
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/241627180

Multicore-based	auto-scaling	SEcure	Neighbor
Discovery	for	Windows	operating	systems

Article	·	February	2012

DOI:	10.1109/ICOIN.2012.6164390

CITATIONS

7

READS

34

3	authors,	including:

Ahmad	Alsadeh

Birzeit	University

12	PUBLICATIONS			57	CITATIONS			

SEE	PROFILE

Available	from:	Ahmad	Alsadeh

Retrieved	on:	08	October	2016

https://www.researchgate.net/publication/241627180_Multicore-based_auto-scaling_SEcure_Neighbor_Discovery_for_Windows_operating_systems?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/241627180_Multicore-based_auto-scaling_SEcure_Neighbor_Discovery_for_Windows_operating_systems?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Ahmad_Alsadeh2?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ahmad_Alsadeh2?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ahmad_Alsadeh2?enrichId=rgreq-4b1868ee2a48879cae3e70e8eacb911a-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyNzE4MDtBUzoxNTcyODUzMTc4ODE4NjNAMTQxNDUxMTE1MDE5NQ%3D%3D&el=1_x_7

Multicore-Based Auto-Scaling SEcure Neighbor
Discovery for Windows Operating Systems

Hosnieh Rafiee, Ahmad AlSa’deh, and Christoph Meinel
Hasso-Plattner-Institut, University of Potsdam
P.O. Box 900460, 14440 Potsdam, Germany

{Hosnieh.Rafiee, Ahmad.Alsadeh, Christoph.Meinel}@hpi.uni-potsdam.de

Abstract—SEcure Neighbor Discovery (SEND) is proposed to
counter IPv6 Neighbor Discovery Protocol (NDP) security
threats. However, SEND is compute-intensive. Fulfilling Hash2
condition in Cryptographically Generated Addresses (CGA) is
the main heavy part of SEND. Unfortunately, CGA computation
cannot see significant speed improvement when it runs on
multicore machine because CGA generation algorithm is
sequential. In this paper, we propose a multicore-based high
performance SEND implementation for Windows families to
speed up SEND computations. The proposed approach
automatically detects the number of processors available on a
machine and creates equivalent number of working threads to
compute Hash2 condition. The parallelization mechanism is
implemented to assign CGA computation to all the cores. When
one thread satisfies CGA Hash2 condition, the others stop. With
the parallel approach, the speedup time has been increased
extremely by increasing the number of cores in the computing
device. Besides the parallelization, we extend SEND
implementation to generate the key pair for CGA algorithm on-
the-fly to enhance the security and to protect the privacy.

Keywords-SEND implementation; Cryptographically Generated
Addresses (CGA); Neighbor Discovery Protocol (NDP); IPv6
security and protection; parallel computing

I. INTRODUCTION

SEcure Neighbor Discovery (SEND) [1] is as an extension
to Neighbor Discovery Protocol (NDP) [2, 3]. SEND uses RSA
key pairs, Cryptographically Generated Addresses (CGA) [4],
digital signature and X.509 certification to offer significant
protection to NDP. SEND offers the address ownership proof,
message integrity and router authorization mechanism.

Unfortunately, SEND is computationally heavy especially
for high security level requirements. The sequential brute-force
search loop to fulfill Hash2 condition [4] in CGA generation
algorithm is the main compute-intensive part of SEND. It may
take several hours or even days to find CGA parameters with
security level “2”. This long delay is unacceptable in several
applications.

Nowadays, multicore processors greatly increase the
computational capacity of computers and become standard.
Nearly every computer has a processor with at least two cores.
Some desktops have up to 8 CPUs. These CPU numbers are
likely to increase in the future. Multicore processor offers the
opportunities for remarkable speed improvement in CGA
computation. However, a dual-core processor does not double

CGA computation performance automatically, because CGA
generation algorithm is sequential process and not fully utilized
the available CPU cores. The conventional implementation of
CGA does not take full advantage when it runs on a multicore
machine. Therefore, exploiting the computational resources of
the existing cores requires CGA generation algorithm
improvement to run in parallel. So, it is critical that CGA
implementation scale with the number of cores.

