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Generalized Query Answering in Disjunctive DatabasesUsing Minimal Model GenerationAdnan YahyaInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen, GermanyElectrical Engineering Department, Birzeit University, Birzeit, Palestineyahya@informatik.uni-muenchen.deAbstractMinimal models underly one of the major semantics for disjunctive theories and a substantialresearch e�ort was directed at minimal model reasoning. In this paper we investigate the processof generalized query answering under the minimal model semantics for the class of DisjunctiveDeductive Databases. We cover several classes of queries that are of practical importance fordatabase maintenance. Answers that are true in all and those that are true in some minimalmodels of the theory are considered and their monotonicity properties are discussed. Ourapproach is based on having the generalized query induce an order on the models returned by asound and complete minimal model generating procedure. This makes it possible to introducere�nements to the query answering process such as allowing the speci�cation of conditions underwhich a query becomes derivable from the database and checking for answer minimality.1 IntroductionMinimal model semantics was one of the �rst to be de�ned for disjunctive theories[15, 12]. It is anatural extension of the semantics usually adopted for the de�nite case. Several of the model classesde�ned under other semantics, such as the perfect and stable models for disjunctive theories withbody negation, are subsets of the minimal models of the theory and reduce to the minimal modelsin the absence of body negation.Minimal models proved to be important for de�ning database completion: the mechanism toavoid the explicit storage of negative data. The Closed World Assumption which makes it possibleto assume a negative ground atom of a Horn theory if it is not derivable was extended to the case ofdisjunctive theories [18, 15]. The extension was de�ned in terms of minimal models. Limiting ourattention to the class of minimal models of the theory reconciles the concepts of derivability in allmodels and in all minimalmodels of the completed theory for positive and negative formulas [21, 25].Model generating procedures have been used both for conventional theorem proving tasks [13]and to construct representations of a theory in terms of its minimal model structure and its set ofminimally derivable ground clauses (minimalmodel state) [6, 24, 27]. One problem is that the staticmodel representation of the theory is sensitive to minor updates: an update may require a radicalmodi�cation of the model structure. Such an alternative representation is not really adequate since1



one may need to consult the original clausal theory to correctly reect the e�ect of updates on themodel structure. The close connection between the minimal model structure of a database andthe set of minimally derivable ground clauses is well established [20, 27]. This connection makesit possible to switch between representations based on these concepts and to utilize them both toachieve e�cient query processing.Adopting minimal model semantics makes it natural to use minimal models in de�ning queryanswers. There can be more than one type of answer depending on the number of models in whichthe query is satis�ed. It is of interest to determine the properties of various answer types includingthe monotonicity of their behavior. This is important for predicting the e�ects of database updateson repeated answering of a generalized query. Another issue that arises when answering queriesagainst disjunctive databases is the minimality of answers since inde�nite answers are possible. Agood query answering procedure must try to return only minimal answers or to identify the minimalcomponents of a nonminimal answer.In this paper we present an approach to generalized query answering based on minimal modelgeneration. The queries covered include those of importance for database maintenance and exploi-tation. The approach is based on having the query induce an order on the models returned by asound and complete minimal model generation procedure. This order is used to answer the query,to check for answer minimality and to re�ne the query answering process by specifying updates thatwill make the query derivable. We also address the issue of answer monotonicity for the di�erentclasses of queries and answers considered.The rest of the paper is organized as follows. In the next section we give some relevant de�nitionsand describe a class of model generating procedures that will later be used for query answering. Wede�ne the concept of a generalized query and two classes of query answers: those true in all minimalmodels and those that are true in some minimal models. In Section 3 we address the issue of using aminimal model generating procedure for generalized query answering. We also point to the possibleuse of an alternative representation based on the minimally derivable ground clauses to answerqueries. In Section 4 we re�ne the process so that it is possible to return conditions under whichthe query becomes derivable/nonderivable and to designate a minimal component of a nonminimalanswer. In Section 5 we discuss the monotonicity properties of the generalized query answeringprocess for the classes of queries and answers considered. In section 6 we comment on the meritsof our approach and compare it with others discussed in the literature and point to the possibleextensions and further research.2 Preliminaries and Background MaterialIn this section we review some of the basic concepts related to query answering in disjunctivedeductive databases. We assume familiarity with the basic concepts as outlined in [12] and thereforelimit ourselves to the basic material needed for the results presented in this paper.De�nition 2.1 A disjunctive deductive database (DDDB), DB, is a set of clauses of the form:C = A1 _ � � � _Am  B1 ^ : : :^Bn;where m;n � 0 and the As and Bs are atoms in a First Order Language (FOL) L with no functionsymbols. C is positive if n = 0 and denial (negative) if m = 0.2



The Herbrand base of DB, HBDB , is the set of all ground atoms that can be formed usingthe predicate symbols and constants in L. A Herbrand interpretation1 is any subset of HBDB . AHerbrand model of DB, M , is a Herbrand interpretation such that M j= DB (all clauses of DBare true in M ). M is minimal if no proper subset of M is a model of DB. The set of all minimalmodels of DB is denoted byMM(DB).De�nition 2.2 A clause C is range restricted if every variable occurring in the head of C alsoappears in a the body of C. A database is range restricted i� all its clauses are range restricted.In this paper we assume the theory to be range restricted.2.1 Minimal Model SemanticsUnder the minimal model semantics the meaning of the database is de�ned by its set of minimalmodels. A formula is a consequence of a theory if and only if that atom is true in every minimalmodel of the theory.De�nition 2.3 Two DDDBs DB1 and DB2 are minimal-model equivalent if and only if they haveexactly the same set of minimal models. DB1 =mm DB2 i�MM(DB1) =MM(DB2).Usually, negative information is not explicitly expressed in the database. Default rules are usedto derive negative information. For de�nite databases the Closed World Assumption (CWA) isusually used [18]. Under CWA an atom A is assumed to be false i� A is not in the unique minimalmodel of the database. CWA is not applicable to DDDBs since it may produce inconsistent results.For DDDBs the rule used to de�ne negated atoms is the Generalized Closed World Assumption(GCWA) which is an extension of the CWA rule to the disjunctive case [15]. GCWA is ableto consistently de�ne those atoms whose negation can be assumed to be true in the database. Toassume negative clauses the Extended Generalized Closed World Assumption (EGCWA) is used[25].The default rules for the disjunctive case are formally de�ned as follows:De�nition 2.4 [15, 7, 25] Let DB be a DDDB. Then CWA(DB) = f:A1_� � �_:AnjAi 2 HBDBand n > 0 and 6 9 a minimal model of DB; M such that fA1 ^ � � � ^Ang �Mg.n always equal to 1 gives the GCWA and allowing arbitrary values for n results in EGCWA.The completed database refers to the set of positive and negative ground clauses derivable fromDB when the derivation process is augmented by the appropriate default rule for negation. Weadopt the EGCWA because of the following result:Lemma 1 [25] Let DB be a DDDB. Then DBc = DB [ EGCWA(DB) has as its models the setof minimal models of DB. That is, M j= DBc i� M 2MM(DB).De�nition 2.5 Given an inclusion free �nite set of �nite interpretations I it is always possible toconstruct a positive ground theory DBI such that MM(DBI ) = I. The subsumption free versionof DBI is the minimal model state of DBI ,MS(DBI) [12].1As is common in the �eld, an interpretation is identi�ed by the set of ground atoms assigned true in thatinterpretation. All other atoms of the Herbrand base are assigned false.3



