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ON UNIQUENESS OF RECOVERY OF THE DISCONTINUOUS
CONDUCTIVITY COEFFICIENT OF A PARABOLIC EQUATION*

ALAEDDIN ELAYYAN? AND VICTOR ISAKOVY

Abstract. We prove uniqueness of a discontinuous principal coefficient of a second-order
parzbolic equation of the form eg + x(@*}b with known smooth ap and unknown b = b(x) from
all possible lateral boundary measurements of solutions of this equation. In the proofs, we make use
of singular solutions of parabolic equations.
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Introduction. We consider the problem of recovery of the coefliclent a of the
parabolic equation

u —div(aVu) =0 i Q=0x(0,T)
with the initial and boundary conditions

v=0 onx {0}, w=g ondQx][0,T]

when Ou/0v is given for all (regular) g. Here ( is a bounded domain in R, 2 < n,
with the boundary 8Q € C?. In this paper, we prove uniqueness of discontinuous
o = ao+x(Q*)b, where x(Q*) is the indicator function of an open set Q* C Q with the
Lipschitz lateral boundary 3;Q* changing with time and ag = ag(z) and b = b(z) are,
respectively, given and unknown C?((2)-functions. For elliptic equations, uniqueness
was proven by Kobn and Vogelius [8] (piecewise-analytic a) and Isakov [5] (Lipschitz
Q* and smooth b). Also for elliptic equations, when one is making use of only one
set of u, Gu/Ov on 85}, some partial global uniqueness results for Q* were obtained
by Friedman and Isakov [4]. Regarding parabolic equations, we can refer only to
Bellout’s study [2] of local stability in the inverse problem. This inverse parabolic
problem is fundamental for groundwater search [12] in particular and important for
many engineering applications.

We introduce some notation, For standard notation, we refer to Friedman {3] and
Ladyzhenskaja, Solonnikov, and Ural’ceva [9].

For an open set @ in the layer R" x (0,7"), the lateral boundary 8,Q is the z-
boundary that is the closure of the set 8Q|{t = 0 or t = T}. We say that Q is
z-Lipschitz if its z-boundary is locally the graph of a function T = YT1p .., T,
Tty Tn,t) that is Lipschitz.
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1. Statement of results. Let Ty be 8Q U By for some ball By centered at a

point of 8Q. 2
We are interested in finding an open set Q; and a function b; entering the parabolic
initial-boundary value problem

(1.1) (ug) — div(a;Vu;) =0 in @,

(1.2) uj=g onS=082x(0,T),

{1.3) u=0 onx{0},

where

(1.4) a; =ag + x{Q;)b; > €>0, b;#0ondQ;.

Tt is well known that for any ¢ € C*(8), 9 = g = g = 0 on 9 x {0}, there
is a unique (generalized) solution u; of this problem and u; € C*(Q) for some A €
(0,1), Vou; € La(Q), and € C(Q\Q;). For this and for other results about the
direct parabolic problem (1.1)—(1.4), we refer to Friedman [3] and Ladyzhenskaja,
Solonnikov, and Ural'ceva [9, pp. 153, 204, and 227].

Our main result is the following theorem.

THEOREM 1.1. Suppose (1 and Q2 are open z-Lipschitz sets, Q; C §Ix (-1, 2T,
and

(1.5) the sets (Q\@;) N {t = 7} are connected when0 <7 <T.

-

If solutions u; to the initial-boundary value problems (1.1}, (1.2), and (1.3) satisfy
the equality

(1.6) Buz /By = Buz /v onTo x (0,T) (v is a normal)
for all g € C2(8Q x [0, TY) with suppg C L'y x (0,T)}, then
{1.7) a1 =az onQ.

This result guarantees uniqueness of reconstruction of Q; from all possible lateral
measurements for an arbitrary T > 0. .

The paper is organized as follows. In section 2, we will show that if equality
(1.6) is valid for all Dirichlet boundary data, g implies certain integral relations which
can be interpreted as orthogonality relations. To prove uniqueness in section 4, we
will modify an approach from [5] (the use of singular solutions with the pole in those
orthogonality relations) to obtain a contradiction when the pole converges to the
boundary of one of the domains Q;. To show that some integrals in these relations
are bounded while one of them is not, we will use estimates of integrals of singular
solutions given in section 3, which is the most technically difficult part of the paper.

