
1

A Systematic Mapping Study of Mobile Application
Testing Techniques

Samer Zein1, Norsaremah Salleh1, John Grundy2

1Department of Computer Science,

Kulliyyah of Information & Communication Technology, IIUM, Malaysia
1samer.m.zain@gmail.com, 1norsaremah@iium.edu.my

2School of Software and Electrical Engineering

Swinburne University of Technology
 jgrundy@swin.edu.au

ABSTRACT
The importance of mobile application specific testing techniques and methods has been attracting much attention of

software engineers over the past few years. This is due to the fact that mobile applications are different than traditional

web and desktop applications, and more and more they are moving to being used in critical domains. Mobile

applications require a different approach to application quality and dependability and require an effective testing

approach to build high quality and more reliable software. We performed a systematic mapping study to categorize and

to structure the research evidence that has been published in the area of mobile application testing techniques and

challenges that they have reported. Seventy nine (79) empirical studies are mapped to a classification schema. Several

research gaps are identified and specific key testing issues for practitioners are identified: there is a need for eliciting

testing requirements early during development process; the need to conduct research in real-world development

environments; specific testing techniques targeting application life-cycle conformance and mobile services testing; and

comparative studies for security and usability testing.

Keywords
Systematic mapping, mobile application testing, mobile testing, software testing.

1. INTRODUCTION
Smartphones, also known as Smart mobile terminals, are high-end mobile phones that are built on mobile operating

systems and offer advanced computing and connectivity. Modern smartphones have stronger processors, growing

memories, high resolution touch-screens, richer sensors, GPS, high-speed data access through wi-fi and so forth (Canfora

et al., 2013) (Lu et al., 2012). Due to the fact that much more computing power has been incorporated into smartphones

and mobile devices in the past few years, they have become very commonly used in everyday life. Mobile applications,

also known as mobile apps, are software applications that are developed to run on smartphones and mobile devices.

Compared to desktop and web applications, mobile applications have to deal with specific challenges. For instance,

mobile applications have to process inputs from users as well as inputs from constantly changing contexts. Additionally,

smartphones and mobile devices are still limited in their resources compared to modern personal computers and laptops.

Further, there is a large diversity of mobile operating systems, and the same operating system gets upgraded regularly

and in relatively short time periods (Zhifang et al., 2010b).

Mobile applications nowadays are not developed to only serve the entertainment sector, but also target safety and time

critical domains such as payment systems, m-government, military and mobile health initiatives to mention a few

(Muccini et al., 2012) (Payet and Spoto, 2012). As mobile applications have been developed to address more and more

Journal of Systems and Software, Volume 117, July 2016, pp 334–356, (c) 2016 Elsevier.

2

critical domains, they are not only becoming more complex to develop, but also more difficult to test and to validate

(Nagowah and Sowamber, 2012). According to (Muccini et al., 2012) there are several open research issues regarding

testing of mobile and smart-phone software applications. Among these issues is that mobile applications are inherently

different from traditional software applications and therefore require specialized testing techniques and methods.

As far as we are aware, there are currently no available comprehensive systematic review studies in the area of mobile

and smart-phone application testing. Our initial informal literature searches found very little evidence on mobile

applications testing; this also provided motivation for conducting a rigorous systematic mapping study e.g. (Muccini et

al., 2012), (Harrison et al., 2013). Inspired by a study on research directions for mobile application testing (Muccini et al.,

2012), this study provides a comprehensive and in-depth mapping study using a well-defined methodology to build

a new classification scheme and structures the research area of mobile application testing. Additionally, our

mapping study collects, interprets and analyzes all related evidence for empirical studies addressing challenges,

approaches, methods or techniques of testing mobile and smart-phone applications.

This study also aims to highlight important research gaps in the areas of mobile application testing. A total of 79 studies

(see Appendix A for the list of included studies) were selected for our mapping study after going through three (3)

filtration steps. We present the synthesis of evidence based on FIVE (5) classification sub-categories: i) usability testing,

ii) test automation; iii) context-awareness, iv) security and v) general category. Several research gaps are also reported

and discussed.

The remainder of this paper is organized as follows: Section 2 presents the motivation and the overview of related work

for this study. Section 3 describes briefly the methodology of our mapping study. Section 4 presents the results from the

mapping study followed by a discussion in Section 5. Finally, Section 6 concludes our work.

2. MOTIVATION & RELATED WORK
During our search of the literature, we found one systematic mapping study as well as several informal reviews within

the area of mobile and smart phone application testing. The systematic mapping study presented by (Méndez-Porras et

al., 2015) structures studies under testing approaches, testing techniques and empirical assessments. However, the study

focus is limited only at the test automation area. Further, their study does not include clear inclusion/exclusion criteria,

making it subjective to biased selection. In contrast our study is comprehensive as it focuses on several areas of interest

such as, test automation, usability, context-awareness, and security testing. Additionally, our study has a well defined

protocol and investigates important issues of mobile application testing such as life cycle conformance testing, mobile

services testing, and testing metrics.

 A study conducted by (Muccini et al., 2012) applies an informal review process to answer research questions regarding

mobile application testing challenges and consequently suggests further research directions. The study defines two types

of mobile applications then discusses thoroughly peculiarities of these applications and how these peculiarities derive

specialized research on mobile application testing. The study also identifies several research gaps in the areas of mobile

services testing, test automation and test integration for mobile applications.

Another study by (Harrison et al., 2013) conducted a small and informal literature review in the specific area of mobile

usability models. The study argues that most existing prominent usability models for mobile applications are incomplete

since they only focus on three usability attributes; effectiveness, efficiency and satisfaction; and neglect other important

usability attributes such as cognitive overload. In order to address this issue, the study proposes a new usability model

known as PACMAD (People At the Center of Mobile Application Development). According to the study, PACMAD is a

3

more comprehensive model as it contains important attributes from different usability models. In order to evaluate

PACMAD model, the study conducted a literature review and compiled a set of usability studies to examine which of the

usability attributes defined in PACMAD were used by those studies.

 In another relatively old review study conducted by (Looije et al., 2007), a review of research done on usability of maps

on mobile devices is discussed. Their study focuses on reviewing the research done to solve technical, environmental and

social challenges of mobile maps application usage.

The study by (Joorabchi et al., 2013) conducts a qualitative research approach based on grounded theory to gain an

understanding of real challenges faced by real world mobile application developers of different mobile platforms. Their

study provides an interesting overview of current challenges faced by developers such as building native mobile apps for

different platforms, slow emulators, and lack of analysis, monitoring and testing tools. To elaborate more in the area of

testing, the study reports that manual testing is the most prevalent practice compared to automatic testing. Further, test

engineers have to conduct separate testing processes for each platform. Additionally, most unit testing frameworks do not

provide interfaces to mobile-specific capabilities, such as GPS and sensors.

In a study by (Gao et al., 2014a), a comprehensive discussion of mobile application (native and web-based) testing

infrastructures and related testing approaches are discussed in details. In their study, the authors discuss specific mobile

application testing requirements as well as available testing infrastructures such as emulation, device, cloud and crowd

based. Then the advantages and limitations of each infrastructure is discussed and analysed. Their study also provides a

discussion of available state-of-the-art tools and processes for testing native and web-based mobile applications. The

paper concludes with a brief discussion of challenges, issues and needs for mobile application test engineers.

In another study by (Gao et al., 2014b) an informative tutorial and discussion on mobile testing as a service (MTaaS) is

presented. This study proposes TaaS (Testing as a Service) infrastructure to support cloud-based mobile testing in two

different approaches: i) mobile device test cloud and ii) emulation-based test cloud. The main objective of the study is to

address three (3) major testing challenges in the area of mobile applications: i) high costs in current mobile testing

environments; ii) lack of mobile scalability support; and iii) the complexity and harness due to diversity in mobile

devices, platforms and environments.

A recent study by (Starov et al., 2015) conducted a survey to report a set of cloud services for mobile testing. The set of

cloud services described by the study is divided into three (3) types: i) device clouds; ii) services to support application

development lifecycle management; and iii) testing tools categorized based on testing techniques. The study argues that

mobile testing over a cloud is very important, at the same time, hard to research. The study concludes that even though

there are a lot of cloud services available that fulfill testers’ initial needs, but still there is a need for a scalable platform

for effective crowdsourcing in mobile testing to support multidirectional testing as well as flexible integration of different

testing techniques and services.

Initial attempts at a literature search found no comprehensive and convincing studies on systematic mapping in the area

of mobile application testing, which encouraged us to perform such a formal and in-depth mapping review. We also

found a wide variety of studies reporting mobile testing tools and methods (e.g. (Looije et al., 2007), (Harrison et al.,

2013), (Muccini et al., 2012)), but few that apply a rigorous empirical approach. In order to provide a wide overview of

empirical studies in the area of mobile application testing, the present study applies a systematic mapping methodology

to build a classification scheme, to identify and analyze evidence for challenges, techniques and methods that have been

previously published. Analyzing all related evidence for mobile application testing challenges and techniques is therefore

needed in order to identify possible research gaps and to suggest further studies such as systematic literature reviews.

4

3. METHOD
This section describes the systematic mapping method that we applied in this study. The details of review planning and

conduct are also discussed in this section.

In this study, our research methodology for a systematic mapping was based on the guidelines provided by (Petersen et

al., 2008) and (Kitchenham and Charters, 2007). This review is also inspired by other systematic mapping studies (Bailey

et al., 2007), (Mujtaba et al., 2008), more specifically in the area of data synthesis and analysis. Such review normally

leads to provide a coarse-grained overview for field area and to provide a baseline to suggest areas for further research

(Petersen et al., 2008).

According to (Petersen et al., 2008), a systematic mapping process consists of five (5) discrete phases (see Figure 1). The

first phase is defining research questions. The second phase is conducting the search. In this phase a researcher specifies

a search strategy and selects primary studies. The third phase is screening of papers. The fourth phase is keywording of

abstracts. During this phase a researcher builds a classification scheme. The last phase is data extraction and mapping

process. During this phase, the relevant articles are mapped into the scheme and this involves the process of data

extraction. A summary of the materials used in this study is put online1. The steps in this mapping process may seem to

be sequential, but it is important to clarify that some of them are iterative. For instance, the classification scheme evolves

and gets updates through the process since new terms are added or merged while going through the included papers.

Figure 1: the systematic mapping process

3.1 Research Questions
This study tries to build a classification scheme through identification of all related evidence and knowledge gained from

empirical studies of mobile and smart-phone application testing techniques. Further, this study aims to identify research

gaps and outstanding challenges and to suggest where future research fits to best extend the current body of knowledge.

Hence, we need to identify the contributions of studies on mobile application testing reported to date. As highlighted by

(Muccini et al., 2012), it is necessary to identify the peculiarities of mobile application testing due to the diversity of

mobile platforms and features of mobile devices. Due to the lack of reviews related to this area, we focus this mapping

study on empirical studies on mobile application testing techniques, methods or approaches. To achieve the above aims,

the following primary and sub research questions (RQs) were specified:

Primary RQ: What are the studies that empirically investigate mobile and smart phone application testing

techniques and challenges?

sub-RQ1: What research approaches do these studies apply and what contribution facets do they provide?

sub-RQ2: What kind of applications (industrial or simple) do these studies use in order to evaluate their

solutions?

sub-RQ3: Which journals and conferences included papers on mobile application testing?

1 https://sites.google.com/site/mobileappsms2/home/resources

5

3.2 Sources of Evidence
The present study was performed at the International Islamic University of Malaysia (IIUM), consequently, the sources

of information were restricted to available resources subscribed by the IIUM library. The primary search process

involved the use of standard online databases that index Computer Science and ICT related literature. These include:

IEEExplore, ACM Digital Library, Scopus, SpringerLink, ScienceDirect and ProQuest.

3.3 Search Strategy
In this review, we included empirical studies of both qualitative and quantitative approaches. Such studies need to be

directly related to mobile and smart-phone applications focusing on testing techniques, challenges, methods or

approaches.

We adopted the strategy to construct the search string as suggested by Kitchenham and Charters (2007):

• Search for synonyms and alternative keywords.

• Use Boolean OR to incorporate alternate spellings and synonyms.

• Use Boolean AND to link major terms together.

In our preliminary search, it took several tries to construct the right search strings due to the fact that the term mobile is a

generic term and it is connected to different research areas such as robotics, vehicles and other unrelated engineering

terms. In each try, the search string was evaluated based on how much the returned studies were relevant to our focus

area, i.e., mobile application testing. Additionally, and based on our experience and initial research review, we used 10

studies as a second criteria to examine the quality of our search strings. The final search string chosen was the one that

could return results that are most relevant to our area of focus and also the one that returned the maximum number of the

previously known ten (10) studies. For instance, the search string of Try2 in Table 1 was excluded because the results

were not much relevant to our area of focus as compared to search string of Try5.

The search terms were mainly driven by the research questions (see Table 1). The terms “mobile application”, “testing”,

and “challenges” represented the main terms. Additionally, we aggregated additional terms as synonyms such as

“verification”, “fault”, “approach” and “limitation” to make the search broader and to ensure that we cover larger area.

Further, and based on previous knowledge and previously known studies in this field, the term context-aware was

notably found in many existing research studies on mobile application testing (Amalfitano et al., 2013) (Bo et al., 2011)

(Wang, 2008). This is due to the fact that context-awareness is one of the most compelling peculiarities of mobile

applications (Muccini et al., 2012) and that a considerable number of studies discuss the testing challenges of this

peculiarity. Hence, we incorporated the term “context-aware” in our search string to ensure that search results contain

more relevant studies. In addition, and since several studies are published using the term mobile “app” instead of

“application”, the term “app” was incorporated into our search string as can be seen at Table 1 Try5. For instance, even

though search string of Try4 returned all 10 studies, but still it did not return studies that contain “app” keyword.

Accordingly, search string of Try5 was select in this mapping study.

The online database IEEExplore was used to pilot search strings against the 10 previously known studies. Search strings

had to be considerably strict since that when we used generic terms such as “mobile application testing”, we ended up

with thousands of hits. Table 1 shows piloted search strings, number of studies missed and returned results from

IEEExplore. Hence, after the pilot evaluation, search string of Try5 was chosen.

Table 1: Search strings piloted on IEEExplore

6

Try Search string: # studies
missed

Returned
results

Try1 ((mobile) AND (application OR software) AND (context aware OR

context awareness OR adaptive) AND (testing OR verification) AND

(technique OR approach OR method OR challenge OR limitation))

7 377

Try2 ((mobile) AND (application OR software) AND (testing OR verification)

AND (technique OR approach OR method OR challenge OR limitation))

1 766

Try3 ((("mobile application" OR "mobile software" OR "context-aware")

AND (testing OR verification OR fault) AND (technique OR approach

OR method OR challenge OR limitation)))

1 657

Try4 (((("mobile application" OR "mobile applications" OR "context-aware")

AND (testing OR verification OR fault) AND (technique OR approach

OR method OR challenge OR limitation))))

0 819

Try5 (((("mobile application" OR "mobile applications" OR “mobile apps” OR

"context-aware") AND (testing OR verification OR fault) AND

(technique OR approach OR method OR challenge OR limitation))))

0 917

3.4 Study Selection Criteria
The main focus of our mapping study is based on identification of empirical studies (both qualitative and quantitative) in

the area of mobile application testing. According to Perry et al. (2000), empirical studies can take many forms and are not

only realized as experiments, but also as case studies, surveys and prototyping exercises as well. Further, empirical

studies usually involve the steps of formulating a hypothesis, observing a situation, analyzing the data and drawing

conclusions. According to (Fenton et al., 1994), in order for a software engineering research to obtain a more solid

scientific foundation, it should be based on empirical evaluation and data. A research simply based on anecdotes, gut

feeling, opinion or flawed research is not of a recognized scientific value (Fenton et al., 1997). Therefore, selection

criteria were defined during the review planning stage to avoid bias. In our mapping study, we considered a study to be

empirical if the proposed solution is backed up with empirical evaluation and data. For example, if one paper is

proposing a new testing approach or method, it should contain evidence or data that supports the proposed approach.