In this paper, we will introduce an approach for multicore
device to achieve better performance for SEND computations.
We extend Windows SEcure Neighbor Discovery (WinSEND)
[5] implementation to do the brute-force search to find a valid
modifier in parallel rather than do it sequentially. Based on the
number of cores on the computing device, the extended version
of WinSEND determines the number of parallel threads to
compute CGA address parameters. The parallel WinSEND
version reduces the CGA generation time drastically. The
experiment results are validated and evaluated by comparing
the performance of the proposed approach with the
conventional approach. Besides, we extend WinSEND to
generate the key pair for CGA algorithm on-the-fly. Generating
the keys in spot increase the randomness of CGA addresses and
enhances its security against brute force attack and protects the
users’ privacy.

The paper is structured in the following manner. An
overview of NDP and possible attacks against it is presented in
Section II. Section III shows how SEND can protect NDP and
provides more details about CGA generation algorithm.
Section IV explains the details of parallelization of SEND
implementation and shows new extensions which is added to
WinSEND implementation. The experimental results are
demonstrated in Section V. The last section concludes the
work.

II. NEIGHBOR DISCOVERY PROTOCOL (NDP)

Neighbor Discovery (ND) for IPv6 [2] and IPv6 Stateless
Address Auto-Configuration (SLAAC) [3], together, are
referred to as IPv6 Neighbor Discovery Protocol (NDP). NDP
is one of the main protocols in IPv6 suite. It greatly improves
the efficiency and the network management. It is heavily used
for several critical functionalities, such as discovering other
existing nodes on the same link, determining others’ link layer
addresses, detecting duplicate addresses, finding routers and
maintaining reachability information about paths to active

Published as: Hosnieh Rafiee, Ahmad AlSa'deh and Christoph Meinel, “Multicore-Based Auto-Scaling SEcure Neighbor Discovery for
Windows Operating Systems”, 26th IEEE International Conference on Information Networking (ICOIN), Bali, Indonesia, February 1 - 3, 2012

neighbors. Moreover, NDP plays a crucial role in mobile IPv6
(MIPv6) networks. In MIPv6, the SLAAC and ND features
eliminate the need for Foreign Agents (FAs), and a Mobile
Node (MN) can join to a new foreign network by receiving the
Router Advertisements (RAs) [6].

NDP has only basic protection mechanisms to ensure that
the messages come from nodes that directly connect to a local
link. ND accepts messages which come from nodes with either
unspecified or link-local IPv6 addresses and with hop limit
255. However, this protection shield is not enough to protect
IPv6 local networks. If NDP messages left without
authentication mechanism, it will be vulnerable to a set of
attacks. IPv6 Neighbor Discovery (ND) Trust Models and
threats, RFC3756 [7], describes these attacks. The attacker can
carry out several attacks based on address resolution, redirect,
Duplicate Address Detection (DAD), Router Advertisement
(RA), and address configuration. For instance, it is easy to
configure a rogue router on the link, and it is difficult for the
host to validate the authorized router.

In addition the security weakness, StateLess Address Auto-
Configuration (SLAAC) leads to privacy implications. Since
generating the interface identifier from the MAC address of the
node (which remains constant over time) makes it possible to
track a node over the Internet. Also, SLAAC make it easy to
correlate the traffic patterns and the activities to the certain user
[8].

III. SECURE NEIGHBOR DISCOVERY (SEND)

A. SEND Options and Messages
SEcure Neighbor Discovery (SEND) [1] is a set of

enhancements to NDP. SEND offers three additional features
to NDP: Address ownership proof, message protection and
router authorization mechanism. To achieve these
enhancements, SEND comes with four new options: CGA, RSA
Signature, Timestamp, and Nonce options.

1. CGA Option: this field carries the associated
parameters to enable the receiver to validate the proper
binding between the owner public key and the
Cryptographically Generated Address (CGA).

2. RSA Signature Option: this option is used to
authenticate the identity of the sender. The message
which is sent from CGA address is signed with the
address owner private key and the public key is used to
verify the signature. This signature prevents an attacker
from spoofing NDP messages.