2. Orthogonality relations. In this section, we assume that the conditions of
Theorem 1.1 are satisfied and obtain some auxiliary relations which will be used in
its proof.

Denote by Qs the connected component of the open set 2\(Q1; U @y,) whose
boundary contains Ty. Here Qs is @; N {t = 8}, j = 1,2. Let Q3 = U Qg over
0<t<T andlet Q4 = Q\Qs.
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LEMMA 2.1. S

(2.1) / bV - Vuy dodi = bo Vv - Vb du dt

1 Qz
for all solutions v1 to eguation (1.1)(j = 1) near Q4 that are 0 when t < 0 and
solutions u} to the adjoint equation (u3): + div(apVus) = 0 near Q4 that are 0 when
t>T.

Proof From well-known results about regularity of solutions to the parabolic
initial-boundary value problem (1.1)-{1.3), it follows that u; is in C*'(Qs) and in
H2(Qs5), where Qs = V x (0,T) and V is a vicinity of 8§ in Q. Due to conditions
(1.2) and (1.5), both u; and u; have the same Cauchy data on Ty x (0,T) and satisfy
the same parabolic equation in Q3; thus from uniqueness of continuation for second-
order parabolic equations (see, e.g., [7, Corollary 1.2.4]), we conclude that u; = uz on
Q. Letting v = up — u; and subtracting the equations (1.1) with j = 1 from those
with 7 = 2, we get .

(2.2) div((a.o + bzX(Q2))VU) - Ut = div((blx(Ql) - bzX(Qg))VUl) in Q

Now using the definition of & weak solution to the parabolic equation under con-
sideration, we obtain

(2.3) /;2((00 + bax(Q2))Vu - Vi + wpth) = fq(blx(Ql) — bax(Q2))Vu1 - VY

for any function ¥ from H}'(Q). Since v and x(Q);) are zero outside Q,n{t<T}"
this relation remains valid for any function ¢ from H!(Qs) (where Q¢ is an arbifrary
vicinity of Q4) that is 0 when ¢ > T\ ’ '

If ¢ = u is an H!(Qsg) solution to the adjoint equation from Lemma 2.1, then
integrating the left side of (2.3) by parts with respect to ¢ and using the definition of a
weak solution to this adjoint equation with the test function u (which is zero outside
Q4N {t < T}), we conclude that the left side in (2.3) is zero. Thus we have relation
(2.1) with u; instead of vi.

Now by using the Runge property, we extend equality (2.1) onto all v; solving
equation (1.1) with j = 1 near @, and satisfying the initial condition (1.3). Denote
the space of such #; by X. It is sufficient to prove that solutions 1; to the initial-
boundary value problem {1.1)—(1.3) with 5 = 1 (for various g supported in I'g X 0,T))
approximate in L(Qq) any solution from X. We denote the space of solutions to
(1.1)~(1.3) (with various g) by X;. Indeed, let v € X. Then we can approximate it
similarly by solutions from X in Ly(Q~), where Q) is a Lipschitz domain containing
Q4 with dist(8:Q7, Qa) > 0. From the well-known interior Schauder-type estimates
for parabolic equations, it follows that these solutions from X will approximate v
in H 1,0 (Q4)

To prove Ly approximation in view of the Hahn-Banach theorem, itds sufficient
to show that if f from the dual space L2(Q) is orthogonal to X, then f is orthogonal
to X.

Let © be 2 bounded domain with C%-boundary such that & C Qo, £ # Qo, and
B8Q\T belong to 8. Let K(x,t;y, s) be the Green function to the first initial value
problem for the operator 8; + div(a:V) in Qo x (0,T). Let f be orthogonal to X;.
The Green potential

(24) U(x!t;f)= o fK(xit; )
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ia equal to zero on Qo\@, because the function u; = K(z,t; ) belongs to X1 if
(z,1) € Qo\@, Since supp FiC Qy this potential is a solution to the equation
—div{agVu) = u on Qo\@,- The coeffictent ao belongs to C*{(Qp), so this equation
has the property of unique continuation. Therefore, U( ; fl=0on Qo\J,. Now
let v € X; then v is a solution to the homogeneous equation near Qs U 8,Qs, where
Qs is an open set with ¢ lateral boundary and dist(0:Qs5, 8:Q4) > 0. Using the
representation of v by & single layer potential, we obtain

o) = [ oK)l

for some g € C(8:Qs). By using this representation, {2.4), and Fubini's theorem, we

obtain
f4fv=me59U( £)=0

because U( ; fy=0on 8,Qs. Accordingly, relation (2.1} is valid for any vs satisfying
the conditions of Lemma 2.1.

