
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/2659029

Model	Generation	in	Disjunctive	Normal
Databases

Article	·	July	1996

Source:	CiteSeer

CITATIONS

2

READS

7

2	authors,	including:

Adnan	Yahya

Birzeit	University

41	PUBLICATIONS			439	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Adnan	Yahya

Retrieved	on:	15	August	2016

https://www.researchgate.net/publication/2659029_Model_Generation_in_Disjunctive_Normal_Databases?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_2
https://www.researchgate.net/publication/2659029_Model_Generation_in_Disjunctive_Normal_Databases?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_1
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_4
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_5
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_6
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-434016bbab57253e4e77c2665caa1e0d-XXX&enrichSource=Y292ZXJQYWdlOzI2NTkwMjk7QVM6MTc5NjgyNDMxNDc5ODA4QDE0MTk4NTEwMzgzMTM%3D&el=1_x_7

INSTITUT F�UR INFORMATIKLehr- und Forschungseinheit f�urProgrammier- und ModellierungssprachenOettingenstra�e 67, D{80538 M�unchen
Model Generation inDisjunctive Normal DatabasesAdnan H. Yahya
http://www.pms.informatik.uni-muenchen.de/publikationenForschungsbericht/Research Report PMS-FB-1996-10, June 1996

Model Generation in Disjunctive Normal DatabasesAdnan YahyaComputer Science Department, University of Munich, Munich, GermanyElectrical Engineering Department, Birzeit University, Birzeit, Palestineyahya@informatik.uni-muenchen.deAbstractAlgorithms for computing several classes of models for disjunctive normal databases are pre-sented. We show how to e�ciently compute minimal, restricted minimal, perfect, and stablemodels. The common feature of the advanced algorithms is that they are based on augmentinga model generating procedure with a set of hypotheses to guide its search for acceptable modelsand/or to interpret negation in clause bodies. The approach is shown to be useful for di�erentdatabase applications including query answering under di�erent semantics and integrity cons-traint enforcement. The developed algorithms are easy to implement and compare favorablywith others advanced in the literature for the same purpose.1 IntroductionMuch attention has been devoted to computing models for disjunctive databases as a tool for datastorage and manipulation. Several algorithms were suggested for computing di�erent classes ofmodels that can also be utilized for query answering and integrity constraint enforcement. It isoften the case that the user has some knowledge or assumptions about the current state of thedatabase that need to be veri�ed. The source of this information may be the database itself or anexternal agent. Some examples are:� Given an interpretation I determine if I is a (minimal) model of the database.� Given a model M of DB �nd a minimal component of M that is a minimal model of DB or�nd the entire set of minimal models of DB that are subsets of M ;� Given a (minimal) model M of DB determine if M satis�es a set of clauses external to DB(e.g. a set of integrity constraints for DB).� Given a (minimal) model M of DB determine if M belongs to the models of DB under aparticular semantics (e.g. minimal, perfect, stable, ...).While many other questions may be posed, we limit ourselves to checks performed on a subset ofthe Herbrand base. Each such set can be treated as an interpretation of the theory. We show thatbeing able to test hypotheses about such sets of atoms can be utilized in many useful applications.1

In particular, we show that such tests can be converted into a procedure for computing answersunder di�erent database semantics and for integrity constraint enforcement, among other possibleuses.One can think of several sources for the set of atoms being checked: the previous state ofthe database represented by the set of (minimal) models: when we need to check if they are still(minimal) models of the updated theory; a generic (minimal) model generating procedure for thedatabase or one of its transformations (e.g. the positive database corresponding to a database withnegated body literals- a normal disjunctive database) and restrictions on the (local) Herbrand basedue to partitioning.We consider cases when the set of hypotheses is kept constant during the reasoning process or isallowed to change to re
ect the progress of the computation.The rest of the paper is organized as follows. In the next section we give the basic notationand background material and point to the problems associated with computing perfect and stablemodels using conventional model generation. In Section 3 we develop a procedure for computingrestricted models and show how to use it to check for model minimality. In Section 4 we show howto compute the set of perfect models of a strati�ed database. In Section 5 we outline a procedure forcomputing stable models for general normal databases. In Section 6 we show the potential utilityof the developed procedures for various database applications, compare our approach with othersreported in the literature and point to some possible directions of further research.2 Notation and Background:In the following we assume familiarity with the basic concepts of disjunctive logic programming asin [12]. We present only the most relevant de�nitions in a condensed form.2.1 General:De�nition 2.1 A disjunctive database DB is a set of clauses of the form:C = A1 _ � � � _Am B1; : : : ; Bn; notD1; : : : ; notDk;where k;m; n � 0 and the As, Bs and Ds are atoms in a First Order Language (FOL) L with nofunction symbols and \not" is the default negation operator. DB is: A disjunctive deductive database(DDDB) if k is always = 0 and is a disjunctive normal database (DNDB) otherwise.The Herbrand base of DB, HBDB , is the set of all ground atoms that can be formed usingthe predicate symbols and constants in L. A Herbrand interpretation1 is any subset of HBDB . AHerbrand model of DB, M , is a Herbrand interpretation such that M j= DB (all clauses of DBare true in M). M is minimal if no proper subset of M is a model of DB. We also employ twoadditional atoms: > to represent the atom true in all interpretations and ? to represent the atomfalse in all interpretations. To maintain the clause implication form (head-body representation ofclauses) we assume that ? is the head of a clause with an empty head and > is the body of a clause1As is common in the �eld, we identify the interpretation by the set of ground atoms assigned true in thatinterpretation. All other atoms of the Herbrand Base are assigned false.2

with an empty body. Clearly all models (implicitly) have the atom > and none can have ?. ByHead(C) (Body(C)) we denote the set of literals in the head (body) of clause C.De�nition 2.2 (positive transformation) Given a disjunctive database DB we de�ne its positivetransformation as the DDDB DB+ such that:DB+ = fA1_� � �_Am_D1 : : :_Dk; B1; : : : ; BnjA1_� � �_Am B1; : : : ; Bn; notD1; : : : ; notDk 2 DBgDe�nition 2.3 A clause C is range restricted (safe) if every variable occurring in the head (anegated atom of the body) of C also appears in a positive atom of the body of C. A database is rangerestricted (safe) i� all its clauses are range restricted (safe).Clearly, the positive transformation of a range restricted and safe normal database is a rangerestricted DDDB.De�nition 2.4 A DDDB, DB, can be partitioned into three sets of clauses:1. The extensional part (EDB) a positive disjunctive database corresponding to base relations.2. The intensional part (IDB) corresponding to view de�nitions The rules of IDB can be used toderive new pieces of information from the extensional part of the database.3. The integrity constraints (ICDB). This is a set of rules that are used to ensure that the theoryconsisting of the �rst two components satis�es certain properties. These can be denial rules(clauses with empty heads) or general rules (clauses with nonempty heads).The following is an extension of the concept of supported interpretation/model [1, 20] to thedisjunctive case:De�nition 2.5 (supported interpretation) [1, 20] An interpretation I of a disjunctive normaldatabase, DB, is supported if for each atom A 2 I there is a ground instance of a clause in DB,say C, such that the body of C is true in I and A 2 Head(C).A supported interpretation that satis�es all clauses of DB is a supported model of DB.De�nition 2.6 If C = A1 _ ::: _ An is a disjunction of atoms, then by Neg(C) we denote the�nite set of clauses in implication form Neg(C) := fA1 ! ?; :::; An ! ?g. On the other handif M = fA1; :::; Ang is a �nite model (interpretation) then Neg(M) denotes the set of clauses inimplication form Neg(M) := fA1 ^ :::^An !?g.2.2 Strati�cation and Perfect Models:Processing DNDB is complicated by the negations in their clause bodies. However, for the specialclass of strati�ed and locally strati�ed databases negation is well behaved. The semantics of thesedatabases can be de�ned by their set of perfect models. This is a subset of the set of the minimalmodels of the theory de�ned to re
ect the hierarchical structure of (locally) strati�ed databases.3

