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Abstract

Algorithms for computing several classes of models for disjunctive normal databases are pre-
sented. We show how to efficiently compute minimal, restricted minimal, perfect, and stable
models. The common feature of the advanced algorithms is that they are based on augmenting
a model generating procedure with a set of hypotheses to guide its search for acceptable models
and/or to interpret negation in clause bodies. The approach is shown to be useful for different
database applications including query answering under different semantics and integrity cons-
traint enforcement. The developed algorithms are easy to implement and compare favorably
with others advanced in the literature for the same purpose.

1 Introduction

Much attention has been devoted to computing models for disjunctive databases as a tool for data
storage and manipulation. Several algorithms were suggested for computing different classes of
models that can also be utilized for query answering and integrity constraint enforcement. It is
often the case that the user has some knowledge or assumptions about the current state of the
database that need to be verified. The source of this information may be the database itself or an
external agent. Some examples are:

e Given an interpretation I determine if T is a (minimal) model of the database.

e Given a model M of DB find a minimal component of M that is a minimal model of DB or
find the entire set of minimal models of DB that are subsets of M;

e Given a (minimal) model M of DB determine if M satisfies a set of clauses external to DB
(e.g. a set of integrity constraints for DB).

Given a (minimal) model M of DB determine if M belongs to the models of DB under a
particular semantics (e.g. minimal, perfect, stable, ...).

While many other questions may be posed, we limit ourselves to checks performed on a subset of
the Herbrand base. Each such set can be treated as an interpretation of the theory. We show that
being able to test hypotheses about such sets of atoms can be utilized in many useful applications.



In particular, we show that such tests can be converted into a procedure for computing answers
under different database semantics and for integrity constraint enforcement, among other possible
uses.

One can think of several sources for the set of atoms being checked: the previous state of
the database represented by the set of (minimal) models: when we need to check if they are still
(minimal) models of the updated theory; a generic (minimal) model generating procedure for the
database or one of its transformations (e.g. the positive database corresponding to a database with
negated body literals- a normal disjunctive database) and restrictions on the (local) Herbrand base
due to partitioning.

We consider cases when the set of hypotheses is kept constant during the reasoning process or is
allowed to change to reflect the progress of the computation.

The rest of the paper is organized as follows. In the next section we give the basic notation
and background material and point to the problems associated with computing perfect and stable
models using conventional model generation. In Section 3 we develop a procedure for computing
restricted models and show how to use it to check for model minimality. In Section 4 we show how
to compute the set of perfect models of a stratified database. In Section 5 we outline a procedure for
computing stable models for general normal databases. In Section 6 we show the potential utility
of the developed procedures for various database applications, compare our approach with others
reported in the literature and point to some possible directions of further research.

2 Notation and Background:

In the following we assume familiarity with the basic concepts of digjunctive logic programming as
n [12]. We present only the most relevant definitions in a condensed form.

2.1 General:
Definition 2.1 A disjunctive database DB is a set of clauses of the form:

C=AV---VA,, — B1,...,By,notDq,... notDg,

where k,m,n > 0 and the As, Bs and Ds are atoms in a First Order Language (FOL) £ with no
function symbols and “not” is the default negation operator. DB is: A disjunctive deductive database
(DDDB) if k is always = 0 and is a disjunctive normal database (DNDB) otherwise.

The Herbrand base of DB, HBppg, i1s the set of all ground atoms that can be formed using
the predicate symbols and constants in £. A Herbrand interpretation® is any subset of HBpp. A
Herbrand model of DB, M, is a Herbrand interpretation such that M = DB (all clauses of DB
are {rue in M). M is minimal if no proper subset of M is a model of DB. We also employ two
additional atoms: T to represent the atom true in all interpretations and L to represent the atom
false in all interpretations. To maintain the clause implication form (head-body representation of
clauses) we assume that L is the head of a clause with an empty head and T is the body of a clause

TAs is common in the field, we identify the interpretation by the set of ground atoms assigned true in that
interpretation. All other atoms of the Herbrand Base are assigned false.



with an empty body. Clearly all models (implicitly) have the atom T and none can have L. By
Head(C) (Body(C)) we denote the set of literals in the head (body) of clause C.

Definition 2.2 (positive transformation) Given a disjunctive database DB we define its positive
transformation as the DDDB DBT such that:

DBt ={AV--VA,NVD;, .. VDy, — By,...,By|A1V-- VA, — Bi,..., By, notDy,... notDy € DB}

Definition 2.3 A clause C is range restricted (safe) if every variable occurring in the head (a
negated atom of the body) of C' also appears in a positive atom of the body of C. A database is range
restricted (safe) iff all its clauses are range restricted (safe).

Clearly, the positive transformation of a range restricted and safe normal database is a range
restricted DDDB.

Definition 2.4 A DDDB, DB, can be partitioned into three sets of clauses:
1. The extensional part (Epp) a positive disjunctive database corresponding to base relations.

2. The intensional part (Ipp) corresponding to view definitions The rules of Ipp can be used to
derive new pieces of information from the extensional part of the database.

3. The integrity constraints (ICpp ). This is a set of rules that are used to ensure that the theory
consisting of the first two components satisfies certain properties. These can be denial rules
(clauses with empty heads) or general rules (clauses with nonempty heads).

The following is an extension of the concept of supporied interpretation/model [1, 20] to the
disjunctive case:

Definition 2.5 (supported interpretation) [1, 20] An interpretation I of a disjunctive normal
database, DB, s supported if for each atom A € I there is a ground instance of a clause in DB,
say C, such that the body of C is true in I and A € Head(C').

A supported interpretation that satisfies all clauses of DB is a supported model of DB.

Definition 2.6 If C = A1 V ...V A, is a disjunction of atoms, then by Neg(C) we denote the
finite set of clauses in implication form Neg(C) := {41 — L,..., A, — L}. On the other hand
if M = {A1, ..., An} is a finite model (interpretation) then Neg(M) denotes the set of clauses in
implication form Neg(M) :={A1 AN.. ANA, — L}

2.2 Stratification and Perfect Models:

Processing DNDB is complicated by the negations in their clause bodies. However, for the special
class of stratified and locally stratified databases negation is well behaved. The semantics of these
databases can be defined by their set of perfect models. This is a subset of the set of the minimal
models of the theory defined to reflect the hierarchical structure of (locally) stratified databases.



Definition 2.7 (stratification) [18] A disjunctive normal database DB is stratified (locally stra-
tified) if there is a level mapping of its predicates (ground atoms) to nonnegative integers so that for
each clause as in Definition 2.1 above: L(A;) = L(4;), L(A;) < L(Bj) and L(A;) > L(D;), where
L(A) is the level or stratum of the predicate of atom A (of ground atom A).

Given a stratified (locally stratified) database, DB, we can talk about the stratification (local
stratification) of DB as § = {S1,...5,}, where S; is the set of predicates (ground atoms) in stratum
i or as {DBy,..DB,}, where DB; is the set of clauses with heads in stratum (local stratum) <.
That is, DB; comprises the clauses defining elements of S;. Elements of the lowest (first) stratum
are always elements of EDB. Note that {DBy, ..., DB,} is sufficient to specify the theory and its
stratification.

Definition 2.8 (perfect models) Let DB be a disjunctive normal database with levels {1,...,n}.
M is a perfect model of DB if and only if for all i < n the set of atoms of level i in M 1s minimal
among all models which agree with M on all atoms of level j < 1.

The set of perfect models of a DNDB, DB, is denoted by Perfect(DB). It was shown that
computing Per fect(DB) can be done by combining the results obtained from generating the minimal
models for individual strata of DB in the order 1,...,n [7].

