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Abstract
We calculate the limiting temperature for the stability of hot nuclei assuming the
hot nucleus to be a liquid drop in thermal, chemical and mechanical equilibrium
with the surrounding vapour. Following recent theoretical and experimental
results, the vapour is assumed to consist not only of nucleons but also clusters
of nucleons up to A = 4 that are in chemical equilibrium with the nucleons.
It is found that the presence of the clusters in the vapour reduces the limiting
temperature by several MeV and makes it almost independent of the interaction
used to determine the equation of state of the nuclear matter inside the drop.

1. Introduction

Theoretical studies [1–5] have predicted the abundance of light clusters in nuclear matter
at very low densities and moderate temperatures. There has also been definite experimental
evidence [6, 7] for a large degree of light cluster formation at these densities and temperatures.
The large degree of clustering that occurs in nuclear matter at very low densities is expected to
have a noticeable effect on the equation of state of nuclear matter in the vapour state even when
only alpha clusters are included [8]. The clustering is limited to low densities because when
the cluster is embedded in dense nuclear matter its binding energy decreases and it finally
dissolves in the medium above a certain critical density (the Mott density) [9]. Clustering leads
to a reduction of about 2.4 MeV in the value of the critical temperature of infinite uncharged
nuclear matter [1].

In the present work we investigate the effect of the occurrence of light clusters and the
corresponding modification in the equation of state of the vapour on the stability of hot nuclei.
This investigation is carried out within a model in which the hot nucleus is treated as a spherical
liquid drop with uniform density and temperature, a sharp edge and a surface tension. The
liquid drop is in thermal, mechanical and chemical equilibrium with the surrounding vapour.
In earlier studies [10–15] the vapour was considered as consisting of only single nucleons
and it was found that the Coulomb force leads to the instability of hot nuclei above a limiting
temperature TL which is much lower than the critical temperature [1, 16, 17] of infinite
(uncharged) symmetric nuclear matter. Here we examine how the value of TL is affected by
the inclusion of light clusters in the vapour state.
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2. The equation of state of the vapour phase in the presence of clusters

The vapour’s equation of state is determined using the nuclear statistical equilibrium (NSE)
model [18–20] in which the only interaction between the nucleons is through the formation
of clusters. The starting point in determining this equation of state is the evaluation of the
pressure Pid and chemical potential μid of an ideal quantum gas of nucleons at a low density
ρ and temperature T. These are given by [11]:

Pid(T, ρ) = Tρ

[
1 +

∞∑
n=1

bn

[
λ3

T ρ

g

]n
]

(1)

μid(T, ρ) = T

[
ln

[
λ3

T ρ

g

]
+

∞∑
n=1

bn
n + 1

n

[
λ3

T ρ

g

]n
]

(2)

where g is the nucleon’s spin–isospin degeneracy factor and λT =
(

2π2

mT

)1/2
is the thermal

wavelength of the nucleons. The virial coefficients in the summations in equations (1) and
(2) reflect the higher order degeneracy corrections that significantly modify the pressure and
chemical potential of an ideal Fermi gas as compared to those for an ideal classical gas (given
by the first term before the summation). The bn coefficients are determined by the method
outlined in [17] and the values of the first six coefficients are given by:

b1 = 0.1767 766 952 966

b2 = −0.0033 000 598 199

b3 = 1.112 893 285 × 10−4

b4 = −3.5405 041 × 10−6

b5 = 8.38 635 × 10−8

b6 = −3.662 × 10−10.

The rapidly decreasing value of these coefficients and their alternating signs ensure that
summing up to n = 6 yields fairly accurate results. Even at a temperature as low as 3 MeV the
contribution of the n = 6 term modifies the summation by about 5%, and is almost negligible
at T = 4 MeV.

The nucleons in the vapour are in chemical equilibrium with the light clusters, where we
include only clusters up to A = 4 (deuterons, tritons, helions and alphas) which is in line with
similar studies [1, 3, 21]. Some calculations [2, 8] include only alpha clusters. The neglect
of the effect of clusters with A > 4 is a limitation of the present work. In particular, as the
density increases the heavier clusters become more important. This can be the subject of future
investigation.