De�nition 2.7 (strati�cation) [18] A disjunctive normal database DB is strati�ed (locally stra-ti�ed) if there is a level mapping of its predicates (ground atoms) to nonnegative integers so that foreach clause as in De�nition 2.1 above: L(Ai) = L(Aj), L(Ai) � L(Bj) and L(Ai) > L(Dj), whereL(A) is the level or stratum of the predicate of atom A (of ground atom A).Given a strati�ed (locally strati�ed) database, DB, we can talk about the strati�cation (localstrati�cation) of DB as S = fS1; :::Sng, where Si is the set of predicates (ground atoms) in stratumi or as fDB1; :::DBng, where DBi is the set of clauses with heads in stratum (local stratum) i.That is, DBi comprises the clauses de�ning elements of Si. Elements of the lowest (�rst) stratumare always elements of EDB. Note that fDB1; :::; DBng is su�cient to specify the theory and itsstrati�cation.De�nition 2.8 (perfect models) Let DB be a disjunctive normal database with levels f1; :::; ng.M is a perfect model of DB if and only if for all i � n the set of atoms of level i in M is minimalamong all models which agree with M on all atoms of level j < i.The set of perfect models of a DNDB, DB, is denoted by Perfect(DB). It was shown thatcomputingPerfect(DB) can be done by combining the results obtained from generating the minimalmodels for individual strata of DB in the order 1; :::; n [7].2.3 Stable Model Semantics:Stable models are a subset of the minimalmodels of the database and are de�ned using the followingtransformation called the Gelfond-Lifschitz (G-L) transformation.De�nition 2.9 (G-L transformation) [8] Given a DNDB DB and an interpretation IDBI = f(A1 _ � � � _Ak B1; : : : ; Bn)� : � is ground and(A1 _ � � � _Ak B1; : : : ; Bn; notD1; : : : ; notDm) 2 DBand fD1�; : : : ; Dm�g \ I = ;g:DBI is the Gelfond-Lifschitz (GL) transformation of DB with respect to I, where the As, Bs andDs are atomic formulae. Note that DBI is a DDDB.De�nition 2.10 (stable models) [17] Let DB be a disjunctive normal database. M is a stablemodel of DB i� M is a minimal model of DBM .The set of stable models of a DNDB, DB, is denoted by Stable(DB). For strati�ed databasesstable and perfect models are the same. For DDDBs stable, perfect and minimal models are thesame.2.4 Model Generation:The main results of this paper are based on using model generating procedures with certain pro-perties [3, 21]. We extensively utilize denial clauses (rules with empty heads) to restrict the searchspace for models. Unless explicitly stated otherwise we assume that denial clauses have only positivebody literals and therefore represent purely negative clauses.4

De�nition 2.11 (model trees:) Let DB be a database with the Herbrand base HBDB . A modeltree for DB is a tree structure where� The root is labeled by the special atom >.� Other nodes are labeled with atoms of HBDB or disjunctions of atoms.� A path from the root to a leaf node is called a branch� No unit clause labels more than one node in a branch.� If B is a branch of the tree then Units(B) denotes the set of positive unit clauses of B.� If B is a branch of the tree then M = Units(B) is a model for DB.Lemma 1 Let I be an interpretation and let C be a set of denial rules. Then if C is violated in Ithen it is also violated in all supersets of I. If C is satis�ed in I then it is also satis�ed in all subsetsof I.Proof: Straight forward.As a counterexample for the case of nondenial constraints consider the single rule a! b and theinterpretations fag; fa; bg. Only fa; bg satis�es the constraint and fag � fa; bg.Theorem 1 Let DB be a DDDB and let C be a set of denial constraints. Then:� If M is a model for DB [C then M is a model for DB alone: (If M j= (DB [C) thenM j= (DB)).� If M is a model for DB such that for all Ci 2 C, M \ Body(Ci) 6= Body(Ci) then M is amodel for DB [C:� The model tree for DB [C is the model tree for DB except that branches �ring an element ofC are deleted.Proof: � Straightforward since DB � DB [C.� M satis�es all elements of C since their bodies are always falsi�ed (not contained entirelyin M).� Branches of the model tree forDB �ring no clause of C are reproduced in model generationfor DB [C. While for others, �ring a denial constraint will close the branch resulting inits removal.Note that if C includes nondenial rules then there can be minimal models of DB [C that are notminimal for C alone. This is the case in the just given example.De�nition 2.12 Given a database, DB, and a model generating procedure P, by P(DB) we denotethe result returned by P run with DB as input. We say that P is5

1. Sound: if it returns only models of DB: 8M 2 P(DB);M j= DB.2. Minimal-Model Sound if it returns only minimal models of DB: P(DB) �MM(DB).3. Complete: if it returns all the minimal models of DB: MM(DB) � P(DB).Corollary 1 Let DB be a DDDB, C be a set of denial rules and P be a model generating procedure1. P(DB [C) � P(DB).2. MM(DB [C) �MM(DB).3. If P is complete then all minimal models of DB satisfying the constraints in C are returned byP(DB [C).Proof: Straight forward.Next we give a brief description of successively re�ned model generating procedures that are soundand complete [3]. Given a DDDB, DB, each of these procedures constructs a tree (model tree) withthe ground unit clauses in each root-to-leaf branch representing a model of DB. The completenessimplies that the tree has at least one branch representing each minimal model of DB.Starting from > as the root, the procedure expands a tree for a range restricted DDDB, DB, byapplying the following expansion rulesDe�nition 2.13 (expansion rules) Let DB be a DDDB. If the elements above the horizontal lineare in a branch then it can be expanded by the elements below the line.Positive Unit Hyper-Resolution (PUHR) Rule: Splitting Rule:B1 E1 _E2... E1 j E2BnE�where � is a most general uni�er of the body of a clause (A1^:::^Am! E) 2 DB with (B1; :::; Bn).fA1; :::; Amg� = fB1; :::; Bng.Note that the splitting rule is always applied to ground disjunctions. This is possible since ourtheory is range restricted. The head is always ground when the body is ground (or empty).De�nition 2.14 (model tree construction) A Model Tree for a DDDB, DB, is a tree whosenodes are sets of ground atoms and disjunctions of ground atoms constructed as follows:1. f>g is the top (root) node of the tree.2. If T is a leaf node in the tree being constructed for DB such that an application of the PUHRrule (respectively splitting rule) is possible to yield a formula E (respectively, two formulas E1and E2) not subsumed by an atom already in the branch, then the branch is extended by addingthe child node fEg (respectively the two child nodes fE1g and fE2g) as successor(s) to T .6

While the above de�nition imposes no order on atom expansion, we elect to maintain an orderthat will later be exploited for de�ning the properties of the generated tree.De�nition 2.15 (conventions for model generation) When expanding a model tree we assumethat the procedure adheres to the following rules2:1. Always select E1 of a disjunction to be atomic.2. Expand the leftmost atom of a disjunction �rst.3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding theremainder of the clause, if any, to the top of the theory to be processed in the sibling branch).We always expand left branches of the model tree �rst. Our interest is only in branches withno occurrences of false (open branches). The branch expansion is stopped when false (?) is addedto a branch (the branch closes). Only (ground) disjunctions that are not subsumed in the branchare expanded to avoid unnecessary expansions. A branch represents the interpretation in which all(ground) unit clauses on that branch are assigned the truth value true. For the class of of rangerestricted disjunctive deductive databases with �nite models the tree de�ned by such a procedureis sound in the sense that it generates only models of the theory and complete in the sense that ithas branches representing all minimal models of DB. However, not all branches represent minimalmodels [3].Example 1 Let DB be the following set of clauses:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 1 is a model tree for DB. The minimal model fP (a); P (b)g of DB is generated twice. Thetree also has a branch with the nonminimal model fP (a); P (b); P (c)g. Among others, all minimalmodels of DB, i.e. fP (a); P (b)g, fP (a); P (d)g, and fP (b); P (c); P (d)g are generated.Further, it was shown that replacing the splitting rule by the following one called ComplementSplitting Rule preserves the completeness and soundness of the model generating procedure [3].De�nition 2.16 (complement splitting rule)E1 _E2E1 j E2Neg(E2) jThe adoption of this rule tends to reduce the search space by closing (adding false to) branchesbefore they grow into complete nonminimal or duplicate models. Besides, the �rst (leftmost) modelgenerated using this rule is minimal.2These conventions are adopted in the implementation reported in [3]. They correspond to a left-to-right, depth-�rst traversal of the seach space. However, this is not the only possible expansion ordering. Breadth-�rst search canbe adopted for the same purpose. Comparing the merits of these two approaches is beyond the scope of this paper.7

