many applications, such as the heat conduction and hydrology, there is a need to
recover the (possibly discontinuous) diffusion coefficient a from boundary measurements of solutions
of a parabolic equation. The complete inverse problem is ill posed and nonlinear, so numerical
solution is quite difficult, and we linearize the problem around constant a. We study and solve
numerically the linear ill-posed problem by using regularization.
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Introduction. We consider the inverse problem of finding the pair (u,a) for the
Cauchy problem '

(0.1) uy — div{aVu) = §(z — z*) 6(t) on R" x (0, T), u bounded,
(0.2) uw=0 onR"x {0},

where o = a(z) is bounded and measurable and § is the Dirac delta function. We
assume that @ = 1+ f; where f = 0 outside a bounded region § C R™ with piecewise
(2-smooth boundary 8. As additional data we consider the solution u(z, £; £*) given
for z, z* € ¥, t € (0,T). Here Q" is a bounded domain in R™ whose closure does
not intersect. {2. ' .

In applications, z* is the source position and z the receiver/sensor position. In

. addition, in many applications instead of the Cauchy problem with changing source, a

more natural model is a parabolic initial boundary value problem in domain €2* when
they prescribe various Dirichlet. (or Neumann) data on 2 lateral boundary 941° x (0,7
and measure the lateral Neumann (or Dirichlet) data. In other words, for the homoge-
neous equation (0.1) one is given the lateral Dirichlet-to-Neumann map. Uniqueness
of solution of this inverse problem is discussed in the paper [I2] and Elayyan and
Isakov [EI] study discontinuous a in detail. Since one of our goals is to suggest an
efficient numerical algorithm and since we feel that a basic cbstruction for efficient
numerics is (apparent) severe ill-posedness of this inverse problem, we try to simplify
the nonlinear inverse problem in two ways: (1) linearizing it around & = 1 and (2)
replacing a finite domain €2 (where a is actually unknown) by R™. The linearization is
used in practical ways in many elliptic inverse problems (say, in electrical impedance
tomography [CI], [SV]), and we give some mathematical justification of it in section
1. On the other hand, in section 4 we will show that the lateral Dirichlet-to-Neumann -
map completely determines the data of our problem (for all z* € ") in a stable
and constructive way. So we can split the solution to this ill-posed”problem into a
simpler linear ill-posed part and a well-posed part. In section 2 we prove uniqueness
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for the linearized inverse problem, and in section 3 we describe results of OUur numer-
ical experiments. These experiments show that our scheme {with possible technical
modifications) can be used, for example, in a very important inverse problem of un-
derground hydraulics [Y], which is solved at present by extremely expensive methods
including boring holes in the ground.

In the paper C will denote (possibly) different constants depending only on n, 0,
and T. v denotes the exterior unit normal to the boundary and || ||,(E) the norm in
Lp(E). Later on we let Q = R™ x (0, 7).

1. Linearization. Assume ¢ = 1 + fo f=01in R™\Q, where [ is “e-small” as
described in Lemma 1.1. Let u be the solution to (0.1), (0.2). Letting v, = u, — Uy
and substituting for u, in (0.1}, (0.2), we get

(1.1) ot + Ve — div((1 + f)V(up + ve)) = 6(z — z*}é(t—0) on @,

(1.2) ve =0 onR" x {0}.

Let up be a solution of the unperturbed problem

(1.3) Ugr — Ny = 6(3:—:::*)5(1&—0) on @,
(1.4} uo =0 onR" x {0}.

Then

(1.5) Ver — Ave = div(fVuy) + div(fVv,) on Q,

(1.6) ve=0 on R" x {0].

We will show that for small e the nonlinear term in (1.5) (which is the _seconl;i?term

in the right-hand side) is small relative to the first term. By dropping it we get the
linearized equation

(1.7) vy — Av = div(fVug) on Q,
(1.8) v=0 onR"x {0}.
We will make use of the notation in [LSUJ
4l = ess sup [lu( , 8)il2(0) + | Voul2(Q),

where the sup is taken over 0 <t<T. ) ?
LEMMA L1. Let || flloo{$2) < €. Then [v| < G and |v — ve] < CZ.
Proof. Subtracting (1.3), (1.4) from (1.1}, (1.2), we get

(1.9) Vet — div(aVv.) = div(fVug) on Q,
(1.10) ve=0 onR"x {0}.