Chemical equilibrium in the clusterized vapour is guaranteed by having the chemical
potential μC of cluster type C (containing Z protons and N neutrons) satisfy the relation:

μC = ZμP + Nμn = Aμid (3)

where we treat the protons (p) and neutrons (n) equally and the Coulomb force is switched
off. The partial pressure and density of each type of cluster are then evaluated and added to
the pressure and density of the nucleons to form the vapour’s total pressure and total density
respectively.
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For the fermionic clusters (tritons and hellions) the partial pressure is given by an equation
for the ideal Fermi gas similar to that used for the nucleons with the appropriate masses and
degeneracies. For the bosonic clusters (deuterons and alphas) the partial pressure is given by
an expression for the ideal Bose gas which is similar to equation (1) for an ideal Fermi gas but
with bn replaced by an where

an = (−1)nbn. (4)

The contribution to the total nuclear density of each type of cluster is determined by the
equation:

ρC = g

(2π)3
f d3qnC (5a)

where

nC = {
exp

[
β
(
ε0

C − μC − BC
)] ± 1

}−1
(5b)

with the (+) sign used for the fermions (helions and tritons) and the (−) sign used for the
bosons (deuterons and alphas). Here ε0

C and BC are the kinetic and binding energies of cluster
C, where C = d, t, h, α refers respectively to the deuteron, triton, helion and alpha clusters.
The total nuclear density in the vapour phase ρv is the sum of the density of the free nucleons
ρfree and the densities of the nucleons bound in the clusters:

ρv = ρfree + 2ρd + 3ρt + 3ρh + 4ρα (6)

where ρd, ρt, ρhandρα are the densities of the clusters.
The NSE model is only valid at very low densities because it ignores medium effects on

the binding energies of light clusters and cannot describe their dissolution at high densities. To
remedy this deficiency of the model we use density-dependent cluster binding energies. The
reduction in the binding energy of the clusters with the increasing density of the surrounding
medium is mainly due to Pauli blocking, reflecting the fact that the nucleons inside the clusters
are indistinguishable from the free nucleons in the vapour and that the total wavefunction must
be antisymmetric. Following [3] we continue to treat the clusters as non-interacting but with
the medium-modified binding energies. Typel et al [3] evaluated the change in the binding
energy at zero cluster momentum and found that it decreases almost linearly with density and
vanishes at the Mott density ρM (0)whose value is temperature-dependent. At nonzero cluster
momentum P the cluster can survive up to a higher Mott density ρM (P). More recently a fit for
the momentum dependent shifts of the binding energies of light clusters has been published
[21]. To simulate these effects we have used a density-dependent cluster binding energy of the
form:

BC = BC0 exp(−ρ/ρM(0)). (7)

The ρM (0) were obtained by a linear fit of the results of Typel et al [3]. A summary of the
values of ρM (0) for the various clusters and at some typical temperatures is given in table 1.

Here it must be noted that the binding energy depends on the total density whose value
is determined by adding the contributions of the various clusters, given by equations (5a)
and (5b), to the density of the free nucleons, as in equation (6). Since equations (5a) and
(5b) need the binding energies as input, the calculation has to be carried out iteratively until
self-consistency is achieved. The abundance of the light clusters obtained in this way at a
temperature of 4 MeV is shown in figure 1. At this temperature the deuterons are dominant,
while the alpha clusters are dominant at temperatures below 2 MeV.

3
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Figure 1. The fraction of nucleons existing in clusters at a temperature of 4 MeV.

Table 1. The Mott densities ρM (0) for various clusters at typical temperatures.