>P (a) _ P (b)iiiiiiiiii UUUUUUUUUUP (a) P (b)P (b) _ P (d)ssss LLLL P (a)_ P (c)rrrr QQQQQQP (b) P (d) P (a) P (c)P (a)_ P (d)mmmmmm LLLLP (a) P (d)Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).Example 2 Let DB be the set of clauses of Example 1, i.e.:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 2 gives the model tree for DB. Clauses not in the original theory are given in squarebrackets. The models of this tree are fP (a); P (d)g, fP (b); P (c); P (a)g, fP (b); P (a)g, and fP (b); P (c); P (d)g.Note that although some are not minimal, no duplicates are returned and the �rst model is minimal.If additionally, for each minimal model, M , generated so far we augment the theory by thenegation of M , (Neg(M)), then we achieve a model generating procedure that is minimal modelsound and complete. It returns all and only minimal models of its input theory.Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the setof clauses of Examples 1 and 2, i.e.:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Note that all models returned by the procedure are minimal.In [21] and [3] sound and complete minimal model generation procedures were given for groundand RR theories, respectively. In [5] it was shown how to modify such a procedure to computethe perfect models of a strati�ed database and stable models for general DNDBs. [3] contains aProlog implementation of a series of procedures, for the class of RR theories with �nite minimalmodels and no body negation, called: Satchmo for the program with splitting [13], CS-Satchmofor the implementation with complement splitting and MM-Satchmo for the implementation withmodel minimization (by including negation of generated minimal models). All through this paperwe assume that the DDDB under consideration is range restricted and has only �nite models.8

>P (a)_ P (b)kkkkkkkk VVVVVVVVVVVVP (a) P (b)[P (b)! ?]P (b)_ P (d)ppppp HHHH P (a) _ P (c)ppppp NNNNNP (b) P (d) P (a) P (c)[P (d)! ?] [P (c)! ?]? P (a) _ P (d)ppppp HHHHP (a) P (d)[P (d)! ?]Figure 2: The Model Tree with Complement Splitting for Example 2.
9

>P (a)_ P (b)ssss UUUUUUUUUP (a) P (b)[P (b)! ?] [P (a) ^ P (d)! ?]P (b)_ P (d)xxxx 999 P (a)_ P (c)qqqqq RRRRRRRP (b) P (d) P (a) P (c)[P (d)! ?] [P (c)! ?] [P (b)^ P (a)! ?]? P (a) _ P (d)lllllll TTTTTTTTTP (a) P (d)[P (d)! ?] [P (b) ^ P (c) ^ P (a)! ?]?Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.
10

2.5 Model Generation and Negation:In this paper we are concerned with model computations for disjunctive databases in which negativeatoms appear only in rule bodies (normal disjunctive databases). The natural way to extend ourmodel generating procedure to the case of DNDB is to replace the PUHR-rule used for deriving newclauses to account for body negation:De�nition 2.17 (UHR-expansion rules) Let DB be a DNDB and B be a root-to-leaf branch ofthe model tree being constructed. UHR-rule adds a new (leaf) node to branch B with label E�, where� is a most general uni�er of the body of a clause (notD1 ^ :::^ notDl ^A1 ^ :::^Am ! E) 2 DBsuch that fA1; :::; Amg� = fB1; :::; Bng, fB1; :::; Bng � Units(B) and fD1; :::; Dlg� \Units(B) = ;.Note that the UHR-rule reduces to the PUHR-rule for DDDBs. The splitting rule is not changedand it is always applied to ground disjunctions. The safety condition guarantees that negated bodyatoms are also ground when the rule is applied.The modi�cation �ts the practice of de�ning interpretations through their positive (true) atomsand interpreting all atoms not explicitly mentioned in the interpretation as false. The implementa-tion of all model generating procedures reported in [3] simulate this UHR-rule when applied to aDNDB.However, even with this modi�cation, the model generation procedures developed for the DDDBcase are not readily applicable to normal databases. The problem with model computations indisjunctive normal databases is the treatment of negated atoms in rule bodies. Negative literalsmay get treated on the same level as positive literals, without taking into account the nonmonotonicnature of default negation. Having a negative literal satis�ed in the current (intermediate, stilldeveloping) interpretation, by the virtue of its absence from the branch, doesn't guarantee that therespective atom will not be asserted at a later stage, thus invalidating earlier inferences. Since ourprocedure retains only the head of the clause for further processing, retraction becomes a problem.Consider the following example:Example 4 Let DB1 = fnotP (a)! P (b); P (a)g. Starting from I1 = fg and treating the �rst clause�rst will produce I2 = fP (b)g. Now treating the second clause will produce I3 = fP (b); P (a)g. WhileI3 is a model of DB1 it is not minimal. Additionally, the grounds for deriving P (b) (having P (a)false) are no more in I3 although they existed in I1. I3 is the only model returned by MM�Satchmo.Let DB2 = fnotP (a) ! Q(b); S(c); P (a) ! R(d); S(c) ! P (a)g. The only model generated isM1 = fS(c); Q(b); P (a); R(d)g which is not minimal. The only minimal model of DB2 is M2 =fS(c); P (a); R(d)g.That is, the procedure employing the UHR-rule is not complete for the class of DNDBs3.Using the UHR-expansion rule for a DNDB may still suppress certain minimalmodels of the inputtheory. The reason for this behavior is that the UHR-rule asserts the head of a clause when its bodyis satis�ed as a way of satisfying the entire clause. For negation free clauses this is not problematic3Note that completeness is important for refutational soundness of a model generating procedure and such appli-cations as query answering [3]. Additionally, we are interested in generated all minimal models since the set of stablemodels is a subset of the set of minimal models for a DNDB. Note that in Example 4 M2 is stable for DB but is notreturned. 11

since once the body of a clause is satis�ed in a branch it remains so when the branch expands byadding positive atoms. Asserting the head is the only way to satisfy the clause. For clauses withnegation things are di�erent. Subsequent atom additions to a branch may falsify the body of theclause by asserting atoms corresponding to its negative body literals. One way to go around thisproblem is to modify the UHR-expansion rule so that it makes it possible to expand branches sothat take into account the possibility of the clause body becoming false by future additions of atoms.That is we modify the UHR-rule given in De�nition 2.17 as follows:De�nition 2.18 (Complete UHR-expansion rule) Let DB be a DNDB and B be a root-to-leaf branch of the model tree being constructed. The Complete UHR-rule adds a new (leaf) nodeto branch B with label (E _ D1 _ ::: _ Dl)�, where � is a most general uni�er of the body of aclause4 (notD1 ^ ::: ^ notDl ^ A1 ^ ::: ^ Am ! E) 2 DB such that fA1; :::; Amg� = fB1; :::; Bng,fB1; :::; Bng � Units(B) and fD1; :::; Dlg� \ Units(B) = ;.UHR-expansion Rule: Complete UHR-expansion Rule:Branch B Branch BB1 B1... ...Bn BnE� (E _D1 _ :::_Dl)�where � is an MGU of the body of a clause (notD1 ^ :::^notDl^A1^ :::^Am! E) 2 DB suchthat fA1; :::; Amg� = fB1; :::; Bng, fB1; :::; Bng � Units(B) and fD1; :::; Dlg� \ Units(B) = ;.We have the immediate following result:Theorem 2 Let DB be a DNDB and DB+ its positive transformation. Consistently applying theComplete UHR-expansion rule to DB is equivalent to applying the PUHR-expansion rule to DB+ .Proof: By de�nition of the Complete UHR-expansion rule and the PUHR-expansion rule appliedto C = (notD1 ^ ::: ^ notDl ^ A1 ^ ::: ^ Am ! E) 2 DB and C+ = A1 ^ ::: ^ Am !E _D1 _ :::_Dl, respectively they both add the same clause: (E _D1 _ :::_Dl)�. Both rulesare activated in exactly the same branches fB such that the fA1; :::; Amg� = fB1; :::; Bng,fD1; :::; Dlg� \ Units(B) = ; and fB1; :::; Bng � Units(B)g Other branches will disable bothC abd C+ either by falsifying their bodies or satisfying their heads.Clearly, if the PUHR-expansion rule in a model generating procedure that is complete for DDDBsis replaced by the Complete UHR-expansion rule then the modi�ed procedure will be minimalmodelcomplete for the class of DNDBs.4Note that we select this order of atoms in the resultant clause so that an algorithm employing ComplementSplitting will �rst consider cases corresponding to stable instances of the clause: those in which E� is true and theD�s are all false. The hope is that such a choice will facilitate the early genration of stable models.12