A procedure to construct the theory DB for I is to produce all clauses containing at least oneatom from each element of I. Removing subsumed clauses will produce the minimal model state.In [27] it was shown that it is also possible to construct the minimalmodel state by the applicationof a complete minimal model generation procedure to the set of models I provided we treat theelements of I as clauses (the clause corresponding to an element of I 2 I is the disjunction of theatoms of I).De�nition 2.6 If C = A1 _ :::_ An is a disjunction of atoms, then by Neg(C) we denote the setof clauses in implication form Neg(C) := fA1 ! ?; :::; An ! ?g. If M = fA1; :::; Ang is a �niteinterpretation then Neg(M ) denotes the clause in implication form Neg(M ) = A1 ^ :::^An !?.De�nition 2.7 If DB1 and DB2 are sets of ground clauses then by DB = DB1 _DB2 we denotethe set of all clauses we get by expanding a clause in DB1 with a clause in DB2 and removingduplicates. That is, DB = fA1 _ ::: _ AnjA1;1 _ ::: _ A1;k 2 DB1; A2;1 _ ::: _ A2;m 2 DB2, andfA1; :::Ang = fA1;1; :::; A1;kg [ fA2;1; :::; A2;mg and A0s are ground atomsgLemma 2 [26]2 Let DB be a theory with the set of minimal models MM(DB). Let MM1 andMM2 be a partition ofMM(DB) such thatMM1[MM2 =MM(DB) andMM1\MM2 = ;.If DBi denotesMS(MMi) thenMM(DB) =MM(DB1 _DB2).2.2 Model GenerationThe main results of this paper are based on using model generating procedures with certain proper-ties [3, 24]. We extensively utilize denial clauses (rules with empty heads) to impose an order onthe generated models by restricting the search space in certain branches.De�nition 2.8 Given a DDDB, DB, and a model generating procedure P, by P(DB) we denotethe result returned by P run with DB as input. We say that P is:1. Sound: if it returns only models of DB: 8M 2 P(DB);M j= DB.2. Minimal-Model sound if it returns only minimal models of its input: P(DB) �MM(DB).3. Complete: if it returns all the minimal models of DB: MM(DB) � P(DB).4. Strict: if it returns no duplicates.Next we give a brief description of successively re�ned model generating procedures that aresound and complete [3]. Given a DDDB, DB, each of these procedures constructs a tree (modeltree) with the ground unit clauses in each root-to-leaf branch representing a model of DB. Thecompleteness implies that the tree has at least one branch representing each minimal model of DB.Starting from > as the root, the procedure expands a tree for a range restricted DDDB, DB, byapplying the following expansion rules:De�nition 2.9 (expansion rules) Let DB be a DDDB. If the elements above the horizontal lineare in a branch B then B can be expanded by the elements below the line.2A stronger version of this De�nition holds where the subsets of the minimal models need not be disjoint.4



Positive unit hyper-resolution (PUHR) rule: Splitting rule:B1 E1 _E2... E1 j E2BnE�where � is a most general uni�er of the body of a clause(A1 ^ :::^Am ! E) 2 DB with (B1; :::; Bn).fA1; :::; Amg� = fB1; :::; Bng.Note that the splitting rule is always applied to ground disjunctions. This is possible since ourtheory is range restricted. The head is always ground when the body is ground (or empty).De�nition 2.10 (model tree) A Model Tree for a DDDB, DB, is a tree the nodes of which aresets of ground atoms, disjunctions and denials constructed as follows:1. f>g is the top (root) node of the tree.2. If T is a leaf node in the tree for DB, such that an application of the PUHR rule (respectivelysplitting rule) is possible to yield a formula E (respectively, two formulas E1 and E2) notsubsumed by an atom already in the branch, then the branch is extended by adding the childnode fEg (respectively the two child nodes fE1g and fE2g) as successor(s) to T .While the above de�nition imposes no order on the node expansions, we elect to maintain anorder that will later be exploited for de�ning the properties of the generated tree.De�nition 2.11 (conventions for model generation) When expanding a model tree we assumethat the procedure adheres to the following rules:1. Always select E1 for splitting a disjunction (E1 _E2) to be atomic.2. Expand the leftmost atom of a disjunction �rst.3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding theremainder of the clause, if any, to the top of the theory to be processed in the sibling branch).We always expand left branches of the model tree �rst. Our interest is only in branches with nooccurrences of false (open branches). The branch expansion is stopped when false (?) is added (thebranch closes). Only (ground) disjunctions that are not subsumed in the branch are expanded toavoid unnecessary expansions. The expansion continues until no new expansions are applicable (allbranches are saturated). A branch represents the interpretation in which all (ground) unit clauseson that branch are assigned the truth value true. For the class of of range restricted DDDBs theprocedure is sound in the sense that all tree branches represent models of the theory and completein the sense that the tree has at least one branch representing each minimalmodel of DB. However,not all branches represent minimal models and some branches may be duplicates [3].5



>P (a) _ P (b)iiiiiiiiii UUUUUUUUUUP (a) P (b)P (b) _ P (d)ssss LLLL P (a)_ P (c)rrrr QQQQQQP (b) P (d) P (a) P (c)P (a)_ P (d)mmmmmm LLLLP (a) P (d)Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).Example 1 Let DB be the following set of clauses:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 1 is a model tree for DB. The minimal model fP (a); P (b)g of DB is generated twice. Thetree also has a branch with the nonminimal model fP (a); P (b); P (c)g. Among others, all minimalmodels of DB, i.e. fP (a); P (b)g, fP (a); P (d)g, and fP (b); P (c); P (d)g are generated.Further, it was shown that replacing the splitting rule by the following one called ComplementSplitting Rule preserves the completeness and soundness of the model generating procedure.De�nition 2.12 (complement splitting rule)E1 _E2E1 j E2[Neg(E2)] jThe adoption of this rule tends to reduce the search space by closing (adding false to) branchesbefore they grow into complete nonminimal or duplicate models. Besides, the �rst (leftmost) modelgenerated by a procedure using this rule is minimal.Example 2 Let DB be the set of clauses of Example 1:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 2 gives the model tree forDB. The models of this tree are fP (a); P (d)g, fP (b); P (c); P (a)g,fP (b); P (a)g, and fP (b); P (c); P (d)g. Note that although some are not minimal, no duplicates arereturned and the �rst model is minimal. 6



>P (a)_ P (b)kkkkkk VVVVVVVVVVVV[P (b)! ?] P (b)P (a)P (b)_ P (d)ppppp HHHH P (a) _ P (c)ppppp NNNNN[P (d)! ?] P (d) [P (c)! ?] P (c)P (b) P (a)[?] P (a) _ P (d)ppppp HHHH[P (d)! ?] P (d)P (a)Figure 2: The Model Tree with Complement Splitting for Example 2.
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>P (a)_ P (b)ssss VVVVVVVV[P (b)! ?] < P (a) ^ P (d)! ? >P (a) P (b)P (b) _ P (d)xxxx 9999 P (a)_ P (c)nnnnn TTTTTTT[P (d)! ?] [P (c)! ?] < P (b)^ P (a)! ? >P (b) P (d) P (a) P (c)[?] P (a)_ P (d)jjjjjjj KKKK[P (d)! ?] P (d)P (a)< ? >Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.If additionally, for each minimal model, M , generated so far we augment the theory by thenegation of M , (< Neg(M ) >), then we achieve a model generating procedure that is minimalmodel sound and complete. It returns all and only minimal models of its input theory.Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the setof clauses of Examples 1 and 2:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Note that all models returned by the procedure are minimal.Given a DDDB, DB, with the top clause C = A1_ :::_An the procedure will generate the set ofminimal models of DB rooted at > with the �rst (leftmost) branch containing the minimal modelswith A1 and none of A2; :::; An, the second branch containing the minimal models with A2, possiblyA1 and none of fA3; :::; Ang, the ith branch with minimal models with Ai, possibly some Aj ; j < iand none of fAi+1; :::; Ang. The last branch contains An possibly with other atoms of C.[3] contains a Prolog implementation of a series of procedures, for the class of range restrictedtheories with �nite minimalmodels, called: Satchmo for the program with splitting [13], CS-Satchmofor the implementation with complement splitting and MM-Satchmo for the implementation withmodel minimization (by including negation of generated minimal models).8