As is well known, the solution Uo to the problem (1.3), (1.4) is given by the
formula

* _ al2
(1.11) ug(z,t) = (4—7;)}72—8}(1) (ﬁ | - x| ) .

Since z* ¢ O*, uq is smooth and continuous on £} x 0,7, so

I Vuoll2(Q) < Ol Flloo () < Ce.
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""'Using [L.SU, Theorem 2.1, p. 143] (where '.Lj)om_ 0

f
by fOu,), we get s

(1.12) Vel < Cllf Vuugl|2(Q) < Ce.
Now subtracting (1.7), (1.8} from (1.5), (1.6), we get

(1.13) {ve ~v)s = V(v —v) = div(fVv.) on Q,
(1.14) ve—-v=0 onR"x {0}

Using the same theorem from [LSU] we obtain

IUE - TJF < OvaveH?(Q) < 0627

where we did use (1.12). -
To complete the proof we observe that

[ol < foe] + v = v] < Ce.

Remark 1.2. Some justification of the linearization
perturbations that are not uniformly
plications when one is looking for sh
volume.

More precisely, let f = px{D), where D is an open subset of Q and 1 is a function
that is C*-smooth on D and assume that

is available for more special
small and that are more natural in those ap-
apes of unknown inclusions of relatively small

(1.15) area 0D < C, lull(CHO)) < C, vol D = ¢ is small

=

and

1
dist(>, 80) > =,
ist( )= -
Again, we have the first inequality (1.12). But now

T .
1 Vu0l2(Q) :fQ 1 V|2 < cfo fD 2 dzdt < C vol D < Ce,
50
[ve] < Cel/2.

The classical integral representation of a solution to the Cauchy problem (1.5),
(1.6) (explained in more detail below) gives

13
Ve{Z,8) = _fo [D#vyr(:c, L) Viug(y, 7) + vely, 7)) dy dr.

Using the above estimate and the Holder inequality for integrals over (0,t) x D, one
can show that Jjve||((0,) x D) < Ce. Integrating by parts we obtain

vele, 1) = fo / VoV, (@, Gy, 7)) ly, 7 + vy, 7)) dy dr

¢
- f f uayl"(x,t;y,T)(ug(y,T)+'Ue(y=7’)} dy dr.
0 Jobp .
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According to formula {1.11), s(z,t) > &) > 0. So the integrals above that iavolve
U, are much smaller than the integrals involving ..

Now we will discuss an integral representation of a solution to the Cauchy problem
(1.7), (1.8). If f is a (C2-)smooth compactly supported function, then according to
(1,

t
v(z, 1) :f / D(z.t;y,7) div fVu,(y, 7) dydr,
o JR® .

where

| o
(1.16) If’(a;,t;y,T)=Wexp(—l§t_yl)>, ZERY, t>T

is a fundamental solution of the heat equation. Integrating by parts we obtain

£
(L.17} v(m,t) = —f fly, V(@ by, 7) Vyuoly, T) dy dr.
0 JR" ’

If f € Loo{R), we can approximate It (in L1(9)} by smooth unformly bounded f;
use (1.17) and extend it to our less regular f by passing to the limit. Using the
formula (1.16) for T’ and the formula {1.11) for u,, we obtain the following integral
representation

v(z, t;2")

_ 1 £ EM v 1$—y|2 |z* _.,ylz ] -
= _(4)n-i17rn]0 /nf(y) {T(t—r))n/zﬂ exp (.—4@ e Iy ),dyd'r.