Therefore, instead of modifying the normal database to get its positive transformation to computethe entire set of minimal models one can modify the procedure to operate with the DNDB and stillretain the completeness of the procedure.De�nition 2.19 (set for resolving negation) Given a DNDB, DB, RN � HBDB is a setfor resolving negation for DB if negative atom occurrences in the body of a clause of DB are allinterpreted according to RN . That is, a body occurrence of (notA), has the truth value false ifA 2 RN and true otherwise.RN is not necessarily used to assign truth values to positive occurrences of body atoms or headatoms. This is so since the RN may be provisional in the sense that we may want to retract someof the assignments for elements of RN in the model to be generated.Theorem 3 Let DB be a DNDB and RN � HBDB be a set for resolving negation. Let P be acomplete model generating procedure and P(DB;RN) be the operation of P on DB with negativebody literals always interpreted according to RN . P(DB;RN) returns all the minimal models ofDBRN , among other models of DBRN (P is sound and complete for DBRN).Proof: RN is the set used to interpret negative body literals of DB. Lat C 2 DB be a clauseand notA be in Body(C). If A 2 RN then C is satis�ed (by the falsity of its body). It never�res and has no contribution to the model generation process. A 62 RN then notA can beremoved from the body of C. This is equivalent to the G-L transformation of C. Applying itto all clauses of DB wil have the e�ect of working with DBRN . Since the model generatingprocedure is complete it will return all the minimal models of DBRN .Clearly if P is minimal model sound and complete then it returns exactly the set of minimalmodels of DBRN ,MM(DBRN).Note that neither in the de�nition of RN nor in Theorem 3 do we requireDBRN to change evenwhen additional atoms are computed. Recall also that DBRN is a DDDB and has no negation inthe bodies of its rules. In the remainder of this paper we always assume that the model generatingprocedure is de�ned as outlined above, and detailed in [3]. The plain reference to a model generatingprocedure P assumes nothing about the type of splitting rule employed or model minimization. Weuse the pre�x \CS" to emphasize the use of complement splitting and \MM" presence of a modelminimization component of the procedure.Next we show how to utilize RN to compute certain classes of models for disjunctive databases.3 Restricted Model Generation:In this section we consider two problems: Given a set of ground atoms I and a disjunctive theoryDB, �nd all the minimal models of DB that are subsets of I, if any; (�nd the set fM jM 2MM(DB) and M � Ig) and a special case of that when the given interpretation is a model thatneeds to be checked for minimality.One may solve this problem by generating all the minimal models of the theory then check forthose included in I [3]. This may be too excessive. It is desirable to localize the decision: to decide13

model minimality based on the content of I alone without generating unneeded models. We canthen employ such an approach for minimality checking in a model generating procedure [3, 15]. Ourapproach is to constrain the (minimal) model generating procedure so that it returns the set ofminimal models contained in I alone. The details are outlined below.3.1 Generating Restricted Models:We run our model generating procedure P and restrict it to expanding atoms in I. This is equivalentto augmenting DB with the negations of all the atoms that are not in I. That is, having P operateon (DB [fA ! ?; for all A 62 Ig) rather than on DB alone. The use of an atom not in I willcause a branch to close (can't be a model). If the procedure returns models then these are modelsof DB contained in I. If P is complete, the returned set is empty then I contains no models of DB.To achieve this goal an additional termination condition is added to P: fail when there areno atoms of I to expand and some clauses are still not satis�ed. If this situation is reached thena termination with failure will be reported on that expansion branch. Note, however, that wedon't exclude the use of the negation of atoms not in I during the model construction process (forrestricting the search space as in e.g. CS-P).De�nition 3.1 Let P be a model generating procedure. By P(DB)jI we denote the result returnedby P operating on a disjunctive theory DB with atom expansion restricted to I. Only atoms of Iare selected for expansion and a branch terminates with failure (closes) if an expansion is needed butnot possible on a atom of I.Theorem 4 Let I be a subset of the Herbrand Base of a DDDB, DB, and P be a model generatingprocedure. P(DB)jI returns exactly the set fM :M 2 P(DB) and M � Ig.Proof: � P(DB)jI is P(DB [C), where C = fA ! ?; for all A 62 Ig. By Theorem 1 anymodel returned is also a model for DB alone.� Assume that M is a model of DB and M � I. If M 6j= C then there must exist an atomA 62 I such that A 2M . A contradiction.Corollary 2 Let I be a subset of the Herbrand Base of a DDDB, DB. Then:� A CS � P(DB)jI returns the set fM : M 2 MM(DB) and M � Ig among others and its�rst model returned is inMM(DB).� A MM �P(DB)jI returns exactly the set fM : M 2MM(DB) and M � Ig.Note that any models that can contribute to the nonminimality of models in I are themselvesin I and therefore will be generated by the modi�ed procedure. That is, the test for minimality forgenerated models is always complete (su�cient).Example 5 Consider DB = fP (a); P (b)_ P (c); P (b)_ P (d); P (e)_P (c)gand the set I = fP (a); P (b); P (c)g.The set of minimal models returned is ffP (a); P (b); P (c)gg.The other minimal models ffP (a); P (b); P (e)gg and ffP (a); P (c); P (d)g are not generated.14

3.2 Checking for Model Minimality:If I is known to be a model and we need to check for its minimality (or to �nd a single minimalmodel of I even when it is not known to be a model) we can improve on the above approach.Theorem 5 Let M be a model of DB. Let M 0 be the �rst minimal model returned by the modelgenerating procedure P(DB)jM . Then M is minimal if and only if M = M 0.Proof: Clearly, by Corollary 1, M 0 is a minimal model for DB and the result follows immediately.However, we already showed that the �rst model generated by CS-P is minimal for its inputtheory. Therefore, we have the following result:Corollary 3 Let M be a model of DB. Then:1. Let M 0 be the �rst model returned by CS � P(DB)jM . Then M is minimal if and only ifM =M 0.2. Let M 0 be the �rst model returned by MM � P(DB)jM . Then M is minimal if and only ifM =M 0.Corollary 4 Let M be a model of DB. Then:1. M is minimal if and only if CS � P(DB [f:Mg)jM = ; (returns no models).2. M is minimal if and only if MM � P(DB [f:Mg)jM = ; (returns no models).Proof: We prove the �rst assertion. The second is proved along the same lines. Assume thatCS�P(DB [fNeg(M)g)jM 6= ;. Each element of CS�P(DB [fNeg(M)g)jM is a model ofDB and is a proper subset of M . At least one of these models (the �rst generated) is minimal.M is not minimal.Now assume CS � P(DB [fNeg(M)g)jM = ;. M is a model of DB and any proper subsetof M is a model of Neg(M). There is no subset of M that is a model of DB for otherwise itwill be a model for DB [fNeg(M)g contradicting our assumption. M is a minimal model ofDB.Example 6 Let DB be the following set of clauses:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 1 is a model tree for DB. Assume we want to test the minimality of the models: M1 =fP (a); P (b); P (c)g and M2 = fP (b); P (c); P (d)g.Restricting the tree to M1 will result in the �rst minimal model generated fP (a); P (b)g 6= M1.M1 is not minimal. Note that adding Neg(M1) = fP (a) ^ P (b) ^ P (c) ! ?g will still allow thegeneration of fP (a); P (b)g by both CS � PjM1 and MM �PjM1 .Restricting the tree to M2 will result in the �rst minimal model generated fP (b); P (c); P (d)g =M2. M2 is not minimal. Note that adding Neg(M2) = fP (b) ^ P (c)^ P (d)!?g will suppress thegeneration of fP (a); P (b)g by both CS � PjM2 and MM � PjM2 and make them return the emptyset. 15

3.3 Implementation Issues:Incorporating restrictions into the model generating process is a straight forward operation. Oneneeds only to check that the atom to be asserted to satisfy a clause belongs to the given set.If so then things proceed as usual otherwise the corresponding branch closes. The fact that thetest is performed on the set I and not its complement is important since the complement may beprohibitively large. This is so although we included denial rules corresponding to atoms not in Iwhen de�ning the restricted model generation procedure.For minimality checking one can utilize a procedure generating only minimal models (e.g. MM-Satchmo) or one returning a single minimal model (e.g. CS-Satchmo). The choice of which to usewill depend on the type of check to be performed. A single test for minimality is better performedusing the less expensive CS-P. A search for all minimal models included in a set of atoms can bebetter accomplished by MM-P.One can also use the minimality testing approach to convert a CS-P procedure into a mini-mal model generating procedure by successively generating models and then checking for theirminimality[3, 15]. This may be preferable to collecting constraints corresponding to already gene-rated minimal models to ensure minimality of subsequent models as done in [3, 21].The approach is easily extendible to the cases when testing is to be performed on a combinationof sets of atoms. Given I, to test for minimal models containing no element of I can be achievedby changing the test of the check of whether an atom belongs to I to its complement: the atom notbelonging to I. Once more the test is performed on I itself. Other combinations can be treated inthe same spirit.It is possible to further optimize the search by removing from the input set all instances of clauseswith some non-I elements in the body. We can also replace by false elements with no I atoms inthe head. These steps may be performed as preprocessing stage and may be helpful when I is notchanging for a large number of queries.Our testing of a prototype implementation points to gains of up to orders of magnitude inrun time when using the restricted algorithm as compared to that of the plain one. The exactnumbers depended on how restrictive the set I was (the number of models returned by the restrictedprocedure, which in turn depends on the size of the restriction set I) and the type of check performed.The time was larger for tests based on negative predicates (not member of) than for the positivepredicates (member of). The improvement was better felt for problems with large running times.The explanation is that restricting the search did not only restrict the number of models generatedbut also the number of constraints that correspond to these models.4 Computing Perfect Models:The idea of strati�cation is to have the theory partitioned in such a way so that decisions on negatedatoms in clause bodies are \permanent" in the sense that they are not a�ected by future decisionsof the model generating procedure. This is done by having all the negative body atoms assigned apermanent truth value at an earlier stratum before treating the atoms in the head of the clause inwhich they occur. 16