T = 2 MeV T = 4 MeV T = 5 MeV T = 6 MeV

Alpha 0.0059 fm−3 0.0073 fm−3 0.0080 fm−3 0.0088 fm−3

Deuteron 0.00148fm−3 0.00216 fm−3 0.0025 fm−3 0.0029 fm−3

Helion 0.0023 fm−3 0.0031 fm−3 0.0035 fm−3 0.0040 fm−3

Triton 0.0028 fm−3 0.0036 fm−3 0.0036 fm−3 0.0046 fm−3

3. The nuclear equation of state of the liquid phase (without clusters)

Assuming nuclear matter in the liquid phase to consist of only nucleons interacting through a
zero-range Skyrme interaction [22] of the form:

υ12 = −8

3
a0(1 + x0Pσ )δ(�r1 − �r2) + 8

3
a3(1 + x3Pσ )ρσ

[
�r1 + �r2

2

]
δ(�r1 − �r2). (8)

Its pressure and chemical potential are given by [11]:

P̃(T, ρl ) = −a0ρ
2
l + a3(1 + σ )ρ

(2+σ )

l + Pid(T, ρl ) (9)

μ̃(T, ρl ) = −2a0ρl + a3(2 + σ )ρ
(1+σ )

l + μid(T, ρl ) (10)

where the ideal pressure and chemical potential of a gas of nucleons are given by equations (1)
and (2). These expressions will be used only for the liquid phase whereas they have been
previously used [11, 12] for both the high-density liquid state as well as for the low-density
vapour state. Their use for the vapour state is however questionable in light of the considerable
evidence mentioned above for the abundance of clusters at low densities. On the other hand
their use for the liquid state is acceptable since the clusters disappear at high densities and the
liquid phase consists only of nucleons.

Table 2 summarizes the values of the parameters of the two Skyrme forces used in the
present calculation as well as in [11]. The parameter x3 is usually given [22] the value

4
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Figure 2. Comparison between the pressures of the vapour state calculated with and without
clusters. The NSE model assumes the formation of clusters that are in chemical equilibrium with
the nucleons in the vapour, while the nucleonic vapour model assumes there are only nucleons
interacting via the Skyrme force.

Table 2. Parameters of the Skyrme forces and the critical temperatures calculated with them.

σ x0 a0ρ0(MeV) a3ρ
1+σ
0 (MeV) Critical temperature

0.25 0.75 136 96 17.3 MeV
1 0.47 64 24 22.9 MeV

of 1. One of the forces has a value of σ = 0.25 and the second one has a value of
σ = 1.These parameters are given in terms of the nuclear matter saturation density ρ0 =
0.17 nucleons fm–3. Also given in the last column of table 2 are the values of the critical
temperature of infinite (uncharged) symmetric nuclear matter calculated with the use of these
forces. Because of the Coulomb force, hot real nuclei however cannot survive up to the critical
temperature and become unstable at the limiting temperature. The values of the limiting
temperature corresponding to these two forces will be evaluated in the following section.

Figure 2 compares the pressure of the vapour state in the two approaches (with and
without clusters) at two different temperatures and for densities that are much less than nuclear
saturation density. It is seen that there is a significant difference between the two approaches.
Of particular interest is the behaviour at very low densities (less than 0.01 nucleons fm–3)
where the presence of clusters in the NSE model lowers the pressure below that obtained with
the assumption of a vapour of interacting nucleons. The latter approaches the pressure due to
an ideal Fermi gas of nucleons at extremely low densities. It must be noted that the pressure
isotherms calculated in the NSE model are qualitatively similar to those obtained by Samaddar
and De [8] in a nucleon–alpha model.

4. The limiting temperature TL

We treat the hot nucleus as a spherical liquid drop with uniform density and temperature, a
sharp edge and a surface tension in thermal, mechanical and chemical equilibrium with the
surrounding vapour along the lines followed earlier [10–12]. We will carry out calculations
for the same cases treated in [11] namely the hot nuclei of 109Ag and 208Pb and using the same
Skyrme interactions and the same approximations. The only difference is that in the present
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Table 3. Comparison between the results with and without clusters included in the vapour. TL is
the limiting temperature (in MeV), ρl and ρv are the equilibrium liquid and vapour densities (in
nucleons fm–3) and αv is the vapour asymmetry, all evaluated at the limiting temperature.