2.8 Stable Model Semantics:

Stable models are a subset of the minimal models of the database and are defined using the following
transformation called the Gelfond-Lifschitz (G-L) transformation.

Definition 2.9 (G-L transformation) [8] Given a DNDB DB and an interpretation I

DB = {(Ay V-V Ape— By,...,B,)0: 0 is ground and
(A1 V-V Ap — By,...,Bp,notDy,...,notDy) € DB
and {D160,..., D0} N1 =0}

DB' is the Gelfond-Lifschitz (GL) transformation of DB with respect to I, where the As, Bs and
Ds are atomic formulae. Note that DBT is « DDDB.

Definition 2.10 (stable models) [17] Let DB be a disjunctive normal database. M is a stable
model of DB iff M is a minimal model of DB .

The set of stable models of a DNDB, DB, is denoted by Stable(DB). For stratified databases
stable and perfect models are the same. For DDDBs stable, perfect and minimal models are the
same.

2.4 Model Generation:

The main results of this paper are based on using model generating procedures with certain pro-
perties [3, 21]. We extensively utilize denial clauses (rules with empty heads) to restrict the search
space for models. Unless explicitly stated otherwise we assume that denial clauses have only positive
body literals and therefore represent purely negative clauses.



Definition 2.11 (model trees:) Let DB be a database with the Herbrand base HBpp. A model
tree for DB is a tree structure where

e The root is labeled by the special atom T.

e Other nodes are labeled with atoms of HBpp or disjunctions of atoms.

o A path from the root to a leaf node ts called a branch

e No unit clause labels more than one node in a branch.

o If B is a branch of the tree then Units(B) denotes the set of positive unit clauses of BB.

o If B is a branch of the tree then M = Units(B) is a model for DB.

Lemma 1 Let I be an interpretation and let C be a set of denial rules. Then if C is violated in 1
then it is also violated in all supersets of I. If C 1s satisfied in I then it is also satisfied in all subsets
of 1.

Proof: Straight forward. |

As a counterexample for the case of nondenial constraints consider the single rule ¢ — b and the
interpretations {a}, {a,b}. Only {a, b} satisfies the constraint and {a} C {a,b}.

Theorem 1 Let DB be a DDDB and let C be a set of denial constraints. Then:

o If M is a model for DB UC then M is a model for DB alone: (If M = (DB UC) then
M E (DB))

o If M is a model for DB such that for all C; € C, M N Body(C;) # Body(C;) then M is a
model for DB UC:

e The model tree for DB UC s the model tree for DB except that branches firing an element of
C are deleted.

Proof: e Straightforward since DB C DB UC.
o M satisfies all elements of C since their bodies are always falsified (not contained entirely
in M).
e Branches of the model tree for DB firing no clause of C are reproduced in model generation

for DB UC. While for others, firing a denial constraint will close the branch resulting in
its removal.

Note that if C includes nondenial rules then there can be minimal models of DB UC that are not
minimal for C alone. This is the case in the just given example.

Definition 2.12 Given a database, DB, and a model generating procedure P, by P(DB) we denote
the result returned by P run with DB as input. We say that P is



1. Sound: if it returns only models of DB: YM € P(DB), M &£ DB.
2. Minimal-Model Sound if it returns only minimal models of DB: P(DB) C MM(DB).
3. Complete: if it returns all the minimal models of DB: MM(DB) C P(DB).
Corollary 1 Let DB be a DDDB, C be a set of denial rules and P be a model generating procedure
1. P(DBUC) C P(DB).
2. MM(DBUC) C MM(DB).

3. If P 1s complete then all minimal models of DB satisfying the constraints in C are returned by
P(DBUC).

Proof: Straight forward. |

Next we give a brief description of successively refined model generating procedures that are sound
and complete [3]. Given a DDDB, DB, each of these procedures constructs a tree (model tree) with
the ground unit clauses in each root-to-leaf branch representing a model of DB. The completeness
implies that the tree has at least one branch representing each minimal model of DB.

Starting from T as the root, the procedure expands a tree for a range restricted DDDB, DB, by
applying the following expansion rules

Definition 2.13 (expansion rules) Let DB be a DDDB. If the elements above the horizonial line
are in a branch then it can be expanded by the elements below the line.

Positive Unit Hyper-Resolution (PUHR) Rule: Splitting Rule:
B Ei1V Es
: Er | B
B,
Fo

where o is a most general unifier of the body of a clause (A1 AN...ANAm — E) € DB with (B, ..., By).
{Ala "'aAm}U = {Bla ce Bn}

Note that the splitting rule is always applied to ground disjunctions. This is possible since our
theory is range restricted. The head is always ground when the body is ground (or empty).

Definition 2.14 (model tree construction) A Model Tree for « DDDB, DB, is a iree whose
nodes are sets of ground atoms and disjunctions of ground atoms constructed as follows:

1. {T} is the top (root) node of the tree.

2. If T 1s a leaf node 1n the tree being constructed for DB such that an application of the PUHR
rule (respectively splitting rule) is possible to yield a formula E (respectively, two formulas F;
and ) not subsumed by an atom already in the branch, then the branch is extended by adding
the child node {E} (respectively the two child nodes {E1} and {FE2}) as successor(s) to T.



While the above definition imposes no order on atom expansion, we elect to maintain an order
that will later be exploited for defining the properties of the generated tree.

Definition 2.15 (conventions for model generation) When ezpanding a model tree we assume
that the procedure adheres to the following rules®:

1. Always select Fy of a disjunction to be atomic.
2. Ezpand the leftmost atom of a disjunction first.

3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding the
remainder of the clause, if any, to the top of the theory to be processed in the sibling branch).

We always expand left branches of the model tree first. Our interest is only in branches with
no occurrences of false (open branches). The branch expansion is stopped when false (L) is added
to a branch (the branch closes). Only (ground) disjunctions that are not subsumed in the branch
are expanded to avoid unnecessary expansions. A branch represents the interpretation in which all
(ground) unit clauses on that branch are assigned the truth value #rue. For the class of of range
restricted disjunctive deductive databases with finite models the tree defined by such a procedure
i1s sound in the sense that it generates only models of the theory and complete in the sense that it
has branches representing all minimal models of DB. However, not all branches represent minimal

models [3].

Example 1 Let DB be the following set of clauses:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Figure 1 is a model tree for DB. The minimal model {P(a), P(b)} of DB is generated twice. The

tree also has a branch with the nonminimal model {P(a), P(b), P(c)}. Among others, all minimal

models of DB, i.e. {P(a),P(b)}, {P(a), P(d)}, and {P(b), P(c), P(d)} are generated.

Further, it was shown that replacing the splitting rule by the following one called Complement
Splitting Rule preserves the completeness and soundness of the model generating procedure [3].

Definition 2.16 (complement splitting rule)

EyV Es
Ey | s
Neg(FEs) |

The adoption of this rule tends to reduce the search space by closing (adding false to) branches
before they grow into complete nonminimal or duplicate models. Besides, the first (leftmost) model
generated using this rule is minimal.

2These conventions are adopted in the implementation reported in [3]. They correspond to a left-to-right, depth-
first traversal of the seach space. However, this is not the only possible expansion ordering. Breadth-first search can
be adopted for the same purpose. Comparing the merits of these two approaches is beyond the scope of this paper.



P(a) v P(b)
| |
P(b) v P(d) P(a) Vv P(c)
/ \
P(b) P(d) P(a) P(c)
|
P(a) Vv P(d)
/ ™~
P(a) P(d)

Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).

Example 2 Let DB be the set of clauses of Example 1, t.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Figure 2 gives the model tree for DB. Clauses not in the original theory are given in square
brackets. The models of this tree are { P(a), P(d)}, {P(b), P(c), P(a)}, {P(b), P(a)}, and {P(b), P(c), P(d)}.