De�nition 4.1 Given a disjunctive normal database DB with a (local) strati�cation S = fS1; :::; Srgwe de�ne St � P(DB;S) to be the complete model generating procedure P that never expands anelement of Sj before Si for i < j.Note that working with St �P(DB;S) is equivalent to letting RN i = ([j<iSj) \M , where Mis the computed part of the current model. That is the set for resolving negation at level i consistsof all atoms of the current model M of strata j < i. The atoms of RN i already have their truthvalues assigned and will not change in the interpretation being developed. By Theorem 3, at leveli we always compute the minimal models of DBRN ii . Note also that P can employ splitting orcomplement splitting: the main thing is that it be complete.Theorem 6 (perfect model completeness)St�P(DB;S) is a complete perfect model generatingprocedure for the class of strati�ed disjunctive normal databases. That is, given a strati�ed DNDB,DB, and (local) strati�cation S, St�P(DB;S) returns all the perfect models of DB, among others.Proof: We recall that for a perfect model of DB, M , Mi = M \ Si is a minimal model for Si.Let M be a perfect model of DB. We prove that it will be generated by St � P(DB;S) byshowing that Mi = M \ Si is returned at level i for all i. The proof is by induction on i:Base: i = 1: St � P(DB;S) operates with an empty RN and therefore returns the minimalmodels of DB1, M1 = M \ S1 among them.Induction step: Assume for all levels j < i, Mj was already generated (if nonempty). At leveli, St � P(DB;S) has RN i = [j<iMj . It returns all the minimal models of DBRN ii , amongothers, (by Theorem 3). That is, it returns Mi.While guaranteeing the correct (and timely) assignment of truth values to negative body literals,such a change in the model generating procedure is not su�cient to ensure the generation of onlyperfect models (soundness). This remains the case even if a minimal model sound procedure is usedas P. The following example demonstrates this point:Example 7 Let DB = f(>! P (a)); (>! P (b)_P (c)); (P (a)^P (c)! P (b)); (notP (c)^P (b)!R(d) _R(e)); (P (b) ^ P (c)! R(e) _R(f))g. Clearly DB is strati�ed with S1 = fP (a); P (b); P (c)gand S2 = fP (d); R(e); R(f)g. Treating the clauses in the order they are given, which is compatiblewith the strati�cation, gives the set of models:ffP (a); P (b); R(d)g;fP (a); P (b); R(e)g; fP (a); P (c); P (b);R(e)g; fP (a); P (c); P (b); R(f)gg. Even amongthe minimal models there is one that is not perfect, namely fP (a); P (c); P (b); R(f)g. This is so sincethere are other models with less atoms of the �rst stratum (the �rst two). The model tree for thisexample corresponding to this run of a model generating procedure is given in Figure 4.It is not di�cult to see that for a strati�ed database, DB, if the clauses are ordered and processedby a model generating procedure according to their strati�cation then the procedure returns onlysupported models of DB. This is so since �rst: a clause with no body negation is expanded only ifits body atoms are all in the current interpretation so there is support for all (ground) elements inthe head of that clause. Second: an instance of a clause C with negated body atoms at level i withnotA 2 Body(C), where A is an atom of an earlier stratum j < i, some A is already assigned its �nal17

>P (a)P (b)_ P (c)gggggggggggg VVVVVVVVVVVP (b) P (c)P (b)���� � ��� �� � �� ���� � ��� ��R(d) _R(e)rrrr NNNNN R(e) _R(f)qqqqq QQQQQQR(d) R(e) R(e) R(f)Figure 4: A Tree with Nonperfect Models for Example 7.truth value in the current interpretation. C has two possibilities: either A is true and C will not�re in the current branch since its body is not satis�ed, (and neither will C's positive counterpartwith A moved to the head). The other case is when all As are false and C will act as a supportfor all of its head atoms in the currently developing interpretation. Not all the returned modelsare minimal and not all minimal models returned are perfect as was shown in Example 7. So evenwhen we restrict our procedure to generate minimal models of the input theory nonperfect modelswill still be returned. The reason for generating the extra minimal but not perfect models is that tocompute perfect models we need to minimize within individual strata [17, 5] rather that on the levelof the entire model of the theory. As will be stated formally later, if we use complement splittingthen the �rst model generated (leftmost) is perfect since each of its components are minimal in theirrespective strata.However, to explicitly minimize in individual strata implies having all the potential perfect modelsof the theory under development simultaneously. Another method o�ered in [5] is to incrementallypass constraints corresponding to minimization in individual strata from already generated models.That approach is applicable here. It is based on incremental collection of constraints correspondingto individual strata of generated models starting from the highest stratum (last in the processingorder). While that approach is desirable from e�ciency of computations point of view it is moredi�cult for implementation, especially non-incremental ones. Next we o�er still an alternativeapproach that is more suited for easy implementation and is in line with the conventional approachto model minimization adopted in this paper and in [3]. The approach is based on temporarilyinterpreting atoms in strata higher than the current stratum during the model generation process.Lemma 2 Let DB be a (locally) strati�ed database with (local) strati�cation fDB1; :::; DBng. Thenif when processing stratum i all ground atoms of strata j > i are assigned \true" then for anyC = A1 _ � � � _Am B1; : : : ; Bn; notD1; : : : ; notDk 2 DBi we have:18

1. When m = 0 and Dl is false for all l = f1; :::; kg, the clause C is equivalent to: f? Bi1^ : : :^Bini jfBi1; : : : ; Binig = fB1; : : : ; Bng\([j�iSj)g. That is, the assumption is equivalentto stripping away all elements of strata higher than i in C.2. The assumption has no e�ect when m > 0 or Dl is true for some l 2 f1; :::; kg (for clauseswith nonempty head).Proof: 1. When processing headless clauses (denial rules) at level i, atoms of lower levels havealready been processed and assigned �nal truth values. Body atoms at higher strata canbe deleted since they are true. The negative body literals can be dropped since they allevaluate to true in the lower strata.2. By de�nition of strati�cation, when processing the head of a clause at level i all atomsof the body are at level i or lower. No assumption is made about levels less than i: allassigned truth values at these levels are �nal, and therefore such a clause is not a�ected.Note that the D's are in lower strata than i and are therefore interpreted correctly. Ifany of the negative body literals is false then the clause never �res and can be ignoredanyway.One can look at this as processing through a sliding window on the partitions of the Herbrandbase induced by the (local) strati�cation. At any moment atoms of the current stratum are underthe window and are being examined to get assigned truth values. Atoms of lower strata are alreadyknown and those in higher strata are assumed true while they wait for processing. Since all the bodyatoms of the nondenial clause being treated at level i are in stratum i or lower, they are not a�ectedby this assumption (their values are already �xed). This has a substantial e�ect when treatingconstraints (denials) resulting from already generated minimal (perfect) models. Such clauses maycontain atoms of di�erent strata. Assuming that atoms of higher strata are true will have the e�ectof minimizing within the current stratum. This is needed to ensure that the generated models areperfect[5]. We modify our model generating procedure so that it acts this way.De�nition 4.2 By MSt�P(DB;S) we denote the operation of St�P(DB;S) with the followingproperties:1. The procedure employs complement splitting.2. The procedure is modi�ed so that for any generated model M a clause Neg(M) is added toDB in all further processing steps.3. The temporary assignment of true to all atoms in strata above the current one (not yet reached)is made.We have the following theorem:Theorem 7 (perfect model soundness) Let DB be a (locally) strati�ed disjunctive normal da-tabase with the (local) strati�cation S = fS1; :::Srg. Running MSt � P(DB;S) returns exactly theset of perfect models of DB: Perfect(DB) = MSt�P(DB;S). That is MSt�P(DB;S) is soundand complete for perfect model generation. 19