Without clusters With clusters

Nucleus σ TL ρl ρv αv TL ρl ρv αv ρfree

208Pb 1 7.60 0.1652 0.01370 0.15000 2.8 0.153 0.0376 0.599 0.0003
0.25 5.49 0.1689 0.00772 0.17000 2.8 0.172 0.0376 0.545 0.0003

109Ag 1 9.22 0.1642 0.01678 0.05220 3.3 0.169 0.0405 0.187 0.00035
0.25 6.80 0.1682 0.01000 0.05147 3.3 0.170 0.0405 0.190 0.00035

work we include the effect of the existence of light clusters in the vapour state. The results
obtained for these nuclei without the inclusion of light clusters [11] are summarized in the first
half of table 3. Comparing these earlier results with the results to be obtained in the present
work will allow us to elucidate the effect of the presence of clusters in the vapour.

The surface tension of the liquid drop γ (T) is given by [23]:

γ (T ) = 1.14 MeV.fm−2

(
1 + 3

2

T

Tc

) (
1 − T

Tc

)3/2

(11)

and its contribution to the pressure inside the liquid drop is given by:

Psurf(T, ρl ) = −2γ (T )

[
4πρl

3A

]1/3

. (12)

We also include the Coulomb force contribution to the pressure and the proton chemical
potential inside the liquid drop in an approximate manner as in [11, 12]:

PCoul(ρl ) =
[

4πρ

3A

]1/3 Z2e2

5A
ρl (13)

μCoul(ρl ) = 6

5
Ze2

[
4πρl

3A

]1/3

. (14)

Also included in the pressure inside the liquid drop is the contribution that comes from
the asymmetry between the protons and the neutrons in the nuclei being studied [11]:

Psym(T, ρl, α) =
[

2

3

(
x0 + 1

2

)
a0ρ

2
l − (1 + σ )a3ρ

(2+σ )

l + Tρ

∞∑
n=1

n(n + 1)

2
bn

[
λ3

T ρl

g

]n
]
α2

where α is the neutron–proton asymmetry parameter α = N
A − Z

A . The corresponding
contribution to the nucleon chemical potential inside the drop is [11]:

μsym(T, ρl, α) =
{

−σa3ρ
1+σ
l + T

[
−1

2
+

∞∑
n=1

(n2 − 1)

2
bn

[
λ3

T ρl

g

]n
]}

α2.

Mechanical equilibrium requires that the pressure inside the liquid drop is equal to the
pressure of the vapour:

P̃(T, ρl ) + Psym(T, ρl, αl ) + PCoul(ρl ) + Psurf(T, ρl ) = Pvapor(T, ρv ) (15)

where ρl and ρv are the densities of the liquid and vapour respectively and αl is the asymmetry
parameter of the liquid drop (the hot nucleus). The vapour pressure includes the sum of
the contributions of the clusters and the free nucleons, with each species treated as an ideal
quantum gas. The total vapour pressure is determined in the NSE model with the modifications

6
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Figure 3. Determining the limiting temperature for a hot 109Ag nucleus in the presence of clusters
in the vapour state. The dotted line shows the nucleon chemical potential of the liquid drop given
by the left-hand side of equation (16) versus the total pressure inside the liquid drop given by the
left-hand side of equation (15). The continuous line shows the same quantities for the surrounding
vapour which are given by the right-hand side of equations (16) and (15) respectively.

introduced by the use of density-dependent binding energies as given by equation (7). This
is the only significant difference between the present work and [11] which assumed that the
vapour consists of only nucleons.

Chemical equilibrium requires that the nucleons’ chemical potential inside the drop is
equal to the nucleons’ chemical potential in the surrounding vapour [11]:

μ̃(T, ρl ) + 1
2μCoul(ρl ) + μsym(T, ρl, αl ) = μid(T, ρv ). (16)

Here it must be emphasized that the clusters are already in chemical equilibrium with the
nucleons in the vapour through equation (3). We also use the same approximation of neglecting
the Coulomb and asymmetry contributions for the vapour in equations (15) and (16) as in [11].