3. Nonce Option: this option is used to protect messages
from replay attacks, and to ensure that an
advertisement is a fresh response to a solicitation
which is sent earlier by the node.

4. Timestamp Option: this option is used to protect the
unsolicited advertisements (periodic RA and Redirect
messages) from replay attacks.

SEND uses an Authorization Delegation Discovery (ADD)
process to validate and authorize IPv6 routers to act as default
gateways, and specifies the IPv6 prefixes that a router is
authorized to announce on the link [1]. ADD relies on an

electronic certificate issued by a trusted third party. Before any
node can accept a router as its default router, the node must be
configured with a trust anchor(s) that can certify the router via
certificate paths. Thus, the node requests the “router” to
provide its X.509 certificate path to a Trust Anchor (TA) which
is preconfigured on the node. The “router” should not be
trusted if it fails to provide the path to TA. Two new ICMPv6
discovery messages are offered for identifying the router
authorization process:

1. Certificate Path Solicitation (CPS): is sent by hosts
during the ADD process to request a certification path
between a router and one of the host’s trust anchors.

2. Certificate Path Advertisement (CPA): is sent in reply
to the CPS message and contains the router certificate.

B. CGA Generation Algorithm
Cryptographically Generated Address (CGA) is an essential

part of SEND which is proposed to prevent address stealing. It
offers the authentication to IPv6 addresses without the need of
the third party or additional security infrastructure. CGAs are
IPv6 addresses, where the interface identifiers (IIDs) are
generated by one-way hashing of the node’s public key and
other auxiliary parameters. Thus, the IPv6 address of a node is
bound to its public key. This binding can be verified by re-
computing the hash value and being compared with the
interface identifier of the sender IPv6 address.

In CGA generation algorithm, the address owner computes
two independent one-way hash values (Hash1 and Hash2) by
using the public key and other auxiliary parameters. Hash2
value sets an input parameter for Hash1. The combination of
the two hash values increases the computational complexity of
generating new address and the cost of brute-force attacks.

A schematic of CGA generation algorithm is shown in
Figure 1 (refer to RFC 3972 for more details). CGA generation
begins with determining the address owner’s Public Key
and selecting the proper Security level (Sec) value. Then
continue the Hash2 computation loop until finding the Final
Modifier. Hash2 value is a hash of combination of the
Modifier and the Public Key is concatenated with zero-
value of Subnet Prefix and Collision Count. The
address generator tries different values of the Modifier until
16×Sec-leftmost-bits of Hash2 computes to zero. Once a match
is found, the loop for Hash2 computation terminates.
Afterward, the Final Modifier value is saved and used as an
input for Hash1 computation. Hash1 value is a hash of
combination of the whole CGA parameter data structure. Then,
the interface identifier (IID) is derived from Hash1. The Sec
value is encoded into the three leftmost bits of the interface
identifier. The 7th and 8th bits from the left of IID are reserved
for special purpose (Refer to RFC 3513 for more details).
Finally, the Duplicated Address Detection (DAD) is done to
ensure that there is no address collision within the same subnet.

The main disadvantage of using CGA is the computational
cost. CGA computations may take long time especially for high
“Sec” value. In fact, satisfying Hash2 condition is the most
computational expensive part of CGA generation algorithm.
Multiple hashes are computed over the CGA parameter data

structure which is slightly modified each time the modifier
value at once. One approach to speedup CGA computations is
to parallelize CGA algorithm.

C. Parallelization of CGA Generation Algorithm
CGA generation is a sequential algorithm. Therefore, the

main challenge of CGA parallelization is to break down CGA
algorithm in parallel and assemble it to find the final results. To
parallelize CGA algorithm, two things should be determined:
which part of CGA algorithm should be parallelized and to
how many parallel process it should be broken. Hash2
condition needs to be broken to number of threads because it is
the heaviest part of CGA. To utilize all cores on a device, the
number of threads is determined based on the number of CPU
cores. In this way, the CGA generation algorithm can scale its
performance based on the available CPU cores. It is important
to understand that using two processors do not double the
speed. Parallel processing causes some level of overhead, the
resources used to manage the multiple processors.