Studies that are not backed up with empirical data or merely presenting opinion without any supporting evidence are not

included in this review.

As suggested by (Kitchenham and Charters, 2007), the selection criteria were piloted on known studies, and

consequently, were refined and enhanced. In this mapping study, we applied the following inclusion criteria:

• Studies must be directly related to software testing techniques, approaches, challenges or limitations for

applications running on mobile phone devices, smart phones or PDAs. Such techniques and approaches should

be applied during the software development process.

• Studies must provide empirical data or supporting evidence (i.e. containing empirical quantitative or qualitative

data).

The following were the exclusion criteria used to exclude irrelevant studies:

• Studies related to testing embedded systems in general, and not running on mobile devices.

• Studies related to mobile communication infrastructure, mobile hardware, or robotics.

7

• Studies related to other software development phases such as analysis, design or implementation and not related

to testing.

• Studies that merely present opinion without any supporting empirical evidence.

As outlined above, we excluded studies that discuss methods and approaches related to software development phases of

mobile applications other than testing such as development and design. Other excluded studies discuss hardware and

communication infrastructure and the remaining excluded studies proposes solutions provided as methods, frameworks

and models without empirical data or experimental evaluation.

3.5 Study Selection Process
The search process performed on all databases was based on the advanced search feature provided by the online

databases. The search string was applied using advanced command search feature and set to include meta-data of studies.

Additionally, initial dates were not specified or restricted during the search, i.e., we did not define any lower bound date

to ensure wide coverage of search. However, the search process was restricted for studies related to computer science

field. This restriction is due to the fact that the term mobile is commonly used in other engineering disciplines. The

literature search covered studies published up until 2015.

The study selection process was iterative and incremental where each paper went through three different filtration steps

(see Figure 2). Initial phase was related to searching the database using search string. Then in the first phase, resulting

papers were filtered based on their title and abstract. In this step, papers’ titles and abstracts that are not related to testing

of software applications running on mobile or smart-phones were excluded.

Figure 2: selection process

In the second phase, filtration was based on applying selection criteria by reading a selected paper’s introduction,

methodology and conclusion. From the remaining papers of phase one, papers were excluded either because they were

not empirical, they did not confirm to study selection criteria identified in Section 3.4, or because papers were duplicates

of other papers. When duplicate papers were found (at second phase), i.e. similar paper appears in more than one venue,

the most comprehensive version of the paper was selected. The final filtration step was based on complete and thorough

reading of remaining papers.

3.6 Keywording of Abstracts (Classification Scheme)
The purpose of keywording is to reduce the time needed to build a classification scheme and to ensure that the scheme

takes into account existing studies. We applied a thematic analysis approach which identifies, analyzes and reports

themes within data (Braun and Clarke, 2006). In general, the keywording process was inspired by (Petersen et al., 2008)

and consisted of two phases and was applied to the final set of included papers. In the first phase, the main researcher

(the first author) read abstracts of selected papers and looked for sentences and concepts that reflected the investigated

8

problem as well as the contribution and area of focus of papers. When the abstracts were of poor quality or too short to

allow convincing keywords to be chosen, the researcher reads the introduction and conclusions as well.

In the second phase, and based on the thematic analysis approach, the set of keywords from different papers were

combined together to form a high-level understanding about the nature and contribution of the research. This led into

identifying a set of topics (sub-categories) for the classification scheme. When a final set of keywords was chosen, they

were clustered and used to form the map categories.

During the first phase of keywording process, there were lots of concepts reflecting the different investigated problems

and contributions of included papers. Examples of such concepts were model-based testing, test case generation, usability

data analysis, automated collection of usability data, context events, malware detection, etc. This resulted in a relatively

large number of concepts due to the diversity of problems investigated and contributions in the included papers. Thus,

during the second phase the resulting concepts from the first phase were grouped together based on the area of focus for

each paper. The topics of “usability testing”, “test automation”, “context-awareness”, and “security testing” were

carefully chosen as a higher level of concepts that best fit our included papers and became the main category in our

resulting classification scheme. Resulting classification scheme will be presented in section 4.2.

3.7 Data Extraction and Mapping of Studies
The main aim of this phase was to map identified studies into the classification scheme and extract relevant data to

answer our research questions. That is, after having the classification scheme in place, the relevant studies were sorted

into the scheme. Data was inserted into tables, and frequencies of publications for each category were calculated. The

EndNote citation management tool was used to record and manage papers’ citations. This included authors’ names,

publication year, source, and title among others. Additionally, data extraction form was designed to extract data based on

the research questions. Extracted data here reflected contribution facets, research approaches used in the study,

challenges addressed; testing techniques applied, methodology, study setting (i.e. whether the study based its solution on

real-world development team’s needs or not), the specific mobile apps testing topic (e.g. mobile services, or testing

conformance of mobile life cycle models). The extracted data was collated and stored using spreadsheets and the

frequencies of publication were calculated.

The challenges recorded are related to major problems addressed by a study. If there is more than one challenge, they

were ordered according to their appearance sequence in that study. Techniques applied, on the other hand, represent the

special technical approaches or methods that authors applied to solve their study problem. Finally, the solution

methodology summarizes the steps of how techniques were applied to solve a problem. The overall classification scheme

and resulting data extracted helped in providing deeper understanding and enabled us into identifying research gaps.

3.7.1 Validity control
The first author was responsible in reading and completing the extraction form for each of the primary studies included in

the systematic mapping study. The second and third authors on the other hand provided detailed feedback on the study

protocol to minimize any possible bias. In order to reduce the bias during study selection and data extraction phases, the

second author performed random analysis of 10% of included studies independently. The results were compared in a

meeting and no significant anomalies were evident. We did not measure inter-rater agreement since our review meeting

aimed to reach an absolute consensus on the sample used.

9

4. RESULTS

4.1 Search results
It was apparent beforehand that searching for and retrieving empirical studies for mobile or smart-phone application

testing techniques/approaches needs careful construction of search strings. As noted earlier, the term mobile is used in

different engineering disciplines. This explains why there were several tries to pilot search strings and compare results

with previously known studies. However, we believe that our search string is considered reliable because it contains the

term “mobile application/app testing” and that almost all related articles are categorized under this term.

Initially our initial search results returned 7356 studies from all sources. Afterwards, the three filtration steps were

applied as discussed in section 3.5. Table 2 shows online databases searched, initial search results, and the number of

remaining studies after applying each filtration step (see Figure 2). In total, 79 studies were included after applying

filtration steps and inclusion/exclusion criteria (see Appendix A for the list of included studies). Out of the 79 studies, 36

(45.5%) came from IEEExplore and 30 studies (38%) came from ACM Digital Library, two (2) studies from

SpringerLink, two (2) from ProQuest, three (3) studies from ScienceDirect, and six (6) from Scopus. The distribution of

included studies over publication years can be seen in Figure 3. It can be seen that the earliest study was published in

2005 and year 2015 is the year where most included studies were published.

Table 2: Remaining studies after each filtration step
Online Database Search Results Phase1 Phase2

IEEExplore 917 59 36

ACM Digital Library 2330 54 30

Science Direct 698 7 3

Springer Link 1453 11 2

ProQuest 62 6 2

Scopus 1896 28 6

Total 7356 165 79

Figure 3: Studies per publication year

4.2 Classification Scheme
The classification scheme we used consists of FOUR (4) main categories: i) Structure of the topic or evidence; ii)

Contribution facets; iii) Objects involved in the study (i.e., the type of applications used for evaluations); and iv)

Research facets. In the first category (structure of the topic), and based on the thematic analysis, we grouped the papers

into five topics (sub-categories): usability testing, test automation, context-awareness testing, security testing and testing

in general. These topics were constructed by investigating the main focus area that each paper addresses as described in

section 3.6. It was very apparent during the phase “keywording of abstracts” that test automation, usability testing,

10

security testing, and context-awareness are the main areas and focus of research under which, relevant studies can be

grouped. For the rest of the studies that did not belong to these four types, they were put under “general” topic.

The second classification which is inspired by (Shahrokni and Feldt, 2013), investigates the contribution facets. As

suggested by (Shahrokni and Feldt, 2013), the contribution facet criterion structures the studies in the final set into

specific contribution type, namely framework, method, tool, evaluation and metrics. A framework is a detailed method

that covers wide purpose by focusing on several research questions and areas. In contrast, a method has a specific goal

and narrow purpose or research question (Shahrokni and Feldt, 2013). Studies where the tools represent major topic were

classified under tool contribution facet. Metrics on the other hand measure important variables in software testing.

Finally an evaluation contribution facet represents studies that evaluate systems or methods.

The third classification category is “objects involved in the study” which reflects answer for sub-RQ2 and represents the

type of applications (industrial/simple) used for evaluating proposed study solution. In this criterion, simple (toy)

application represents a special purpose small application built to evaluate the case study. On the other hand, industrial

represents commercial and real world application used to evaluate the case study. We were motivated to study the context

of the studies to investigate two aspects: first, it is important to measure how included studies evaluate their solutions and

to what extent. Evaluating using real world applications can ensure that the proposed solution is trustworthy and reliable

(Shahrokni and Feldt, 2013). Secondly, and since that mobile application development field is relatively new, we believe

that studies should shed some light on problems and challenges faced by real world development teams to see how teams

currently approach mobile application development. Such insight would help reveal real problems and thus produce

solutions that could solve real problems.

The fourth classification is the “research facet”, which is inspired from (Petersen et al., 2008). In this criterion, we

choose the existing types of research approaches as suggested by (Wieringa et al., 2006):

• Validation research: the techniques investigated are novel and have not yet been applied in practice.

• Evaluation research: techniques are implemented in practice and an evaluation of the technique is available.

This kind of research shows how the technique is implemented in practice along with its benefits and

drawbacks.

• Experience papers: these papers show how something was done in practice as a result of personal experience

of the author.

4.3 Answering the research question
RQ: What are the studies that empirically investigate mobile and smart phone application testing techniques and

challenges?

The studies included in this mapping study were categorized and grouped according to the classification scheme

described in section 4.2. The main category to structure the topic included: usability testing, test automation, context-

awareness, security testing, and testing in general topics (sub-categories). Studies that have presented challenges not

related to any of the first four topics are put into a general topic. Studies with clear contribution are discussed in more

details in the following sections. Out of 79 studies, nineteen (19) studies came under usability testing, twenty nine (29)

studies under test automation, eight (8) studies under context-awareness, eight(8) studies under security testing and

fifteen (15) studies under general testing topic. Table 3 shows the included studies for each topic. It is noticeable that

most of the studies published were related to test automation 37% (i.e. 29 out of 79).

Table 3: Studies under each topic (sub-category)

11

Category Studies (S) Total # studies

Usability Testing S2, S9, S19, S21, S22, S23, S24, S25, S26,

S28, S33, S35, S36, S37, S40, S43, S64, S69,

S77

19

Test Automation S1, S3, S6, S11, S12, S20, S16, S31, S32, S41,

S42, S45, S52, S53, S55, S56, S57, S58, S59,

S61, S62, S63, S68, S70, S71, S72, S73, S78,

S79

29

Context-Awareness S5, S7, S8, S10, S17, S39, S54, S74 8

Security S46, S47, S48, S49, S50, S51, S60, S75 8

General Category S4, S13, S14, S15, S16, S18,S27, S29, S34,

S38, S44, S65, S66, S67, S76

15

4.3.1 Usability Testing
According to (Harrison et al., 2013), in the context of mobile applications, usability is represented in terms of three

attributes; effectiveness, efficiency, satisfaction and cognitive load. Additionally, and as explained by (Bruegge and

Dutoit, 2004), the goal of usability testing is to find errors in the user interface of an application. According to our study

findings, there are a considerable number of published studies on usability testing. Out of the 79 included studies, 19

studies were related to usability testing and validation (see Table 3).

The study presented by (Balagtas-Fernandez and Hussmann, 2009) [S2] addresses the challenges of usability analysis

and evaluation of mobile applications because of restrictions of device, and lack of supporting tools. They have

developed a framework that is based on a logging technique. Through this technique, the study of usability for mobile

applications running on a device can be simplified. Another contribution by (Ravindranath et al., 2012) [S21] discusses

how to identify critical user transactions when program is running in the wild. They have developed a tool that

instruments mobile application binaries to automatically identify the critical path in user transactions.

A recent study by (Flood et al., 2012) [S35] evaluates the usability of spreadsheets for mobile applications. Their study

provide lessons learned and usability guidelines derived from laboratory usability testing of mobile spreadsheet

applications based on video recording technique.

The challenge of evaluating mobile user interfaces for usability is the main focus of study by (Lettner and Holzmann,

2012) [S23]. This study presents a novel approach and toolkit for automated and unsupervised evaluation for mobile

applications that is able to trace any user interaction during the entire lifecycle of an application.

Based on the hypothesis that agile methodologies share crucial needs with usability engineering and mobile applications

development general requirements, (Losada et al., 2012) [S25] applied usability engineering in the agile methodology

called InterMod on mobile application development. InterMod technique includes the use of questionnaires, interviews,

observations and user test through paper prototypes.

A case study presented by (Pham et al., 2010) [S26] examines the usability evaluation of MobiTOP mobile application in

the context of a travel companion for tourists.	Participants agreed that the features in MobiTOP are generally usable as a

content sharing tool. Another case study by (Huhn et al., 2012) [S28] with a similar focus, contributes to this line of

12

research by presenting a user experience study on mobile advertising with a novel CAVE-smartphone interface. Two

experiments were conducted to evaluate the intrusiveness of a mobile location-based advertising app in a virtual

supermarket.

The study by (Oyomno et al., 2013) [S33] discussed a usability study on Mobile Electronic Personality Version 2

(ME2.0) which is a context-aware service personalizing mobile application. According to this study, and in order to

guarantee the effectiveness of ME2.0 in privacy preservation, the User Interface (UI), the User Experience (UX) and

usability need to efficient and meaningful. Additionally, the design and implementation of context-aware mobile

applications that manage users’ personalization attributes can be a daunting task especially when neglecting users’

perspectives. To address these issues from different user perspectives, the study conducts several usability studies

centered on the themes of effectiveness, efficiency, learn-ability, memorizability, error-rate, and scope.

(Kronbauer et al., 2012) [S36] report that there is a lack of approaches reported in the literature for evaluating mobile

application usability. This includes the use of quantitative data (metrics), subjective evaluation (users' impressions) and

context data. The study presents a proposal for a hybrid usability evaluation of smart-phone applications, which is

composed by a model and an infrastructure that implements it.

The empirical study by (Billi et al., 2010) [S37] applies techniques of early assessment and ad-hoc mobile oriented

methods to evaluate the usability and accessibility of mobile applications. A case study by (Biel et al., 2010) [S40]

designed a method that aligns the inspection method “Software ArchitecTure analysis of Usability Requirements

realizatioN” (SATURN) and a mobile usability evaluation in the form of a user test. The study also proposes to use

mobile context factors and requirements as a common basis for both inspection and user test.

A field study approach is applied by (Bjornestad et al., 2011) [S9] to investigates the usability of location-based news

service for mobile phones. Through their study, a system to support location-based news is developed consisting of

authoring tool for journalists and a reader tool for mobile phones with web browsers. The investigation was done using

qualitative and quantitative data from a field experiment. The study concludes that respondents found both the software

and journalistic concept easy to understand.