2.3 Queries, Answers and Minimal Model SemanticsGiven a DDDB, DB, the de�nition of the answer to an atomic query P (x) against DB makes itnecessary for a disjunction of atoms with predicate P to be derivable from DB. a1 + :::+ an is ananswer to P (x) i� DB j= P (a1) _ :::_ P (an). If minimality is needed then it must additionally bethe case that DB 6j= P (a1) _ :::_P (am) for m < n. Minimality may be needed so as not to get toomany subsumed answers.If such a disjunction (pure in predicate P ) is not derivable then no answers are assumed (orreported) although mixed clauses (containing atoms in P together with other predicates) may stillbe minimally derivable. That is P (x)j� for some substitution � may be in some minimal modelsof DB when no answers to the query are reported. This asymmetry can be criticized as unfairto mixed clauses that can be used to describe disjunctive information in the database[2]. Clauseswith a single predicate are a major source of disjunctive information in the database (P (a) _ P (b)- we know that the phone number is a or b but we are not sure which), but they need not be theonly source. Consider the case when we know the phone number of a person (it is a) but are notsure whether it is a voice phone or a fax P (a) _ F (a). It may be worthwhile for a query answeringprocedure to state that a belongs to the person and that he/she can be reached at it (voice or fax).This statement may be more informative than having two possibilities for his phone: one is his ownnumber and the other is not. For that we modify the de�nition of an answer to account for theadmissibility of mixed clauses minimally derivable from DB to generate answers.To accommodate answers that are true in only some minimal models of the theory, we electto de�ne two concepts of an answer to a query: SURE which is the traditional one and refers tosubstitutions that make the query true in all minimalmodels of DB andMAYBE answers referringto substitutions that make the query true in some minimalmodels ofDB. Clearly, for SURE answersit is worth distinguishing de�nite and inde�nite answers while for the MAYBE case this distinctionis, in general, less useful3 .De�nition 2.13 (syntactic de�nition of an answer) Let P (x) be an atomic query against DB.� The set fa1; :::; ang (written also as, a1+ :::+an) is a SURE (minimal SURE) answer to P (x)i� DB derives C = P (a1) _ :::_ P (an). Or equivalently, if C is in the Model State of DB.fa1; :::; ang is a minimal SURE i� DB ` C and DB 6` C 0 such that C 0 subsumes C. Orequivalently, if C is in the Minimal Model State of DB.� A constant a is a MAYBE answer to P (x) i� DB minimally derives P (a) _ C for somepositive clause C not derivable from DB (DB 6` C). Or equivalently, if P (a) occurs in theMinimal Model State of the theory.De�nition 2.14 (semantic de�nition of an answer) Let P (x) be an atomic query against DB.� The set fa1; :::; ang is a SURE answer to P (x) i� P (a1)_:::_P (an) is true in all minimal modelsof DB. fa1; :::; ang is minimal if, additionally, 8ai 9M 2 MM(DB) s:t: ai 2 M and 8j 6=i; aj 62M .3One may take the number of models in which a formula is true as a measure of its closeness to being a SUREanswer. This is not pursued here. 9



� a is a MAYBE answer to P (x) i� P (a) is in some minimal models of DB.It is straightforward to extend these de�nitions to the case of disjunctive and conjunctive queries:queries that are disjunctions of atomic queries and conjunctions of atomic queries, respectively. Thesyntactic and semantic de�nitions of SURE and MAY BE answers are equivalent [25].Example 4 Consider DB = fP (a) _ P (b); P (c); P (d) _ R(a)g, and the Query P (x). fa + b; cgare (SURE) answers to P (x) while d is not. a and b are MAYBE only answers and under ourde�nition so is d. Note that d is not part of any SURE answer of the query.We will also be interested in yes/no answers to general ground queries.De�nition 2.15 (elementary generalized query) An elementary generalized query is a groundclause: it is positive if the head is empty, negative if the body is empty and mixed otherwise.De�nition 2.16 (positive/negative queries) We say that a query Q is positive (negative) if itcan be translated into a set of positive (negative, denial) clauses. Q is mixed if it is neither positivenor negative.Clearly, Atomic, Conjunctive and disjunctive queries are all positive queries. For a query Q, byfQg and Neg(Q) we denote the set of clauses that represent Q and the negation of Q, respectively.De�nition 2.17 (query answer) Let DB be a DDDB and let Q be a ground query4.� Q is a SURE answer in DB i� Q is true in all minimal models of DB.Q is minimal if, additionally, no proper subset of Q is a SURE answer in DB.� Q is a MAYBE answer in DB i� Q is true in some minimal models of DB.Clearly, every component of a minimal SURE answer is also a MAY BE answer and everyMAYBE answer is a component of a (minimal) SURE answer to a query. For positive queries theconcepts of derivability and being true in all minimal models coincide [17, 21]. Since any supersetof a minimal SURE answer is a SURE answer, we are particularly interested in minimal SUREanswers.It is generally desirable that a query answering procedure be able to return the most strictanswer possible, unless instructed otherwise. A SURE answer cannot be reported as MAYBEand nonminimal answers are not to be returned (at least have to be labeled as nonminimal withidenti�cation of the minimal answer component).Theorem 1 Let DB be a DDDB, I be an interpretation and C be a set of ground denial rules(constraints): C = fC : A1^ ::::^An!?, where Ai are ground atoms, i = 1:::n for some ng; then:4If Q is positive clause then (along the lines of the syntactic characterization of an answer given in De�nition 2.13)it is a SURE answer i� it is derivable from DB or equivalently, i� it is in a the model state of DB. Q is a minimalSURE answer if additionally no subset of Q is derivable from DB or equivalently, i� it is in the minimal model stateof DB. Q is a MAY BE answer i� one of its atoms occurs in the minimal model state of DB.10



1. If C is violated in I then it is also violated in all supersets of I. That is if I 6j= C then I 0 6j= C,for all I 0 such that I � I 0.2. Assume I j= C then: I j= DB [ C i� I j= DB and I 6j= DB [ C i� I 6j= DB.Proof: Recalling that a denial rule (negative clause) is satis�ed in I i� an atom of its body in notin I the proof is straight forward [3].As a counterexample for the case of nondenial rules consider DB = fP (a)g, the constraintP (a) ! P (b) and the interpretations fP (a)g and fP (a); P (b)g. Only the latter satis�es the cons-traint.Corollary 1 Let DB be a DDDB,M be a set of models of DB such thatMM(DB)\M =MM1and DB�M = DB [ fNeg(M )jM 2Mg. Then: MM(DB�M) =MM(DB) nMM1.Proof: Given two distinct minimalmodels ofDB,M1 andM2, clearlyM1nM2 6= ; andM2nM1 6= ;.Therefore, M1 6j= Neg(M1) and M1 j= Neg(M2).A model of DB�M is also a model for DB � DB�M. If M is not minimal for DB thenM 0 � M is a minimal model for DB. As a subset of M , M 0 satis�es all elements of DB�M.A contradiction.The essence of Corollary 1 is that the addition of the negative clauses corresponding to non-minimal models of the theory has no e�ect on the minimal model structure of the theory. Onlynegative clauses corresponding to minimalmodels (or subsets of them) can a�ect the minimalmodelstructure. Special cases of Corollary 1 are the following:� IfM is complete: MM(DB) �M thenMM(DB�M) = ;.� IfM contains no minimal models: MM(DB) \M = ; thenMM(DB�M) =MM(DB).Corollary 2 Let DB be a disjunctive theory and let C be a set of denial rules. Then:1. If M is a minimal model for DB [ C then M is a minimal model for DB alone.2. MM(DB [ C) =MM(DB) n fM :M 6j= Cg.3. If C = fNeg(M )jM 2MM(DB)g thenMM(DB [ C) is inconsistent (MM(DB [ C) = ;).4. If C1; :::; Cn are sets of denial rules such that Cn � ::: � C1 . Then:MM(DB [ C1) � ::: �MM(DB [ Cn).Corollaries 1 and 2 show that the addition of denial constraints can change the status of modelsto nonmodels but cannot a�ect the minimality of models.11



3 Query AnsweringTwo representations of the entire answer set of the theory are possible: one based of the set of(minimal) ground clauses derivable from the theory and another based on the set of (minimal)models of the theory. Answering positive queries can be based on the syntactic or semantic de�ni-tion/representation.Using the syntactic de�nition of an answer one can construct the Minimal Model State or theClause Tree for the database: a representation of DB in the form of a tree with branches corre-sponding to the minimally derivable clauses of the database. These are the clauses that need to besearched. It was shown that the minimal clause tree is the dual of the minimal model tree and eitherof them, if ordered, can serve as a Normal Form for a DDDB [20, 27]. Under such a representationof the theory, �nding answers may be reduced to the process of a tree search for clauses with theatoms of interest. We give a brief description of this approach at the end of paragraph 3.3 for thecompleteness of the presentation.The other approach is to use the semantic de�nition of the query answer and to utilize theminimal model representation to search for answers. It is this approach, which is applicable togeneralized queries, that we elaborate on in this paper. We try to reduce the process of queryanswering to the invocation of a minimal model sound and complete model generating procedure(e.g MM-Satchmo [3]).Using a minimal model generating procedure for query answering in disjunctive theories can bedone in two ways:The �rst is to use a static representation of the theory in terms of its minimal models (say in theform of a minimal model tree [6, 24]). The minimal model generating procedure is used to constructsuch a tree and query answering is converted into searches in the tree. The representation is generallyindependent of the query and special arrangements such as indexing or tree restructuring are neededto facilitate the search for elements of the query in the tree. If the theory changes state then theminimal model generating procedure can be used to regenerate the minimal model structure. Thedrawback is that one may need to store two representations of the theory. The original (clausal)one and the minimal model representation since the two representations are only minimal modelequivalent but are not equivalent in the more general sense. To demonstrate this point consider thefollowing example:Example 5 Consider the DDDB, DB = fP (c); P (a)! P (b)g with the only minimal model fP (c)g.Updating DB by adding P (a) will have di�erent results in the two representations. It generatesfP (c); P (a)g and fP (c); P (a); P (b)g for the minimal model and clausal representations of the updatedtheory, respectively5.If updates are frequent then reconstructing the minimal model tree may become costly.The second way is to retain only the clausal representation and generate the minimal models,possibly in a query induced order, at query answering time. We concentrate on this approachhere and show that it can be useful for the incremental construction of a static minimal modelrepresentation.5This could be looked upon as the satis�ability of clause P (a) ! P (b) being nonmonotonic for clause additionupdates of DB. In Section 5 we address this issue and discuss the conditions the satis�ability property is monotonic.12