Note that although some are not minimal, no duplicates are returned and the first model 1s minimal.

If additionally, for each minimal model, M, generated so far we augment the theory by the
negation of M, (Neg(M)), then we achieve a model generating procedure that is minimal model
sound and complete. It returns all and only minimal models of its input theory.

Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the set
of clauses of Fxamples I and 2, i.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Note that all models returned by the procedure are minimal.

In [21] and [3] sound and complete minimal model generation procedures were given for ground
and RR theories, respectively. In [5] it was shown how to modify such a procedure to compute
the perfect models of a stratified database and stable models for general DNDBs. [3] contains a
Prolog implementation of a series of procedures, for the class of RR theories with finite minimal
models and no body negation, called: Satchmo for the program with splitting [13], CS-Satchmo
for the implementation with complement splitting and MM-Satchmo for the implementation with
model minimization (by including negation of generated minimal models). All through this paper
we assume that the DDDB under consideration is range restricted and has only finite models.



P(a) v P(b)
/
P(a) \ P(b)
[P(b) — 1] ‘
|
P(b) v P(d) P(a) v P(c)
P(b) P(d) P(a) P(e)
[P(d) — 1] [P(c) — 1] ‘
|
L P(a) v P(d)
RN
P(a) P(d)
[P(d) — 1]

Figure 2: The Model Tree with Complement Splitting for Example 2.



P(a) v P(b)
/
P(a) T P)
[P(b) — L] [P(a) A P(d) — 1]
| |
P(b) v P(d) P(a) v P(c)
N P
P(b) P(d) P(a) P(c)
[P(d) — 1] [P(c) — 1] [P(b) A P(a) — 1]
| |
L P(a) v P(d)
/ \
P(a) P(d)
[P(d) — 1] [P(b) A P(c) A P(a) — 1]

Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.
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2.5 Model Generation and Negation:

In this paper we are concerned with model computations for disjunctive databases in which negative
atoms appear only in rule bodies (normal disjunctive databases). The natural way to extend our
model generating procedure to the case of DNDB is to replace the PUHR-rule used for deriving new
clauses to account for body negation:

Definition 2.17 (UHR-expansion rules) Let DB be a DNDB and B be a root-to-leaf branch of
the model tree being constructed. UHR-rule adds a new (leaf) node to branch B with label E,, where
o is a most general unifier of the body of a clause (notDy A ...AnotDiANAIAN .. ANAn — E)€ DB
such that {Ay, ..., Am}yo = {B1, ..., B}, {B1,..., Bn} C Units(B) and {D1, ..., Di}oc NUnits(B) = .

Note that the UHR-rule reduces to the PUHR-rule for DDDBs. The splitting rule is not changed
and 1t is always applied to ground disjunctions. The safety condition guarantees that negated body
atoms are also ground when the rule is applied.

The modification fits the practice of defining interpretations through their positive (true) atoms
and interpreting all atoms not explicitly mentioned in the interpretation as false. The implementa-
tion of all model generating procedures reported in [3] simulate this UHR-rule when applied to a
DNDB.

However, even with this modification, the model generation procedures developed for the DDDB
case are not readily applicable to normal databases. The problem with model computations in
disjunctive normal databases is the treatment of negated atoms in rule bodies. Negative literals
may get treated on the same level as positive literals, without taking into account the nonmonotonic
nature of default negation. Having a negative literal satisfied in the current (intermediate, still
developing) interpretation, by the virtue of its absence from the branch, doesn’t guarantee that the
respective atom will not be asserted at a later stage, thus invalidating earlier inferences. Since our
procedure retains only the head of the clause for further processing, retraction becomes a problem.
Consider the following example:

Example 4 Let DBy = {notP(a) — P(b), P(a)}. Starting from I, = {} and treating the first clause
first will produce I = {P(b)}. Now treating the second clause will produce Is = {P(b), P(a)}. While
I3 is a model of DBy it is not minimal. Additionally, the grounds for deriving P(b) (having P(a)
false) are no more in Iz although they existed in Iy. I3 is the only model returned by M M L Satchmo.

Let DBy = {notP(a) — Q(b),5(¢c), P(a) — R(d),S(¢) — P(a)}. The only model generated is
My = {S(e),Q(b), P(a), R(d)} which is not minimal. The only minimal model of DBy is My =
{5(0), P(a), Rd)}.

That is, the procedure employing the UHR-rule is not complete for the class of DNDBs>.

Using the UHR~expansion rule for a DNDB may still suppress certain minimal models of the input
theory. The reason for this behavior is that the UHR-rule asserts the head of a clause when its body
is satisfied as a way of satisfying the entire clause. For negation free clauses this is not problematic

3Note that completeness is important for refutational soundness of a model generating procedure and such appli-
cations as query answering [3]. Additionally, we are interested in generated all minimal models since the set of stable
models is a subset of the set of minimal models for a DNDB. Note that in Example 4 M5 is stable for DB but is not
returned.

11



since once the body of a clause is satisfied in a branch it remains so when the branch expands by
adding positive atoms. Asserting the head is the only way to satisfy the clause. For clauses with
negation things are different. Subsequent atom additions to a branch may falsify the body of the
clause by asserting atoms corresponding to its negative body literals. One way to go around this
problem is to modify the UHR~expansion rule so that it makes it possible to expand branches so
that take into account the possibility of the clause body becoming false by future additions of atoms.
That is we modify the UHR-rule given in Definition 2.17 as follows:

Definition 2.18 (Complete UHR-expansion rule) Let DB be a¢ DNDB and B be a root-to-
leaf branch of the model tree being constructed. The Complete UHR-rule adds a new (leaf) node
to branch B with label (E'V D1V ...V D)o, where o is a most general unifier of the body of a
clause* (notDy A ... AnotDy A Ay A ... N Ay, — E) € DB such that {A;, ..., Ap}o = {Bi,..., Bn},
{B1,..., By} C Units(B) and {D1, ..., Di}oc N Units(B) = 0.

UHR-~expansion Rule: Complete UHR-expansion Rule:
Branch B Branch B
Bl Bl
By, By
Eo (EVDiV..VD)o

where ¢ is an MGU of the body of a clause (notDy A ... AnotDiANALA ... AN Ay — E) € DB such
that {Ay, ..., Apto={B1,..., B}, {Bi1,..., B} CUnits(B) and {Dy, ..., Di}o N Units(B) = 0.

We have the immediate following result:

Theorem 2 Let DB be a DNDB and DBY its positive transformation. Consistently applying the
Complete UHR-expansion rule to DB is equivalent to applying the PUHR-expansion rule to DBT .

Proof: By definition of the Complete UHR~expansion rule and the PUHR-expansion rule applied
to C' = (notDy A ... AnotDi AN Ay A ... N Ay, — E) € DB and Ct = A1 A ... A A, —
EV Dy V...V Dy, respectively they both add the same clause: (E'V Dy V...V Dp)o. Both rules
are activated in exactly the same branches {B such that the {A4;,..., A} = {By,..., Bn},
{D1, ..., Di}o N Units(B) = B and {By, ..., By} C Units(B8)} Other branches will disable both
C abd C* either by falsifying their bodies or satisfying their heads. [ ]

Clearly, if the PUHR~expansion rule in a model generating procedure that is complete for DDDBs
is replaced by the Complete UHR-expansion rule then the modified procedure will be minimal model
complete for the class of DNDBs.

4Note that we select this order of atoms in the resultant clause so that an algorithm employing Complement
Splitting will first consider cases corresponding to stable instances of the clause: those in which Eo is ¢rue and the
Dos are all false. The hope is that such a choice will facilitate the early genration of stable models.
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Therefore, instead of modifying the normal database to get its positive transformation to compute
the entire set of minimal models one can modify the procedure to operate with the DNDB and still
retain the completeness of the procedure.