The proof is complete.

Assume that

(2.5) Q1 # Qo

Then we may assume that Q1 is not contained in Qz. Hence, using condition (1.5)
of Theorem 1.1 on &;, we conclude that there is a point (zo,t0) € 8Q:\Q, such that
(z0,%0) € 0zQ3. BY considering g = 0 for t < o and using the trapslations ¢ — 1t — to
and ¢ — T — To, we can reduce the general case to iy = 0 and zo = 0. We can choose
a ball B ¢ B™ centered at 0 and a cylinder Z = B % (0,7) such that BcCQ, Z does
not intersect @, and {B:Q1) A Z is a Lipschitz surface. Due to well-known variants
of the Whitney extension theorem, there is a € 2(Q, U Z)-function ag that coincides
with a3 on Q. Extend a3 onto Q\(Q, U Z) as ao.
LEMMA 2.2. Under the conditions of Lemma 2.1,

j b1Vug Vus = f by Vus - Vg
1 Qa

for any solution ug to the equation div(agVus) — (us)e = 0 near Q, which is 0 when
t < 0 and for any solution uj from Lemma 2.1.

Proof. Consider uz and let Qs be an open set with C*-boundary 8,Qs and
that contains Qs with dist(8:Qs, Q4) > 0 such that uz is & solution to the equation
div(aaVuz) — (ua)t = O near Qs

Introduce a sequence of open sets Qax such that (1) Que\Z = Q4\Z and (ii) the
(Hausdorff) distance from 8Qup to 8;Q4 is less than 1/k and 3;QuN 2 does not
intersect Q,. Define a coefficient ag; as a3 on Qs\(Que\Qa) and as ag o1 Qu\ Qe
Since Q4 N Z is a Lipschitz surface, we have

(2.6) measy {asx # az} — 0 ask— +oo.

Let u3; be solutions to the initial-boundary value problems

div(angu:;k)--(ugk)t =0 in Qs, Ugg == U3 O 0.Qs, ugy =0 on Qs N {t = 0}.

-
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Since usr = ap + x{Q1)b1 near Q,, relation (2.1) is valid for any u1 = usk- The
difference uj, = usy — ug satisfies the equation

div(asyVur) — (ug)e = div({as — asx)Vug) in @s,

and uy = 0 on 8Qs N {t < T} because usj and us coincide on the lateral boundary of
Qs and when ¢t = 0. From the definition of a weak solution to this initial-boundary
value problem with the test function ug, we have

2
f azEVug - Vug -+ / -’Li = (0.3 — agk)V'u.g - Vug.
s Qen {t=T} 2 Qs

According to the assumptions, € < aag for certain positive e. Using this inequality,
dropping the second integral in the left side, and bounding the right side by the
inequality -y < € +/2lz* + ¢/2|y|?, we obtain

f Vel < CO(6) f las — agel2Vusl? + < f Vug P
8 Qs 2 Qs

Since Vs belongs to L(Qs), we conclude from (2.6) that the first integral in the right
side tends to 0. Therefore, Vuy converges to 0in Lo{Qs). Putting u1 = usk = Uz + g
into relation (2.1) and letting & — oo, we complete the proof of Lemma 2.2.

tions 13 and 43 with singularities outside Q4. Solutions of elliptic equations of second
order with arbitrary power singularities were constructed by Alessandrini {1]; we do
not know of similar results for parabolic equations. To simplify obtaining bounds on
the integrals of such solutions, we introduce new variables. We can assume that the
direction e, of the z,-axis coincides with the interior unit normal to 8;Q1 N {t = 0}.
According to our assumptions, 8,1 near the origin is the graph of a Lipschitz func-
tion &, = ¢1(T1,--- ,Tp—1,t) Which can be assumed to be defined and Lipschitz on
the whole R™, The substitution

zp =2z, k=1..,n-1, mn=m2+q1(x;,...,x;_1,t), t=1"

transforms the equations (1.1) into similar equations with additional fivst-order differ-
entiation with respect to 7, multiplied by a Lipschitz function of t. The domains Q;
are transformed onto domains with similar properties and with the additional prop-
erty that the points (0,£),0 <t < T, belong to 8;Q;. Since the (hyper)plane {z}, = 0}
is tangent to this surface at the origin, we can find a cone C = {|z*/|z*| — en| < &,
|z*| < €} such that the eylinder € x {0,7) is inside Gh. Henceforth, we drop the
sign *. : v