3.1 Answering Positive and Negative QueriesThe standard approach for query answering is to try to refute the theory augmented by the negationof the query. For positive queries the negation is in the form of negative clauses or denial constraints(headless clauses in implication form). Minimal model reasoning is the same as reasoning under \allmodels semantics". It was shown that a complete minimal model generating procedure is soundand complete for refutations (for DDDBs) [13, 3]. However, minimal model generation producesinformation that can be used to enrich the query answering process.Theorem 2 Let DB be a DDDB and Q be a positive query. Then:MM(DB) =Min(MM(DB [Neg(Q)) [MM(DB [ fQg);where Min(S) returns the set of minimal elements of the set S.Proof: (!) Let M 2 MM(DB). Either M j= Q and M 6j= Neg(Q): M 2 MM(DB [ fQg) andis also in Min(MM(DB [Neg(Q)) [MM(DB [ fQg)).Or elseM j= Neg(Q) andM 6j= Q. M 2MM(DB[Neg(Q)) and is also inMin(MM(DB[Neg(Q)) [MM(DB) [ fQg).( )LetM 2MM(DB[fQg). Two cases are possible: M 2MM(DB) andM 62 MM(DB[Neg(Q)) and therefore M 2Min(MM(DB [Neg(Q)) [MM(DB [ fQg). Or else, M is anonminimalmodel of DB. There existsM1 �M such thatM1 2MM(DB). M1 6j= Q. M1 j=Neg(Q). M1 2MM(DB [Neg(Q)). M1 2Min(MM(DB [Neg(Q)) [MM(DB [ fQg)).If M 2 MM(DB [ Neg(Q)) then it is also a minimal model of DB by Theorem 2 sinceNeg(Q) consists entirely of denial rules.The proof of Theorem 2 shows that for a positive query model subsumption (if any) is unidirec-tional: minimal models of the theory augmented by negative clauses (DB [ Neg(Q)) can subsumeminimal models of DB [fQg but not the reverse. This is so since a model of DB [Neg(Q) has noelements of Q while DB [ fQg must have some. This is demonstrated by the following example:Example 6 Consider DB = fP (a) ! P (b)g and the query Q = P (a). DB has the only minimalmodel fg. The minimal model for DB [f:P (a)g is fg while the minimal model for DB [fP (a)g isfP (a); P (b)g which is subsumed by fg.Note, however, thatMM(DB) =Min(MM(DB [Neg(Q)) [MM(DB [ fQg) = fg.Another point proved by Theorem 2 is that the models abandoned during the model generationprocess for DB [ Neg(Q) have no inuence on the minimality of the models in the other branch(DB [ fQg). Such models are abandoned for not satisfying Neg(Q). They must satisfy Q andare bound to appear in the other branch (by completeness of the procedure) resulting in a correctminimization process.When only SURE answers are needed one can run MM-Satchmo on DB[Neg(Q). Substitutionsfor the variables in Q that generate a closed (empty) tree are SURE answers. No more cases need tobe considered. When we are interested inMAY BE answers as well as more re�ned query answering,more cases need to be considered. Theorem 2 suggests a simple procedure for answering positivequeries posed to DB. Partition the set of minimal models of DB into two sets: one in which Q istrue and the other in which Q is false. The way is to run two MM-Satchmo processes (Figure 4):13



� The �rst process of MM-Satchmo will operate on the set union of the theory DB and thenegation of the query under consideration: DB [ Neg(Q). We denote the (possibly empty)set of minimal models returned by this application of the procedure byMM(DB)Neg(Q) .� The second will operate on the set union of the theory DB, Q and the constrains corre-sponding to the minimal models returned by the �rst process: DB [ fQg [ fNeg(M )jM 2MM(DB)Neg(Q)g. We call the (possibly empty) set of minimal models returned by thisapplication of the procedureMM(DB)fQg .The constraints in the second process are used to remove the models that satisfy Q but are notminimal for DB alone. If the second process is run without the constraints it is easy to note thatnonminimal models can be returned since models of the second process can be subsumed by themodels of the �rst. This was demonstrated by Example 6 above [3, 24]. So the two processes arenot independent.It is easy to see that, in the second branch, one can avoid adding the positive query to the theorysince the minimal models that are produced by its presence and that are not models of the originaltheory will anyway be deleted by the integrity constraints corresponding to the models generated inthe �rst branch. However, later we will exploit the presence of Q to impose a certain order on setof minimal models generated.The entire process may be viewed as equivalent to augmenting DB with the clause :Q _ Q, atautology, and therefore a minimal model preserving modi�cation to DB. From the implementationpoint of view the invocation may consist of prepending the clauses f�_Q; �g, where � is an atom notoccuring in DB that will be discarded in all resulting models. The left branch (�rst process) willhave � and Neg(Q) (by complement splitting of � _Q) while the right branch (second process) willhave only fQ; �g. The e�ect of atom � in the left branch is o�set by the clause � in the right. The�rst (left) process will generate the minimal models of the theory in which the query is not satis�ed.The second process will return the minimal models of the theory satisfying the query. This will giveus better exibility in answering such queries. The structure of the resulting tree is displayed inFigure 4. If DB is consistent (MM(DB) 6= ;), we can have the following possible cases:1. MM(DB)Neg(Q) =MM(DB) andMM(DB)fQg = ;. That is, the �rst process returns allthe minimal models of DB and the second returns no minimal models. In this case the queryis false in all minimal models of DB and its negation for the generated substitutions can beassumed to be true under the Closed World Assumption.2. MM(DB)fQg =MM(DB) andMM(DB)Neg(Q) = ;. That is, the second process returnsall the minimal models of DB and the �rst returns no minimal models. In this case the queryis true in all minimal models of DB (a logical consequence of DB). The substitutions in thequery will serve as, (not necessarily minimal) SURE answers.3. MM(DB)Neg(Q) 6= ; andMM(DB)fQg 6= ;. That is, each of the two processes returns someminimalmodels of DB. In this case the query is true in some minimalmodels (MM(DB)fQg)and false in others (MM(DB)Neg(Q)). The resulting substitution is MAYBE answer.Running two processes makes it possible to compare the models in each branch to the entire set ofminimalmodels. Without that one can only detect complete refutations. The absence of a refutation14



>DBnnnnnn VVVVVVVVVVVNeg(Q) Q [ fNeg(M)jM 2MMNeg(Q)gMMNeg(Q) MMfQgFigure 4: The Minimal Model Tree Structure for Positive Queries.gives no indication about the number of models in which the query is satis�ed. In our approach onealways have the entire set of minimal models. One may elect to have the procedure stop when the�rst process generates no models on the assumption that the query is a logical consequence of thetheory. However, running the second process will have the added advantage of showing that thereare models for the theory and therefore it is consistent. Additionally we may want to use the secondpass to designate the minimal components of Q that are derivable from DB as will be elaboratedon in paragraph 4.1.When Q is a negative query its negation, Neg(Q), is positive. The two copies of MM-Satchmowilloperate on Q and Neg(Q), in that order so that to maintain the unidirectional model subsumptionproperty. That is, we still process the negative component �rst. The results obtained for positivequeries can be applied here with the obvious modi�cations. For negative queries, the need for thetwo branches is easy to see.Consider the following example:Example 7 DB = f>! a _ b; a! c; b! c; d! eg, Q1 = c, Q2 = :d and Q3 = b.� DB [ f:cg ` 2. (DB [ f:cg has no models).� DB [ fdg 6` 2. (DB [ fdg has the minimal models fa; c; d; eg and fb; c; d; eg). None ofthese models is minimal for DB.DB [ f:dg has the set of minimal models ffa; cgfb; cgg.:d 2 GCWA(DB).� DB [ f:bg 6` 2. (DB [ f:bg has the only minimal model fa; cg, a minimal model for DB).The corresponding trees are given in Figures 5, 6 and 7. Example 13 o�ers more complex cases.3.2 Mixed QueriesMixed ground queries that contain both negative and positive atoms can be represented as a clause inimplication form with the conjunction of negatively occurring atoms as the body and the disjunctionof positively occurring atoms as the head. So let Q = Body(Q) ! Head(Q) or Q = :Body(Q) _Head(Q). Q is true in DB if all minimal models of DB satisfy Q and false otherwise. That is, Q is15