Definition 2.19 (set for resolving negation) Given ¢« DNDB, DB, RN C HBpp is a sel
for resolving negation for DB if negative atom occurrences in the body of a clause of DB are all
interpreted according to RN . That is, a body occurrence of (notA), has the truth value false if
A € RN and true otherwise.

RN is not necessarily used to assign truth values to positive occurrences of body atoms or head
atoms. This is so since the RA may be provisional in the sense that we may want to retract some
of the assignments for elements of RA" in the model to be generated.

Theorem 3 Let DB be a DNDB and RN C HBppg be a set for resolving negation. Let P be a
complete model generating procedure and P(DB,RN) be the operation of P on DB with negative
body literals always interpreted according to RN. P(DB,RN) returns all the minimal models of
DBRN | among other models of DBRN (P is sound and complete for DBRN).

Proof: RN is the set used to interpret negative body literals of DB. Lat C' € DB be a clause
and notA be in Body(C'). If A € RN then C is satisfied (by the falsity of its body). It never
fires and has no contribution to the model generation process. A ¢ RN then notA can be
removed from the body of C'. This is equivalent to the G-L transformation of C'. Applying it
to all clauses of DB wil have the effect of working with DBRY | Since the model generating
procedure is complete it will return all the minimal models of DBRV .

Clearly 1f P is minimal model sound and complete then it returns exactly the set of minimal

models of DBRN  MM(DBRV). [

Note that neither in the definition of RA nor in Theorem 3 do we require DBRV to change even
when additional atoms are computed. Recall also that DBR4 is a DDDB and has no negation in
the bodies of its rules. In the remainder of this paper we always assume that the model generating
procedure is defined as outlined above, and detailed in [3]. The plain reference to a model generating
procedure P assumes nothing about the type of splitting rule employed or model minimization. We
use the prefix “CS” to emphasize the use of complement splitting and “MM” presence of a model
minimization component of the procedure.

Next we show how to utilize RA to compute certain classes of models for disjunctive databases.

3 Restricted Model Generation:

In this section we consider two problems: Given a set of ground atoms 7 and a disjunctive theory
DB, find all the minimal models of DB that are subsets of I, if any; (find the set {M|M €
MM(DB) and M C I}) and a special case of that when the given interpretation is a model that
needs to be checked for minimality.

One may solve this problem by generating all the minimal models of the theory then check for
those included in I [3]. This may be too excessive. It is desirable to localize the decision: to decide

13



model minimality based on the content of I alone without generating unneeded models. We can
then employ such an approach for minimality checking in a model generating procedure [3, 15]. Our
approach is to constrain the (minimal) model generating procedure so that it returns the set of
minimal models contained in I alone. The details are outlined below.

3.1 Generating Restricted Models:

We run our model generating procedure P and restrict it to expanding atoms in I. This is equivalent
to augmenting DB with the negations of all the atoms that are not in 7. That is, having P operate
on (DBU{A — L, for all A & I}) rather than on DB alone. The use of an atom not in I will
cause a branch to close (can’t be a model). If the procedure returns models then these are models
of DB contained in I. If P is complete, the returned set is empty then 7 contains no models of DB.

To achieve this goal an additional termination condition is added to P: fail when there are
no atoms of I to expand and some clauses are still not satisfied. If this situation 1s reached then
a termination with failure will be reported on that expansion branch. Note, however, that we
don’t exclude the use of the negation of atoms not in I during the model construction process (for
restricting the search space as in e.g. CS-P).

Definition 3.1 Let P be a model generating procedure. By P(DB)|; we denote the result returned
by P operating on a disjunctive theory DB with atom expansion restricted to I. Only atoms of 1
are selected for expansion and a branch terminates with failure (closes) if an expansion is needed but
not possible on a atom of I.

Theorem 4 Let I be a subset of the Herbrand Base of a DDDB, DB, and P be a model generating
procedure. P(DB)|1 returns exactly the set {M : M € P(DB) and M C I}.

Proof: e P(DB)|ris P(DBUC), where C = {A — L, for all A &€ I}. By Theorem 1 any

model returned 1s also a model for DB alone.

o Assume that M is a model of DB and M C I. If M [~ C then there must exist an atom
A & I such that A € M. A contradiction.

Corollary 2 Let I be a subset of the Herbrand Base of a DDDB, DB. Then:

o A CS LP(DB)|r returns the set {M : M € MM(DB) and M C I} among others and its
first model returned is in MM(DB).

o A MM LP(DB)|r returns exactly the set {M : M € MM(DB) and M C I}.

Note that any models that can contribute to the nonminimality of models in I are themselves
in I and therefore will be generated by the modified procedure. That is, the test for minimality for
generated models is always complete (sufficient).

Example 5 Consider DB = {P(a), P(b)V P(c), P(b)V P(d), P(e) V P(c)}
and the set I = {P(a), P(b), P(c)}.
The set of minimal models returned is {{P(a), P(b), P(¢)}}.
The other minimal models {{P(a), P(b), P(e)}} and {{P(a), P(c), P(d)} are not generated.
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3.2 Checking for Model Minimality:

If T is known to be a model and we need to check for its minimality (or to find a single minimal
model of T even when it is not known to be a model) we can improve on the above approach.

Theorem 5 Let M be a model of DB. Let M’ be the first minimal model returned by the model
generating procedure P(DB)|pr. Then M is minimal if and only iof M = M'.

Proof: Clearly, by Corollary 1, M’ is a minimal model for DB and the result follows immediately.
L]

However, we already showed that the first model generated by CS-P is minimal for its input
theory. Therefore, we have the following result:

Corollary 3 Let M be a model of DB. Then:
1. Let M’ be the first model returned by CS L P(DB)|pr. Then M is minimal if and only if
M=M".
2. Let M' be the first model returned by MM L P(DB)|pr. Then M is minimal if and only if
M=M".
Corollary 4 Let M be a model of DB. Then:
1. M is minimal if and only if CS L P(DBU{=M})|pr = 0 (returns no models).
2. M is minimal if and only if MM L P(DBU{-M})|pr =0 (returns no models).

Proof: We prove the first assertion. The second is proved along the same lines. Assume that
CSLP(DBU{Neg(M)})|s # 0. Each element of C.S LP(DBU{Neg(M)})|a is a model of
DB and is a proper subset of M. At least one of these models (the first generated) is minimal.
M is not minimal.

Now assume C'S L P(DBU{Neg(M)})|sr = 0. M is a model of DB and any proper subset
of M is a model of Neg(M). There is no subset of M that is a model of DB for otherwise it
will be a model for DB U {Neg(M)} contradicting our assumption. M is a minimal model of

DB. ]
Example 6 Let DB be the following set of clauses:
T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) vV P(d)

Figure 1 is a model tree for DB. Assume we want to test the minimality of the models: M, =
{P(a), P(b), P(c)} and My = {P(b), P(c), P(d)}.

Restricting the tree to My will result in the first minimal model generated {P(a), P(b)} # M.
My is not minimal. Note that adding Neg(My) = {P(a) A P(b) A P(¢) — L} will still allow the
generation of {P(a), P(b)} by both CS L Py, and MM L P|y,.

Restricting the tree to Ma will result in the first minimal model generated {P(b), P(c), P(d)} =
Ms. My is not minimal. Note that adding Neg(Mz) = {P(b) A P(¢) A P(d) — L} will suppress the
generation of {P(a), P(b)} by both CS LP|y, and MM L Ply, and make them return the empty
set.
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3.3 Implementation Issues:

Incorporating restrictions into the model generating process is a straight forward operation. One
needs only to check that the atom to be asserted to satisfy a clause belongs to the given set.
If so then things proceed as usual otherwise the corresponding branch closes. The fact that the
test 1s performed on the set I and not its complement is important since the complement may be
prohibitively large. This is so although we included denial rules corresponding to atoms not in 7
when defining the restricted model generation procedure.