IV. PARALLELIZED SEND IMPLEMENTATION

We implement SEND parallel mode by extending Windows
SEcure Neighbor Discovery (WinSEND) [5] implementation.
More details about WinSEND implementation and the
extensions to achieve the parallelization and other features are
shown in the following subsections.

A. WinSEND Implementation Overview
WinSEND has been developed in Microsoft .NET as a

service to provide security for Windows NDP. WinSEND is
proposed as a response to the lack of SEND implementation in
Windows XP/Vista/7 [11]. While Windows family is the most
popular operating system and accounts for more than 80% of
usage compared to other operating systems [12]. It uses
WinPcap library [9] rather than Winsock to transfer data
between network interface card (NIC) to upper layers and vice
versa. WinSEND has direct access to raw sockets which offers
the possibility for an application to receive/send network traffic
before processing it by the normal TCP/IP stack.

WinSEND is subdivided into 3 main components: User
Interface, WinSEND Service and Main Classes. Figure 2
shows WinSEND components and the relationship between
them. WinSEND Main Classes is a shared component that is
called by both WinSEND Service and User Interface. Users

can select their desired parameters such as security level (Sec
value), cryptosystem, key size and network interface card
which will be secured by WinSEND. These configuration
parameters are stored in an XML file format for further usage.
This XML file contains SEND options such as the “subnet
prefix”, “Sec” value and key pair (public/private keys). The
reason for storing CGA parameters is to skip CGA generation
process while a node is connected to the same network or the
address is still valid. The address becomes invalid once the
node joins a new subnet or the valid time is elapsed. For
generating new CGA addresses, WinSEND reruns all CGA
generation processes automatically and update the XML file.
WinSEND uses netsh [10] command to disable the NDP
messages (auto-configuration, router discovery, and etc) from
normal TCP/IP stack. In this way, the exchange of NDP
message is forced to be handled by WinSEND in secure
manner.

B. WinSEND Parallel Computing Mode Implementation
WinSEND is extended to do the brute-force search to

satisfy Hash2 condition of CGA algorithm in parallel. In
parallel computational mode, the extended WinSEND can use
almost the whole CPU capacity to finish CGA computations.
When the extended WinSEND starts, it reads the number of
CPU cores and base on the number of existing cores,
WinSEND determines the number of parallel tasks which can
be used for CGA computations.

Figure 3 shows how CGA generation can be parallelized to
use n-core computing device. In this approach, each task is run
in one core to avoid CPU switching among the parallel tasks
for CGA generation. The Tasks Generator (TG) passes a
particular continuous sets of modifier for each task, i.e. each
thread dedicated to do brute-force search for certain range. If
the thread1 process modifier range from 0 to n, then thread2
would process for a range of n+1 to 2*n and so on. TG also
passes termination token to CGA Generation (CGAGen)
function to control and terminate all tasks when one of the
tasks succeed to find a valid modifier which fulfills Hash2
conditions. If none of the tasks successes to find the valid

Figure 1. CGA generation algorithm.

Figure 2. WinSEND main components and its relationships

modifier within the assigned range, new tasks with new ranges
of modifiers are generated.

WinSEND uses some customized classes in Task Parallel
Library (TPL) [13] to simplify the parallelization management.
TPL simplifies this process and provides a number of classes
and methods which allows running a number of jobs in a
parallel fashion. TPL has Task Factory class [14] that provides
support for creating and scheduling Task objects without
sacrificing of their power and flexibility. The following
mathematic formula shows total time requires meeting Hash2
condition in CGA sequential and parallelizing algorithm.