Proof: (Sketch)� The elements of a disjunctive head of a clause are always (by de�nition) in the samestratum and therefore will be treated on the same level and are not a�ected by the truthassignments to higher strata. The complement splitting constraints will guarantee thatleft submodels (in the stratum) are never supersets of their right siblings [21, 3].� The �rst model generated is perfect. This is so since all elements of individual strata areminimal in their respective stratum [5].� Under the assumptions of De�nition 4.2, the constraints resulting from already generatedperfect models, according to Lemma2, correspond to minimization in the current stratum.The newly generated sub-model will therefore be minimal in the current stratum since itcannot be subsumed by subsequent sub-models in the current stratum and cannot be asuperset of already computed models by the presence of the constraints corresponding tothese (minimal) models. This results in all models generated being perfect (soundness).� Since, by Theorem 6, St�P(DB;S) is perfect model complete, and no perfect model isremoved as a result of minimization in individual strata (a negative clause correspondingto a minimal model is always satis�ed in any other minimal model), it follows that theprocedure is complete.Example 8 ConsiderDB = f(> ! P (a)); (> ! P (b) _ P (c)); (> ! P (b)); (notP (c) ^ P (b) !P (d) _ P (e)); (P (b) ^ P (c) ! P (e) _ P (f))g, as in Example 7. The �rst model generated isfP (a); P (b); P (d)g which is perfect. The induced constraint is P (a) ^ P (b) ^ P (d) ! ?. The nextperfect model (at stratum 2), fP (a); P (b); P (e)g is not a�ected by this constraint. Now moving tostratum 1 with the two constraints the models fP (a); P (c); P (b); P (e)g and fP (a); P (c); P (b); P (f)gwill be suppressed by the clause P (a)^P (b)!? (P (d); P (e) 2 S2 are both assumed true). As shownin Figure 5 all models generated are perfect and all the perfect models are produced.We want to emphasize the importance of processing individual strata of the database separa-tely. Ignoring this aspect prevents procedure from being perfect model complete. While processingindividual clauses in the order of their strata is equivalent to processing each stratum separately,the discrepancy between the positive case and the case with negation need not be overlooked inimplementations5. For example, while the set of clauses violated in a certain interpretation can besatis�ed as a set by asserting atoms of their heads without the danger of sacri�cing completeness,the presence of negation may be problematic. Consider Example 4 once more with the clause orderre
ecting the strati�cation:Example 9 Let DB = f(> ! P (a)); (notP (a) ! P (b)g. Starting from I1 = fg we observe thatboth clauses are violated: their bodies are satis�ed but not their heads. So in I1 we need to satisfythe set fP (a); P (b)g. We get I2 = fP (a)g to satisfy the �rst and, if we try to process the other headthen we get I3 = fP (b); P (a)g. Clearly I3 is a not a perfect model of DB since it is not minimal.The reason for this behavior is the \nonmonotonic nature" of body satis�ability in the presence of5Can't apply findall violated clauses to the entire theory but to individual strata or clauses.20

>P (a)P (b) _ P (c)iiiiiiiiii XXXXXXXXXXXXXXXP (b) P (c)[P (d); P (e); P (f) : true][P (a) ^ P (b) ^ P (d)! ?][P (a)^ P (b)^ P (e)! ?]P (b)��� ���� ��� ���P (d) _ P (e)rrrr UUUUUUUUUU ?P (d) P (e)[P (a)^ P (b)^ P (d)! ?]Figure 5: A Perfect Model Tree for Example 8.
21

negation. Adding more atoms to the interpretation may violate the body and therefore satisfy theentire clause. This is not the case for DDDBs. The morale of this example is that the use of \set"operations should be carefully examined.5 Computing Stable Models:While strati�ed databases constitute a major class of real life theories and received much attention inthe literature, there are many useful databases that are not strati�ed. The perfect model semanticsis not applicable for this class of theories.Stable models are an important means of de�ning semantics for non-strati�ed databases. Asstated earlier, the set of stable models is a subset of the set of minimal models of the DNDB. Whenthe theory is strati�ed then its stable and perfect models coincide. For DDDBs stable, perfect andminimal models are the same. Therefore, it will be su�cient to compute the stable models of thetheory and the perfect model computation algorithm is a side product.Our approach to computing stable models is based on computing a superset of the set of stablemodels of a DNDB, DB, that includes the set of minimal models (model generation pass) thenchecking each computed model for stability (stability checking pass). The model generation pass isperformed using DB+ , the positive transformation of DB (cf. De�nition 2.2). Since our theory issafe and RR, DB+ is range restricted. A complete model generating procedure can be applied toDB+ to �nd a superset of the minimal models of DB (MM(DB) =MM(DB+)).The stability test for a computed model M is based on using M to determine the truth valueassignment for the negative body atoms of clauses in DB. The precessing during the stability testis performed on the original DNDB, DB, and not on its positive transformation DB+. Since M isa model of DB it satis�es all clauses of DB. To avoid the premature assignment of false to atomsnegated in clause bodies we de�ne the set of resolving negation RN (De�nitions 2.19 and 2.18)to be the already computed model, M . Negative literals in a clause body of DB are interpretedaccording to M : only atoms not in M can assume the truth value false while checking for stability.Atoms in M cannot be assumed to be false.On the other hand, given M , some of the clauses of DB are satis�ed in M by simply having anegative atom of the body as an element of M . Such clauses will not �re, although they may havecontributed to the content of M during the model generation pass (on DB+). The stability checkpass can produce a result di�erent from M . The stability test can be interpreted as verifying thatevery atom of M was constructively included in M to satisfy a head of a clause of DB the bodyof which is satis�ed in M . This test is accomplished by letting RN = M which has the e�ect ofdeleting all clauses of DB with \notA" in their bodies for some A 2 M and deleting all negativebody occurrences of atoms in M . This is the Gelfond-Lifschitz transformation DBM of DB aswas shown in Theorem 3. Additionally, the procedure for checking the minimality of models is runrestricted to the elements of M . If M proves to be minimal for DBM then M is a stable model forDB. Otherwise it is not. Formally we have the following:Lemma 3 Let DB be a DNDB and DB+ be its positive transformation. Given a complete modelgenerating procedure P and a model M of DB+ then:22

� M is a stable model of DB if and only if fMg = P(DB;M)jM . That is, M is stable if andonly if it is the only model returned by P(DB;M)jM . Or equivalently,� M is a stable model of DB if and only if P(DB [fNeg(M)g;M)jM = ;.Proof: � RN = M . Since P is complete then by Theorems 3 and 4, P(DB;M)jM returns,among others, all the minimal models of DBM that are subsets of M . Clearly if M isminimal for DBM (stable for DB) then it must be the only element of P(DB;M)jM .If fMg = P(DB;M)jM then by completeness M is a minimal model of DBM and istherefore a stable model for DB.� If P(DB [fNeg(M)g;M)jM = ; then no proper subset of M is a model for DBM sinceit would have been returned as P is complete. That is, M is a minimal model for DBMand is therefore a stable model for DB.If M is stable then it is minimal for DBM . Only models that contain a proper sub-set of M can satisfy Neg(M). Such interpretations cannot be returned by P(DB [fNeg(M)g;M)jM in light of Theorem 3, (they are not models of DBM).Theorem 8 (stable model soundness and completeness): Let DB be a DNDB and DB+be its positive transformation. Let P1 and P2 be two complete model generating procedures (forDDDBs). Then:� Stable(DB) = fM jM 2 P1(DB+) and fMg = P2(DB;M)jMg. Or equivalently,� Stable(DB) = fM jM 2 P1(DB+) and P2(DB [fNeg(M)g;M)jM = ;g.Proof: By completeness P(DB+) returns all the minimal models of DB including all the stablemodels. All and only models passing the test of Lemma 3 are stable. The result follows.The suggested procedure is quite simple. Use a complete model generating procedure to compute,among others, the set of minimal models of DB by operating on its positive transformation DB+ .Test all generated models for stability using the model itself as the set for resolving negation in DB,RN . Models passing the test are the only members of the set of stable models of DB, Stable(DB).Example 10 Let DB be the following set of clauses:notP (a)! Q(a) notS(a) ^ P (a)! R(a)Q(a)! R(a) notS(a)! P (a)>! Q(a) _ T (a) notT (a) ^ P (a)! S(a)DB+ is the following set of clauses:>! Q(a) _ P (a) P (a)! R(a) _ S(a)Q(a)! R(a) >! P (a) _ S(a)>! Q(a) _ T (a) P (a)! S(a) _ T (a)23