For minimality checking one can utilize a procedure generating only minimal models (e.g. MM-
Satchmo) or one returning a single minimal model (e.g. CS-Satchmo). The choice of which to use
will depend on the type of check to be performed. A single test for minimality is better performed
using the less expensive CS-P. A search for all minimal models included in a set of atoms can be
better accomplished by MM-P.

One can also use the minimality testing approach to convert a CS-P procedure into a mini-
mal model generating procedure by successively generating models and then checking for their
minimality[3, 15]. This may be preferable to collecting constraints corresponding to already gene-
rated minimal models to ensure minimality of subsequent models as done in [3, 21].

The approach is easily extendible to the cases when testing is to be performed on a combination
of sets of atoms. Given I, to test for minimal models containing no element of I can be achieved
by changing the test of the check of whether an atom belongs to 7 to its complement: the atom not
belonging to I. Once more the test is performed on I itself. Other combinations can be treated in
the same spirit.

It is possible to further optimize the search by removing from the input set all instances of clauses
with some non-/ elements in the body. We can also replace by false elements with no 7 atoms in
the head. These steps may be performed as preprocessing stage and may be helpful when I is not
changing for a large number of queries.

Our testing of a prototype implementation points to gains of up to orders of magnitude in
run time when using the restricted algorithm as compared to that of the plain one. The exact
numbers depended on how restrictive the set I was (the number of models returned by the restricted
procedure, which in turn depends on the size of the restriction set I) and the type of check performed.
The time was larger for tests based on negative predicates (not member of) than for the positive
predicates (member of). The improvement was better felt for problems with large running times.
The explanation i1s that restricting the search did not only restrict the number of models generated
but also the number of constraints that correspond to these models.

4 Computing Perfect Models:

The idea of stratification is to have the theory partitioned in such a way so that decisions on negated
atoms in clause bodies are “permanent” in the sense that they are not affected by future decisions
of the model generating procedure. This is done by having all the negative body atoms assigned a
permanent truth value at an earlier stratum before treating the atoms in the head of the clause in
which they occur.
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Definition 4.1 Given a disjunctive normal database DB with a (local) stratification S = {51, ..., S, }
we define St L P(DB,S8) to be the complete model generating procedure P that never expands an
element of S; before S; for i < j.

Note that working with St L P(DB,S) is equivalent to letting RN ; = (U;j<;S;) N M, where M
is the computed part of the current model. That is the set for resolving negation at level ¢ consists
of all atoms of the current model M of strata j < 7. The atoms of RA; already have their truth
values assigned and will not change in the interpretation being developed. By Theorem 3, at level
¢ we always compute the minimal models of DBZ»RN’. Note also that P can employ splitting or
complement splitting: the main thing is that it be complete.

Theorem 6 (perfect model completeness) St LP(DB,S) is a complete perfect model generating
procedure for the class of stratified disjunctive normal databases. That is, given a stratified DNDB,
DB, and (local) stratification S, St LP(DB,S) returns all the perfect models of DB, among others.

Proof: We recall that for a perfect model of DB, M, M; = M N S; is a minimal model for S;.

Let M be a perfect model of DB. We prove that it will be generated by St L P(DB,S) by
showing that M; = M N S; is returned at level ¢ for all ¢. The proof is by induction on i:

Base: i = 1: St L P(DB,S) operates with an empty RA and therefore returns the minimal
models of DBy, My = M NS among them.

Induction step: Assume for all levels j < i, M; was already generated (if nonempty). At level
i, St L P(DB,S) has RN; = Uj<; M;. It returns all the minimal models of DBZ»RN’, among
others, (by Theorem 3). That is, it returns M;. L]

While guaranteeing the correct (and timely) assignment of truth values to negative body literals,
such a change in the model generating procedure is not sufficient to ensure the generation of only
perfect models (soundness). This remains the case even if a minimal model sound procedure is used
as P. The following example demonstrates this point:

Example 7 Let DB = {(T — P(a)), (T — PU)V P(e)), (P(a) A P(c) — P(8)), (notP(c) A P(5) —
R(d)V R(e)), (P(b) A P(c) — R(e)V R(f))}. Clearly DB is stratified with S1 = {P(a), P(b), P(¢)}

and So = {P(d), R(e), R(f)}. Treating the clauses in the order they are given, which is compatible
with the stratification, gives the set of models:

{{P(a), P(3), R(d)}, {P(a), P(3), R(e)}, {P(a), P(c), P(b), R(e)}, {P(a), P(c), P(b), R(P)}}. Fven among
the minimal models there is one that is not perfect, namely { P(a), P(c), P(b), R(f)}. This is so since
there are other models with less atoms of the first stratum (the first two). The model tree for this
example corresponding to this run of a model generating procedure is given in Figure 4.

It is not difficult to see that for a stratified database, DB, if the clauses are ordered and processed
by a model generating procedure according to their stratification then the procedure returns only
supported models of DB. This is so since first: a clause with no body negation is expanded only if
its body atoms are all in the current interpretation so there is support for all (ground) elements in
the head of that clause. Second: an instance of a clause C' with negated body atoms at level ¢ with
notA € Body(C'), where A is an atom of an earlier stratum j < ¢, some A is already assigned its final
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Figure 4: A Tree with Nonperfect Models for Example 7.

truth value in the current interpretation. C' has two possibilities: either A is true and C' will not
fire in the current branch since its body is not satisfied, (and neither will C’s positive counterpart
with A moved to the head). The other case is when all As are false and C' will act as a support
for all of its head atoms in the currently developing interpretation. Not all the returned models
are minimal and not all minimal models returned are perfect as was shown in Example 7. So even
when we restrict our procedure to generate minimal models of the input theory nonperfect models
will still be returned. The reason for generating the extra minimal but not perfect models is that to
compute perfect models we need to minimize within individual strata [17, 5] rather that on the level
of the entire model of the theory. As will be stated formally later, if we use complement splitting
then the first model generated (leftmost) is perfect since each of its components are minimal in their
respective strata.

However, to explicitly minimize in individual strata implies having all the potential perfect models
of the theory under development simultaneously. Another method offered in [5] is to incrementally
pass constraints corresponding to minimization in individual strata from already generated models.
That approach is applicable here. It is based on incremental collection of constraints corresponding
to individual strata of generated models starting from the highest stratum (last in the processing
order). While that approach is desirable from efficiency of computations point of view it is more
difficult for implementation, especially non-incremental ones. Next we offer still an alternative
approach that is more suited for easy implementation and is in line with the conventional approach
to model minimization adopted in this paper and in [3]. The approach is based on temporarily
interpreting atoms in strata higher than the current stratum during the model generation process.

Lemma 2 Let DB be a (locally) stratified database with (local) stratification {DBy, ..., DBy}. Then
of when processing stratum i@ all ground atoms of strata j > t are assigned “true” then for any
C=A V- ---VA, — By,...,By,notDy,...,notD; € DB; we have:
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1. When m = 0 and Dy is false for all | = {1,...)k}, the clause C is equivalent to: {L —
BiN...ABL{Bi, ... Bl }={B1,..., By }(U;j<iS;)}. That is, the assumption is equivalent
to stripping away all elements of strata higher than i in C.

2. The assumption has no effect when m > 0 or Dy is true for some | € {1,....;k} (for clauses
with nonempty head).

Proof: 1. When processing headless clauses (denial rules) at level 4, atoms of lower levels have
already been processed and assigned final truth values. Body atoms at higher strata can
be deleted since they are true. The negative body literals can be dropped since they all
evaluate to true in the lower strata.