Since our unknown function f is of n variables, we'd like to reduce the overdetermi-
nancy of the inverse problem by letting z = z* and t = T. Finally, we formulate the
following problem. -

THE LINEARIZED INVERSE PROBLEM. Find a function f € Leo(£2) given the func-
tion F(z*) = v(z*,T;2*), z° € Q" _

This formulation is motivated also by backscattering and is very reasonable phys-
ically. It means that measurements are implemented only at the point z* where 2
source has been applied but at some later. point in fime. The physical reduction
of overdeterminancy is important because less {sometimes expensive) measurements
are needed. Mathematically, this reduction is especially desirable because due to ill-
posedness of the inverse diffusion problem one has to minimize propagation of errors.

As follows from representation (1.18), this inverse problem is equivalent to the
following integral equation

(1.18)

(1.19) Af(z) = F{z), xz e,

where Af(z) = [, k(z — y)f(y) dy, and the kernel & is defined as

I Y A i |o*T
(120) k&) = ~gi3m fo (T = /ot P (%(T - f)> o

A is considered as an operator from Lg(Q?) into Ly(€2*). The above equation is a
Fredholm integral equation of the first kind, which represents an (strongly) ill-posed
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_problem because A maps any Sobolev space H(Q) (with positive or negative k)

into the space of functions snalytic in a neighborhood of °. In order to get a stable
solution, we will use regularization schemes, but first we will show uniqueness for f.

A similar linearization of the inverse electrical conductivity problem was suggested
by Engl and Isakov [Enl].

2. Uniqueness. We write equation (1.19) as
(21) F@) = [ Mo-pi)dy,  zew
)

Before proving uniqueness we caleulate the Fourier transform % of k.

Referring to [H, section 7.1] we remind the reader that the Fourier transform 4
of a (tempered) distribution u has the following property: the Fourier transform of
zyu(z) is idu. So '

> u(z) = - Au(8).

It is known [H, section 7.6] that the Fourier transform of the function u(x) =
exp(—Alz]?/2) (A > 0) is (27)2A~" 2 exp(—|£|2/2)). Therefore, the Fourier trans-
form of the function |z|? exp(—\|z|?/2) is

~(@n) A2 Agexp(—[€[2/2)) = ~(2n)" A2 AT ER ) exp(— € /20).

Using this formula with A = T/(27(T — 7)), applying the Fourier transform to the
formula (1.20), and commuting the Fourier transform and the integration with respect
to T, we obtain _ e

. T ’ : o .
02) k)= o [ (2r(T = 2)/TIP - m)exp(—lePr(T — 7)/T) i

where ¢, = 271" /2=17="/2_ Ohserve that commutativity of the integration and
of the Fourier transform follows from the uniform convergence of integrals and the
Fubini theorem. o

THEOREM 2.1. 4 solution f € L2(2) to equation (2.1) is unigue.

Proof. Since the integral equation is linear, to prove uniqueness it suffices to
assume that F' = 0 on Q* and to prove that f = 0. Suppose f # 0.

Using the Fourier transform of convolutions, we obtain

(23) P& = HOf(e).

Since f, ¥ have compact supports, by the Payley-Wiener theorem f, F are entire
analytic functions in order 1; in particular, they are well defined for £=(0eC” and
there is constant ' such that

o

(2.4) IFOI < CeMl and |B(Q)] < 0N, cecm
LEMMA 2.2. For ( = 28, &, € R®, z =iR, R > 1, there is € > 0 such that
Q)] = el

Proof. Substituting £ = ( = {RE, into formula (2.2), incorporating the fact that
the two terms of the integrand have the same sign, and dropping the first term, we
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obtain

N T
B 2 cun fe exp(|CPr(T - 7)/T) dr

T2

> can / exp(|CI23T/16) dr = canT /4 exp(3T/16|C%),
T/4

where we shrunk the integration interval in the first integral and used that 37/16 <

(T — 7) when T/4 < 7 < T/2. Now the choice of ¢ is obvious, and we complete the

proof. 0 '

We return to the proof of Theorem 2.1.