>:c _ ciiiii SSSS:coooo OOOO cvvv HHHa b a bc c? ?MMNeg(c) MMfcgFigure 5: A Minimal Model Tree Structure for Q1 = c for Example 7.>:d _ deeeeeeeeeeeee UUUUUUU:dttt TTTTTTTT da b a ^ c! ?a ^ c!? b ^ c!?oooo OOOOc c a bc c? ?MMfQ2g MMNeg(Q2)Figure 6: A Minimal Model Tree Structure for Q2 = :d for Example 7.16



>:b _ biiiiii QQQQ:bppppp OOOOO ba b a ^ c! ?c ? cMMNeg(Q3) MMfQ3gFigure 7: A Minimal Model Tree Structure for Q3 = b for Example 7.false if and only if there exists a minimal model of DB in which Q is false: 9M 2 MM(DB)jM j=Body(Q) and M 6j= Head(Q).We use the order induced by the query on the minimalmodel set to �nd the elements in which thequery is falsi�ed, if any. To retain the unidirectionality of model subsumption, we work with mostconstrained theories �rst (Corollary 2). We start by searching for minimalmodels in which Head(Q)is false by adding Head(Q) ! ? to the theory to be expanded in the current branch. Denote theset of these models byMM1. The set of remaining minimal models of DB, those in which the headof Q is true, is denoted byMM2. Clearly,MM(DB) =MM1 [MM2. Further, we splitMM1into two sub-branches: �rst we �nd the set of minimal models in which Body(Q) is false by addingBody(Q)!? and denote this set byMM1;1. Then we �nd the minimal models in which Body(Q)is true by adding Body(Q) and the negation of all elements ofMM1;1: fNeg(M )jM 2 MM1;1g.We call this setMM1;2. Figure 8 displays the model structure for the resulting tree.Theorem 3 Under the above partitioning of the set of minimal models of DB induced by componentsof Q(Figure 8):� Q is true in DB if and only ifMM1;2 = ;.Proof: The correctness of the model computation process is the result of computing most restrictedmodels �rst as required by Corollary 2.Q is satis�ed by elements ofMM2 by having Head(Q) satis�ed.Q is satis�ed by elements ofMM1;1 by having Body(Q) falsi�ed.Q can be falsi�ed only by an element M 2 MM1;2 satisfying Body(Q) while Head(Q) isfalsi�ed in M . The result follows immediately.Example 8 Let DB = f>! a_ c;>! b_ c_ e;>! c_ d_ e; c! d_ eg, Q1 = a^ b! c_ d andQ2 = a ^ d! c _ e.For Q1: MM1;2 = ; and therefore Q1 is true in DB. The tree is given in Figure 9.For Q2: MM1;2 = ffa; b; dgg and therefore Q2 is false in DB. The corresponding tree is givenin Figure 10. 17



>DBcccccccccccccccccccccccccccccccc TTTTTTTT fNeg(M)jM 2MM1gHead(Q)! ?hhhhhhhhhhhhh XXXXXXXXXX fHead(Q)gfNeg(M)jM 2MM1;1g MM2Body(Q)! ? fBody(Q)gMM1;1 MM1;2j < � � ��� �MM1 �� ��� � > jFigure 8: The Model Tree Structure for Nonpositive Queries.It is easy to verify the answers by noting thatMM(DB) = ffa; b; dg; fa; eg;fc; dg;fc; egg.Note that a mixed query can be interpreted as an integrity constraint. Answering it is checkingfor the satis�ability of the integrity constraint in the current state of the database. Satis�abilityof a constraint under the SURE semantics is interpreted as having it true in all minimal modelsof the theory (theoremhood approach) [9]. One can elect to weaken this concept so as to give ana�rmative answer under the MAYBE semantics when Q is satis�ed in at least one minimal modelof DB. Clearly this will be the case whenMM(DB) nMM1;2 =MM1;1 [MM2 is nonempty6.Answering Q in this case is integrity checking where the satis�ability of a constraint is interpretedas having it true in at least one minimal model of the theory (consistency approach) [9].Answering mixed queries can be treated as a generalization of other cases. Other queries arespecial cases of the mixed query as follows:� Positive queries have empty bodies: Q can be rewritten as >! Q and:1. Head(Q)!? is Neg(Q),2. Body(Q)!? is >! ?: a contradiction.3. Body(Q) = > and adding it has no e�ect,4. MM1;1 = ; (in view of item 2),5. MM1;2 =MMNeg(Q),6The set MM(DB) nMM1;2 is the set of minimal models in which the constraint (Q) is satis�ed. This may beinterpretedas the set of the legitimate minimalmodels ofDB given the constraintQ and its consistency interpretation.The detailed treatment of this issue is beyond the scope of this paper.18
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# Item Positive Query Negative Query0 Query Q empty body: >! Q empty head: Q!?1 Head(Q)!? Neg(Q) adds nothing2 Body(Q) !? >! ?: a contradiction Q3 Body(Q) >, adding it has no e�ect Neg(Q)4 MM1;1 ; (In view of item 2) MMfQg (In view of item 2)5 MM1;2 MMNeg(Q) MMNeg(Q) (In view of item 3)6 MM2 MMfQg ;, (Head(Q) = ?)Table 1: Correspondence Between Mixed and Positive/Negative Queries.6. MM2 =MMfQg.� Negative queries have empty heads Q is Q!?,1. Head(Q)!? adds nothing,2. Body(Q)!? is Q,3. Body(Q) is Neg(Q),4. MM1;1 =MMfQg (in view of item 2),5. MM1;2 =MMNeg(Q) (in view of item 3),6. MM2 = ;, (Head(Q) = ?).These results are summarized in Table 1.The common feature of the seemingly di�erent classes: the class of positive and negative queriesand the class of mixed queries under the minimal model semantics is that the queries themselves arenot allowed to \actively" participate in the model generation process. No positive atom is addedto the model tree with the sole purpose of satisfying a generalized query. In this regard they lookmore like integrity constraints and di�er from positive facts and derivation rules which are used toadd atoms to the model tree. The generalized query answering process consists of checking that thequery holds in every minimal model of the theory. In a sense, the query is treated as an elementexternal to the theory: it may participate in ordering the tree branches or even closing them but notin their expansion. The approach presented here can be viewed as a way to achieve this behavior.Another point to stress is that while we used the collection of constraints corresponding togenerated minimal models to ensure minimal model soundness, other approaches for minimalitychecking can be utilized [17, 29].3.3 Query Answering with Minimal Model StatesGiven a DDDB, DB, one possible approach to use a model generating procedure for answering apositive query is to use the duality principle to construct the minimal model state for the theory.The minimal model state MS(DB) is the set of minimal ground disjunctions derivable from DB.20