Let K+ be the fundamental solution of the Cauchy problem for the forward
parabolic equation div(azVus) — (ug)t = 0 in *-coordinates. Let K~ be the funda-
mental solution of the backward Cauchy problem for the backward parabolic equation
div{agVug) + va = 0 in these coordinates. It is known that

(3.1) Kt =K +K{, K~ =K + Ky,

where K7 and K; are the principal parts of K+ and K~ (parametrices) and Kf

3. Estimates of integrals of singular solutions. We will make use of solu-




54 ALAEDDIN ELAYYAN AND VICTOR ISAKOV

and K are the rémaindegé.:.;fi‘.].né priﬁcipal parts are

_ _ o] |z —yi?
K0 = G-y ('W) ’

o c o (2 =3P
Kilmtvn) = gy =0y P( 4ao(y)(f—t))'

From the known bounds of fundamental solutions of parabolic equations 9, p. 377,
we have

(3.2)

. —n |.1.': - yiz
(33) Vol oty £ O =) e (2

V2K (o0, 7) < O =2 (220,

When (y,0) and (y,7) are outside @, the functions K*( ;3,0) and K—{ ;v, T)
are (z,t)-solutions to the homogeneous parabolic equations with bounded measurable
coefficients satisfying zero initial and final conditions. Using Lemma 2.2 with us =
K*{(;9,0) and uf = K~{ ;y,7), we get

f VK (59,0) VoK (5y,7)
11z .
(3.4) = —/ biVe KT (59,00 - VoK~ (y,1) 7
s @i\Z

+/ baVo K (55,0)- Vo K (y,7).
2

From the estimates in (3.3) and similar estimates for VK and V, K. 1, we conclude
that the integrands are bounded by an integrable function uniformly with respect to
y outside Q;. By the Lebesgue dominated-convergence theorem, we may let y—0
and replace y in (3.4) by 0. Using representation (3.1), we obtain from (3.4) that

(3.5) |11] < |Ta| + {3,
where

I]_'—‘/ b1vai+(;0,0)-v,,K1_(;0,T)
&Nz

is formed from the principal parts of K and the remainders are collected in

&

I = “f biVKT(;0,0)- VK~ (;0,7) + b2V KT(;0,0)- VK (;0,7)
h\Z Q=

and
I mf bi(VoK{(50,0)- VK5 (30,7) + VoKg(30,0) - VoK (;0,7)
1Nz

+ VL K§(50,0) - VK5 (;y,7).

4
4
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In the following three lemmas, I1 ié‘. bounded from below and Iz and I3 is bounded

from above.
LemMa 3.1,

B12 07t [ ey,
0

where m = inf(ag, ag) over Q-
Proof. Using the fact that b;(0) # 0 and choosmg ¢ in the definition of C to be

sufficiently small, we obtain

V| 2 G—lfcx(o )VE_K;f(a:,t;o,o).val—(a:,t;o,'r)

¢! fo i /c #™/2-1 gy (— a};’éf)t) z-(r =) lexp (EIJ):B(I%'E) zdzdt

_1 fc /:72 [EIZ((T _ t)t)—ﬂﬂ—l exp (_E}(x%) dt dzx.

Using the inequality

(3.6) ;r s t(rl— 8y~

2
<— When0<t<z,
tr 2

we bound from below the integral shown above by

T2 1 ) 2|$i2
-1 2
L] e e"p( mt )‘”d

1 .00
_ 2—n nf2—1 _—w
= g C|x| T 2=l dx,

where we substituted w = 2|z /mt.
The function w™/2~! is increasing, so replacing it by its minimal value at w =
4|z /(m7), we bound the last integral from below by

fTI—n/Z / e—wdw) dI=d_lfl_n/2/ pn—18_4p2/(mr)dp.
¢ (4]z[2/ (mT),00) (0.€)

The proof is complete.
LEMMA 3.2,

Lo} € Crm/2rie 2/ (M),

where M depends only on sup(as,ao) over Q.
Proof. I consists of two integrals. The first one is bounded by