If f # 0, then f{¢,) # 0 for some nonzero &, € R™, and, therefore, the entire
function ¢(z) = f(z&,) of one complex variable is of order one and not identically
zero. From now on we consider only { = 2€,. According to the known results from
complex variables ([T, p. 277] or, more precisely, by the Littlewood theorem), there
are a constant C and a sequence r; — oo such that min|¢(z)| > e=©", where the
minimum is over |z = r;. From (2.3) and (2.4) it follows now that

ROl < Ce¥™, K =1y

which contradicts Lemma 2.2, _
The contradiction shows that .f = (0. The proof of Theorem 2.1 is complete. O
Stability is an open questlon here. While we expect a logarithmic one, we have
no proof of it yet.

3. A numerical solution to equatlbn (1.19). To solve the ill-posed problem
(1.19), we will use the Tikhonov regulanzatlon replacmg the original integral equation:
(1.19) by the following one -

(3.1) : (ol + A*A)f, =F*,

where F™* = A*F and e is a regularization parameter. A known theory of regular-
ization (e.g., i[1], [EnHN]) guarantees existence of its solution f, and its convergence
to the solution f of the original equation (1.19) when o — 0, provided f does exist
and one had proven uniqueness for the original equation. Then we will discretize the
regularized normal equation {3.1) and solve it numerically.

To find A*: Ls{Q*) — La(), we are reminded that

{Ad, V) 1o 00 = (0, A" b))

So

g N & — T
w10 =g || [, PO hyee (i) e vea
and we will have .

(440 = g [ S0y = ol = 2K = 2 Ky =)y,
where ‘

- exp (_ |z — z|2T)
_ 4r{T - 1)
Kz —-2T)= /0 T = ) dr.

In numerics we consider '= [0,2]" and O* = [3,5], n =1 or * = [3,5] x [0, 2],
no=2.
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Aipha=10E-6

-D,GOJ—y—"

T T T T T T T ——
00 .20 48 60 80 100 120 1L40 168 180 2.00 00 .20 40 &0 =0 o0 F20 340 150 130 Ao

(@) ‘ (b)

0.00

F1G. 1. _

Discretizing by the trapezoid method we get APAdfY — Brd where B is the
matrix calculated from the discretization and’ f¢ is a function of discrete argument
defined on the rectangular uniform N x N grid. Then the discretized equation (3.1)
can be written as

(3.2) ' (al +B)f¢ = F4,

Since an analytic calculation of the integral (1.20) is not realistic even for sim-
plest f (say, f = 1), we did ‘generate the data for the inverse problem by numerical
calculation using a similar discretization. :

Equation (3.1) involves several parameters (n, &, (2, 2* and the time 7). We will
present several examples llustrating the algorithm deseribed above. In each case we
will change some parametersor f. . -

Assuming n =1, = 0,2), Q" = (3,5), T = 4, we recovered Flz) = sin{mz/2)
with o« = .000001, as shown below. '

Observe that the left side of Figure 1 illustrates recovery {graph with squares) of
genuine f (dotted graph) from exact data generated numerically. On the right side of
Figure 1 we added reconstruction from noised. data (1% of relative noise} marked by
small disks. Since we used the same matrix to get the data, our pictures were good for
@ = 0, but they blew up for & = 0 when we introduced a noise in the right-hand side,
We get good results for the noisy right-hand side when o is small, which means that
our scheme is stable. The reconstruction deteriorates near z = 0; in our opinion it is
because the data are collected from the right side (on (3, 5)), opposite to z = 0. In
the one-dimensional case the complement to 2 is not connected, so the data probably
cannot propagate to = 0 as-in the many-dimensional case.

Next we consider the two-dimensional case letting © = (0,2) x (0,2), Q* = (3,5} x
(0,2), T = 4. We give the pictures of numerical reconstruction of the function f(z) =
sinwz; with three values of the regularization parameter o = 107%, 10711, 10~ i
Figure 2. _ -’

As illustrated by Figure 2 the reconstruction is getting better if o is smaller. A
partial explanation is that the entires of the matrix in (3.2) are very small, so larger
magnitude of the regularizing parameter combined with presence of corners of the
square {2 can produce some deterjoration. On the other hand, smaller o makes nu-
merics very unstable. Unlike in the one-dimensional case, reconstruction is relatively
good far from and close to *; we think that it is due to connectedness of RAQ.