2. By definition of stratification, when processing the head of a clause at level 7 all atoms
of the body are at level 7 or lower. No assumption is made about levels less than : all
assigned truth values at these levels are final, and therefore such a clause is not affected.
Note that the D’s are in lower strata than ¢ and are therefore interpreted correctly. If
any of the negative body literals is false then the clause never fires and can be ignored
anyway.

One can look at this as processing through a sliding window on the partitions of the Herbrand
base induced by the (local) stratification. At any moment atoms of the current stratum are under
the window and are being examined to get assigned truth values. Atoms of lower strata are already
known and those in higher strata are assumed #rue while they wait for processing. Since all the body
atoms of the nondenial clause being treated at level ¢ are in stratum ¢ or lower, they are not affected
by this assumption (their values are already fixed). This has a substantial effect when treating
constraints (denials) resulting from already generated minimal (perfect) models. Such clauses may
contain atoms of different strata. Assuming that atoms of higher strata are true will have the effect
of minimizing within the current stratum. This i1s needed to ensure that the generated models are
perfect[5]. We modify our model generating procedure so that it acts this way.

Definition 4.2 By M St L P(DB,S) we denote the operation of St L P(DB,S) with the following
properties:

1. The procedure employs complement splitting.

2. The procedure is modified so that for any generated model M a clause Neg(M) is added to
DB wn all further processing steps.

3. The temporary assignment of true to all atoms in strata above the current one (not yet reached)
1s made.

We have the following theorem:

Theorem 7 (perfect model soundness) Let DB be a (locally) stratified disjunctive normal da-
tabase with the (local) stratification S = {Sy,...5,}. Running MSt L P(DB,S) returns exactly the
set of perfect models of DB: Perfect(DB) = MSt L P(DB,S). Thatis MSt L P(DB,S) is sound

and complete for perfect model generation.
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Proof: (Sketch)

e The elements of a disjunctive head of a clause are always (by definition) in the same
stratum and therefore will be treated on the same level and are not affected by the truth
assignments to higher strata. The complement splitting constraints will guarantee that
left submodels (in the stratum) are never supersets of their right siblings [21, 3].

e The first model generated is perfect. This is so since all elements of individual strata are
minimal in their respective stratum [5].

e Under the assumptions of Definition 4.2, the constraints resulting from already generated
perfect models, according to Lemma 2, correspond to minimizationin the current stratum.
The newly generated sub-model will therefore be minimal in the current stratum since it
cannot be subsumed by subsequent sub-models in the current stratum and cannot be a
superset of already computed models by the presence of the constraints corresponding to
these (minimal) models. This results in all models generated being perfect (soundness).

e Since, by Theorem 6, St L P(DB,S) is perfect model complete, and no perfect model is
removed as a result of minimization in individual strata (a negative clause corresponding
to a minimal model is always satisfied in any other minimal model), it follows that the
procedure is complete.

Example 8 ConsiderDB = {(T — P(a)),(T — P(b)V P(c)),(T — P(b)),(notP(c) A P(b) —
P(d) Vv P(e)),(P(b) A P(c) — P(e) vV P(f)}, as in Ezample 7. The first model generated is
{P(a), P(b), P(d)} which is perfect. The induced constraint is P(a) A P(b) A P(d) — L. The next
perfect model (at stratum 2), {P(a), P(b), P(e)} is not affected by this constraint. Now moving to
stratum 1 with the two constraints the models {P(a), P(¢), P(b), P(e)} and {P(a), P(c), P(b), P(f)}
will be suppressed by the clause P(a)AP(b) — L (P(d), P(e) € Sy are both assumed true). As shown
wm Figure 5 all models generated are perfect and all the perfect models are produced.

We want to emphasize the importance of processing individual strata of the database separa-
tely. Ignoring this aspect prevents procedure from being perfect model complete. While processing
individual clauses in the order of their strata is equivalent to processing each stratum separately,
the discrepancy between the positive case and the case with negation need not be overlooked in
implementations®. For example, while the set of clauses violated in a certain interpretation can be
satisfied as a set by asserting atoms of their heads without the danger of sacrificing completeness,
the presence of negation may be problematic. Consider Example 4 once more with the clause order
reflecting the stratification:

Example 9 Let DB = {(T — P(a)),(notP(a) — P(b)}. Starting from I, = {} we observe that
both clauses are violated: their bodies are satisfied but not their heads. So in Iy we need to satisfy
the set {P(a), P(b)}. We get Iy = {P(a)} to satisfy the first and, if we try to process the other head
then we get Is = {P(b), P(a)}. Clearly I3 is a not a perfect model of DB since it is not minimal.
The reason for this behavior is the “nonmonotonic nature” of body satisfiability in the presence of

5Can’t apply findall violated clauses to the entire theory but to individual strata or clauses.
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Figure 5: A Perfect Model Tree for Example 8.
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negation. Adding more atoms to the interpretation may violate the body and therefore satisfy the
entire clause. This 1s not the case for DDDBs. The morale of this example is that the use of “set”
operations should be carefully examined.

5 Computing Stable Models:

While stratified databases constitute a major class of real life theories and received much attention in
the literature, there are many useful databases that are not stratified. The perfect model semantics
is not applicable for this class of theories.

Stable models are an important means of defining semantics for non-stratified databases. As
stated earlier, the set of stable models i1s a subset of the set of minimal models of the DNDB. When
the theory is stratified then its stable and perfect models coincide. For DDDBs stable, perfect and
minimal models are the same. Therefore, it will be sufficient to compute the stable models of the
theory and the perfect model computation algorithm is a side product.

Our approach to computing stable models is based on computing a superset of the set of stable
models of a DNDB, DB, that includes the set of minimal models (model generation pass) then
checking each computed model for stability (stability checking pass). The model generation pass is
performed using DB™ | the positive transformation of DB (cf. Definition 2.2). Since our theory is
safe and RR, DBTis range restricted. A complete model generating procedure can be applied to
DB to find a superset of the minimal models of DB (MM(DB) = MM(DBY)).

The stability test for a computed model M is based on using M to determine the truth value
assignment for the negative body atoms of clauses in D B. The precessing during the stability test
is performed on the original DNDB, DB, and not on its positive transformation DB*. Since M is
a model of DB it satisfies all clauses of DB. To avoid the premature assignment of false to atoms
negated in clause bodies we define the set of resolving negation RA" (Definitions 2.19 and 2.18)
to be the already computed model, M. Negative literals in a clause body of DB are interpreted
according to M: only atoms not in M can assume the truth value false while checking for stability.
Atoms in M cannot be assumed to be false.

On the other hand, given M, some of the clauses of DB are satisfied in M by simply having a
negative atom of the body as an element of M. Such clauses will not fire, although they may have
contributed to the content of M during the model generation pass (on DBY). The stability check
pass can produce a result different from M. The stability test can be interpreted as verifying that
every atom of M was constructively included in M to satisfy a head of a clause of DB the body
of which is satisfied in M. This test is accomplished by letting RA° = M which has the effect of
deleting all clauses of DB with “notA” in their bodies for some A € M and deleting all negative
body occurrences of atoms in M. This is the Gelfond-Lifschitz transformation DBM of DB as
was shown in Theorem 3. Additionally, the procedure for checking the minimality of models is run
restricted to the elements of M. If M proves to be minimal for DB™ then M is a stable model for
DB. Otherwise it is not. Formally we have the following:

Lemma 3 Let DB be a DNDB and DB7T be its positive transformation. Given a complete model
generating procedure P and a model M of DB then:
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o M is a stable model of DB if and only if {M} = P(DB, M)|sp. That is, M is stable if and
only if it is the only model returned by P(DB, M)|pr. Or equivalently,

o M is a stable model of DB if and only if P(DB U {Neg(M)}, M)|am = 0.