• Sequential CGA algorithm

(݉)௦ݐ = ݐ +ݐଶ(݉ + ݅)	
ୀ ௦ݐ = Total time needs for forming the final CGA address

in sequential mode ݐ = The time needs for other steps in CGA generation
algorithm, such as RSA key generation, Hash1 calculation, and
Duplicate Address Detection (DAD) check. ݐଶ = The time needs for computing Hash2 loop. ݉ = Modifier ݎ = The total number of iteration to fulfill Hash2 condition

• Parallelize CGA algorithm

(݉)ݐ = ݐ +݉݅݊
ۈۉ
ۈۈۈ
ۇۈۈ

ݐଶ(݉ + ݆)
ୀݐଶ(݉ + ݆)∗ଶ
ୀ ⋮ ݉)ଶݐ + ݆)∗௫	

ୀ∗(௫ିଵ) ۋی
ۋۋۋ
ۊۋۋ

ୀ

ݐ = Total time needs for processing CGA in parallel
mode

݊ =	 Constant number ݔ =	 Number of CPU cores

Nevertheless, the user can change the computational mode
to sequential mode via the advance setting in WinSEND User
Interface as shown in Figure 4. In sequential computation
mode, one instruction is executed per unit of time. The
sequential WinSEND cannot use the total CPU capacity of all
cores on a computing device. The default setting of WinSEND
uses the parallel computational mode.

C. Key Generation Method
When WinSEND service runs on a node, it calls

“KeyGeneration” function that generates key pairs based
on a user-defined key size automatically (by default 1024-bit).
Generation the keys in this way has the following advantages:

• The user requires minimal amount of configuration, no
need for her/him to know the technical details behind
the cryptography.

• No need to use external program to generate the key
pairs. In practice, it is not easy for the user to generate
key pairs manually each time the application wants to
generate new address for the computing device.

• Keys are not stored in a particular path before starting
the application. Therefore, the keys are not vulnerable
to stealing.

• Generating the key pair on-the-fly each time the
WinSEND starts CGA process, enhances the CGA
security and protects the user privacy. Generating the
public key in this way increases the randomness
of CGA generated addresses and consequently
enhances its security against the brute-force attack.
Moreover, each time the node moves to a new location,
it gets new CGA address and uses new public key.
Therefore, it is not easy to track the users based on
their IPs or even to correlate the traffic to their public
keys.

• The average time to generate key pair with RSA key
1024-bit over 1000 sample cost 27.8 Milliseconds,
while the average time for CGA generation for Sec

Figure 3. Flowchart of the Proposed Parallel CGA generation processing Figure 4. WinSEND Interface advanced setting

value “1” and key 1024-bit cost 439.6 Milliseconds.
So, the key generation takes around 6.3% of the total
CGA generation time. The measurements are done on a
computer with 2.6 GHz. Figure 5 shows this average
time generation mapped to different key sizes.

• Reading 1024-bit key sizes from a PEM file and
convert it to a readable format for WinSEND takes
almost the same time if the key is generated in spot.

V. EXTENDED WINSEND TESTING

To evaluate the performance ofCGA generation algorithm
in parallel mode, several experiments are carried out for
different system specifications. The experiments are done on a
computer with 2.60 GHz CPU (8-cores) and 8GB RAM.
Debian is the main operating system on this computer. We run
the extended WinSEND on guest Windows 7 (64-bit) hosted by
Virtualbox4.1.0 software. The settings of VirtualBox offer the
flexibility to control the number of virtual CPU cores that the
guest operating systems can use. Because the CGA generation
is a random process and no guarantees when to stop, the CGA
address is generated 1000 times to have sufficient samples. All
the measurements for different number of cores are taken for
CGA with Sec value “1” and with key size 1024-bit.

Figure 6 shows the CPU usage for WinSEND parallel and
sequential modes. In sequential mode, the CPU usage around
30% while in parallel mode it is around 80% of the total CPU
capacity. In recent Windows versions (vista, 2008 and 7),
multi-core CPUs is supported natively and the OS attempts to
distribute a job (sequential or Parallel) over CPU cores and
decrease execution time. However, this distribution is not as
efficient as a developer uses the parallelization techniques in
the application. In addition, the thread limits affects the
execution time too. The thread limits in 32-bit and 64-bit
Windows 7 varies [15] i.e. In 32-bit Windows 7 with 2GB
RAM, about 2025 concurrent threads can be created while in
64-bit windows is 54965 threads. Therefore, WinSEND
sequential mode performs better for 64-bit OS than 32-bit.