Given such a representation, the process of query answering can be reduced to a search process inthe (tree) representation of the minimal model state.In [27] it was shown that the minimal clause tree (the tree representation of the minimal modelstate) of a DDDB,DB, is the dual of the minimalmodel representation ofDB. It can be constructedby applying a minimal model generating procedure to the set of minimal models of DB treated asa set of clauses (or alternatively, to the set of minimal models when both clauses and models aretreated as sets of atoms).So, the approach is to apply the minimal model generating procedure (say MM-Satchmo) a �rsttime to DB producing the set of minimal models MM(DB), then a second time to MM(DB)to generate the set of minimal clauses of DB, MS(DB). The process of query answering is thenperformed over MS(DB) and is basically a search process for the relevant clauses in MS(DB)corresponding to the given query. Details on how to perform this operation are described in [27].A point to note is that the �rst run of the procedure is applied to the database itself which inprinciple can be any range restricted theory with �nite minimal models (see [3] for how to dealwith non-range restricted theories). This is a more general class than the one presented in [27],and encompasses a large subset of real life applications in the database �eld. The second run of theminimal model generation procedure is applied to the set of minimal models produced at the �rststage. On the negative side, the setMM(DB) can be much larger than the set of elements in DBand therefore the second application may be costly. On the positive side the elements of the setMM(DB) are all ground. The groundness property can be exploited to make the second pass ofthe model generating procedure more e�cient [27, 17]. Consider the following example:Example 9 [20] Let DB = fPATH(x; z); PATH(z; y)! PATH(x; y);ARC(x; y)! PATH(x; y); ARC(a; b)_ARC(a; c); ARC(b; d); ARC(c; d)g.Let Q1 = PATH(a; d), Q2 = PATH(a; x) and Q2 = PATH(b; d)_ PATH(c; d).The �rst run of MM-SATCHMO generates the set of minimal models:MM(DB) = fM1 = fPATH(a; d); PATH(a; b); PATH(b; d); PATH(c; d)g;M2 = fPATH(a; d); PATH(a; c); PATH(b; d); PATH(c; d)gg. Clearly PATH(a; d) is in both mi-nimal models and is therefore true in DB. Searching one can see that b + c is an answer to Q2.Q3 has a yes answer. Running MM-SATCHMO on the set of clauses fC1 = Md1 = PATH(a; d) _PATH(a; b)_ PATH(b; d)_ PATH(c; d); C2 =Md2 = PATH(a; d)_ PATH(a; c) _ PATH(b; d)_PATH(c; d)g generates the set of minimal clauses:MS(DB) = fPATH(a; d); PATH(a; c)_ PATH(a; b); PATH(b; d); PATH(c; d)g.Searching for the answers to both Q1 and Q2 as well as verifying that Q3 is a nonminimal answeris straightforward.Updates to the database will be reected on the structure of its minimal state representation.Therefore, these updates need to be propagated to the set of clauses derivable from the databaseeither through updating the clause tree to reect the current state or by reconstructing the newclause tree by twice applying the model generation procedure to the new state of the database. Thechoice may depend on such factors as the frequency and nature of updates.The fact that our de�nitions of SURE andMAY BE answers were de�ned both syntactically andsemantically makes it possible to express them in terms of minimal models or minimally derivableclauses. Detecting a MAY BE answer is a straightforward operation in view of De�nition 2.13. It21



just needs to occur in the minimal clause representation of the database. Testing for minimalityunder the minimal model state representation of the database is easy. A clause Q is a minimalanswer if and only if it is in the minimal model state. If Q is not minimal then all subclauses of Qthat are members of the minimalmodel state are minimal answers. That was the case for Q3 above.4 Re�ned Query AnsweringThe fact that our approach to query answering is based on a query-induced ordering of the minimalmodels of the theory can be further utilized to re�ne the process. We consider two possibilities forthis re�nement: specifying the conditions under which the query becomes derivable from the theoryand isolating a minimal component of a not necessarily minimal answer.4.1 Update Speci�cationsThe cases when all the minimal models of DB satisfy the query or none of them does correspondto the usual (SURE) interpretation to a�rming the query or its negation under CWA, respectively.The remaining case, when the query is satis�ed in some but not all minimal models, leaves room formore re�ned answers. This is possible since the procedure partitions the set of minimal models ofthe theory into two subsets: the �rst is the one in which the query is true and the other is the setin which the query is false. By Lemma 2 the original theory DB =mm DBfQg _DBNeg(Q) , whereDBfQg is the ground theory with the minimal modelsMM(DB)fQg and DBNeg(Q) is the groundtheory with the minimal modelsMM(DB)Neg(Q) (recall De�nitions 2.5 and Theorem 2).The procedure in a sense returns the components of the minimal model structure of the theorythat need to be updated to guarantee that the query becomes a SURE answer or to assume itsnegation under CWA. The issue of how to modify the theory to achieve the required properties hasall the elements and complications of the database update problem and the full treatment of thisissue has been a topic of extensive research [8]. For example, one can think of two ways under whicha positive clause C can become a logical consequence of DB. The �rst is roughly to remove allmodels of the theory in which no atom of C appears. The second is to add every such model anatom (or more) of C so that the clause C becomes true in all minimal models of DB. The reverseneeds to be done to make C false in all minimal models of DB. Similar reasoning can be applied toother query types. While the full treatment of this topic is beyond the scope of this paper, we givesome glimpses about the possibility of achieving this goal by showing how to remove the unwantedminimal models of a theory. The method we outline is compatible with the way the procedure usedfor query answering operates. For brevity, we limit our treatment to the case of a positive query.The extension to the general case is straight forward.Theorem 4 Let DB be a DDDB and Q be a positive query. Let DB =mm DBNeg(Q) _ DBfQg,where DBNeg(Q) and DBfQg are the ground theories (model states) corresponding to the �rst andsecond branches of the model tree of DB, respectively. Then:� DB0 = DB[fNeg(M )jM 2 MM(DBNeg(Q))g ` Q. Additionally,MM(DB0) =MM(DB)\MM(DB)fQg =MM(DB)fQg =MM(DBfQg) and DB0 =mm DBfQg .22



� DB00 = DB [ fNeg(M )jM 2 MM(DB)fQgg and Neg(Q) 2 EGCWA(DB00). Additio-nally,MM(DB00) =MM(DB)\MM(DB)Neg(Q) =MM(DB)Neg(Q) =MM(DBNeg(Q)).DB00 =mm DBNeg(Q) =mm DB [Neg(Q)Proof: � The added constraints remove all undesirable models of DB: the minimal models ofDB falsifying Q and the models of DB in which Q is true but are nonminimal for beingsubsumed by one of the abandoned minimal models7.� The added constraints remove all the models satisfying Q.Consider the following example:Example 10 Let DB = fP (a) _ P (b); P (a)_ P (c) _ P (d); P (a)_ P (d); P (b)_ P (c) _P (e); P (c) _P (d)_ P (e); P (a)_ P (c) _ P (d) _P (e)g, and the query Q = P (b).MM(DB) = ffP (a); P (c)g; fP (a); P (e)g; fP (b); P (d)gg.DBfP (b)g = DB [ fP (b)g = fP (b); P (a)_P (d); P (c)_ P (d) _P (e)g.MM(DBfP (b)g) = ffP (b); P (a); P (c)g; fP (a); P (b); P (e)g; fP (b); P (d)gg.DBNeg(P (b)) = DB [ f:P (b)g = fP (a); P (c)_ P (e)g.MM(DBNeg(P (b))) = ffP (a); P (c)g; fP (a); P (e)gg.DB0 = DB [ fP (a) ^ P (c)!?; P (a)^ P (e)!?g and DB0 ` P (b).MM(DB0) = ffP (b); P (d)gg.DB00 = DB [ fP (b)^ P (d)!?g = DB [ f:P (b)g.MM(DB00) = ffP (a); P (c)g; fP (a); P (e)gg and P (b) 2 EGCWA(DB00).The advantage of this approach to update is that it is passive: it involves only adding constraintsthat prune some models while retaining the original set of clauses. The update can be incorporatedinto the query answering procedure or left to the user. Other approaches to updates can be adoptedto achieve particular results such as better e�ciency or minimality of change to the original theory [8].Note that while the input theory is not necessarily ground, the updates are speci�ed in terms ofground clauses which can be a major simpli�cation factor.4.2 Answer MinimalityIf the procedure returns no when looking for yes/no SURE answers to a positive query Q then thereis no issue of minimality involved. However, it may be the case that both Q and a subset of Q areyes answers. In this case we would like to be able to report this fact or even to give the minimalcomponent of Q that is still an answer.Finding the minimal answer of a query is not a straightforward operation [14]. The brute forceapproach is to try all possible subsets of the query for derivability from the database, probablystarting from sets with the least cardinality. Since the number of subsets of the query can be large,the amount of work needed may be prohibitive. Towards this aim we may utilize the order imposedon the search space of our minimal model generation procedure.7Clearly, one can remove from each constraints atoms shared by all minimal models of the original theory. Thismay reduce the size of individual constraints, although not their number [24].23