O[ VLK (50,0)- VoK™ (;0,7)
<|z| < R,0<t<T

P
f<|z1<R/ ((r—1) )n/2+1/2 exp ( Mt(r — ) dt dx.
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The bound on {V K+ - VK| follows from the direct differentiation of (3.2), the
inequality
|z|(t ~ ,r)—n/2—1 exp [ — |'T’2 <Ct- T)—n/2—1/2 exp | — |93|2
-7/~ 8(t~7) /)’

and the bounds in (3.3).
Applying inequality (3.6) as above, we bound the last integral by

c T2 |2
/2172 fe<|m{<R/0 mjzrij2 P (_M) dtdz
C

o=}
& 1‘"[| 2 w2y Y2 iy d
D

MT

S \/
Tn/2+1/2 e<|z| <R

when we use the substitution w = |z|2/(Mt). The function w~%? is decreasing.
Replacing it by its value at 2|z{?/(M7); we-increase the integral, and we also use the
inequality w™?~'e~* < Ce~*/? and calculate the resulting integral with respect to
w. Then the last integral will be less than

Creft [ ol exp(—af/(Mr)dz
e<|z|<R _

S N
€,00

when we use the polar coordinates in R". Replacing p~2 by its maximal value at ¢
and calculating the remaining integral with respect to p, we complete the bounding
of the integral over Q1\Z.

A similar argument works for the integral over Qs.

The proof is complete.

LEMMA 3.3.

T3] < Cer™™2,

where M depends only on the upper bounds of |ag|, |agl.

Proof. We bound the integral of the first of the three functions, forming I3 as
defined after (3.5). _

As follows from (3.2), (3.3), and the argument in Lemma 3.2, replacing |z| by
some power of (¢ — 7), the absolute value of this integral is less than

C/M(e /(0’7/2)((7 - i)t)¥§/2t‘1/2 exp(—|z2r/(Mt(r — 8))dt do

< C/ / (T-t)—n/Et—l/Z éXP('—[SGF/(Mt))dtd:}:, .
lm|<e J(0,7/2)

where we used inequality (3.6). Substituting w = |z]?/(M?) in the inner integral
vields

CT"“/Zf Exfl_"/ w2320~y dy < C"r’”/zf |z) " dzx.
|zi<e (2122 /(M T),00) lzl<e

Using the polar coordinates, we bound the last integral by Ce,
The other terms can be bounded in a similar way. The proof is complete.
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4. Proof of Theorem 1.1.-Now we will complete the proof of Theorem 1.1.
Let

(4.1 e = BT,

where (large) E will be chosen later.
First, we bound I from below. From Lemma 3.1, substituting w = 4p%/(m7) in
the integral and using condition.(4.1), we obtain

(42) Blzo [ gtz o7
. {0,4E /)

provided E > m. :
From (3.5), Lemmas 3.1-3.3, (4.1), and (4.2}, it follows that

C 2 < QLR expt—E/M) + 2).

nf2

Using (4.1) again and multiplying both sides by Ct™/%, we obtairn

1< CE Vexp(—B/M)+Ce < CE™' + Ce.

Let < 1. Choose E so large that £~ < 1/(4C) and ¢ < 1/(4C'); then the right side

is smaller than 1/2. We have a contradiction.
This contradiction shows that (1 = Qq.
The next step of the proof is to show that

(43) b1 = bz on BJ,Q]_.

As in the proof for @;, we assume the opposite. Then we can assume that the
origin 0 € 8,Q; and b (0) < by(0). By continuity, b1(0) —~ be(0) > €'~ for some C
on a certain ball B centered at the origin. Let Z = B x {0,T). Extend as from Gy
onto R™ as a C2-function a4 > 0. By repeating the proof of Lemma 3.2, we obtain
the following orthogonality relation:

(4.4) / (b — ba)Vug - Vuz =0

1

for all solutions us to the equation div(azVus) — us: = 0 near Q4 which are zero
when t < 0 and for all solutions »} to the adjoint equation div(asVuy)+ s = 0 near
Q4 which are zero when ¢t > T. Let K™ be a fundamental solution to the forward
Cauchy problem for the first equation and K~ be the fundamental solution to the
backward Cauchy problem for the adjoint equation with the coefficient a4~ Using the
representation (3.1} of these fundamental solutions and splitting ¢, into (1 N Z and
its complement, as in section 3, we obtain from (4.4) the inequality

(4.5) | < |Is] + Zsl,

where

L= / (b1 — b2) VKT - VK7
hnZ
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is related to the supposedly singiilar pait and

I5=f' (by — b )VKT . VK™,
Q:\Z

Is= f (b1 — b)VEKF - VK2
Q1

It is easy to see that Lemmas 3.1, 3.2, and 3.3 are valid for Iy, Is, and Ig,
respectively. Therefore, as in the proof above, we arrive at the contradiction that

Q1= Q.