Using these equations we can determine the limiting temperature which is the temperature
above which the equations for mechanical and chemical equilibrium between the drop and
the surrounding vapour do not have a solution. The results for a hot 109Ag nucleus are shown
in figure 3 where we plot the chemical potential versus the pressure for the liquid drop and
the vapour. The system is stable if the vapour and drop curves intersect guaranteeing that

7
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a solution exists. Note that beyond the maximum value of the vapour pressure the system
becomes mechanically unstable and so the condition for the stability of the hot nucleus is that
the intersection occurs before the vapour pressure reaches its maximum value. The limiting
temperature therefore occurs when the drop curve passes through the maximum of the vapour
pressure curve. Figure 3 shows that the limiting temperature for 109Ag is 3.3 MeV which is to
be compared with a value of 6.8 MeV obtained under the assumption of a purely nucleonic
vapour [11].

In the right-hand half of table 3 we show the results obtained in the present work for two
hot nuclei (208Pb and 109Ag) embedded in a vapour containing clusters, calculated with the
two Skyrme forces given in table 2. In each case we give the limiting temperature and the
equilibrium liquid and vapour densities at this temperature. For comparison we also give in
the left-hand half of table 3 the values obtained in [11] for a vapour without clusters, that is
assuming the vapour to consist of only nucleons interacting via the Skyrme force. It is seen
that the effect of including clusters in the vapour lowers the limiting temperature by several
MeV. We also note that in the presence of clusters the values of the limiting temperature are
almost identical for the two Skyrme forces. This is not surprising because in the NSE model
the Skyrme force plays no role in the vapour state as the only interaction is that through the
formation of clusters.

Also shown in table 3 are the values of the vapour asymmetry parameter αv which is
determined by the condition [11]:

μ1(T, ρl, αl ) − 1

2
μCoul(ρl ) = μ1(T, ρv, αv ) (17)

where:

μ1(T, ρ, α) =
{

4

3

(
x0 + 1

2

)
a0ρ − 2a3ρ

1+σ + T

[
1 +

∞∑
n=1

(n + 1)bn

[
λ3

T ρ

g

]n
]}

α.

In evaluating the right-hand side of equation (17) for the case with clusters the Skyrme
force parameters a0 and a3 are set to zero because the free nucleons in the vapour are assumed
to be non-interacting in that case. Here it must be emphasized that a direct comparison between
the vapour asymmetry parameters αv given in table 3 for the cases with and without clusters
is not meaningful. For the case where the vapour is assumed to have clusters, αv refers only
to the free nucleons which constitute less than 1% of the vapour as can be seen from the last
column in table 3. Actually, since the vapour in this case consists mainly of deuterons the total
asymmetry of the vapour is negligibly small.

In conclusion, the formation of clusters in the surrounding vapour has a profound effect
on the stability of the hot nucleus, lowering its limiting temperature by several MeV. This
lowering of the limiting temperature of hot finite nuclei is comparable to the lowering of the
critical temperature of infinite uncharged nuclear matter due to the presence of clusters [1].
Also, because the NSE model assumes that there is no interaction between the nucleons in
the vapour, aside from the formation of clusters, the values for the limiting temperature and
the equilibrium vapour density are independent of the Skyrme interaction which is thus used
only in determining the properties of the liquid phase. The use of the simple parametrization
given in equation (7) for the density dependence of the cluster binding energy needs some
further investigation. A more sophisticated calculation of the medium modification of
the cluster binding energies may modify the magnitude of our results somehow. Similarly
the inclusion of clusters heavier than the alpha particle will have some effect on the present
results. Finally the Coulomb corrections due to the charged particles in the vapour [12, 24]
have not been included here in order to simplify the comparison with the results of [11].
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All the improvements mentioned in the previous paragraph can be the subject of future
investigation but they are not expected to change the main result of the present work which
is the lowering of the limiting temperature due to the presence of clusters in the vapour as
compared to the case when the clusters in the vapour are neglected. The rather low limiting
temperatures predicted for the nuclei 109Ag and 208Pb studied here indicate that intermediate
mass fragments should be dominant among the products of relativistic heavy ion collisions
as the heavier fragments have lower limiting temperatures and thus are less stable. This
dominance of the intermediate mass fragments agrees with what is observed experimentally
[25] and what is found theoretically in the statistical multifragmentation models [26–29].
These models may suggest generalizing the present work to a more ambitious calculation
in which all clusters, including intermediate mass fragments, are taken into consideration.
However such a generalization of the present work would be prohibitively complicated.
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