To answer a disjunctive query Q = q1 _ ::: _ qn, the model tree is split into two branches: the�rst is the one with Neg(Q) added to DB. If this returns a nonempty set of minimal models thenQ is not an answer. If it returns no models then Q is a yes answer and further processing may bediscontinued if we are not concerned about minimality. If minimality is of interest, the other branchof the model tree starts with Q as the top clause. Since Q is derivable from DB adding it will notchange the resulting model structure: only minimal models of DB are returned.Now we are set to partition the minimal models in which Q is true. In the �rst branch are allminimal models containing only q1 and none of the other disjuncts of Q, if any. If this branch (theone with fq1;:q2; :::;:qng) is empty no judgment can be made about the membership of q1 in aminimal answer. There is, however, some minimal answer component of Q not including q1. Weignore q1 and pursue that component as if we are testing the minimality of the yes answer q2_:::_qn.On the other hand, if the branch with fq1;:q2; :::;:qng is not empty then by De�nition 2.14, q1 isin a minimal component of Q. We pursue (one of) the minimal component of Q containing q1.The second branch will have models with q2, possibly q1 but none of qi; 8i > 2. By De�nition2.14, q2 will be in the same minimal answer as q1 only if this branch contains models in which q1is false. We pursue these models �rst within the second branch to decide if q2 is in the minimalanswer together with q1. If the set with models of the form fq2;:q1;:q3; ::::qng is not empty thenq1 and q2 are in the same minimal answer and we continue to pursue this answer. If the set withmodels of the form fq2;:q1;:q3; ::::qng is empty then q2 need not be in the same minimal answeras q1. The minimal answer is true in the models of the current branch since it has the disjunct q1.The remaining minimal models will satisfy some elements of the set fq3; :::; qng. Therefore, we canignore q2 and look for disjuncts from the set fq3; :::; qng.On processing element qi we �rst check for the models containing none of elements qj (j < i)already shown to be in the minimal answer being developed. We proceed in the same spirit untilthe nth branch. Note that when Q has more than one minimal component we pursue the rightmostamong them. In this sense the result depends on the order of the atoms in Q.The pseudo code in Algorithm 1 is a rough description of the approach to isolating a minimalcomponent MinAnswer of a true disjunctive query Query (also represented as the set of its atomsfQueryg) against a DDDB, Database. The minimal answer is to be interpreted as the disjunctionof atoms in MinAnswer. NotProcessed is the set of atoms of Query not processed so far. Neg(S)is the set of negative literals corresponding to atoms in S.Algorithm 1 Minimal Answer of a Disjunctive query Q.Procedure FindMinAnswer(Database;Query);f Query is a ground disjunctive query represented as the set of its atomiccomponents fQueryg*gLet NotProcessed = fQueryg;Let MinAnswer = fg;While NotProcessed 6= fg doLet Atom = Next(NotProcessed);Let NotProcessed = NotProcessed n fAtomg;24



If MM(Database[Atom[Neg(MinAnswer)[Neg(NotProcessed))\MM(Database) 6=fgThen Let MinAnswer =MinAnswer [ fAtomg;Done;Return (MinAnswer);An example of the possible cases for a query Q = a _ b _ c is displayed in Table 2. A \y" entryindicates a nonempty set of models with corresponding set of literals. The negative literals in theentry represent additional constraints on the model set to be tested for emptiness. For example,[:a] is added to check for models with no a in addition to the constraints in the header. Theseconstraints represent atoms that are already known to be in the minimal component. An X in theterm status entry reects the unknown nature of the inclusion of that atom in a minimal answer set(though it is de�nitely not in the minimal answer being constructed).No. a;:b;:c 2M b;:c 2M c 2M Term Status Minimal Answera, b, c0 ; ; ; N ,N , N (2 2 DB)1 ; ; y X,X, Y (c)2 ; y ; X,Y , N (b)3 ; y y X,Y , Y (b+ c)[:b]4 y ; ; Y ,N , N (a)5 y ; y Y ,X, Y (a+ c)[:a]6 y y ; Y ,Y , N (a+ b)[:a]7 y y y Y ,Y , Y (a+ b+ c)[:a] [:a;:b]Table 2: Checking the Minimality of a yes Answer a+ b+ cAdditionally, the order in which the atoms of the negative counterpart of Q were introducedinto the refutation process usually bears information about the minimality of Q that can be furtherexploited to narrow down the search for minimally derivable components of Q. Note that thenegation of Q is a set of negative unit clauses (denial rules) that can be incorporated into therefutation process one at a time. Clearly, if this approach is adopted then we can always assert thatthe disjunction of atoms the denials of which were used before the refutation was achieved cannotbe nonminimal. Only the last added item can cause nonminimality. It is this information that wecan use in the other component of the process to search for minimality.25



5 Monotonicity Properties of Generalized Query AnsweringThe class of queries discussed span many of the applications encountered in database maintenanceand exploitation. For each we considered both MAYBE and SURE answers. Of interest is themonotonicity of the query answering process. This refers to the validity of an already generatedanswer to a query after the database undergoes a clause addition update.In this section we show that di�erent classes of queries/answers exhibit di�erent monotonicityproperties and use the results to prove that certain inferences used for the query answering processcan be nonmonotonic for DDDBs even for positive queries.De�nition 5.1 (monotonicity) Let DB and DB+ be two consecutive states of a DDDB such thatDB+ is the result of adding some clauses to DB: DB � DB+ . Then8: property � is monotonic ifwhenever � holds in DB then � also holds in DB+.The following lemma is an extension of a result in [5] that relates the models of successive statesof a DDDB before and after a clause addition update.Lemma 3 Let DB and DB+ be two consecutive states of a DDDB such that DB+ is the result ofadding some clauses to DB: DB � DB+. Then:� For all M+ j= DB+ there exists M j= DB such that M � M+. In particular: for allM+ 2MM(DB+) there exists M 2 MM(DB) such that M �M+.� There may exist models M 2MM(DB) but no M+ 2MM(DB+) such that M �M+.Proof: Immediate in view of Theorem 1 and Corollaries 1 and 2 and Example 11.Consider the following example:Example 11 DB = fa_b; cg. DB+ = fa_b; c; a! bg. MM(DB) = ffa; cg; fb; cgg.MM(DB+) =ffb; cgg.Note that for a de�nite database the only relevant cardinality is that of its only minimal model.Adding a (positive) de�nite fact will result in extending the minimalmodel by adding that and otheratoms that were not previously derivable. The minimal model remains unchanged otherwise.When adding clauses to a DDDB, DB, the models may remain the same or some may attemptto expand. The expansion process may, however, render some of the expanded models nonminimalfor the updated theory and call for their removal (e.g. for being subsumed by other minimal modelsof DB+). There may be minimal models of DB that are not subsets of any model of DB+ . It isimportant to determine which query answers are monotonic (and the queries themselves are persistent[22]) and which answers are nonmonotonic (and queries based on them are not persistent [22]). Thiscan simplify inference revision after database updates. Next we explore this issue:Theorem 5 Let DB and DB+ be two states of a DDDB such that DB+ is the result of addingclauses to DB: DB � DB+ and Q be a generalized query such that Q = Body(Q)! Head(Q).8We assume that DB and DB+ are consistent. 26



� Assume that Q is true in all minimal models of DB (a SURE answer). If this is because:1. Head(Q) is true in all minimal models of DB then Q is true in all minimal models ofDB+ (Monotonic).2. Or else Body(Q) is false in some minimal models of DB then Q need not be true in allminimal models of DB+ (Nonmonotonic).� If Q is true in some, but not all, minimal models of DB (a MAYBE answer) then Q need notbe true in any minimal models of DB+ (Nonmonotonic).Proof: � Let DB+ be the result of updating DB by clause addition. If the added clause isnegative (denial rule) then by Theorem 1, MM(DB+) � MM(DB) and the result isclear. Otherwise, by Theorem 3, for anyM+ 2 MM(DB+) there is anM 2MM(DB)such that M �M+.1. If Head(Q) is true in all elements ofMM(DB) then Q necessarily holds for anyM+since M+ is a (not necessarily proper) superset of an element inMM(DB).2. If Head(Q) is true in only some elements ofMM�MM(DB), then it may hold forno element ofMM(DB+) if every one of the expansions of the elements ofMM, callthis setMM+, is subsumed by elements in the set (MM(DB+) nMM+). That is,if for allM+ 2MM+ 9M 2 (MM(DB+) nMM) such that M �M+. Therefore,property P may not hold for DB+.� If Body(Q) is false in some elements ofMM(DB) then Body(Q) may become true in theexpansions of such models and thus make the Q false if its head was not earlier satis�ed.Note that while the content of individual models grows monotonically with respect to databasegrowth (during the interval on which it is de�ned), the set of minimal models itself need not. Thecardinality of the minimal model set may decrease as a result of such updates. The overall e�ectwill be the nonmonotonic nature of some properties that are a�ected by this model pruning. It ispossible that the number of elements having the property will not decrease if the relevant models areretained (maybe after expanding) or may decrease when some of the relevant models are renderednonminimal.Corollary 3 Given a DDDB, DB, DB+ the updated version of DB by clause addition and a queryQ. Then:1. If Q is positive:� The SURE answer property is monotonic. If Q is a SURE answer in DB then it is alsoa SURE answer in DB+.� The MAY BE answer property is nonmonotonic. Q can be a MAYBE answer in DBbut not a MAYBE answer in DB+ .2. If Q is nonpositive (negative or mixed) then both SURE and MAYBE answers are nonmo-notonic. 27