MM(DB+) = fM1 = fP (a); S(a); T (a)g;M2 = fP (a); R(a); T (a)g;M3 = fQ(a); R(a); S(a)gg.DBM1 = fQ(a)! R(a);>! Q(a) _ T (a)g.MM(DBM1) = ffQ(a); R(a)g; fT (a)gg and M1 62 MM(DBM1). Therefore M1 is not stable.DBM2 = fP (a)! R(a); Q(a)! R(a);>! P (a);>! Q(a) _ T (a)g.MM(DBM2) = ffP (a); Q(a); R(a)g; fP (a);R(a); T (a)gg and M2 2 MM(DBM2). ThereforeM2 is stable.DBM3 = f> ! Q(a); Q(a)! R(a);>! Q(a) _ T (a); P (a)! S(a)g.MM(DBM3) = ffQ(a); R(a)gg and M2 62 MM(DBM3). Therefore M3 is not stable.Aside from completeness, Theorem 8 places no restrictions on the model generating proceduresused. The choice is left to the user. Using complement splitting will restrict the search space andprevent multiple generation of the same model. This generally improves performance. Utilizinga sound minimal model generating procedure will have the e�ect of limiting the set of candidatemodels to the minimal models of DB. However, the cost of model minimization must be weighedagainst the cost of testing for stability. This reasoning applies to the procedure used for generatingcandidate models and for the one used in the testing for stability. We don't require that the sameprocedure be used for both model generation and testing .While the outlined procedure for computing stable models is applicable for computing perfectmodels if DB is strati�ed (and for computing the minimal models if DB is a DDDB) it is moreeconomical to use the procedures developed for that purpose in cases when the (local) strati�cationof the database is given or is not very expensive to compute. Only if doubts about the class of thedatabase (whether it is strati�ed or not) are present then the stable model procedure is utilized.Before concluding this section we would like to observe a \conceptual" connection between ourapproaches to computing perfect and stable models. A way to view the computation of perfectmodels for a strati�ed database is as the process in which negative literals in the body of a clausealways get assigned truth values before using them to determine the truth values for head atoms.Abandoning potential nonperfect models is achieved by minimizing in each stratum separately (orusing a technique with an equivalent e�ect as described earlier). The resulting perfect model is theset union of atoms in all strata. With this in mind, we can view the computation of stable modelsfor a nonstrati�ed database DB as computing the perfect model of an arti�cially strati�ed databaseDBs = DB+ [DB. The �rst stratum is DB+ , which we call the phantom stratum, and the secondstratum is DB itself. As a DDDB, DB+ has no negative body literals. Therefore, computing in thephantom stratum DB+ proceeds normally (with the empty RN). Minimizing in the �rst stratum(DB+) will always yield minimal models of DB+ (and of DB). The computed (minimal) modelof DB+ (the phantom stratum), say M , is used as RN to determine the values for negative bodyliterals in DB. This is equivalent to applying the minimal model generating procedure to DBMSince a minimal model of DB+ is a minimalmodel of DB the only possible cases that can happen isthat a proper subset ofM may be a minimalmodel ofDBM . In this case M is not stable. OtherwiseM is a stable model of DB.Of course, the strati�cation is somehow hypothetical since both strata may de�ne the same setof atoms. That is the reason why we call the �rst a phantom stratum. An alternative would be torename the predicates in one of the strata so that to achieve real strati�cation and to use negativeliterals from the �rst stratum in the second. This comes close to other approaches that will be24

compared with ours in the next section. We argue that while such an approach is interesting it doeslittle to the e�ciency of computing stable models.6 Remarks and Conclusions:The procedures developed in this article can be utilized in the various aspects of processing dis-junctive databases. The e�cient computation of restricted models is of importance for distributeddatabases where only a subset of the Herbrand base is of interest at a particular location. Additio-nally, this approach can be helpful in checking properties of interpretations including the minimalityof models using only the context of the model being tested and without reference to other models ofthe theory [15]. This approach was also shown to be helpful for computing stable models were thetest for stability is constrained to the atoms of the model being tested.Clearly, a complete procedure for computing stable/perfect models can be incorporated intoa system for answering queries under the respective semantics. The query answering process isbasically a search for instances of the query in each of the computed models. A query answeringprocedure can use model generation to construct the model tree under the proper semantics andsearches can be performed on the tree. The (static) model tree is modi�ed or reconstructed whenthe database is updated. Alternatively, a run of the model generating procedure can be performedfor each query and each model is checked (searched) as soon as it is generated to see if it satis�es thequery. The exact approach will depend on the frequency of updates as compared to query answeringrequests. One should be especially careful with the monotonicity issue when dealing with queryanswering under perfect and stable semantics. As opposed to reasoning under, say, minimal modelsemantics, even a positive query may be true in the current state of the database DB and falsein DBu achieved by adding a positive clause to DB. This point is demonstrated by the followingsimple example6:Example 11 Let DB = fnotP (a)! S(a)g. The only stable (and perfect) model of DB is fS(a)g.Q = S(a) is true (derivable) under the stable (and perfect) model semantics. However, for DBu =f>! P (a); notP (a)! S(a)g the only stable (and perfect) model of DBu is P (a). Q = S(a) is nottrue (not derivable) under the stable (and perfect) model semantics in DBu and DB � DBu.Another potential use is in integrity constraints checking in disjunctive deductive databases.Integrity constraints are rules that describe properties of a database state. Only models of the(completed) theory that satisfy the constraints are admissible. As such, integrity constraints donot participate constructively in the model generation process. No atom is added to a model forthe sole purpose of satisfying a constraint. The clauses representing the constraints are put indenial form, possibly with negative body occurrences, and the resulting rules are checked after themodel generation procedure �nishes its work. Only models satisfying the constraints are accepted.All the others are pruned. A simple approach to checking constraints will be to add the integrityconstraints as an additional stratum of the database and use a perfect model generating procedureto compute the perfect models of the thus modi�ed database. These are the models of DB satisfyingthe constraints.6The issue of which updates may invalidate previously derived facts is beyond the scope of this paper.25

The relation between strati�cation and circumscription [14] was studied in [11, 10, 18]. Theresults make it possible to apply the approach described here to generating perfect models forcomputing prioritized circumscription[5].Several approaches were suggested in the literature for computing of perfect and stable modelsfor disjunctive databases [2, 9, 6, 5, 19]. In contrast to others, the approach presented here computesmodels for disjunctive theories and is not limited to the ground case but deals with the class of rangerestricted theories with �nite minimalmodels [2, 6, 5, 19]. Additionally, our approach integrates thedi�erent steps of generating the required class of models into a coherent system based on the simpleidea of model generation. Model generation is used both for generating the set to be tested andfor testing for stability. Generally, both here and in other approaches, computing perfect models issimply evaluating clauses in the order of their strati�cation and ensuring minimality of lower stratafor retained (sub)models. In [5] minimalitywithin individual strata is ensured by passing constraintscorresponding to components of the model on that stratum to all potential models sharing atoms oflower strata and retracting these constraints when moving up the model evaluation tree. Here weachieve the same e�ect by asserting a constraint corresponding to the entire model generated and wenever need to withdraw such a constraint. It is disabled automatically when exhausted. We believethat the approach outlined here is easier to implement and more in line with the approach adoptedfor minimal model generation. The cost is that one stores constraints that are larger than theminimum needed to ensure correctness of the model computation process. Of course the approachof [5] can be adopted here when deemed necessary.In [6], [5] and [19] the approach to computing stable models is to transform the theory intoa strati�ed one through the so called evidential transformation, then compute the perfect modelsof the transformed theory which are shown to be the stable models of the original. It is similar tothe (positive) transformation adopted here but the moved negative body atoms are distinguishedfrom their positive counterparts. In a model, the new atoms are treated as components in needof evidence. That evidence is supplied by the presence of the corresponding objective atoms in themodel. Only models in which there is evidence for every atom that need it are accepted. The secondstratum consists exclusively of denial constraints and is designed to reject models not satisfying thisproperty. In a sense, the �rst stratum generates the \minimal" models of the transformed theoryand the second selects those that are stable. To account for the extra atoms added only objectiveatoms of accepted models atoms are returned. A pass through each model is needed for this purpose.Of course a minimal model generating procedure is needed to ensure the minimality of the modelsgenerated for the �rst stratum. This requirement is implicit in demanding that accepted models beperfect.The approach presented here can be viewed in a similar light. The positive transformation ofthe theory is used to generate the set of candidate models that are in need of evidence. Rather thanevidence for individual atoms we need to provide evidence that all atoms in the candidate modelproduced on the �rst stage are supported simultaneously. The second pass is performed to providethis support. This may be more in the spirit of the basic de�nition of stable models provided in [8].While our algorithm performs the stability checking pass on the original (normal) theory after themodel generating pass on its positive transformation, the second pass is restricted by the modelsproduced in the �rst pass, in the sense of De�nition 3.1. Additionally, no separate model minimalitychecking is needed since clauses to represent that checking are added to the theory on the secondpass. This is not a cumulative process since constraint are retracted as soon as the stability is tested.26