The experimental results show considerable speedup with
parallel approach, compared to the conventional sequential

approach. Table 1 shows CGA average generation times for
parallel and sequential WinSEND. The measurements are taken
for CGA with Sec value “1” and for RSA public key 1024-bit.
With 2 cores, the parallel approach speedup CGA computation
by 27.1%, for 4 cores by 30.5% and for 8 cores by 38.7%. It is
clear that CGA benefit from increasing the number of cores
available on a computer in both cases with sequential and
parallel modes. However, the parallel mode is much better than
sequential because it tries to invest most of the available CPU
capacity to do the computations.

TABLE I. CGA AVERAGE GENERATION TIME COMPARISON OF
SEQUENTIAL AND PARALLEL WINSEND

Number

CPU cores

CGA average generation time
(Milliseconds)

1024-bit RSA key, Sec=1

Percentage
of Speedup

Parallel Mode Sequential Mode

2 376.34 516.26 27.1%

4 304.13 437.82 30.5%

8 261.43 426.36 38.7%

VI. CONCLUSION

Secure Neighbor Discovery (SEND) protocol is proposed
to counter most of the threats against Neighbor Discovery
Protocol (NDP). Unfortunately, SEND is compute-intensive
approach. Since SEND is sequential algorithm, it cannot see
the advantage automatically when it runs on multicore
machine. It cannot use all CPU capacity. Therefore, to benefit
from multicore technology, there is a need to redesign the
implementation of programs and software to parallelized
model.

In this paper, we presented a multicore-based parallel
computational approach for CGA which is significantly
improve CGA generation time. This approach can
automatically scale based on the number of available cores on
the computing device. The experimental results show
considerable speedup with CGA generation time in parallel
mode compare to the sequential approach. The amount of
speedup achieved depends on how many cores are available.
This improvement enables the device to have “more secure”
address within shorter time.

Figure 5. Average key pair generation time for different key (module) length
over 1000 samples

Figure 6. CPU usage snapshot for 4-cores CPU. Top-WinSEND parallel
mode; Bottom- WinSEND sequential mode

Windows SEcure Neighbor Discovery (WinSEND)
implementation is extended to work in parallel mode.
WinSEND is developed in Microsoft .NET. It can be installed
in windows as a service. It has an easy user interface to enable
the user to set the desired security parameters. WinSEND uses
WinPcap API to have a direct access to raw sockets and bypass
normal TCP/IP stack.

REFERENCES
[1] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor

Discovery (SEND)”, RFC 3971, March 2005.

[2] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6)”, RFC 4861, September 2007.

[3] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration”, RFC 4862, September 2007.

[4] T. Aura, “Cryptographically Generated Addresses (CGA)”, RFC 3972,
March 2005. Updated by RFCs 4581, 4982

[5] H. Rafiee, A. Alsa’deh, aand Ch. Meinel, “WinSEND: Windows SEcure
Neighbor Discovery”, 4th International Conference on Security of
Information and Networks (SIN 2011), 14-19 November 2011, Sydney,
Australia. 2011.

[6] R. Ed. Koodli, “Mobile IPv6 Fast Handovers”, RFC 5568, July 2009.

[7] P. Nikander, J. Kempf, and E. Nordmark, “IPv6 Neighbor Discovery
(ND) Trust Models and Threats”, RFC 3756, May 2004

[8] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for Stateless
Address Autoconfiguration in IPv6”, RFC 4941, September 2007.

[9] Winpcap documentation, http://www.winpcap.org

[10] Microsoft TerchNet, Netsh Technical Reference,
http://technet.microsoft.com/en-us/library/cc725935, 2009.

[11] Microsoft TechNet, IPv6 Security Considerations and
Recommendations, http://technet.microsoft.com/en-us/library/bb72695,
2011.

[12] OS Platform Statistics,
http://www.w3schools.com/browsers/browsers_os.asp, 2011.

[13] Microsoft TechNet, Task Parallelism (Task Parallel Library),
http://msdn.microsoft.com/en-us/library/dd537609.aspx, 2011.

[14] Microsoft TechNet, Task Factory, http://msdn.microsoft.com/en-
us/library/system.threading.tasks.task.factory.aspx

[15] M. Russinovich, D. Solomon, and A. Ionescu, Windows Internals Book,
2009.