A case study by (Fetaji et al., 2008) [S19] addresses the problem of lack of research about efficiency, effectiveness and

usability of mobile learning or m-learning systems. The study also discusses the usability of a learning environment and

proposes a strategy on how to implement a successful and usable m-learning environment. The proposed strategy is

based on incorporating a qualitative approach in order to gather better qualitative information for the usability and

benefits of the environment. Further, the strategy includes the user-centered design approach in which end users are

included in the design of application user interfaces from the beginning.

(Canfora et al., 2013) [S43], developed a platform named ATE for supporting the design and automatic execution of user

experience tests for Android applications in order to evaluate how end users perceive the responsiveness and speed of

such applications. Methodology employed in this case study is made of three distinct steps: In the first step, the

developed platform is used to define, execute and evaluate user experience tests of smartphones. During the case study,

they used two versions of smartphones with different processing capabilities. They also developed three different types of

user profiles: normal, smart and business users. In the second step, a demographic analysis of real users using interviews

and observations was used to collect real data for comparison. In the final step, they performed a comparison with three

well known tools. The study argues that ATE produces user experience estimates that are comparable to those reported

by humans.

13

In another study by (Borys and Milosz, 2015), the authors discuss the setup and results of quasi-real settings of mobile

usability test using mobile eye-tracking glasses. The focus of experiment is to evaluate the usability of mobile application

called Sale Force Automation in terms of its basic functionality. The study concludes that it is possible to approximate

the real conditions of application usage while still having complete control over it. Further, the application of eye-tracker

technique enabled accurate data gathering as well as detecting a whole range of usability problems.

The study by (Masood and Thigambaram, 2015) investigates the usability of mobile educational applications for children

age between 4 and 5 years. The study uses eye-tracking technique and is based on children’s mental model as well as the

quality of their learning experience. The study also provides a set of principles for user interface design and guidelines

for developers when developing mobile educational applications.

Another study by (Wei et al., 2015) focuses on library mobile application of Chongqing University in order to provide

recommendations for improving the user experience of application users. The methodology of the study is based on pre-

test questionnaires, accomplished tasks, and post-tests surveys. The study concludes that the library application was

effective; however, the efficiency of the application needs more improvements in terms of clarity and usefulness.

Additionally, the studies under usability testing sub-category can be further classified based on their area of focus. More

specifically, these studies can be classified under the sub-categories of (i) specific domain usability; (ii) during

development; and (iii) general. Table 4 shows the further classification of usability studies. In “specific domain

usability”, the studies focus on usability evaluation for specific domain (e.g. location based news and spreadsheets

applications). On the other hand, “development solutions” represents studies providing usability solutions that aid

developers during the construction and evaluation of mobile applications in terms of saving time and effort. Finally, and

since the remaining studies belong to a variety of other focus areas, they were put under “general” sub-category.

14

 Table 4: Further classification of usability studies based on focus area

Specific domain usability

Study Application domain

S9 News Reader

S19 Learning through mobile

S24 News application

S26 Location-based annotation system

S28 Advertizing systems

S33 Mobile electronic personality

S35 Spreadsheets applications

S64 Sale force automation

S69 Mobile educational applications

S77 Mobile library application

Development solutions S2, S21, S23, S25

General S22, S36, S37, S40, S43

4.3.2 Test Automation
Test automation refers to the use of one piece of software to test another piece of software (Crispin and Gregory, 2008).

With the help of automation tools, test engineers can keep pace with development team, maintain agility and save testers

from routine, time consuming and error prone manual testing activities (Crispin and Gregory, 2008).

We found 29 studies that have reported evidence on test automation of mobile applications S1, S3, S6, S11, S12, S20,

S16, S31, S32, S41, S42, S45, S52, S53, S55, S56, S57, S58, S59, S61, S62, S63, S68, S70, S71, S72, S73, S78, and S79.

Automatic testing of Android mobile applications is explored by (Amalfitano et al., 2011) [S1]. In this study, the authors

present a technique and a tool to perform rapid crash testing, regression testing and automatic generation of test cases. In

another study by (Nagowah and Sowamber, 2012) [S3], a framework is presented to automate software test on the mobile

device itself rather than using the emulator. This is due to the fact that running automated tests on emulators may

compromise the reliability of the test since those emulators are not the actual devices, and may not reflect actual reliable

results.

An approach presented by (Edmondson et al., 2011) [S6] combines portable operating system libraries with knowledge

and reasoning. This approach will eventually leverage the best features of centralized and decentralized testing

infrastructures to support both heterogeneous systems and distributed control by reasoning on distributed testing

events.

A distributed client/server testing tool is proposed by (She et al., 2009) [S11] to address the challenges of heterogeneity

of mobile devices and their limited resources. The study also presents partially implemented tool writing, executing and

reporting of tests. Another study by (Jiang et al., 2007) [S12] proposes a tool for automatic black-box testing of mobile

applications. Additionally, the study adopts a sensitive-event based approach to simplify the design of test cases and

enhance their efficiency.

15

The study by (Liang et al., 2014) [S57] focuses on the problem that test inputs have to be run with a large variety of

contexts. Consequently, the study presents a testing tool called Caiipa that is based on cloud service technology for

testing mobile applications over an expandable mobile context space. The study also includes techniques to make mobile

applications testing more traceable to quickly locate failure scenarios for each application. Another testing tool called

AppDoctor is discussed in the study by (Hu et al., 2014) [S59]. AppDoctor applies the techniques of approximate

execution and action slicing which enable the tool to run much faster than real execution and expose software bugs. The

challenge of how to systematically explore Android applications is discussed by (Azim and Neamtiu, 2013) [S56]. In

their study, the authors argue that relying on end users to perform systematic exploration is not effective. The authors

present a novel approach to perform a systematic exploration for Android applications that is based on static taint-style

dataflow analysis without the need for the application source code. In their approach, a high-level control flow graph is

produced capturing legal transitions between activities. Later on, this graph is explored by a strategy called targeted

exploration that allows direct and fast exploration of activities.

The challenge of how to automatically generate sequences of test inputs for Android applications is discussed by (Choi et

al., 2013) [S58]. In their study, they propose an automated technique called Swift Hand that is based on machine learning

to produce sequences of test inputs that enable visiting unexplored states of the application. A key feature of their

technique is that it avoids restarting the application which is a relatively an expensive operation.

A study by (Amalfitano et al., 2012) [S20] introduces an automated technique based on a user-interface driven “ripper”.

This technique automatically explores an application’s user interface with the aim of exercising the application in a

structured manner. Another study by (Kaasila et al., 2012) [31] reveals an online platform for conducting scripted user

interface tests on a variety of Android physical handsets. This study was performed as an attempt to address the

challenge of comprehensive testing of interactive applications running on multiple versions of Android operating system.

An interesting finding of this study is that it can reveal common issues and problems such as that applications fail to

install on certain handsets and mistakes in Android application manifest files.

(Zhifang et al., 2010a) [S30] introduces the idea of constructing a testing framework employing techniques from

MobileTest tool, service-oriented architecture (SOA), image comparison based testing and optical character recognition

(OCR). (Puhakka and Palola, 2006) [S32] discuss the new testing needs of beyond 3G (B3G) applications and presents

an experimental system for automating testing of B3G mobile applications that supports application testing in multiple

mobile phones at the same time.

(Lu et al., 2012) [S41] argue that mobile applications are different from traditional web and desktop applications due to

physical constraints of mobile devices as well as new features of mobile operating systems which in total impose unique

challenges when testing these applications. Consequently the study proposes a method for automatic testing for Android

applications based on functional testing through application activities. The method is based on a model for application

activities and a special algorithm to generate test cases. The method is implemented by extending open source tools

Robotium (2014b) and Mokeyrunner (2014a).

The empirical study conducted by (Song et al., 2011) [S42] addresses the problem of having several platforms for mobile

applications which in turn requires test engineers to spend much effort and time to test their application on each platform.

The study aims at developing an integrated test automation framework through which implementations can be tested on

mutable heterogeneous platforms effectively. This is based on the idea of describing test cases in a high level language

without having to generate test code manually. Although platforms are different, but still, common events, such as touch,

16

drag, scroll, etc. can be extracted to generate independent test cases. The study argues that by automating this part, the

cost of testing can be reduced.

The study by (Zhang and Elbaum, 2014) [S45] focuses on the important problem of validating code for exceptional

behavior handling, especially when dealing with external resources that may be noisy and unreliable. The study suggests

an automated approach that addresses this challenge by performing a systematic amplification of the application space by

manipulating the behavior of external resources. Additionally, the study provides an assessment of the cost-effectiveness

of the approach by testing it on eight real-world Android applications.

In another study by (Costa et al., 2014) [S52], the authors assess the feasibility of using the Pattern Based GUI Testing

(PBGT) approach to test mobile applications. PBGT is based on the concept of User Interface Test Patterns to test

recurrent behavior. Since PBGT was developed with web applications in mind, their study describes the adaptations and

updates the PBGT should undergo to test mobile applications.

The study by (Tao and Gao, 2014) [S55] focuses on the problem that existing test models rarely target the test modeling

and analysis for mobile environment contexts such as mobile platforms, web browsers, different technologies, device

gestures, APIs, etc. Consequently, and in order to better achieve effective test automation, the paper provides an

approach to modeling mobile test environments based on a Mobile Test Environment Semantic Tree (MTEst). Based on

MTEst model, the paper discusses test complexity evaluation methods for test environment.

(Morgado et al., 2014) [S53] uses the techniques of reverse engineering and behavioral patterns to test mobile

applications. Their testing approach is based on automatically identifying and testing behavior that is common in mobile

applications. They also present a tool that automatically identifies patterns in the behavior of the application and then

applies associated tests for each identified pattern.

In the study at (Villanes et al., 2015)[S61] proposes a testing framework called Automated Mobile testing as a service

which provides automated tests for mobile applications. The framework is mainly based on cloud technology and

emulates mobile devices using virtual machines and cloud infrastructure. The study focuses on the criterion of OTA

Install (automated installation of mobile applications on devices). The study concludes through experiments that 100% of

the emulated devices could be tested using test cases of their framework.

The study by (Wen et al., 2015)[S62] addresses the challenge of automatically testing complex Android GUI applications

and maintaining efficiency. Thus the study proposes a parallel testing platform which performs GUI testing based on

master/slave model. The authors argue that their testing platform can increase testing efficiency and mitigate the tedious

testing process.

The study by (Zhauniarovich et al., 2015)[S63] investigates the problem of measuring code coverage for mobile

applications when the source code is absent. The study argues that current test frameworks do not provide statistics or

coarse-grained reports when measuring code coverage. Thus, the study introduces a new framework called BBoxTester

that is able to generate detailed code coverage reports as well as uniform coverage metrics without the need for

application source code.

The use of Model-Based testing in the construction and implementation of automated tests for Android applications is

investigated by (de Cleva Farto and Endo, 2015) [S68]. The study investigates the applicability, current state-of-the-art

and challenges faced when adopting model based testing techniques. The study concludes that model-based testing can

be used to test Android mobile applications and that it does provide advantages such as automatic generation of test

cases, fault detection, improve test quality and time consumed, and evolution of test models.

17

A new testing technique that is search-based is introduced by (Amalfitano et al., 2015a) [S70]. The study argues that

record/replay, random, model-learning and model based techniques do not produce test cases that are effective and

efficient. To address this challenge, the study presents a search-based technique that is based on genetic and hill climbing

techniques.

The challenge of improving test cases’ quality and effectiveness is investigated by the study at (Adamsen et al., 2015)

[S71]. The study realizes the problem of having manually written test cases not focusing on unusual events. Additionally,

automated generation of test cases does not focus on intended functionality of the application. Consequently, the study

proposes a new testing methodology by leveraging existing test cases by systematically so as to expose unexpected

events to surface. The study concludes that real-world mobile applications are often fragile to unexpected events.

The problem of insufficient testing techniques or tools that can handle inter application communication is investigated by

(Kumar et al., 2015) [S72]. The study proposes a conceptual model to represent inter application communication at a

higher level as well as a technique to generate test cases from the model. The study argues that the conceptual model can

be applied during different stages of mobile application development such as analysis and testing stages.

In another study by (Hu et al., 2015) [S73] addresses the challenge of recording and replaying sensor and network input,

and inter application communications using intents. The study introduces a stream-oriented record and replay approach

that is capable of recording above events while maintaining high accuracy and low overhead. The study claims that

proposed testing approach is capable of replaying high-throughput and time sensitive applications such as video/audio

recognition.

The problem of how to model the state of mobile application GUI as well as application state-sensitive behavior is

investigated by (Amalfitano et al., 2015b) [S78]. In their study, the authors introduce a GUI testing framework for

Android called MobiGUITAR. The framework is capable of addressing the above challenges as well as applying new test

adequacy criteria based on state machines. According to the study, MobiGUITAR employs new test case generation

technique and provides fully automated testing that works with mobile platform security.

Finally, the study by (Griebe et al., 2015) [S79] provides an extension to the testing framework Calabash allowing to

integrate sensor information into user acceptance tests that are written in Gherkin. The study also introduces a simulation

engine that can feed artificial sensor data to application under test.

Table 5 shows detailed classification to approaches for test automation studies. We found that majority of the studies (8

out of 19) applied model-based testing approach in their evaluation.

Table 5: Test automation papers classified according to test approaches:
Testing approach Study
Model-based S1, S20, S41, S52, S55,

S68, S72, S78
Data-driven S3
Portable operating system libraries with knowledge
and reasoning

S6

Black box S11, S12, S63
Sensitive-event based S30
Scripted user interface S31, S32, S42
Exhaustive test amplification S45
Reverse engineering S53
Static taint-style dataflow analysis, depth-first S56

18

exploration
Contextual fuzzing S57
Machine learning S58
Approximate execution S59
Automated mobile testing as a service S61
Parallel GUI testing based on master-slave model S62
Search based S70
Systematic exploration of test suites S71
Sensor and event-stream based approach S73
Sensor simulation S79

4.3.3 Context-Awareness
In context-aware mobile applications, the application is aware of the computing environment in which it runs, and adapts

to its changes in contexts such as user, time or physical ones. Further, contexts can be categorized into two groups:

human factors such as user, social environment and task. The other group is physical environments such as location,

infrastructure and physical conditions (Muccini et al., 2012). Based on the data extraction, eight (8) out of 79 studies

were specifically related to context-aware mobile applications (S5, S7, S8, S10, S17, S39, S54, and S74).

The first study that has investigated about context-awareness issue on mobile applications was published in 2005. In the

study, (Ryan and Rossi, 2005) [S17] define and empirically evaluate metrics to capture software, resource utilization

and performance attributes for the purpose of modeling their impact on context-aware mobile applications.

Additionally, the study introduces a suite of metrics to model the impact of software code attributes upon performance

and resource utilization.

(Zhimin et al., 2007) [S5] reports the challenges of validating context-aware applications for pervasive software. The

study introduces an approach for identifying context-aware break points and systematically changes the context-aware

data fed to application to expose failures.

In another study, (Wang, 2008) [S39] addresses the problems of orthogonal input space, intrinsically noisy data,

continuous and indirect input feeding and continuous adaptations. The study also identifies context-aware program

points where context changes may be relevant. Additionally, control program execution identifies two classes of

adaptation fault patterns and analyzes a system’s model of adaptation rules to detect such faults rank statements based on

their sensitivity to context changes.

(Sama et al., 2010) [S39] investigate the problem of exposing context-aware mobile apps faults that cannot be exposed

using regular testing techniques. Consequently, their study defines and applies a new model for the detection of faults of

incorrect adaptation logic, asynchronous updating of context information and defines algorithms to automatically detect

such faults. Additionally, the study proposed a new model of adaptive behavior named “Adaptive finite state machine”.

This new model can detect faults caused by both erroneous adaptation logic and asynchronous refresh of context

information.