Proof: e RN = M. Since P is complete then by Theorems 3 and 4, P(DB, M)|ay returns,
among others, all the minimal models of DBY that are subsets of M. Clearly if M is
minimal for DBY (stable for DB) then it must be the only element of P(DB, M )| .
If {M} = P(DB, M)|y then by completeness M is a minimal model of DB and is
therefore a stable model for DB.

o If P(DBU{Neg(M)}, M)|pr = 0 then no proper subset of M is a model for DBM since
it would have been returned as P is complete. That is, M is a minimal model for DB™
and 1s therefore a stable model for DB.

If M is stable then it is minimal for DBM . Only models that contain a proper sub-
set of M can satisfy Neg(M). Such interpretations cannot be returned by P(DB U
{Neg(M)}, M)|p in light of Theorem 3, (they are not models of DBM).

Theorem 8 (stable model soundness and completeness): Let DB be a DNDB and DB*
be its positive transformation. Let Py and Py be two complete model generating procedures (for

DDDBs). Then:
o Stable(DB) = {M|M € P1(DB%) and {M} = P2(DB, M)|a}. Or equivalently,
o Stable(DB) = {M|M € P1(DB™") and P2(DBU{Neg(M)}, M)|s = 0}.

Proof: By completeness P(DB™) returns all the minimal models of DB including all the stable
models. All and only models passing the test of Lemma 3 are stable. The result follows. m

The suggested procedure is quite simple. Use a complete model generating procedure to compute,
among others, the set of minimal models of DB by operating on its positive transformation DBT.
Test all generated models for stability using the model itself as the set for resolving negation in DB,
RN . Models passing the test are the only members of the set of stable models of DB, Stable(DB).

Example 10 Let DB be the following set of clauses:

notP(a) — Q(a) notS(a) A P(a) — R(a)
Q(a) — R(a) notS(a) — P(a)
T — Q(a) vV T(a) notT(a) A P(a) — S(a)

DBt s the following set of clauses:

T — Q(a)V P(a) P(a) — R(a) Vv S(a)
Q(a) — R(a) T — P(a) V S(a)
T — Q(a)V T(a) P(a) — S(a)V T(a)
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DBM: = {Q(a) — R(a), T — Q(a) vV T(a)}.
MM(DBM) = {{Q(a), R(a)},{T(a)}} and My & MM(DBMv). Therefore My is not stable.
DBMz = [P(a) — R(a),Q(a R(a), T — P(a), T — Q(a) VT(a)}.

MM(DBM=) = {{P(a;,Q(a),R(a)},{P(a),R(a),T(a)}} and My € MM(DBMz=). Therefore
M s stable.

DBM: = [T — Q(a),Q(a) — R(a), T — Q(a) VT(a), P(a) — S(a)}.

MM(DBM3) = {{Q(a), R(a)}} and My & MM(DBMs). Therefore M3 is not stable.

Aside from completeness, Theorem 8 places no restrictions on the model generating procedures
used. The choice is left to the user. Using complement splitting will restrict the search space and
prevent multiple generation of the same model. This generally improves performance. Utilizing
a sound minimal model generating procedure will have the effect of limiting the set of candidate
models to the minimal models of DB. However, the cost of model minimization must be weighed
against the cost of testing for stability. This reasoning applies to the procedure used for generating
candidate models and for the one used in the testing for stability. We don’t require that the same
procedure be used for both model generation and testing .

While the outlined procedure for computing stable models is applicable for computing perfect
models if DB is stratified (and for computing the minimal models if DB is a DDDB) it is more
economical to use the procedures developed for that purpose in cases when the (local) stratification
of the database is given or is not very expensive to compute. Only if doubts about the class of the
database (whether it is stratified or not) are present then the stable model procedure is utilized.

Before concluding this section we would like to observe a “conceptual” connection between our
approaches to computing perfect and stable models. A way to view the computation of perfect
models for a stratified database is as the process in which negative literals in the body of a clause
always get assigned truth values before using them to determine the truth values for head atoms.
Abandoning potential nonperfect models is achieved by minimizing in each stratum separately (or
using a technique with an equivalent effect as described earlier). The resulting perfect model is the
set union of atoms in all strata. With this in mind, we can view the computation of stable models
for a nonstratified database DB as computing the perfect model of an artificially stratified database
DB* = DBT UDB. The first stratum is DBT, which we call the phantom stratum, and the second
stratum is DB itself. As a DDDB, DB7T has no negative body literals. Therefore, computing in the
phantom stratum DB* proceeds normally (with the empty RA). Minimizing in the first stratum
(DBY) will always yield minimal models of DB* (and of DB). The computed (minimal) model
of DBT (the phantom stratum), say M, is used as RN to determine the values for negative body
literals in DB. This is equivalent to applying the minimal model generating procedure to DBM
Since a minimal model of DB is a minimal model of DB the only possible cases that can happen is
that a proper subset of M may be a minimal model of DBM | In this case M is not stable. Otherwise
M is a stable model of DB.

Of course, the stratification 1s somehow hypothetical since both strata may define the same set
of atoms. That is the reason why we call the first a phantom stratum. An alternative would be to
rename the predicates in one of the strata so that to achieve real stratification and to use negative
literals from the first stratum in the second. This comes close to other approaches that will be
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compared with ours in the next section. We argue that while such an approach is interesting it does
little to the efficiency of computing stable models.

6 Remarks and Conclusions:

The procedures developed in this article can be utilized in the various aspects of processing dis-
junctive databases. The efficient computation of restricted models is of importance for distributed
databases where only a subset of the Herbrand base is of interest at a particular location. Additio-
nally, this approach can be helpful in checking properties of interpretations including the minimality
of models using only the context of the model being tested and without reference to other models of
the theory [15]. This approach was also shown to be helpful for computing stable models were the
test for stability is constrained to the atoms of the model being tested.

Clearly, a complete procedure for computing stable/perfect models can be incorporated into
a system for answering queries under the respective semantics. The query answering process is
basically a search for instances of the query in each of the computed models. A query answering
procedure can use model generation to construct the model tree under the proper semantics and
searches can be performed on the tree. The (static) model tree is modified or reconstructed when
the database is updated. Alternatively, a run of the model generating procedure can be performed
for each query and each model is checked (searched) as soon as it is generated to see if it satisfies the
query. The exact approach will depend on the frequency of updates as compared to query answering
requests. One should be especially careful with the monotonicity issue when dealing with query
answering under perfect and stable semantics. As opposed to reasoning under, say, minimal model
semantics, even a positive query may be frue in the current state of the database DB and false
in DB" achieved by adding a positive clause to DB. This point is demonstrated by the following
simple example®:

Example 11 Let DB = {notP(a) — S(a)}. The only stable (and perfect) model of DB is {S(a)}.
Q = S(a) is true (derivable) under the stable (and perfect) model semantics. However, for DB* =
{T — P(a),notP(a) — S(a)} the only stable (and perfect) model of DBY is P(a). Q = S(a) is not
true (not derivable) under the stable (and perfect) model semantics in DB* and DB C DB".

Another potential use is in integrity constraints checking in disjunctive deductive databases.
Integrity constraints are rules that describe properties of a database state. Only models of the
(completed) theory that satisfy the constraints are admissible. As such, integrity constraints do
not participate constructively in the model generation process. No atom is added to a model for
the sole purpose of satisfying a constraint. The clauses representing the constraints are put in
denial form, possibly with negative body occurrences, and the resulting rules are checked after the
model generation procedure finishes its work. Only models satisfying the constraints are accepted.
All the others are pruned. A simple approach to checking constraints will be to add the integrity
constraints as an additional stratum of the database and use a perfect model generating procedure
to compute the perfect models of the thus modified database. These are the models of DB satisfying
the constraints.