Figure 3 illustrates recovery of the discontinuous function f = 1 in (1,2) x (0,2}
and 0 outside this set. Here (2 = (0, 2) % (0,2), 0* =(3,5) x (0, 2). First we show the
graph of f and then its recovery with o = 1078, 1071 and with 7' = 4,
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F{X.¥}=SIN (PI'X) ALPHA=10D-2 T=4

FOLY) = SIN{FIN) ALPHA =100-11 T=4

<

F{X.")=10
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Looking at equation (1.19} one can realize that for very small T the kernel of
our integral equation is exponentially small, and it decays (as a power) when T is
getting large. So the reconstruction must be optimal for intermediate values of T,
which can be found experimentally. We observed this optimal value in our Dumerical
experiments, and the few figures given here somehow illustrate this pheromenon.

For n = 1 the computations were fast, but it wasn’t the case for n = 9 because
the size of the matrix B becomes very large; ie., for N = 32 the size of the matrix
is (33)? x (33)%. But using the symmetry of B helps by reducing more than hajf
the calculations. By using more sophisticated methods (utilizing Toeplitz structure
and fast Fourier transform)} we hope to éubstantially decrease computational time, to
increase resolution, and even to approach the three-dimensional case.

"To conciude we observe that to our knowledge this is one of the first atterapts to
solve numerically a quite difficult and very important applied inverse diffusion prob-
lem. Definitely much more of work (decomposition of matrices, use of symmetries,
-right choice of precision, and, of course, study of the complete nonlinear inverse prob-
lem) has to be done here to erhance effectiveness of numerics. However, even at this
initial stage the numerical results are quite encouraging.

4. Reduction from the Dirichlet-to-Neumann map. In this section, we
will establish that the data in the problem considered are equivalent to the lateral
Dirichlet-to-Neumann map of a related initial boundary value problem,

Consider the initial boundary value problem

(4.1) Uy —div(aVU) =0 inQ* x (0,7),
(4.2} U=0 onQ*x {0},
(4.3) U=g onX=00%x(0,T),

where 0 is a domain with the C2 boundary containing 1. It is well known [LSU] that
for any g € C*(Z), g= 0 on 8Q* x {0} there is a unique (generalized) solution » with
Vot continuous near X. So we have the well-defined lateral Dirichlet-to-Neumann
map Az g — 3,U on I (results of all possible lateral boundary measurements of /).
Now we wiil show that A; determines wr, ), 2 e, 0<t < T, in a unique
and constructive way. : :

Let ug be a solution to the Cauchy problem (1.3), (1.4). Then the difference
w = u — ug solves the following problem:

(4.4) we ~ Aw = div(fVu) on Q=R x (0,7),
(4.5) - w=0 onR"x{0}.

Since supp f C €, the function w satisfies the homogeneous heat equation cutside
{2. It has zero initial data and is bounded, so it can be represented by a simple layer
thermal potential

¢
(4.6) w(z, 1) = Sp{z,t} = f / ply, 70z — y,t — 1) d5(y) dr,
: 0 Jone
and the density p is to be found. Observe that
(4.7) G = u— Byt = A;(uo + w) -, = A[Sp -+ (A; - 8;,)1#0,

where w™ is w outside Q* x (0,T). On other hand, according to the known [LSU,
equation (15.9)] jump relations for the normal derivatives of single layer potentials we
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Ayw” (z,t) = —plz, 8)/2 + Wiz, t),

single layer on 9{l which can be obtained

where W is the normal derivative of the
4.7) and the formula for 8,w~ we have the

by replacing T in {4.6) by 8, From (
following integral equation for o

(4.8) (I+(-1/2- W+ AS))p = Us,
where I is the identity operator and U, = {0, — A)u, on L.
LEMMA 4.1. We have

1(~T/2 = W + AS)plioa(E) < (D)Mol

where e(T} — 0 as T'— 0.
Proof. According to the jump relations an

(4.9 (I/2+W —MS)p= 8,8%p— du’,

© 5 function on Q° x (0,T), and u® is a solution to the

d to the definition of A; we have

where -- means that we conside

following parabolic problem:

B — div((1+ f)Vu®)=0 on Q% {0,T),
w® =0 on Q* x {0}, u*=Sponk.