In another study by (Bo et al., 2011) [S10], the authors address the problem of exposing faults of buggy context providers

and propose a fault tolerant design to make the mobile application immune to buggy context providers bugs. The authors

apply a statistical fault localization framework targeting at bugs caused by context provider faults.

19

The study by (Amalfitano et al., 2013) [S7] focuses on the problem of testing mobile application taking into

consideration context and context-related events. The study presents approaches based on the definition of reusable event

patterns for the manual and automatic generation of test cases for mobile application testing.

In another study by (Yu et al., 2014) [S54], the authors propose to use a sorted biographical reaction system (BRS) to

model context-aware environments. In their study, test cases are generated by tracing the interactions between BRS

model and the middleware model. In order to decrease the number of test cases the authors propose a bi-graphical pattern

flow testing strategy. Their testing approach is validated on sample airport application.

The study by (Vieira et al., 2015)[S74] reviews the challenges of testing context aware mobile applications and presents a

new approach for a context simulator. The context simulator supports modeling and simulation of context in various

levels such as physical and logical scenarios. Further, the context simulator can generate test cases and enables the

execution of such test cases for several context sources.

A summary of challenges addressed by papers listed in this section can be seen in Table 6:

Table 6: Summary of challenges addressed by context-awareness studies.
Study	 Challenge(s)	addressed	

S5	 Improving	the	test	suite.	

S7	 Testing	mobile	applications	as	event-driven	systems	

S8	 Detecting	 faults	 of	 erroneous	 adaptation	 logic	 and	 asynchronous	 updating	 of	
context	information.	

S10	 Detecting	buggy	context	providers.	

S17	 Defining	metrics	for	resource	utilization	and	performance	attributes.	

S39	 Context	changes,	 intrinsic	adaptation	mechanisms,	 implicit	reliance	on	variable	
context	values.	

S54	 Modeling	context-aware	environments	and	improving	test	suites.	

S74	 Simulating	context	environments.	

4.3.4 Security Testing
We found eight (8) studies under the category of mobile applications security testing. The studies are S46, S47, S48, S49,

S50, S51, S60, and S75.

(Johnson et al., 2013) [S46] discusses the cyber threats emerging from new smart devices capabilities and the online

market applications for mobile devices. The study continues and presents a special framework from exposing the

functionality of mobile applications using dynamic and static program analysis techniques to retrieve all program

execution paths. In another study by (Salva and Zafimiharisoa, 2013) [S47], the authors propose a model-based security

testing approach to detect data vulnerabilities in Android applications. In their method, they apply vulnerability patterns

on Android inter-application messaging mechanisms and generate test cases. (Lu et al., 2013) [S48] discusses Android

malware detection that can monitor various features obtained from Android devices and then applies machine learning

technology to detect malicious mobile applications. The study also applies Bayesian Classification method along with

Chi-square filtering test. The study by (Chan et al., 2012) [S50] addresses the security problem of vulnerable Android

applications that may leak their capabilities to other applications. The study presents a software testing tool called

DroidChecker that uses inter-procedural control graph flow searching along with static taint checking to detect

vulnerable data paths in Android applications.

20

The study by (Avancini and Ceccato, 2013) [S49] also addresses the problem of inter-application communication

security threats and proposes a method to automatically generate test cases along with adequacy criterion for Android

applications through the application of static and dynamic program analysis Additionally, the study by (Guo et al., 2014)

[S51] also addresses the security problem of Android inter-application messaging using static and dynamic program

analysis to detect security vulnerabilities in the messaging system. It can be seen that the three studies [S49], [S50] and

[S51] address nearly the same problem area and apply nearly the same solution approach. However, these studies

surprisingly do not reference each other.

The study by (Knorr and Aspinall, 2015) [S60] proposes a new security testing method for Android m-Health

applications that is based threat analysis to detect possible attack scenarios and vulnerabilities. The study reports a

number of serious vulnerabilities in hypertension and diabetes Android applications.

In another study by (Hay et al., 2015) [S75], the authors a comprehensive testing algorithm for detecting Android inter-

application communication vulnerabilities. The study also provides a catalog of 8 concrete vulnerability types that can

potentially result from unsafe handling of incoming inter-application communication messages.

A summary of challenges addressed of security category papers can be seen in Table 7:

Table 7: Summary of challenges for security papers.
Studies	 Challenge(s)	addressed	

S49,	 S50,	 S51,	
S75	

Testing	inter-application	communications.	

S46	 Exploring	all	application	execution	paths	including	libraries.	

S47	 Detecting	data	vulnerabilities	for	Android	applications.	

S48	 Detecting	Android	malware	applications.	

S60	 Testing	security	of	Android	health	applications.	

4.3.5 Testing in General
This section contains discussion of studies with clear contributions but do not have a certain focus either on usability,

automation, security or context-awareness testing. We identified fifteen (15) studies which can be classified under this

general category (S4, S13, S14, S15, S16, S18,S27, S29, S34, S38, S44, S65, S66, S67, and S76).

Modeling an application from a black-box perspective is discussed by (Zhifang et al., 2010b) [S4]. Their study also

proposes a distance metric and technique to generate test cases. In another paper presented by (Heejin et al., 2009) [S14],

a method and a tool to support performance testing are proposed to address the challenge of performance testing for

mobile applications. The tool utilizes a database established through benchmark testing in emulator-based test

environment at the unit test level.

In a study presented by (Franke et al., 2012b) [S18] the authors have tested the conformance of mobile applications to its

application life cycle properties. Their paper presents a unit-testing based approach that triggers life-cycle callback

methods. The same authors extended their work through another study (Franke et al., 2012a) [S15] that applies

approaches of testing mobile applications to the testing of mobile services. In the study they present how to reverse

engineer the service life cycles of mobile platforms to develop a service life cycle model that is complete and correct by

applying the same techniques and methods.

(Zhi-fang et al., 2009) [S16] argue that test frameworks development should be based on generality, reusability and

scalability. They further introduce the service-oriented architecture into this area, and adopt COM (Common Object

21

Model) technique, aims at designing mobile application software test framework. In another study, (Delamaro et al.,

2006) [S29] presented a strategy to support coverage testing for mobile device software in such a way that the

applications can be tested not only on emulators, but also on their real target mobile devices. This could be achieved with

the aid of structural coverage assessment.

A case study by (Merwe et al., 2012) [S34] describes the development of Android application verification tool that is

built on Java Pathfinder, a Java model checking engine. The tool provides a simplified model of the Android framework

on which an Android application can run. It then allows the user to write special script that simulates user events to drive

the application flow.

The challenge of client-server performance for mobile applications is discussed by (Briseno and Vincent, 2008) [S13].

The investigation is based on web server time response, execution platform and network method. In this study, two web

servers are tested: Apache and Sun Java System Web Server. The study highlights the importance of testing performance

not only using emulators, but also on real mobile devices. Additionally, the study argues that the Java Sun Web Server

was faster than the Apache Server in all the tests.

A case study by (Sa and Carrico, 2008) [S27] discusses the difficulties that emerged through the data gathering,

prototyping and evaluation stages in designing mobile applications. They also emphasize the absence of adequate

techniques and methods to support mobile applications development activities.

(Starov, 2013) [S38] presents an analysis of existing cloud services for mobile testing and addresses their weaknesses.

Methods applied in this study are Crowdsourcing, testing as a service, multi-directional testing, and flexible integration

of test techniques. Finally, in a recent study by (Vilkomir and Amstutz, 2014) [S44], the authors recognize the problem of

selecting the optimal set of mobile devices when testing mobile applications. Testing mobile applications on emulators

can never be enough since those emulators cannot simulate many of the real peculiarities of real mobile devices.

However, with the fact that there are over 11,000 different mobile devices available in the market, selecting optimal set

of these devices for testing can be non-trivial task. The study suggests an approach based on combinatorial methods to

provide coverage for device characteristics. The study also incorporates Each Choice and Pair-wise techniques (Grindal

et al., 2005; Kuhn et al., 2008).

The study by (Zhang et al., 2015) [S65] presents a compatibility testing method based on a statistical approach for testing

mobile applications on mobile devices. The testing method takes into consideration both the large diversity of mobile

devices and maintaining a low testing cost. The study provides a solution to generate an optimized compatibility test

sequence for mobile applications using the K-Means statistical algorithm.

The challenge of testing location-based function services is investigated by (Aktouf et al., 2015) [S66]. The study

proposes a new test model and test coverage criteria. The study applies a case-study research method on location-based

application called Waze.

In another study by (Vilkomir et al., 2015) [S67], the authors evaluate methods for selecting mobile devices such as

tablets and smart phones when testing mobile applications. The study argues that there are specific software faults that

are only found in certain devices. The study focuses on the problem of determining how many devices must be tested and

which methods of device selection are most successful in order to detect the device-specific faults. The study concludes

that most successful approach was the coverage of different types of Android operating systems and provides

recommendations and guidelines to increase effectiveness and decrease cost of testing.

22

Finally, the study at (Ahmed et al., 2015) [S76] provides a testing approach based on adapting the two testing

frameworks Reweb and Testweb by providing an adaptation model. The study also addresses the problem of reducing the

redundancy in test cases by refactoring source code before test case generation.

Additionally, the papers included in this section can be further classified based on the area of focus as can be seen in

Table 8.

Table 8: Classifying studies of general testing category based on area of focus:
Study	 Area	of	focus	

S4	 Black	box	test	case	generation.	

S13,S14	 Performance	testing.	

S15,S18	 Lifecycle	conformance	testing.	

S16	 Testing	mobile	applications	using	SOA	(Service-Oriented	Architecture).	

S27	 Prototype-based	testing.	

S29	 Testing	on	real	mobile	devices.	

S34	 Adapting	Java	Path-Finder	testing	method	for	mobile	applications.	

S38	 Testing	mobile	applications	using	cloud	services.	

S44,S67,	
S65	

Compatibility	testing.	

S66	 Testing	location-based	mobile	applications.	

S76	 Adapting	web	application	testing	techniques	for	mobile	applications.	

4.4 Research Approaches and Contribution Facets
Sub-RQ1: What research approaches do these studies apply and what contribution facets do they provide?

Contribution facets, inspired from (Shahrokni and Feldt, 2013), were classified into metrics, evaluations, methods, tools

and frameworks, as shown in Table 9. Metrics is a contribution type that provides guidelines for measuring different

aspects of application testing. An evaluation represents an evaluation or assessment of a method using software

application or evaluation of a software application using a method. For example, (Franke et al., 2012a) [S15] evaluated

techniques of life cycle conformance for mobile applications on mobile services. Methods have a specific goal and

research question. An example of a method is the one presented by (Heejin et al., 2009) [S14] to perform performance

testing at unit testing level. A tool represents specific software for certain purpose to assist test engineers in their work.

Example of such tools is the one presented by (Amalfitano et al., 2011) [S1] that is based on a crawler that automatically

builds a model from GUI and generates test cases. Finally, a framework is a detailed method or technique that has a wide

purpose and focuses on several research questions (Shahrokni and Feldt, 2013).

We found fourteen (14) studies presenting frameworks for testing mobile and smartphones application ([S3], [S11],

[S30], [S2], [S23], [S16], [S38 [S10], [S43], [S42], [S46], [S61], [S62], and [S63]. An example of such a framework is

the one suggested by (Nagowah and Sowamber, 2012) [S3] to automate tests on the device itself and not on emulator. In

our mapping study, we found that most of the contributions facets (38 out of 79, 48%) were provided as methods. On the

other hand, contribution facet in terms of metrics was the least studied (only 1 study). Figure 4 shows the distribution of

contribution facets, while Table 9 specifies contribution facet for each study. Further, Table 11 presents a summary of

testing tools found in included studies.

23

Figure 4: Contribution facets

Table 9: Contribution facet for each study

Types of
contribution facet

Studies
(S)

Description

Metrics S17
Model the impact of software code attributes upon performance and resource
utilization in terms of memory, network and CPU usage in context-aware mobile
apps

Evaluation

S22 Realizing usability heuristics appropriate for mobile computing.

S24 Presents findings on usability issues and enhancements requested by users.

S25 Apply usability engineering in the agile methodology called InterMod on mobile
development.

S26 Usability evaluation of MobiTOP application was conducted in the context of a
travel companion for tourists.

S28 Presents a UX case study on mobile advertising with a novel CAVE-smartphone
interface

S33 A usability study on Mobile Electronic Personality Version 2 and conclusions on
key issues related to user needs, based on user interviews, surveys, prototypes
and field evaluations.

S35 Presents lessons learned and usability guidelines derived from laboratory
usability testing of mobile spreadsheet applications

S36 Automatically monitor and collect context data and usability metrics, how those
data can be processed for analysis support and how users' impressions can be
collected.

S13 Investigation of performance factors such as server response and network
connection speed.

S15 Reverse engineer the service life cycles of mobile platforms.

 S64 Conducts a mobile usability test using mobile eye-tracking glasses through quasi-
real conditions.

S67 Conducts an in-depth evaluation for methods used to select mobile devices for
testing.

S68 Evaluates the use of model-based testing in the construction and implementation
of automated tests to verify functional requirements for mobile applications.

S69 Investigates the importance of usability in user interfaces design of mobile
educational applications.

S77 Investigates the usability of mobile library application at the university of
Chongqing.

Method

S6 Combines portable operating system libraries with knowledge and reasoning to
support both heterogeneous systems and distributed control.

S9 An evaluation method based on a field experiment where a group of end users
tested the mobile application. Qualitative and quantitative data about end users’
impressions were collected and analyzed.

S19 Proposes a method on how to implement a successful usable m-learning
environment

S37 The study presents a unified methodology for evaluating mobile applications
which is based on two fundamental principles: early assessment and the usage of

24

ad-hoc and mobile oriented methods.

S40 Designed a method that aligns the inspection method “Software ArchitecTure
analysis of Usability Requirements realizatioN” SATURN with mobile usability
evaluation in the form of a user tests.

S14 Supports performance testing utilizing a database established through
benchmark testing in emulator-based test environment at the unit test
level.

S18 Identifies life cycle dependent properties in the application specification, and
derives assertion-based test cases for validating the conformance of the
properties.

S27 Presents an evaluation method based on evaluation sessions that consist of
various scenarios of diverse situations where users moved through locations and
contexts. The sessions were split into two subsets. First one that required the
presence of an evaluator using Wizard-of-Oz approach. And another subset
without the evaluator.

S29 Presents a strategy to aid coverage testing for mobile applications in such a way
that the applications can be tested not only on emulators, but also on their real
target mobile devices.

S7 Presents testing techniques that take into account both user events and context
events. The proposed techniques are based on manual definition of reusable event
patterns that include context events.

S8 Defines and applys a new model for the detection of faults of incorrect adaptation
logic and asynchronous updating of context information. Define algorithms to
automatically detect such faults

S5 Identifys context-aware break points by systematically changing the context-
aware data fed to app to expose failures.

S39 Analyzes context-aware applications and identify the main difficulties in
validating them then developed validation techniques which address the
identified limitations.

S4 A testing approach based on modeling the application from a black-box
perspective and presenting a distance metric for test cases of mobile applications.
Additionally the study proposes am ART test case generation technique.

S41 An automatic functional testing for Android applications based on a model for
activity page

S44 An approach based on combinatorial methods for coverage of each device
characteristics.

S45 An approach that validates code handling exceptional behavior for mobile
applications. The approach is based on systematic amplification of the program
space explored by a test by manipulating the behavior of external resources.

 S47 A method based on a model-based security testing approach to attempt to detect
data vulnerabilities in Android applications.

S48 Proposes a new Android malware detection method based on machine learning
technology.

S49 Presents a testing approach to test communication among mobile applications
with a test case generation strategy and testing adequacy criterion for Android
applications.