6The issue of which updates may invalidate previously derived facts is beyond the scope of this paper.
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The relation between stratification and circumscription [14] was studied in [11, 10, 18]. The
results make it possible to apply the approach described here to generating perfect models for
computing prioritized circumscription[5].

Several approaches were suggested in the literature for computing of perfect and stable models
for disjunctive databases [2, 9, 6, 5, 19]. In contrast to others, the approach presented here computes
models for disjunctive theories and is not limited to the ground case but deals with the class of range
restricted theories with finite minimal models [2, 6, 5, 19]. Additionally, our approach integrates the
different steps of generating the required class of models into a coherent system based on the simple
idea of model generation. Model generation is used both for generating the set to be tested and
for testing for stability. Generally, both here and in other approaches, computing perfect models is
simply evaluating clauses in the order of their stratification and ensuring minimality of lower strata
for retained (sub)models. In [5] minimality within individual strata is ensured by passing constraints
corresponding to components of the model on that stratum to all potential models sharing atoms of
lower strata and retracting these constraints when moving up the model evaluation tree. Here we
achieve the same effect by asserting a constraint corresponding to the entire model generated and we
never need to withdraw such a constraint. It is disabled automatically when exhausted. We believe
that the approach outlined here is easier to implement and more in line with the approach adopted
for minimal model generation. The cost is that one stores constraints that are larger than the
minimum needed to ensure correctness of the model computation process. Of course the approach
of [5] can be adopted here when deemed necessary.

In [6], [5] and [19] the approach to computing stable models is to transform the theory into
a stratified one through the so called evidential transformation, then compute the perfect models
of the transformed theory which are shown to be the stable models of the original. It is similar to
the (positive) transformation adopted here but the moved negative body atoms are distinguished
from their positive counterparts. In a model, the new atoms are treated as components in need
of evidence. That evidence is supplied by the presence of the corresponding objective atoms in the
model. Only models in which there is evidence for every atom that need it are accepted. The second
stratum consists exclusively of denial constraints and is designed to reject models not satisfying this
property. In a sense; the first stratum generates the “minimal” models of the transformed theory
and the second selects those that are stable. To account for the extra atoms added only objective
atoms of accepted models atoms are returned. A pass through each model is needed for this purpose.
Of course a minimal model generating procedure is needed to ensure the minimality of the models
generated for the first stratum. This requirement is implicit in demanding that accepted models be
perfect.

The approach presented here can be viewed in a similar light. The positive transformation of
the theory is used to generate the set of candidate models that are in need of evidence. Rather than
evidence for individual atoms we need to provide evidence that all atoms in the candidate model
produced on the first stage are supported simultaneously. The second pass is performed to provide
this support. This may be more in the spirit of the basic definition of stable models provided in [§].
While our algorithm performs the stability checking pass on the original (normal) theory after the
model generating pass on its positive transformation, the second pass is restricted by the models
produced in the first pass, in the sense of Definition 3.1. Additionally, no separate model minimality
checking is needed since clauses to represent that checking are added to the theory on the second
pass. This 1s not a cumulative process since constraint are retracted as soon as the stability is tested.
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The minimality and stability checking are integrated into one pass. As suggested by Theorem 2
we can also incorporate the effects of the positive transformation by using the Complete UHR-rule
rather than physically transforming the theory. An advantage of the approach of [5] is that the first
model generated is stable”, a property not enjoyed by the approach adopted here.

The approach of Inoue et.al. [9] is also based on transforming the normal theory by adding a
new set of atoms to reflect that a given fact i1s believed or not believed. Two schemata are added
to define acceptable assumptions. Only models surviving the schemata conditions are subjected to
the stability test which basically consists of making sure that every assumed atom is objectively
true. In many respects this approach agrees with the evidential transformation approach in as
far as 1t compares with the method discussed in this paper. In particular, both the evidential
transformation and Inoue’s approaches to computing stable models expand the Herbrand base of
the theory by including evidences. This usually leads to a larger number of models (possibly with
higher cardinality) for the transformed theory that need to be tested for stability as compared to
the original database. Our approach restricts itself to the original Herbrand base.

The procedures described in [4] and [16] compute the set of stable models for definite normal
theories. While these approaches can be extended to the disjunctive case, this implies the need
for minimality tests during the checks for stability which introduces into these procedures all the
difficulties associated with minimal model computations. After applying the G-L transformation to
a normal disjunctive database for a given interpretation, the resulting theory may still be disjunctive
and both minimal and nonminimal models may be returned by a model generation procedure [3, 15].
As opposed to [16] the grounding of the theory in our approach is integrated in the model generating
process and is not performed as a separate task. Partially developed models guide the grounding
process and generally make it more efficient by prohibiting the generation of irrelevant instances.
Expanding on the entire set of atoms that occur negatively in rule bodies [4] has the advantage of
resolving negation as soon as possible but may result in expanding atoms that are irrelevant to the
model generation process such as those occurring in conjunction with positive atoms that occur in
no clause head. In the worst case this set can be all the Herbrand base. Qur approach stops as soon
as a contradictory pair of literals is generated (actually the L atom is added to the branch) rather
than testing for model consistency after the complete interpretation is produced [4] or after each
addition of an atom to the branch [16].

While we don’t impose any order on the expansion of the atoms of a clause, such an order can be
integrated so as to favor the expansion of atoms occuring negatively in clause bodies if that is deemed
to be helpful or to incorporate heuristics such as incremental evaluation of closures and backward
propagation of truth values. Other efficiency enhancement measures such as program reduction after
updating an interpretation and the proper treatment of body atoms with different polarities during
the reduction process are implicit in our algorithm. The approach allows for optimizations that take
into account the properties of the theory under consideration to optimize performance. Examples
are simplifications for the ground case [15, 21] and the use of semi-stratification to localize stability
tests and thus reduce the search space [6].

Our approach is meant to compute only the set of stable models of the theory and has no
provisions for computing the well founded model structure as is the case for [4, 16].

"This property is not explicitly stated in [5] but follows directly from the fact that all perfect models of the
transformed theory are stable and the first model generated is perfect.
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While we still generate more models than those that are stable, our generation process is sort
of focused on those models that already passed one of the tests for stability: being minimal models
for the original disjunctive theory. An additional advantage of our approach for computing stable
modelsis that 1t requires the completeness of the model generating procedure rather than insisting on
minimal model soundness. In this sense the described approach can be viewed as defining an entire
set of progressively refined procedures which differ in the size of their search space for candidate
models. Some (employing plain splitting) return both nonminimal and duplicate models, others
(employing complement splitting) have a more restricted search space and avoid duplicates and still
others return only minimal models. Any of these can be employed for generating candidate models.
The tradeoff 1s that less costly procedures tend to return more candidate models than need to be
tested. The choice of a particular procedure for implementation may depend on the class of problems
to be solved.

The constructed model structure can be used to answer queries under the appropriate semantics.
But since this structure generally changes (not necessarily monotonically) with database updates it
is of interest to integrate the query answering process into the model generation procedures so that
it returns only models satisfying the query, if any. Topics for further development also include more
work on the implementation and benchmarking evaluation of the advanced algorithms. While the
preliminary results were encouraging, a more systematic approach to testing will enable working
out recommendations on the conditions under which the algorithms have their best performance.
Another topic is to design a general parameterizable algorithm that can be utilized for computing
different types of models and maybe utilized in a variety of database processing tasks.
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