This shows that the assumption about b; and bs is wrong and that b; = by on
a:an-

Let £y be the intersection of all Ghe over 0 < @ < T. Since by and bz do not
depend on ¢ and are equal on 8,Q), they coincide on @15\, Letting Qo = Ox (0,79,
we obtain from (4.4) the relation

/ (by — b2) Vg - Vau =0

(1]

for all u and u] in (4.4). As in the proof of Lemma 3.2, this implies that
(4.6) f (b]_ - bg)VUs ' VUE =1

for solutions us to the equation div({ay + b1x(Qo)) Vus) — us; = 0 near Qo which are
zero when ¢ < 0 and for solutions to the adjoint equation div{{ao + bax(Qo))Vug) —
ug, = 0 near'¢Jy which are zexowhen t <7,

Observe that by choosing T small, we can guarantee that {3y is a Lipschitz domain,
Indeed, for any point of 8.Q1 N {¢ = 0}, there is a neighborhood where Q; is the
subgraph of the Lipschitz function z; < ¢;{z1,...,2j-1,%;5+3,-..,%n,t). We can cover
the compact set 3;Q4 N {t = 0} by a finite number of such neighborhoods. Then there
is Ty such that 8,Q1 N { < T} is contained in the union of these neighborhoods.
Let 7 = T}; then € is Lipschitz because locally (in the corresponding neighborhood)
its boundary is given by the equation z; = infg;(z1,...,Tj—1,Tj41,. .., Tn,t) OVer
t € (0,T), and the inf of a family of uniformly Lipschitz functions is a Lipschitz
function. '

Now we will show that the equations for us and ug have the same lateral Dirichlet-
to-Neumann maps. Let ug and us be a solution to these equations with zero initial
conditions and the same lateral Dirichlet data. By subtracting these equations and

letting u = ug — us, we obtain
div((ao + bax(Qo)) V) = div((h: — b2)x(Qo)Vus) in Q.
From the definition of a weak solution of this equation, we have )
»/an(O,T) apUytp — /Q((do +b2X(Qo))V“'V¢_—/;Ut¢ = —/;20(51 - b2)Vus - Vo
for any function ¥ € HL(Q). Using ¥ = u, integrating by parts in the third

integral of the left side, and again using the definition of a weak solution to the
equation div((ag + bax(Qa))Vug) + ug, = 0 with the test function u which is zero on
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QM {t < T}, we conclude that the sum of the second and third integrals in the left

side is zero. The right side is zero.due to (4.6). Thus the first integral in the left side is
zero. Since the lateral Dirichlet data 1f = u$ can be any function in C§5°(89 x (0,T)),
we get 4, = 0 on 89 x (0, T). Therefore, us, = ug, on the lateral boundary, which
means that we have the same lateral Dirichlet-to-Neumann maps.

Take as the Dirichlet data g a function which does not depend on t when ¢ > 7.
Since the coefficients of the equations div{(ao + b;x(Qo)Vu;) — uj = 0 are time
independent, the solution u;(z, t) of the initial-boundary value problems on £ x (0, o)
will be analytic with respect to ¢ > 7. They have the same Cauchy data on 98 x
(0,T); therefore, as abave, by uniqueness in the lateral Cauchy problem, us = ug
on () x (0,T). By uniqueness of the analytic continuation, they are equal also
on (Q\Q) x (0,00). Now we modify the argument of [6] and consider the Laplace
transforms

Uj(z,8) = [ e~ % (i, ¢) di.
(0,00)

They solve the following Dirichlet problems:

(4.7) div((ag + b;x(Q0))VU;) —sU; =0 in Q, U; =G ondQ,

and Us = Us on O\ Letting 7 — 0 we obtain G(z,s) = go(z)s™ ", where go(z) =
g(x,t) when ¢t > 7. Applying the results of [5] and [11] on identification of elliptic
equations, we conclude that by = by on (. In fact, this result is obtained in [5] when
n > 3, but the recent global uniqueness theorem of Nachman [10] extends it to n = 2. .

The proof is complete. .

.
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