S51 Presents a compositional testing approach based on static and dynamic testing
techniques to detect security vulnerabilities caused by messaging between
components.

S52 Presents a testing approach based on Pattern Based GUI testing which is a model
based as well.

S53 An approach for testing mobile applications based on reverse engineering and
behavioral patterns.

 S54 A testing approach based on extending a biographical sorting predicate logic as
constraints to create a meta-model, then using that meta model to build data-
model to model context aware environments.

S55 An approach to modeling mobile test environments based on Mobile Test
Environment Semantic Tree.

 S56 Presents an approach that allows substantial Android apps to be systematically

25

explored while running on actual devices.

 S58 Presents an automated technique that is based on machine learning that is capable
of generating inputs sequences of test inputs for Android applications.

 S60 Presents a testing method based on threat analysis considering possible attack
scenarios and vulnerabilities specific to mHealth applications.

S65 Proposes an optimized compatibility testing strategy based on statistical approach
to reduce test costs and improve test efficiency.

S66 Proposes a new testing method to address the challenges of testing for mobile
location-based function services mobile applications.

S70 Proposes a new search-based test automation technique that is based on genetic
and hill climbing techniques.

S71 Presents a new testing methodology that aims at systematically exploring and
executing test suites to expose adverse conditions.

S72 Proposes a conceptual model to represent inter-component communication at
higher abstraction level and a technique to derive test cases from the model.

S73 Proposes a novel stream-oriented record and reply testing approach capable of
recording sensor and network input, event schedules and inter application
communication.

S74 Presents a testing approach based on simulating physical and logical context
situations for mobile applications.

S75 Presents a testing approach to detect Android inter-application communication
vulnerabilities.

S76 Presents an adaptation model for testing mobile applications based on Reweb and
Testweb testing frameworks.

 S79 Presents a testing approach to integrate sensor information into test suites using a
sensor simulation engine to enable automatic test case execution.

Tool See Table 11

Framework

S3 Implementing test automation on the device itself, not on an emulator.

S11 Framework for writing, executing and reporting tests on mobile devices.

S30 Presents scalable and pervasive testing framework for constantly changing
mobile applications, based on SOA architecture.

S2 A methodology and framework to help developers in preparing mobile app for
usability analysis and automation of manual tasks.

S23 Automated and unsupervised evaluation of mobile applications that is able to
trace any user interaction during the entire lifecycle of an application.

S38 A scalable and light weight framework for effective research crowdsourcing in
mobile testing.

S10 A localization framework targeting at the bugs in the mobile
application, especially the buggy context provider faults.

S43 Supporting the design and automatic execution of UX tests for Android
applications.

S42 an integrated test automation framework by which implementations on
multiple heterogeneous platforms can be tested efficiently.

S16 Presents a flexible and expandable test automation framework based on service-
oriented architecture and COM technique.

S46 Presents a framework based on a combination of static and dynamic program
analysis to expose the functionality of mobile application along with all available
execution paths.

 S61 Proposes a framework called Automated Mobile Testing as a Service which
offers automated mobile application tests.

S62 Describes a parallel GUI testing technique called PATS that performs GUI
testing based on master/slave model.

S63 Presents a framework that is capable of generating code coverage reports and
produce uniform coverage metrics in testing without the need for source code.

26

Research approaches can be summarized in Table 10. Most of the studies were conducted using a validation research

approach (75%). On the other hand, the number of studies performing evaluation research is relatively small (19%).

Accordingly, this implies that there is a need for more evaluation research that can evaluate how much effective these

new testing methods really are.

Table 10: Research approach facets
Research approach Study (S) # of studies

Validation research S1, S3, S6, S11, S12, S20, S30, S42, S45,
S19, S22, S23, S40, S43, S4, S14, S15, S16,
S18, S29, S34, S44, S7, S10, S8, S5, S17,
S39, S41, S2, S37, S46, S47, S48, S49, S50,
S51, S52, S53, S54, S55, S56, S57, S58, S59,
S60, S61, S62, S63, S65, S66, S70, S71, S72,
S73, S74, S75, S78, S79

59

Evaluation research S31, S9, S21, S24, S26, S28, S33, S38, S36,
S64, S67, S68, S69, S76, S77

15

Experience papers S32, S25, S35, S13, S27 5

A presentation of studies offering software testing tools is provided at Table 11 showing the name of the tool along with

the targeted platform/operating system. It can be seen here that most testing tools are targeting Android platform (64%)

and little studies are targeting other successful prevalent platforms such as Apple iOS and Microsoft Phone.

Table 11: A summary of testing tools reported.

Study Study (S) Tool Name Platform Description
(Amalfitano et al.,
2011)

S1 Android
Automatic
Testing Tool

Android A crawler-based tool that automatically
simulates real user events on user interface and
generates a GUI model. The GUI model is
used later on to generate test cases for
regression testing.

(Jiang et al.,
2007)

S12 MobileTest Symbian Based on sensitive-event based approach and
is targeted to perform automatic black box
testing.

(Amalfitano et al.,
2012)

S20 AndroidRipper Android Based on automated ripper technique that
automatically explores the application GUI to
exercise the application in structured manner.

(Kaasila et al.,
2012)

S31 TestDroid Android Based on an online platform for conducting
scripted user interface parallel tests on several
Android devices.

(Puhakka and
Palola, 2006)

S32 Not defined. Symbian General testing tool that supports testing of
mobile applications on several devices at same
time.

(Ravindranath et
al., 2012)

S21 AppInsight Silverlight A tool that monitors application performance
in the wild and reports critical paths and user
transactions.

(Merwe et al.,
2012)

S34 JPF-Android Android Built on Java Pathfinder, allows users to script
events to drive the application and can detect
deadlocks and runtime exceptions.

(Chan et al.,
2012)

S50 DroidChecker Android An Android application analyzing tool based
on inter-procedural flow graph searching and
static taint checking to detect vulnerable data
paths.

(Liang et al.,
2014)

S57 Caiipa Windows
Phone

A cloud service for testing mobile apps
offering expandable mobile context space in a
scalable way.

27

(Hu et al., 2014) S59 AppDoctor Android A system based on approximate execution to
test mobile apps against many system and user
actions.

(Amalfitano et al.,
2015b)

S78 MobiGUITAR Android Automates GUI-driven testing of Android
applications.

A bubble plot showing counts of papers of our main category against contribution facets can be seen in Figure 5. It can

be seen that there is a lack of studies offering metrics in almost all main categories. On the other hand, there are

comprehensive studies in the categories of usability and automation testing (see Figure 5).

Figure 5: Bubble plot for main categories against contribution facets

Additionally, we found that studies offering contribution facet of type Frameworks (14 studies) can be further classified

according to what they offer in their solution frameworks. More specifically, we found that these studies offer a

combination of tool/API, methods/guideline, models, metrics and algorithms. Table 12 provides a comparison of these

studies.

Table 12: Comparison of testing frameworks
 Author(s) Studies

(S)
Tool/API Methods/

Guideline
Models Metrics Algorithms

Test
automation

(Nagowah and
Sowamber, 2012)

S3 ü ü

(Zhifang et al.,
2010a)

S30 ü ü ü ü

(She et al., 2009) S11 ü ü
(Song et al., 2011) S42 ü ü ü
(Villanes et al., 2015) S61 ü ü
(Wen et al., 2015) S62 ü ü ü
(Zhauniarovich et
al., 2015)

S63 ü ü ü

Usability
testing

(Balagtas-Fernandez
and Hussmann,
2009),

S2 ü ü ü ü

28

(Lettner and
Holzmann, 2012)

S23 ü ü ü ü

(Canfora et al., 2013) S43 ü ü
Context-
awareness

(Bo et al., 2011) S10 ü ü

Security (Johnson et al., 2013) S46 ü ü

General
(Zhi-fang et al., 2009) S16 ü ü ü
(Starov, 2013) S38 ü ü ü

4.5 Object Involved in the Study and Research Context
Sub-RQ2: What kind of applications (industrial or simple) do these studies use in order to evaluate their
solutions?

Most of the studies under the category of usability testing (17 studies) had their evaluation done on real world mobile

applications. For the rest of the categories: twenty (20) studies under test automation, eight (8) studies under security

testing, ten (10) studies under general and four (4) studies under the category of context-awareness were conducted on

real industrial applications. Examples on real world applications and context are China Telecommunication Lab (Jiang et

al., 2007) [S12] and Word Press for Android (Amalfitano et al., 2012) [S20]. The rest of the studies had their evaluation

done on a toy application or on a considerably simple application developed for the sole purpose of the experiment. Table

13 shows the objects involved in each study.

 Table 13: Objects involved in each study
Category List of Studies Evaluation

object

Test Automation

S1, S3, S30, S32, S41, S42, S53,
S68, S79

Simple

S6, S11,S12, S20, S31, S45, S52,
S55, S56, S57, S58, S59, S61, S62,
S63, S70, S71, S72, S73, S78

Industrial

Usability Testing

S2, S19 Simple
S9, S21, S22, S23, S24, S25, S26,
S28, S33, S35, S36, S37, S40, S43,
S64, S69, S77

Industrial

Security Testing S46, S47, S48, S49, S50, S51, S60,
S75

Industrial

General
S14, S29, S34, S15, S76 Simple
S4, S13, S16, S18, S27, S38, S44,
S65, S66, S67

Industrial

Context awareness
S8, S17, S39, S54 Simple
S7, S10, S5, S74 Industrial

Additionally, three studies (Balagtas-Fernandez and Hussmann, 2009) [S2], (Bertini et al., 2006) [S22], (Losada et al.,

2012) [S25] under the category of usability testing were conducted under a real development team setting. In these

studies, either the evaluation of the proposed solution was done using real-world application developers, or the problem

itself had partially emerged from the needs of real-world teams and experience.

4.6 Publication Fora
Sub-RQ3: Which journals and conferences included papers on mobile and smart phone application testing?

29

Tables 14 and 15 show the list of journals and conferences for each of the studies included in this mapping study. Among

the 79 studies, 13 came from journals, 2 from dissertations ((Starov, 2013) [S38], (Wang, 2008) [S39]) and the rest (64)

from conferences. We found that the conference papers were published in a total of 39 conference proceedings. These

data show that research on mobile application testing appears in diverse conference venues including workshops.

Table 14: List of journals
Study (S) Journal Name # of studies

S34 ACM SIGSOFT Software Engineering Notes 1

S45 ACM Transactions on Software Engineering and Methodology
(TOSEM)

1

S56, S58 ACM SIGPLAN Notices 2

S40 Journal of Systems and Software 1

S33 Personal Ubiquitous Computing 1

S8 IEEE Transactions on Software Engineering, 1

S37 Universal Access in the Information Society 1

S68 Electronic Notes in Theoretical Computer Science 1

S69 Procedia-Social and Behavioral Sciences 1

S76 growth 1

S77 Library Hi Tech 1

S78 IEEE Software 1

Table 15: List of Conferences
Study (S) Conference Name # studies

S10 International Conference on Advanced Computer Control (ICACC) 1
S20, International Conference on Automated Software Engineering (ASE) 1

S3, S2 International Conference on Computer & Information Science (ICCIS) 2
S4 International Conference on Computer Engineering and Technology (ICCET) 1

S15 International Workshop on Database and Expert Systems Applications
(DEXA)

1

S19 International Conference on Information Technology Interfaces 1
S13 International Conference Information Technology 1
S9 IFIP International Conference on New Technologies, Mobility and Security

(NTMS
1

S23 International Conference on Advances in Mobile Computing Multimedia 1
S27 International conference on Human computer interaction with mobile devices

and services
1

S21 USENIX conference on Operating Systems Design and Implementation 1
S31 International Conference on Mobile and Ubiquitous Multimedia 1
S25 International Conference on Interacción Persona-Ordenador 1

S29, S30, S12,
S49, S51 International workshop on Automation of software test 5

S32 International conference on Mobile technology, applications & systems 1
S24 Workshop on Mobile video delivery 1

S35, S36 International Conference on Human-Centered Software Engineering 2
S26 International Conference on Advances in Mobile Computing and Multimedia 1
S28 Conference on Human Factors in Computing Systems (SIGCHI) 1

30

S22 Conference on Advanced visual interfaces 1
S16 International Conference on Reliability, Maintainability and Safety. (ICRMS) 1
S14 IEEE International Conference on Secure Software Integration and Reliability

Improvement (SSIRI)
1

S6 IEEE International Conference on Service-Oriented Computing and
Applications (SOCA)

1

S42 ACIS International Symposium on Software and Network Engineering
(SSNE)

1

S11 Australian Software Engineering Conference, ASWEC 1
S5 International Conference on Software Engineering (ICSE) 1

S17 IEEE International Symposium on Software Metrics 1
S18, S43 IEEE International Conference on Software Testing, Verification and

Validation (ICST)
2

S1, S7, S44,
S60

IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW)

4

S41 Third World Congress on Software Engineering 1
S46 Reliability and Maintainability Symposium (RAMS) 1
S47 IEEE Information Security of South Africa 1
S48 IEEE Third International Conference on Instrumentation, Measurement,

Computer, Communication and Control (IMCCC)
1

S50 Proceedings of the fifth ACM conference on Security and Privacy in Wireless
and Mobile Networks. ACM

1

S52, S53 IEEE International Conference on the Quality of Information and
Communications Technology (QUATIC)

2

S54 IEEE International Conference on Software Security and Reliability (SERE) 1
S55 Workshop on Joining AcadeMiA and Industry Contributions to Test

Automation and Model-Based Testing
1

S57 International conference on Mobile computing and networking

1

S59 European Conference on Computer Systems

1

S61 IEEE World Congress on Services (SERVICES), 2015 1
S62 IEEE 39th Annual Computer Software and Applications Conference

(COMPSAC), 2015
1

S63 10th International Conference on Availability, Reliability and Security
(ARES), 2015

1

S64 8th International Conference on Human System Interactions (HSI), 2015 1
S65, S66 IEEE Symposium on Service-Oriented System

Engineering 2015
2

S67, S72 International Conference on Mobile Software Engineering and Systems
(MOBILESoft), 2015 2nd ACM

2

S70 3rd International Workshop on Software Development Lifecycle for Mobile 1
S71, S75 Proceedings of the 2015 International Symposium on Software Testing and

Analysis
2

S73 Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications

1

S74 Proceedings of the 30th Annual ACM Symposium on Applied Computing 1

31

4.7 Suggested Areas for Further Research
In this section, we present possible areas that require further research based on the findings from our mapping study. The

suggested research gaps presented herein are categorized based on the classification structure we used in our mapping

study. The suggested areas for further research are based on our interpretation of the findings and data as well as number

of studies found in each area.

• Test automation: in this category, we suggest four (4) further research needs:

(i) Eliciting testing requirements during requirements analysis phase: Among the 79 studies included in

this systematic mapping study, only two studies ((Franke et al., 2012a) [S15] and (Franke et al., 2012b) [S18])

had a small consideration to this important issue. In these two studies, the solution they propose is based on the

application requirements specification to derive assertions in an assertion-based testing approach. However, this

step has to be done manually by the developer.

(ii) Life-cycle conformance testing: Only two studies ((Franke et al., 2012b) [S18], (Franke et al., 2012a)

[S15]) propose and evaluate approaches to test conformance to life cycle models. The first study ((Franke et al.,

2012b) [S18]) focuses on mobile applications, while the second study ((Franke et al., 2012a) [S15]) targets

mobile services. Both studies highlight the importance of life cycle model awareness in order to produce

dependable mobile application and services. Their testing approach, which is based on case study

demonstration, first identifies the most common and important scenarios that represent common transitions of

life-cycle states an application can go through. Life-cycle callback methods are then derived using unit-testing

framework. Finally, they identify life-cycle dependent properties and derive assertion based test cases.