The known properties of the heat potentials imply that

15plloo( x (0,T)) < e(T)plloa(E):

and remains a solution being extended

Since Sp solves the heat equation in Q*x{(0,T) ( 1
for parabolic equations LSy,

as zero on Q°* x (=T,0)) from the interior estimates
Theorem 10.1, p. 352] and she above bound, it follows that

(4.10) IV5p)a(2 x (0,T)) < ClISplloo( @ = (0,T)) = e(T)Plloo()-

solves the heat equation outside X and is zero

Since the single layer potential _
S p solves the parabolic problem

when t = 0, the function uf =u® —
Bt — div((1 + F)Vu#) = div(fVSp) on 0 x (0,T),
u# =0 on §* x {0} and on .

From the basic energy estimates for parabelic equations in divergence form (with

discontinuous coefficients) [LSU, Theorem 2.1, p. 143] we have _

(4.11) ™ f2(€2° x (0,7 < ClLFVSplla(@ x (0.7)) < elT)liplloo(®)

when we use (4.10).

Now we will apply to u# interior estimates [LSU, Theorem 10.1, p. 352] once more.

To do so we let Q7 be Q*\Q and Q' be Q'\ﬁ* where 0¥ is a domain containing Q

and with O* c Q. Extend u# as zero onto 2" x (—T,0f; then u¥ solves the heat
equation in Q" = Q" x (T, T) and has zero initial data and the zero Dirichlet data
on 9Q°* x {=T,T). From the previously mentioned vesult of [LSU] (with f =0, & = 0,
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6=0,T=~T,T1 =0, T = T} and the additiona) remark op
have

IVaPloo (€ % (0,T)) < Clutl2(Q") < (T} plloo(T)

if we use (4.11).

Remembering that 4% = u® - Sp and using (4.9) we complete the proof.

From Lemma 4.1 it follows that equation (4.8) in the space C(Z) can be solveq
for p by Picard’s iterations if T is small {so that the operator —7 /2~ W + A8 is
a contraction in this space). Since the problem is evolutionary with respect to t, a
solution for arbitrary T can be obtained by using a finite number of (small) steps in .
So there is a unique solution p which is completely determined by z* and the operator
Ay. Tt is quite clear that equation (4.8) represents a well-posed (stable) problem which
can be solved numerically with high precision and efliciency.

A similar reduction of the elliptic Dirichlet-to-Neumann map to the scattering
amplitude was used by Nachman [N].

5. Comments. We'd like to formulate some questions and possible future de-
velopments. .

First, even for the linearized inverse problem one expects a substantial improve-
ment in numerics when using preconditioners. However, it takes some time to develop
reasonable ones. While exhibiting some Toeplitz structure features our problem in
the many-dimensional case is at the best block Toeplitz, so it is difficult to find good
preconditioners quickly, but there is sorpe hope. Other promising directions are de-
composition of matrix operators into simpler and more symmetric ones and the use
of stochastization of our ill-posed problém. We hope that these ideas can reduce the
amount of computations and numerical errors, so that one can solve numerically a
very challenging three-dimensional problem. -

Second, it is quite important to consider the version of equation ( 1.19) that re-
sulted from the Green function of a half-space/plane instead of the fundamental solu-
tion in the whole space. Indeed, in many applications the domain where the diffusion
occurs has the boundary, and a half-space is the simplest of such domains.

Third, the original inverse problem is nonlinear, and this is essential in many
applications as well. While g proof of uniquenéss in the inverse problem with the
receiver equal to source can be very difficult, it is more realistic to try at least a
numerical solution. Unfortunately, the existing theory of regularization of nonlinear
inverse problems [EnHN] does not cover our equation, in particular because its op-
erator is highly smoothing (maps bounded measurable functions into analytic ones).
Therefore, new ideas and efforts are needed here.

Acknowledgments. We'd like to express our gratitude to Thom DeLillo and
Mark Horn for many illuminating discussions of numerical methods_and to Fadil
Santosa for suggestions which improved the exposition.
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