The minimality and stability checking are integrated into one pass. As suggested by Theorem 2we can also incorporate the e�ects of the positive transformation by using the Complete UHR-rulerather than physically transforming the theory. An advantage of the approach of [5] is that the �rstmodel generated is stable7, a property not enjoyed by the approach adopted here.The approach of Inoue et.al. [9] is also based on transforming the normal theory by adding anew set of atoms to re
ect that a given fact is believed or not believed. Two schemata are addedto de�ne acceptable assumptions. Only models surviving the schemata conditions are subjected tothe stability test which basically consists of making sure that every assumed atom is objectivelytrue. In many respects this approach agrees with the evidential transformation approach in asfar as it compares with the method discussed in this paper. In particular, both the evidentialtransformation and Inoue's approaches to computing stable models expand the Herbrand base ofthe theory by including evidences. This usually leads to a larger number of models (possibly withhigher cardinality) for the transformed theory that need to be tested for stability as compared tothe original database. Our approach restricts itself to the original Herbrand base.The procedures described in [4] and [16] compute the set of stable models for de�nite normaltheories. While these approaches can be extended to the disjunctive case, this implies the needfor minimality tests during the checks for stability which introduces into these procedures all thedi�culties associated with minimal model computations. After applying the G-L transformation toa normal disjunctive database for a given interpretation, the resulting theory may still be disjunctiveand both minimal and nonminimalmodels may be returned by a model generation procedure [3, 15].As opposed to [16] the grounding of the theory in our approach is integrated in the model generatingprocess and is not performed as a separate task. Partially developed models guide the groundingprocess and generally make it more e�cient by prohibiting the generation of irrelevant instances.Expanding on the entire set of atoms that occur negatively in rule bodies [4] has the advantage ofresolving negation as soon as possible but may result in expanding atoms that are irrelevant to themodel generation process such as those occurring in conjunction with positive atoms that occur inno clause head. In the worst case this set can be all the Herbrand base. Our approach stops as soonas a contradictory pair of literals is generated (actually the ? atom is added to the branch) ratherthan testing for model consistency after the complete interpretation is produced [4] or after eachaddition of an atom to the branch [16].While we don't impose any order on the expansion of the atoms of a clause, such an order can beintegrated so as to favor the expansion of atoms occuring negatively in clause bodies if that is deemedto be helpful or to incorporate heuristics such as incremental evaluation of closures and backwardpropagation of truth values. Other e�ciency enhancement measures such as program reduction afterupdating an interpretation and the proper treatment of body atoms with di�erent polarities duringthe reduction process are implicit in our algorithm. The approach allows for optimizations that takeinto account the properties of the theory under consideration to optimize performance. Examplesare simpli�cations for the ground case [15, 21] and the use of semi-strati�cation to localize stabilitytests and thus reduce the search space [6].Our approach is meant to compute only the set of stable models of the theory and has noprovisions for computing the well founded model structure as is the case for [4, 16].7This property is not explicitly stated in [5] but follows directly from the fact that all perfect models of thetransformed theory are stable and the �rst model generated is perfect.27

While we still generate more models than those that are stable, our generation process is sortof focused on those models that already passed one of the tests for stability: being minimal modelsfor the original disjunctive theory. An additional advantage of our approach for computing stablemodels is that it requires the completeness of the model generating procedure rather than insisting onminimal model soundness. In this sense the described approach can be viewed as de�ning an entireset of progressively re�ned procedures which di�er in the size of their search space for candidatemodels. Some (employing plain splitting) return both nonminimal and duplicate models, others(employing complement splitting) have a more restricted search space and avoid duplicates and stillothers return only minimal models. Any of these can be employed for generating candidate models.The tradeo� is that less costly procedures tend to return more candidate models than need to betested. The choice of a particular procedure for implementationmay depend on the class of problemsto be solved.The constructed model structure can be used to answer queries under the appropriate semantics.But since this structure generally changes (not necessarily monotonically) with database updates itis of interest to integrate the query answering process into the model generation procedures so thatit returns only models satisfying the query, if any. Topics for further development also include morework on the implementation and benchmarking evaluation of the advanced algorithms. While thepreliminary results were encouraging, a more systematic approach to testing will enable workingout recommendations on the conditions under which the algorithms have their best performance.Another topic is to design a general parameterizable algorithm that can be utilized for computingdi�erent types of models and maybe utilized in a variety of database processing tasks.References[1] K.R. Apt, H.A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J. Minker,editor, Foundations of Deductive Databases and Logic Programming, pages 89{148. MorganKaufmann Pub., Washington, D.C., 1988.[2] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Mixed integer programming methods forcomputing non-monotonic deductive databases. Journal of the ACM, 41(6):1178{1215, 1994.[3] F. Bry and A. Yahya. Minimalmodel generation with positive unit hyper-resolution tableaux. InP. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Workshopon Theorem Proving with Analytic Tableaux and Related Methods, pages 143{159, Palermo,Italy, May 1996. Springer-Verlag. Vol. 1071, Full version: http://www.pms.informatik.uni-muenchen.de/publikationen/.[4] W. Chen and D. Warren. Computation of stable model and its integration with logical queryprocessing. Technical report, Department of Computer Science, SUNY at Stony Brook, Aug1994. ftp at ftp.ms.uky.edu:pub/lpnmr/chen2.ps.[5] J.A. Fernandez, J. Minker, and A. Yahya. Computing perfect and stable models using orderedmodel trees. J. Computational Intelligence, 11(1):141{160, 1994.28

[6] J. A. Fern�andez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP + integrityconstraints = stable model semantics. Annals of Mathematics and Arti�cial Intelligence, 11(3-4):449{474, 1993.[7] J. A. Fern�andez and J. Minker. Computing perfect models of disjunctive strati�ed databases.Journal of Logic Programming, 25(1):33{50, 1995.[8] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In R.A.Kowalski and K.A. Bowen, editors, Proc. 5th International Conference and Symposium on LogicProgramming, pages 1070{1080, Seattle, Washington, August 15-19 1988.[9] K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation as failure into a model gene-ration theorem prover. In Proceedings of the Eleventh International Conference on AutomatedDeduction, Saratoga Springs, NY, 1992.[10] V. Lifschitz. Closed world databases and circumscription. Arti�cial Intelligence, 27(2):229{235,November 1985.[11] V. Lifschitz. Computing circumscription. In IJCAI 85, pages 121{127, 1985.[12] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MITPress, 1992.[13] R. Manthey and F. Bry. Satchmo: a theorem prover implemented in prolog. In J.L. Lassez,editor, Proc. 9th CADE, pages 456{459, 1988.[14] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Arti�cial Intelligence, 13(1and 2):27{39, 1980.[15] I. Niemel�a. A tableau calculus for minimal model reasoning. In P. Miglioli, U. Moscato,D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Workshop on Theorem Provingwith Analytic Tableaux and Related Methods, pages 278{294, Palermo, Italy,May 1996. Springer-Verlag. Vol. 1071.[16] I. Niemmel�a and P. Simons. e�cient implementation of the well-founded and stable model se-mantics. Technical Report 7-96, Institut f�ur Informatik, Univesit�at Koblenz, Koblenz, Germany,1996.[17] T. Przymusinski. Extended stable semantics for normal and disjunctive programs. In Warrenand Szeredi, editors, Proceedings of the 7th International Logic Programming Conference, pages459{477, Jerusalem, 1990. MIT Press. Extended Abstract.[18] T. Przymusinski. On the declarative semantics of deductive databases and logic programming.In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 5,pages 193{216. Morgan Kaufmann Pub., Washington, D.C., 1988.[19] D. Seipel. E�cient Reasoning in Disjunctive Deductive Databases. PhD thesis, Fakult�at f�urInformatik, Universit�at T�ubingen, June 1995.29

[20] J.C. Shepherdson. Negation in Logic Programming. In J. Minker, editor, Foundations ofDeductive Databases and Logic Programming, pages 19{88. Morgan Kaufman Pub., 1988.[21] A. Yahya, J.A. Fernandez, and J. Minker. Ordered model trees: A normal form for disjunctivedeductive databases. J. Automated Reasoning, 13(1):117{144, 1994.

30