Consequently, we suggest an automated tool that can check application program to see if it complies with

lifecycle models and rules.

(iii) Mobile services testing: We found only one study ((Franke et al., 2012a) [S15]) addresses testing of

mobile services in the specific area of service life cycle models. In this study, the first part presents how to

reverse engineer the service life cycles of mobile platforms. The second part applies test approaches from

mobile application life cycle conformance to services. In an informal review, (Muccini et al., 2012) highlights

that mobile services testing is an area that requires further research. In our mapping study, we found only one

study that addresses mobile services testing, and thus further research in this topic is required.

(iv) Real world contexts: We believe that mobile application automation testing tools and frameworks could

be better evaluated by real world development teams and developers. Since these tools and frameworks aim at

simplifying developers’ manual tasks, they have to be evaluated by real developer on real world application in

order to get more convincing feedback.

• Metrics: We only found one study by (Ryan and Rossi, 2005) that is concerned with software testing metrics

for mobile applications. Accordingly we highlight it as a research gap.

• Usability testing: It can be seen in this mapping study that there is relatively large number (16) of studies in the

area of usability testing, most of which do validation of their solutions using real world applications. We

suggest a comparative study that compares the effectiveness of different approaches suggested by these studies.

32

• Security testing: most of the studies under the category of security testing address the problem of mobile

application inter-communication threats, more specifically for Android applications. Here we also suggest a

comparative study to evaluate the effectiveness of these different approaches. Additionally, we suggest that

future studies should consider inter-communication threats for other platforms such as iOS.

5. Discussion
The purpose of this systematic mapping study was to build a classification scheme and to collect, interpret and analyze

all evidence related to mobile and smart-phone application testing techniques, approaches and challenges. Currently,

there are no comprehensive and convincing systematic mapping studies done in this important and constantly evolving

area. Accordingly, a thorough and unbiased systematic mapping review could contribute to the body of knowledge of

mobile application testing studies.

This study indicates several research gaps that acquire further research and investigation. First, the studies that were

categorized under test automation and general testing categories (see Table 13) identify problems and, consequently

propose solutions that are based on laboratory environments. If these studies however, were based on identification of

problems observed in real development environments, and later on, applied and evaluated their solutions in such

environments, the scientific value of these studies would have been more convincing and comprehensive. It is true

however, that some of these studies (see Table 13) used industrial applications to evaluate their solutions. However, these

applications are mostly simple (text editor, email composer, etc.) and do not represent real-world and complex mobile

applications. We highly recommend that evaluation of test automation tools should be applied on more complex

applications that represent different aspects such as context-awareness and mission critical systems. Further, they did not

base their studies on the needs of real-world development and testing teams.

Secondly, there is a lack of studies addressing the challenge of eliciting testing requirements that are related to mobile

application testing peculiarities. As discussed in Section 4.7, only two studies ((Franke et al., 2012b) [S18] and(Franke et

al., 2012a) [S15]) had a considerably minor awareness in this area. For instance, an interesting challenge could be on how

to elicit testing requirements related to mobile application life cycle properties from requirements specifications. This

finding interestingly, corroborates the finding reached by (Shahrokni and Feldt, 2013). Further, it is important to note

that test engineers should derive testing requirements for their application early during requirements elicitation phase

(Crispin and Gregory, 2008). Test engineers should be aware on how to elicit specific testing requirements in the areas of

life-cycle conformance and context-awareness for example so that they can choose appropriate testing techniques and

tools.

To elaborate more, except the study by (Franke et al., 2012a) [S15], there are no other empirical studies addressing

testing challenges of mobile services testing. Mobile services are currently targeting time and safety critical contexts

such as abnormal and disaster management situations, and hence, requires a high availability and reliability of such

services. Additionally, there is one study offering software testing metric for mobile applications.

Further, and as shown in Section 4.7, only two empirical studies so far ([S15] and [S18]) address how to test

conformance of mobile application to life cycle models. It is important to note though that these two studies are very

recent and their approaches are basic in the sense that most of the critical steps proposed are manual and depend on the

developer or tester’s way of thinking and perception on problems in hand. Consequently, lots of further research can be

done in this challenging area to provide a better solution or maybe automated solution to such tasks. In addition, most of

the software testing tools provided target the Android platform. Consequently, more studies should target other prevalent

platforms such as Apple iOS and Windows Phone as well.

33

Finally, and based on our observation that most research approaches are applied using validation research, we believe

that test engineers would find it difficult to choose among test automation tools and techniques available under the

category of test automation, usability and security testing. This is due to the fact that several test methods and techniques

exist with no clear road-map available for test engineers guiding them on which tool to choose or technique to apply. We

recommend future studies that can compare such testing solutions using evaluation research, and evaluate them on

several complex and real world mobile applications.

5.1 Threats to Validity
In this mapping study, several factors need to be taken into account when generalizing the results. First, during the

process of identifying the relevant literature, we only considered articles published electronically. This however, may

have neglected studies that might have appeared in journals or conference proceedings that were not published online.

But since mobile and smart phone applications are considered to be relatively young (earliest included study in this study

published in 2005), we believe that it is unlikely that such studies are not available online.

Other key threats to validity of the results are related to bias in the selection of studies and inaccurate data extraction.

Several search strings were tested in order to choose the most appropriate search string. However, it is not possible to

guarantee that all relevant studies were returned and there is a slight risk that some studies were omitted due to search

terms. Nonetheless, we have piloted the selection of search terms and this could help minimize the possibility of missing

important evidence.

We excluded work that was not empirically tested i.e. only empirical studies were included in our study. This will have

excluded those works that do not have an empirical testing component to validate the papers’ experiments and

conclusions. Our rationale was that studies with an empirical component provide some level of validation of the claimed

benefits and limitations of the testing approach discussed.

Regarding data extraction process, it may have been negatively impacted by bias when selecting articles. This is mainly

due to the fact that data extraction was performed by a single researcher (the first author). In order to validate the data

extraction, the second author randomly selected 10% of the selected studies and completed the extraction form. We

compared the results in a meeting and discussed if there is any discrepancies found until a consensus is met.

The presentation of results might have been affected by the structure of classification scheme. In this mapping study, the

classification scheme developed consists of four main categories (i.e. structure of the topic, contribution facets, objects

involved in the study, and the research facet). Such categorization emerged from existing guidelines and relevant

secondary studies (e.g. Shahrokni and Feldt, 2013 and Petersen et al., 2008) and this might potentially neglects the

analysis of other relevant attributes possibly appeared in the primary studies.

6. Conclusions and Future Research
Based on the findings from our systematic mapping study, this paper presents a review of the state of knowledge of

empirical studies in the field of mobile and smart-phone application testing. A total of 7356 studies from six online

databases were analyzed and went through three filtration steps. A total of 79 studies were finally included and mapped

to our classification scheme in our study based on predefined inclusion/exclusion criteria.

The classification scheme contained four categories: first one is the main category to structure the topic and containing

test automation, usability testing, context-awareness testing, security and general testing sub-categories. These sub-

categories represent the main focus area in which the studies addressed. Then at each topic (sub-category), the techniques

or methods applied by each study were discussed briefly. Second classification represents the contribution facet, namely

34

framework, method, tool, evaluation and metrics. The third classification represents objects involved in the study as

simple evaluation application or real world industrial application. The fourth classification represents the research facet

or research approaches applied in the paper. These include validation, evaluation and experience studies.

Several research gaps were identified as described in the Discussion section. First, among the studies under the categories

of test automation and testing in general, very little base their investigation on real-world mobile application development

environments. Secondly, there is a lack of studies that focus on eliciting testing requirements in the requirements

engineering phase. Additionally, only one study was reported to investigate testing of mobile services as well as one

study for testing metrics. In addition, more studies should address the important issues of conformance to life cycle

models, mobile services and mobile testing metrics.

It is also noted that practitioners will find it difficult to choose from several testing techniques and automation tools and

that there is a need for a clear road-map to guide them. Additionally we recommend on future studies that can

systematically compare proposed testing solutions under categories of automation, usability and security using real-world

and complex applications. In our future work we will conduct a study targeting real-world mobile application

development environments to elicit specific testing needs and peculiarities. Consequently, a test framework will be

developed incorporating solutions to address specific research gaps identified in this mapping study.

Acknowledgment

This research was funded by the Ministry of Higher Education Malaysia under FRGS research grant (FRGS14-125-

0366).

APPENDIX A

LIST OF INCLUDED STUDIES

The references listed below correspond to those prefaced with the letter “S” throughout the paper.

S1 Amalfitano, D., Fasolino, A.R., Tramontana, P., 2011. A GUI Crawling-Based Technique for Android
Mobile Application Testing, Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, pp. 252-261.

S2 Balagtas-Fernandez, F., Hussmann, H., 2009. A Methodology and Framework to Simplify Usability
Analysis of Mobile Applications, Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM
International Conference on, pp. 520-524

S3 Nagowah, L., Sowamber, G., 2012. A novel approach of automation testing on mobile devices, Computer
& Information Science (ICCIS), 2012 International Conference on, pp. 924-930

S4 Zhifang, L., Xiaopeng, G., Xiang, L., 2010b. Adaptive random testing of mobile application, Computer
Engineering and Technology (ICCET), 2010 2nd International Conference on, pp. V2-297-V292-301

S5 Zhimin, W., Elbaum, S., Rosenblum, D.S., 2007. Automated Generation of Context-Aware Tests, Software
Engineering, 2007. ICSE 2007. 29th International Conference on, pp. 406-415

S6 Edmondson, J., Gokhale, A., Sandeep, N., 2011. Automating testing of service-oriented mobile
applications with distributed knowledge and reasoning, Service-Oriented Computing and Applications
(SOCA), 2011 IEEE International Conference on, pp. 1-4

S7 Amalfitano, D., Fasolino, A.R., Tramontana, P., Amatucci, N., 2013. Considering Context Events in Event-
Based Testing of Mobile Applications, Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, pp. 126-133

S8 Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Zhimin, W., 2010. Context-Aware Adaptive
Applications: Fault Patterns and Their Automated Identification. Software Engineering, IEEE Transactions
on 36, 644-661

S9 Bjornestad, S., Tessem, B., Nyre, L., 2011. Design and Evaluation of a Location-Based Mobile News
Reader, New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference on, pp.

35

1-4.
S10 Bo, J., Xiang, L., Xiaopeng, G., Zhifang, L., Chan, W.K., 2011. FLOMA: Statistical fault localization for

mobile embedded system, Advanced Computer Control (ICACC), 2011 3rd International Conference on,
pp. 396-400.

S11 She, S., Sivapalan, S., Warren, I., 2009. Hermes: A Tool for Testing Mobile Device Applications, Software
Engineering Conference, 2009. ASWEC '09. Australian, pp. 121-130.

S12 Jiang, B., Long, X., Gao, X., 2007. MobileTest: A Tool Supporting Automatic Black Box Test for
Software on Smart Mobile Devices, Automation of Software Test , 2007. AST '07. Second International
Workshop on, pp. 8-8.

S13 Briseno, M.V., Vincent, P., 2008. Observations on performance of client-server mobile applications,
Information Technology, 2008. IT 2008. 1st International Conference on, pp. 1-4.

S14 Heejin, K., Byoungju, C., Wong, W.E., 2009. Performance Testing of Mobile Applications at the Unit Test
Level, Secure Software Integration and Reliability Improvement, 2009. SSIRI 2009. Third IEEE
International Conference on, pp. 171-180.

S15 Franke, D., Elsemann, C., Kowalewski, S., 2012a. Reverse Engineering and Testing Service Life Cycles of
Mobile Platforms, Database and Expert Systems Applications (DEXA), 2012 23rd International Workshop
on, pp. 16-20.

S16 Zhi-fang, L., Bin, L., Xiao-peng, G., 2009. SOA based mobile application software test framework,
Reliability, Maintainability and Safety, 2009. ICRMS 2009. 8th International Conference on, pp. 765-769.

S17 Ryan, C., Rossi, P., 2005. Software, performance and resource utilisation metrics for context-aware mobile
applications, Software Metrics, 2005. 11th IEEE International Symposium, pp. 10 pp.-12.

S18 Franke, D., Kowalewski, S., Weise, C., Prakobkosol, N., 2012b. Testing Conformance of Life Cycle
Dependent Properties of Mobile Applications, Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, pp. 241-250.

S19 Fetaji, M., Dika, Z., Fetaji, B., 2008. Usability testing and evaluation of a mobile software solution: A case
study, Information Technology Interfaces, 2008. ITI 2008. 30th International Conference on, pp. 501-506.

S20 Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M., 2012. Using GUI ripping
for automated testing of Android applications, Automated Software Engineering (ASE), 2012 Proceedings
of the 27th IEEE/ACM International Conference on, pp. 258-261.

S21 Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., Shayandeh, S., 2012. AppInsight:
mobile app performance monitoring in the wild, Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation. USENIX Association, Hollywood, CA, USA, pp. 107-120.

S22 Bertini, E., Gabrielli, S., Kimani, S., 2006. Appropriating and assessing heuristics for mobile computing,
Proceedings of the working conference on Advanced visual interfaces. ACM, Venezia, Italy, pp. 119-126.

S23 Lettner, F., Holzmann, C., 2012. Automated and unsupervised user interaction logging as basis for
usability evaluation of mobile applications, Proceedings of the 10th International Conference on Advances
in Mobile Computing and Multimedia. ACM, Bali, Indonesia, pp. 118-127.

S24 Vaataja, H., Mannisto, A., 2010. Bottlenecks, usability issues and development needs in creating and
delivering news videos with smart phones, Proceedings of the 3rd workshop on Mobile video delivery.
ACM, Firenze, Italy, pp. 45-50.

S25 Losada, B., Urretavizcaya, M., Lopez, J., Castro, I., 2012. Combining InterMod agile methodology with
usability engineering in a mobile application development, Proceedings of the 13th International
Conference on Interacción Persona-Ordenador. ACM, Elche, Spain, pp. 1-8.

S26 Pham, T.P., Razikin, K., Goh, D.H.-L., Kim, T.N.Q., Quach, H.N.H., Theng, Y.-L., Chua, A.Y.K., Lim, E.-
P., 2010. Investigating the usability of a mobile location-based annotation system, Proceedings of the 8th
International Conference on Advances in Mobile Computing and Multimedia. ACM, Paris, France, pp.
313-320.

S27 Sa, M., Carrico, L., 2008. Lessons from early stages design of mobile applications, Proceedings of the 10th
international conference on Human computer interaction with mobile devices and services. ACM,
Amsterdam, The Netherlands, pp. 127-136.

S28 Huhn, A., Khan, V., Lucero, A., Ketelaar, P., 2012. On the use of virtual environments for the evaluation
of location-based applications, Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, Austin, Texas, USA, pp. 2569-2578.

36

S29 Delamaro, M.E., Vincenzi, A.M.R., Maldonado, J.C., 2006. A strategy to perform coverage testing of
mobile applications, Proceedings of the 2006 international workshop on Automation of software test.
ACM, Shanghai, China, pp. 118-124.

S30 Zhifang, L., Bin, L., Xiaopeng, G., 2010a. Test automation on mobile device, Proceedings of the 5th
Workshop on Automation of Software Test. ACM, Cape Town, South Africa, pp. 1-7.

S31 Kaasila, J., Ferreira, D., Kostakos, V., Ojala, T., 2012. Testdroid: automated remote UI testing on Android,
Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia. ACM, Ulm,
Germany, pp. 1-4.

S32 Puhakka, T., Palola, M., 2006. Towards automating testing of communicational B3G applications,
Proceedings of the 3rd international conference on Mobile technology, applications & systems. ACM,
Bangkok, Thailand, p. 27.

S33 Oyomno, W., Jappinen, P., Kerttula, E., Heikkinen, K., 2013. Usability study of ME2.0. Personal
Ubiquitous Comput. 17, 305-319.

S34 Merwe, H.v.d., Merwe, B.v.d., Visser, W., 2012. Verifying android applications using Java PathFinder.
SIGSOFT Softw. Eng. Notes 37, 1-5.

S35 Flood, D., Harrison, R., Iacob, C., 2012. Lessons learned from evaluating the usability of mobile
spreadsheet applications, Proceedings of the 4th international conference on Human-Centered Software
Engineering. Springer-Verlag, Toulouse, France, pp. 315-322.

S36 Kronbauer, A.H., Santos, C.A.S., Vieira, V., 2012. Smartphone applications usability evaluation: a hybrid
model and its implementation, Proceedings of the 4th international conference on Human-Centered
Software Engineering. Springer-Verlag, Toulouse, France, pp. 146-163.

S37 Billi, M., Burzagli, L., Catarci, T., Santucci, G., Bertini, E., Gabbanini, F., Palchetti, E., 2010. A unified
methodology for the evaluation of accessibility and usability of mobile applications. Univ Access Inf Soc
9, 337-356.

S38 Starov, O., 2013. Cloud platform for research crowdsourcing in mobile testing. East Carolina University,
Ann Arbor, p. 12.

S39 Wang, Z., 2008. Validating context-aware applications. The University of Nebraska - Lincoln, Ann Arbor,
p. 186.

S40 Biel, B., Grill, T., Gruhn, V., 2010. Exploring the benefits of the combination of a software architecture
analysis and a usability evaluation of a mobile application. Journal of Systems and Software 83, 2031-
2044.

S41 Lu, L., Hong, Y., Huang, Y., Su, K., Yan, Y., 2012. Activity page based functional test automation for
android application, Third World Congress on Software Engineering. IEEE, pp. 37-40.

S42 Song, H., Ryoo, S., Kim, J.H., 2011. An integrated test automation framework for testing on heterogeneous
mobile platforms, Software and Network Engineering (SSNE), 2011 First ACIS International Symposium.
IEEE, pp. 141-145.

S43 Canfora, G., Mercaldo, F., Visaggio, C.A., D'Angelo, M., Furno, A., Manganelli, C., 2013. A case study of
automating user experience-oriented performance testing on smartphones, Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference, pp. 66-69.

S44 Vilkomir, S., Amstutz, B., 2014. Using Combinatorial Approaches for Testing Mobile Applications,
Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International
Conference on. IEEE, pp. 78-83.

S45 Zhang, P., Elbaum, S., 2014. Amplifying Tests to Validate Exception Handling Code: An Extended Study
in the Mobile Application Domain. ACM Transactions on Software Engineering and Methodology
(TOSEM) 23, 32.

S46 Johnson, R., Wang, Z., Stavrou, A., Voas, J., 2013. Exposing software security and availability risks for
commercial mobile devices, Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-
Annual. IEEE, pp. 1-7

S47 Salva, S., Zafimiharisoa, S.R., 2013. Data vulnerability detection by security testing for Android
applications, Information Security for South Africa, 2013. IEEE, pp. 1-8.

S48 Lu, Y., Zulie, P., Jingju, L., Yi, S., 2013. Android Malware Detection Technology Based on Improved
Bayesian Classification, Instrumentation, Measurement, Computer, Communication and Control (IMCCC),
2013 Third International Conference on. IEEE, pp. 1338-1341

37

S49 Avancini, A., Ceccato, M., 2013. Security testing of the communication among Android applications,
Proceedings of the 8th International Workshop on Automation of Software Test. IEEE Press, pp. 57-63.

S50 Chan, P.P., Hui, L.C., Yiu, S.-M., 2012. Droidchecker: analyzing android applications for capability leak,
Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks.
ACM, pp. 125-136.

S51 Guo, C., Xu, J., Yang, H., Zeng, Y., Xing, S., 2014. An automated testing approach for inter-application security in
Android, Proceedings of the 9th International Workshop on Automation of Software Test. ACM, pp. 8-14.

S52 Costa, P., Paiva, A.C., Nabuco, M., 2014. Pattern Based GUI testing for Mobile Applications, 2014 9th
International Conference on the Quality of Information and Communications Technology (QUATIC).
IEEE, pp. 66-74.

S53 Morgado, I.C., Paiva, A.C., Faria, J.P., 2014. Automated Pattern-Based Testing of Mobile Applications, 2014 9th
International Conference on the Quality of Information and Communications Technology (QUATIC). IEEE, pp. 294-
299.

S54 Yu, L., Tsai, W.T., Jiang, Y., Gao, J., 2014. Generating test cases for context-aware applications using bigraphs,
Software Security and Reliability (SERE), 2014 Eighth International Conference on. IEEE, pp. 137-146.

S55 Tao, C., Gao, J., 2014. Modeling mobile application test platform and environment: testing criteria and complexity
analysis, Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and
Model-Based Testing. ACM, pp. 28-33.

S56 Azim, T., Neamtiu, I., 2013. Targeted and depth-first exploration for systematic testing of android apps. ACM
SIGPLAN Notices 48, 641-660.

S57 Liang, C.-J.M., Lane, N.D., Brouwers, N., Zhang, L., Karlsson, B.F., Liu, H., Liu, Y., Tang, J., Shan, X., Chandra, R.,
2014. Caiipa: Automated large-scale mobile app testing through contextual fuzzing, Proceedings of the 20th annual
international conference on Mobile computing and networking. ACM, pp. 519-530.

S58 Choi, W., Necula, G., Sen, K., 2013. Guided gui testing of android apps with minimal restart and approximate learning,
ACM SIGPLAN Notices. ACM, pp. 623-640.

S59 Hu, G., Yuan, X., Tang, Y., Yang, J., 2014. Efficiently, effectively detecting mobile app bugs with AppDoctor,
Proceedings of the Ninth European Conference on Computer Systems. ACM, p. 18.

S60 Knorr, K., Aspinall, D., 2015. Security testing for Android mHealth apps, Software Testing,
Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference on.
IEEE, pp. 1-8.

S61 Villanes, I.K., Bezerra Costa, E.A., Dias-Neto, A.C., 2015. Automated Mobile Testing as a Service
(AM-TaaS), Services (SERVICES), 2015 IEEE World Congress on. IEEE, pp. 79-86.

S62 Wen, H.-L., Lin, C.-H., Hsieh, T.-H., Yang, C.-Z., 2015. PATS: A Parallel GUI Testing Framework for
Android Applications, Computer Software and Applications Conference (COMPSAC), 2015 IEEE
39th Annual. IEEE, pp. 210-215.

S63 Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo, B., Massacci, F., 2015. Towards Black Box
Testing of Android Apps, Availability, Reliability and Security (ARES), 2015 10th International
Conference on. IEEE, pp. 501-510

S64 Borys, M., Milosz, M., 2015. Mobile application usability testing in quasi-real conditions, Human
System Interactions (HSI), 2015 8th International Conference on. IEEE, pp. 381-387.

S65 Zhang, T., Gao, J., Cheng, J., Uehara, T., 2015. Compatibility Testing Service for Mobile Applications,
2015 IEEE Symposium on Service-Oriented System Engineering

S66 Aktouf, O.E.K., Tao, Z., Gao, J., Uehara, T., 2015. Testing Location-Based Function Services for
Mobile Applications, Service-Oriented System Engineering (SOSE), 2015 IEEE Symposium on, pp.
308-314.

S67 Vilkomir, S., Marszalkowski, K., Perry, C., Mahendrakar, S., 2015. Effectiveness of multi-device
testing mobile applications, Mobile Software Engineering and Systems (MOBILESoft), 2015 2nd
ACM International Conference on. IEEE, pp. 44-47.

S68 de Cleva Farto, G., Endo, A.T., 2015. Evaluating the Model-Based Testing Approach in the Context of
Mobile Applications. Electronic Notes in Theoretical Computer Science 314, 3-21.

S69 Masood, M., Thigambaram, M., 2015. The Usability of Mobile Applications for Pre-schoolers.
Procedia-Social and Behavioral Sciences 197, 1818-1826.

S70 Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P., 2015. AGRippin: a novel search based
testing technique for Android applications, Proceedings of the 3rd International Workshop on Software
Development Lifecycle for Mobile. ACM, pp. 5-12.

S71 Adamsen, C.Q., Mezzetti, G., Møller, A., 2015. Systematic execution of Android test suites in adverse
conditions, Proceedings of the 2015 International Symposium on Software Testing and Analysis.
ACM, pp. 83-93.

S72 Kumar, A., Lee, S., Lee, W.J., 2015. Modeling and test case generation of inter-component
communication in android, Mobile Software Engineering and Systems (MOBILESoft), 2015 2nd ACM

38

International Conference on. IEEE, pp. 113-116.
S73 Hu, Y., Azim, T., Neamtiu, I., 2015. Versatile yet lightweight record-and-replay for Android,

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, pp. 349-366.

S74 Vieira, V., Holl, K., Hassel, M., 2015. A context simulator as testing support for mobile apps,
Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM, pp. 535-541.

S75 Hay, R., Tripp, O., Pistoia, M., 2015. Dynamic detection of inter-application communication
vulnerabilities in Android, Proceedings of the 2015 International Symposium on Software Testing and
Analysis. ACM, pp. 118-128.

S76 Ahmed, M., Ibrahim, R., Ibrahim, N., 2015. An Adaptation Model for Android Application Testing
with Refactoring. growth 9.

S77 Wei, Q., Chang, Z., Cheng, Q., 2015. Usability study of the mobile library App: an example from
Chongqing University. Library Hi Tech 33, 340-355.

S78 Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M., 2015b. MobiGUITAR:
Automated Model-Based Testing of Mobile Apps. IEEE Software 32, 53-59.

S79 Griebe, T., Hesenius, M., Gruhn, V., 2015. Towards Automated UI-Tests for Sensor-Based Mobile
Applications, in: Fujita, H., Guizzi, G. (Eds.), Intelligent Software Methodologies, Tools and
Techniques. Springer International Publishing, pp. 3-17.

REFERENCES

2014a. Monkey Talk. (21/12/2014), Retrieved from https://www.cloudmonkeymobile.com/monkeytalk
2014b. Robotium. (21/12/2014), Retrieved from https://code.google.com/p/robotium/
Adamsen, C.Q., Mezzetti, G., Møller, A., 2015. Systematic execution of Android test suites in adverse conditions, Proceedings of the

2015 International Symposium on Software Testing and Analysis. ACM, pp. 83-93.
Ahmed, M., Ibrahim, R., Ibrahim, N., 2015. An Adaptation Model for Android Application Testing with Refactoring. growth 9.
Aktouf, O.E.K., Tao, Z., Gao, J., Uehara, T., 2015. Testing Location-Based Function Services for Mobile Applications, Service-

Oriented System Engineering (SOSE), 2015 IEEE Symposium on, pp. 308-314.
Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P., 2015a. AGRippin: a novel search based testing technique for Android

applications, Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile. ACM, pp. 5-12.
Amalfitano, D., Fasolino, A.R., Tramontana, P., 2011. A GUI Crawling-Based Technique for Android Mobile Application Testing,

Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pp. 252-261.
Amalfitano, D., Fasolino, A.R., Tramontana, P., Amatucci, N., 2013. Considering Context Events in Event-Based Testing of Mobile

Applications, Software Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on,
pp. 126-133.

Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M., 2012. Using GUI ripping for automated testing of
Android applications, Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference
on, pp. 258-261.

Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M., 2015b. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 53-59.

Avancini, A., Ceccato, M., 2013. Security testing of the communication among Android applications, Proceedings of the 8th
International Workshop on Automation of Software Test. IEEE Press, pp. 57-63.

Azim, T., Neamtiu, I., 2013. Targeted and depth-first exploration for systematic testing of android apps. ACM SIGPLAN Notices 48,
641-660.

Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P., Linkman, S.G., 2007. Evidence relating to Object-Oriented software
design: A survey, ESEM. Citeseer, pp. 482-484.

Balagtas-Fernandez, F., Hussmann, H., 2009. A Methodology and Framework to Simplify Usability Analysis of Mobile Applications,
Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM International Conference on, pp. 520-524.

Bertini, E., Gabrielli, S., Kimani, S., 2006. Appropriating and assessing heuristics for mobile computing, Proceedings of the working
conference on Advanced visual interfaces. ACM, Venezia, Italy, pp. 119-126.

Biel, B., Grill, T., Gruhn, V., 2010. Exploring the benefits of the combination of a software architecture analysis and a usability
evaluation of a mobile application. Journal of Systems and Software 83, 2031-2044.

Billi, M., Burzagli, L., Catarci, T., Santucci, G., Bertini, E., Gabbanini, F., Palchetti, E., 2010. A unified methodology for the
evaluation of accessibility and usability of mobile applications. Univ Access Inf Soc 9, 337-356.

Bjornestad, S., Tessem, B., Nyre, L., 2011. Design and Evaluation of a Location-Based Mobile News Reader, New Technologies,
Mobility and Security (NTMS), 2011 4th IFIP International Conference on, pp. 1-4.

Bo, J., Xiang, L., Xiaopeng, G., Zhifang, L., Chan, W.K., 2011. FLOMA: Statistical fault localization for mobile embedded system,
Advanced Computer Control (ICACC), 2011 3rd International Conference on, pp. 396-400.

Borys, M., Milosz, M., 2015. Mobile application usability testing in quasi-real conditions, Human System Interactions (HSI), 2015 8th
International Conference on. IEEE, pp. 381-387.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 77-101.

39

Briseno, M.V., Vincent, P., 2008. Observations on performance of client-server mobile applications, Information Technology, 2008.
IT 2008. 1st International Conference on, pp. 1-4.

Bruegge, B., Dutoit, A.H., 2004. Object-Oriented Software Engineering Using UML, Patterns and Java-(Required). Prentice Hall.
Canfora, G., Mercaldo, F., Visaggio, C.A., D'Angelo, M., Furno, A., Manganelli, C., 2013. A case study of automating user

experience-oriented performance testing on smartphones, Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference, pp. 66-69.

Chan, P.P., Hui, L.C., Yiu, S.-M., 2012. Droidchecker: analyzing android applications for capability leak, Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks. ACM, pp. 125-136.

Choi, W., Necula, G., Sen, K., 2013. Guided gui testing of android apps with minimal restart and approximate learning, ACM
SIGPLAN Notices. ACM, pp. 623-640.

Costa, P., Paiva, A.C., Nabuco, M., 2014. Pattern Based GUI testing for Mobile Applications, 2014 9th International Conference on
the Quality of Information and Communications Technology (QUATIC). IEEE, pp. 66-74.

Crispin, L., Gregory, J., 2008. Agile Testing: A Practical Guide for Testers and Agile Teams. Pearson Education.
de Cleva Farto, G., Endo, A.T., 2015. Evaluating the Model-Based Testing Approach in the Context of Mobile Applications.

Electronic Notes in Theoretical Computer Science 314, 3-21.
Delamaro, M.E., Vincenzi, A.M.R., Maldonado, J.C., 2006. A strategy to perform coverage testing of mobile applications,

Proceedings of the 2006 international workshop on Automation of software test. ACM, Shanghai, China, pp. 118-124.
Edmondson, J., Gokhale, A., Sandeep, N., 2011. Automating testing of service-oriented mobile applications with distributed

knowledge and reasoning, Service-Oriented Computing and Applications (SOCA), 2011 IEEE International Conference on, pp. 1-
4.

Fenton, N., PFIEEGER, S.L., Glass, R.L., 1997. Science and substance: A challenge to software engineers. Applying Software Metrics
46, 6.

Fenton, N., Pfleeger, S.L., Glass, R.L., 1994. Science and substance: a challenge to software engineers. Software, IEEE 11, 86-95.
Fetaji, M., Dika, Z., Fetaji, B., 2008. Usability testing and evaluation of a mobile software solution: A case study, Information

Technology Interfaces, 2008. ITI 2008. 30th International Conference on, pp. 501-506.
Flood, D., Harrison, R., Iacob, C., 2012. Lessons learned from evaluating the usability of mobile spreadsheet applications, Proceedings

of the 4th international conference on Human-Centered Software Engineering. Springer-Verlag, Toulouse, France, pp. 315-322.
Franke, D., Elsemann, C., Kowalewski, S., 2012a. Reverse Engineering and Testing Service Life Cycles of Mobile Platforms,

Database and Expert Systems Applications (DEXA), 2012 23rd International Workshop on, pp. 16-20.
Franke, D., Kowalewski, S., Weise, C., Prakobkosol, N., 2012b. Testing Conformance of Life Cycle Dependent Properties of Mobile

Applications, Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pp. 241-250.
Gao, J., Bai, X., Tsai, W.-T., Uehara, T., 2014a. Mobile application testing: a tutorial. Computer, 46-55.
Gao, J., Tsai, W.-T., Paul, R., Bai, X., Uehara, T., 2014b. Mobile Testing-as-a-Service (MTaaS)--Infrastructures, Issues, Solutions and

Needs, High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. IEEE, pp. 158-167.
Griebe, T., Hesenius, M., Gruhn, V., 2015. Towards Automated UI-Tests for Sensor-Based Mobile Applications, in: Fujita, H., Guizzi,

G. (Eds.), Intelligent Software Methodologies, Tools and Techniques. Springer International Publishing, pp. 3-17.
Grindal, M., Offutt, J., Andler, S.F., 2005. Combination testing strategies: a survey. Software Testing, Verification and Reliability 15,

167-199.
Guo, C., Xu, J., Yang, H., Zeng, Y., Xing, S., 2014. An automated testing approach for inter-application security in Android,

Proceedings of the 9th International Workshop on Automation of Software Test. ACM, pp. 8-14.
Harrison, R., Flood, D., Duce, D., 2013. Usability of mobile applications: literature review and rationale for a new usability model. J

Interact Sci 1, 1-16.
Hay, R., Tripp, O., Pistoia, M., 2015. Dynamic detection of inter-application communication vulnerabilities in Android, Proceedings

of the 2015 International Symposium on Software Testing and Analysis. ACM, pp. 118-128.
Heejin, K., Byoungju, C., Wong, W.E., 2009. Performance Testing of Mobile Applications at the Unit Test Level, Secure Software

Integration and Reliability Improvement, 2009. SSIRI 2009. Third IEEE International Conference on, pp. 171-180.
Hu, G., Yuan, X., Tang, Y., Yang, J., 2014. Efficiently, effectively detecting mobile app bugs with AppDoctor, Proceedings of the

Ninth European Conference on Computer Systems. ACM, p. 18.
Hu, Y., Azim, T., Neamtiu, I., 2015. Versatile yet lightweight record-and-replay for Android, Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM, pp. 349-366.
Huhn, A., Khan, V., Lucero, A., Ketelaar, P., 2012. On the use of virtual environments for the evaluation of location-based

applications, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Austin, Texas, USA, pp.
2569-2578.

Jiang, B., Long, X., Gao, X., 2007. MobileTest: A Tool Supporting Automatic Black Box Test for Software on Smart Mobile Devices,
Automation of Software Test , 2007. AST '07. Second International Workshop on, pp. 8-8.

Johnson, R., Wang, Z., Stavrou, A., Voas, J., 2013. Exposing software security and availability risks for commercial mobile devices,
Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-Annual. IEEE, pp. 1-7.

Joorabchi, M.E., Mesbah, A., Kruchten, P., 2013. Real challenges in mobile app development, Empirical Software Engineering and
Measurement, 2013 ACM/IEEE International Symposium on. IEEE, pp. 15-24.

Kaasila, J., Ferreira, D., Kostakos, V., Ojala, T., 2012. Testdroid: automated remote UI testing on Android, Proceedings of the 11th
International Conference on Mobile and Ubiquitous Multimedia. ACM, Ulm, Germany, pp. 1-4.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. School of
Computer Science and Mathematics, Keele University.

Knorr, K., Aspinall, D., 2015. Security testing for Android mHealth apps, Software Testing, Verification and Validation Workshops
(ICSTW), 2015 IEEE Eighth International Conference on. IEEE, pp. 1-8.

Kronbauer, A.H., Santos, C.A.S., Vieira, V., 2012. Smartphone applications usability evaluation: a hybrid model and its
implementation, Proceedings of the 4th international conference on Human-Centered Software Engineering. Springer-Verlag,
Toulouse, France, pp. 146-163.

Kuhn, R., Lei, Y., Kacker, R., 2008. Practical combinatorial testing: Beyond pairwise. IT Professional 10, 19-23.

40

Kumar, A., Lee, S., Lee, W.J., 2015. Modeling and test case generation of inter-component communication in android, Mobile
Software Engineering and Systems (MOBILESoft), 2015 2nd ACM International Conference on. IEEE, pp. 113-116.

Lettner, F., Holzmann, C., 2012. Automated and unsupervised user interaction logging as basis for usability evaluation of mobile
applications, Proceedings of the 10th International Conference on Advances in Mobile Computing and Multimedia. ACM, Bali,
Indonesia, pp. 118-127.

Liang, C.-J.M., Lane, N.D., Brouwers, N., Zhang, L., Karlsson, B.F., Liu, H., Liu, Y., Tang, J., Shan, X., Chandra, R., 2014. Caiipa:
Automated large-scale mobile app testing through contextual fuzzing, Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, pp. 519-530.

Looije, R., Brake, G.M.t., Neerincx, M.A., 2007. Usability engineering for mobile maps, Proceedings of the 4th international
conference on mobile technology, applications, and systems and the 1st international symposium on Computer human interaction
in mobile technology. ACM, Singapore, pp. 532-539.

Losada, B., Urretavizcaya, M., Lopez, J., Castro, I., 2012. Combining InterMod agile methodology with usability engineering in a
mobile application development, Proceedings of the 13th International Conference on Interacción Persona-Ordenador.
ACM, Elche, Spain, pp. 1-8.

Lu, L., Hong, Y., Huang, Y., Su, K., Yan, Y., 2012. Activity page based functional test automation for android application, Third
World Congress on Software Engineering. IEEE, pp. 37-40.

Lu, Y., Zulie, P., Jingju, L., Yi, S., 2013. Android Malware Detection Technology Based on Improved Bayesian Classification,
Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 2013 Third International Conference on. IEEE,
pp. 1338-1341.

Masood, M., Thigambaram, M., 2015. The Usability of Mobile Applications for Pre-schoolers. Procedia-Social and Behavioral
Sciences 197, 1818-1826.

Méndez-Porras, A., Quesada-López, C., Jenkins, M., 2015. Automated testing of mobile applications: A systematic map and review,
CIBSE 2015 - XVIII Ibero-American Conference on Software Engineering, pp. 195-208.

Merwe, H.v.d., Merwe, B.v.d., Visser, W., 2012. Verifying android applications using Java PathFinder. SIGSOFT Softw. Eng. Notes
37, 1-5.

Morgado, I.C., Paiva, A.C., Faria, J.P., 2014. Automated Pattern-Based Testing of Mobile Applications, 2014 9th International
Conference on the Quality of Information and Communications Technology (QUATIC). IEEE, pp. 294-299.

Muccini, H., Di Francesco, A., Esposito, P., 2012. Software testing of mobile applications: Challenges and future research directions,
Automation of Software Test (AST), 2012 7th International Workshop on, pp. 29-35.

Mujtaba, S., Petersen, K., Feldt, R., Mattsson, M., 2008. Software product line variability: A systematic mapping study. School of
Engineering, Blekinge Inst. of Technology.

Nagowah, L., Sowamber, G., 2012. A novel approach of automation testing on mobile devices, Computer & Information Science
(ICCIS), 2012 International Conference on, pp. 924-930.

Oyomno, W., Jappinen, P., Kerttula, E., Heikkinen, K., 2013. Usability study of ME2.0. Personal Ubiquitous Comput. 17, 305-319.
Payet, É., Spoto, F., 2012. Static analysis of Android programs. Information and Software Technology 54, 1192-1201.
Perry, D.E., Porter, A.A., Votta, L.G., 2000. Empirical studies of software engineering: a roadmap, Proceedings of the conference on

The future of Software engineering. ACM, pp. 345-355.
Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in software engineering, 12th International

Conference on Evaluation and Assessment in Software Engineering, p. 1.
Pham, T.P., Razikin, K., Goh, D.H.-L., Kim, T.N.Q., Quach, H.N.H., Theng, Y.-L., Chua, A.Y.K., Lim, E.-P., 2010. Investigating the

usability of a mobile location-based annotation system, Proceedings of the 8th International Conference on Advances in Mobile
Computing and Multimedia. ACM, Paris, France, pp. 313-320.

Puhakka, T., Palola, M., 2006. Towards automating testing of communicational B3G applications, Proceedings of the 3rd international
conference on Mobile technology, applications & systems. ACM, Bangkok, Thailand, p. 27.

Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., Shayandeh, S., 2012. AppInsight: mobile app performance
monitoring in the wild, Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation. USENIX
Association, Hollywood, CA, USA, pp. 107-120.

Ryan, C., Rossi, P., 2005. Software, performance and resource utilisation metrics for context-aware mobile applications, Software
Metrics, 2005. 11th IEEE International Symposium, pp. 10 pp.-12.

Sa, M., Carrico, L., 2008. Lessons from early stages design of mobile applications, Proceedings of the 10th international conference on
Human computer interaction with mobile devices and services. ACM, Amsterdam, The Netherlands, pp. 127-136.

Salva, S., Zafimiharisoa, S.R., 2013. Data vulnerability detection by security testing for Android applications, Information Security for
South Africa, 2013. IEEE, pp. 1-8.

Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Zhimin, W., 2010. Context-Aware Adaptive Applications: Fault Patterns and
Their Automated Identification. Software Engineering, IEEE Transactions on 36, 644-661.

Shahrokni, A., Feldt, R., 2013. A systematic review of software robustness. Information and Software Technology 55, 1-17.
She, S., Sivapalan, S., Warren, I., 2009. Hermes: A Tool for Testing Mobile Device Applications, Software Engineering Conference,

2009. ASWEC '09. Australian, pp. 121-130.
Song, H., Ryoo, S., Kim, J.H., 2011. An integrated test automation framework for testing on heterogeneous mobile platforms,

Software and Network Engineering (SSNE), 2011 First ACIS International Symposium. IEEE, pp. 141-145.
Starov, O., 2013. Cloud platform for research crowdsourcing in mobile testing. East Carolina University, Ann Arbor, p. 12.
Starov, O., Vilkomir, S., Gorbenko, A., Kharchenko, V., 2015. Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey,

Dependability Problems of Complex Information Systems. Springer, pp. 55-71.
Tao, C., Gao, J., 2014. Modeling mobile application test platform and environment: testing criteria and complexity analysis,

Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and Model-Based
Testing. ACM, pp. 28-33.

Vieira, V., Holl, K., Hassel, M., 2015. A context simulator as testing support for mobile apps, Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, pp. 535-541.

41

Vilkomir, S., Amstutz, B., 2014. Using Combinatorial Approaches for Testing Mobile Applications, Software Testing, Verification
and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on. IEEE, pp. 78-83.

Vilkomir, S., Marszalkowski, K., Perry, C., Mahendrakar, S., 2015. Effectiveness of multi-device testing mobile applications, Mobile
Software Engineering and Systems (MOBILESoft), 2015 2nd ACM International Conference on. IEEE, pp. 44-47.

Villanes, I.K., Bezerra Costa, E.A., Dias-Neto, A.C., 2015. Automated Mobile Testing as a Service (AM-TaaS), Services
(SERVICES), 2015 IEEE World Congress on. IEEE, pp. 79-86.

Wang, Z., 2008. Validating context-aware applications. The University of Nebraska - Lincoln, Ann Arbor, p. 186.
Wei, Q., Chang, Z., Cheng, Q., 2015. Usability study of the mobile library App: an example from Chongqing University. Library Hi

Tech 33, 340-355.
Wen, H.-L., Lin, C.-H., Hsieh, T.-H., Yang, C.-Z., 2015. PATS: A Parallel GUI Testing Framework for Android Applications,

Computer Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual. IEEE, pp. 210-215.
Wieringa, R., Maiden, N., Mead, N., Rolland, C., 2006. Requirements engineering paper classification and evaluation criteria: a

proposal and a discussion. Requirements Engineering 11, 102-107.
Yu, L., Tsai, W.T., Jiang, Y., Gao, J., 2014. Generating test cases for context-aware applications using bigraphs, Software Security and

Reliability (SERE), 2014 Eighth International Conference on. IEEE, pp. 137-146.
Zhang, P., Elbaum, S., 2014. Amplifying Tests to Validate Exception Handling Code: An Extended Study in the Mobile Application

Domain. ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 32.
Zhang, T., Gao, J., Cheng, J., Uehara, T., 2015. Compatibility Testing Service for Mobile Applications, 2015 IEEE Symposium on

Service-Oriented System Engineering.

Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo, B., Massacci, F., 2015. Towards Black Box Testing of Android Apps,
Availability, Reliability and Security (ARES), 2015 10th International Conference on. IEEE, pp. 501-510.

Zhi-fang, L., Bin, L., Xiao-peng, G., 2009. SOA based mobile application software test framework, Reliability, Maintainability and
Safety, 2009. ICRMS 2009. 8th International Conference on, pp. 765-769.

Zhifang, L., Bin, L., Xiaopeng, G., 2010a. Test automation on mobile device, Proceedings of the 5th Workshop on Automation of
Software Test. ACM, Cape Town, South Africa, pp. 1-7.

Zhifang, L., Xiaopeng, G., Xiang, L., 2010b. Adaptive random testing of mobile application, Computer Engineering and Technology
(ICCET), 2010 2nd International Conference on, pp. V2-297-V292-301.

Zhimin, W., Elbaum, S., Rosenblum, D.S., 2007. Automated Generation of Context-Aware Tests, Software Engineering, 2007. ICSE
2007. 29th International Conference on, pp. 406-415.

Samer Zein received his MSc degree in Software Engineering from Northumbria University, United Kingdom. He is a PhD student at
the Computer Science Department at International Islamic University Malaysia (IIUM). Samer has also worked in the software
industry for ten years on projects of different sizes and domains. His research interests are mobile application testing techniques and
automation as well as software engineering in practice.

Norsaremah Salleh is an Assistant Professor and the former Head of Computer Science Department at International Islamic
University Malaysia (IIUM). She received her PhD in Computer Science from the University of Auckland, New Zealand. Her research
interests include the areas of empirical software engineering, evidence-based software engineering, computer science/software
engineering education, and social network sites research. Prior to joining academic, she has worked in the manufacturing industry
nearly five years as analyst programmer.

John Grundy is Professor of Software Engineering and Dean of the School of Software and Electrical Engineering at Swinburne
University of Technology. Previously he was Head of Computer Science and Software Engineering at Swinburne, Head of Department
for Electrical and Computer Engineering at the University of Auckland, New Zealand, and Director of Software Engineering,
University of Auckland . He has published widely in the areas of automated software engineering, model-driven engineering, visual
languages, software architecture and software methods and tools. He is Associate Editor-in-Chief for IEEE Transactions on Software
Engineering, and Associate Editor for IEEE Software and Automated Software Engineering. He is currently the CORE Australasia
President, is on the Australian Research Council College of Experts, and is on the Steering Committee for the IEEE/ACM
International Conference on Automated Software Engineering. He is a Fellow of Automated Software Engineering and Fellow of
Engineers Australia.