Proof: Immediately follows from Theorem 5 and De�nition 2.14 of answers9.Example 13 Let DB = fP (a) _ P (b); Q(a); Q(b); P (c)_ P (d); P (d)! P (c) _ P (a)g.Q1 = P (a), Q2 = P (a) ^ Q(a), Q3 = (P (a) ^ Q(a)) _ (P (b) ^ Q(b)), Q4 = P (c) _ P (d),Q5 = Q(a)! P (a), Q6 = P (e)! P (a), Q7 = P (b)^ P (e)!?, Q8 = P (b) ^Q(b)!?.MM(DB) = ffP (a); Q(a); Q(b); P (c)g; fP (b);Q(a); Q(b); P (c)g;fP (a); Q(a);Q(b); P (d)gg.Consider DB+ = DB [ fP (b); P (c); P (e)g.MM(DB+) = ffP (b); Q(a); Q(b); P (c); P (e)gg.Q1 is a MAYBE answer in DB but not in DB+ .Q2 is a MAYBE answer in DB but not in DB+ .Q3 and Q4 are SURE answers in DB and DB+ .Q5 is a MAYBE answer in DB but not in DB+ .Q6 is a SURE answer in DB but not in DB+.Q7 is a SURE answer in DB but not in DB+.Q8 is a MAYBE answer in DB but not in DB+ .The monotonicity of the SURE answers for positive queries was established in [1] in the contextof de�ning the sub-implication which is also based on minimal model properties10. Our results showthat, in general, the monotonicity of answers depends not only on the query itself but also on theminimal model structure of the theory and how it relates to the query under consideration.The derivation of negative information under closed world reasoning (e.g. CWA, GCWA, EG-CWA, ECWA) [15, 7, 25] is based on the absence of certain atoms in the minimal models and itsnonmonotonicity is in line with the results of Theorem 5.We considered only addition updates but didn't limit ourselves to adding positive clauses. Non-positive clauses are allowed as well. Positive and mixed clause addition updates may change thestatus of individual minimalmodels in the transition (fromDB to DB+), when some of the minimalmodels of DB attempt to expand. Negative clauses, however, cannot cause model expansion. Theycan at most make minimal models of DB nonmodels of DB+ , as suggested by Corollaries 1 and 2,including making DB+ inconsistent.It is possible also to use similar reasoning to obtain monotonicity results, parallel to those dis-cussed here, for the case of no answers to queries. One may also consider the case when updates areperformed through clause deletions. However, we don't elaborate on these issues here.9A closely related result is the fact that reasoning under stable (and perfect) model semantics for the class ofdisjunctive databases with body negation (disjunctive normal databases) is nonmonotonic. Note that the set of stable(perfect) models is a subset of the set of minimal models of a database.Example 12 Let DB = fnotP (a)! S(a)g. The only stable (and perfect) model of DB is fS(a)g. Q = S(a) is true(derivable) under the stable (and perfect) model semantics. However, for DB+ = fP (a); notP (a)! S(a)g the onlystable (and perfect) model of DB is P (a). Q = S(a) is not true (not derivable) under the stable (and perfect) modelsemantics in DB+ and DB � DB+.The detailed study of this issue is beyond the scope of this paper since it is not relevant for the class of theoriesconsidered here (perfect, stable and minimal models are the same for DDDBs). This fact may be viewed as anadvantage of the minimal model semantics: SURE answers under this semantics are monotonic.10Even with the assignment of the intermediate truth value 1=2 (1 being true and 0 being false) to elements that areMAYBE answer of the query, as in [1], the nonmonotonicity is still observed by noting that the truth value assignmentmay decrease after a database update. 28



Once more, the information returned by a generalized query answering procedure based on modelgeneration can be utilized to decide the monotonicity properties of individual queries. As suggestedby Theorem 3 and the model tree structure for generalized queries depicted in Figure 8, it is easyto see that a query Q is monotonic if and only ifMM2 =MM(DB) for yes answers. Recall thatMM2 is the set of minimal models of DB in which the head of the query is true.In a sense, this is suggesting that the outlined procedure not only answers queries but alsomakes it possible tag them as monotonic/nonmonotonic in which case they may not need to berecomputed (no rechecking of constraints is needed) after an update, at no extra cost. Once aquery is tagged as monotonic, future database updates will not a�ect its status and it need not bechecked any more. This can be employed to enable incremental integrity constraints checking [16]and/or incremental construction of the minimal model tree for a theory. After an update, onlynonmonotonic rules (queries) need to be rechecked. If not satis�ed then further additions may beinitiated to guarantee their satisfaction11. Actually, one may reduce the granularity by relating themonotonicity of individual clauses to individual models. However, the gain achieved by incrementalchecking needs to be weighted against the overhead cost of maintaining the necessary tables.We note here that the source of nonmonotonicity for MAYBE answers to positive queries iscon�ned to the disjunctive component of the database. Atoms that are de�nite, and consequentlyoccur in every minimal model of the database, are monotonic by the virtue of them being SUREanswers to a positive query. They cannot change status as a result of (clause addition) updates.Only inde�nite atoms of the Herbrand base exhibit the nonmonotonic behavior. Any growth ofthe database will keep the set of derivable atoms as is or increase it (assuming the change keepsthe database consistent). The Herbrand base is partitioned into two sets of atoms: those that aremonotonic (de�nite) and those that are nonmonotonic (occur only in inde�nite minimal clauses).Therefore, to determine the e�ect of an update on the status of di�erent atoms of the Herbrandbase revisions can be con�ned to atoms with only disjunctive occurrences in the theory (atoms thatoccur in a non-unit clause of the minimal model state of the database [12])The nonmonotonicity of MAY BE answers under the model state representation is reected inthe fact that while (clause addition) updates cannot shrink a clause derivable from the current stateit can nevertheless generate a clause subsuming it. Therefore, an atom occurring in the minimalclause structure of the original database may have no occurrences in the representation of theupdated theory. SURE answers on the other hand are monotonic. A clause corresponding to aSURE answer can only be subsumed by a newly generated clause which doesn't change the statusof the SURE answer, although it may a�ect its minimality.6 Conclusion and RemarksWe presented an approach for generalized query answering under the minimal model semantics forthe class of range restricted disjunctive deductive databases. It is based on the use of a minimalmodel generating procedure . The concept of a query was extended to cover most classes of practicalimportance for database maintenance and exploitation. The e�ciency of the approach dependson the e�ciency of the used model generating procedure. Experiments with a prototype for our11Note that a monotonically satis�ed rule (a rule with a true head) acts like a query in that it adds nothing to theminimal model structure of the theory after an update. 29



procedure pointed to its e�ciency as compared with similar ones reported in the literature [17, 19].It was able to handle theories with large numbers of models [3]. Of course, since the procedureretains already generated minimal models for subsequent model generation, one should expect theperformance to degrade when the number of minimal models is very large. However, this is amajor improvement on approaches that produce models then compare them to detect nonminimality.Additionally, any e�ciency enhancement tuning of the model generating procedure will reect onthe query answering process outlined in this paper without a�ecting the reported theoretical results[17, 19, 29, 24]. Of course, the size of individual models can be large and the number of models willgenerally depend on the degree of inde�niteness of the theory. Adopting the model tree structure andoptimization techniques will enable sharing of atoms between models [6, 24]. An added advantage ofthe advanced approach is that it deals with a single class of theories, namely DDDBs, at all stagesof query evaluation. In principle, it is possible to convert queries to denials, and thus prevent theiractive participation in the model generation process, by moving head atoms to the body resultingin a normal disjunctive database. However, care must be observed when processing negative bodyatoms to ensure the correctness of the query evaluation process. Concepts like strati�cation andperfect models come into play [5, 29].Approaches based on model generation are bottom-up in nature and tend to explore a muchlarger than needed search space for answering a query12. In our case the extensive use of negativeclause addition to the theory can be viewed as a way to prune the search space and thus obtainshallower refutations. Additionally, we used the wealth of information returned by the outlinedapproach to re�ne the query answering process in more than one direction: to decide the minimalityof disjunctive answers and to isolate a minimal component of a nonminimal answers. The resultsreturned by the procedure were also used to determine the updates (e.g. in the form of grounddenial rules) that need to be incorporated into the theory so that to guarantee certain properties ofthe returned answers.We also made a distinction between SURE and MAYBE answers to a query. Both conceptswere de�ned in terms of minimal models. We presented some results regarding the monotonicityproperties of di�erent types of answers to di�erent classes of queries. SURE answers to positivequeries were shown to be monotonic relative to updating the database by clause addition. MAYBEanswers on the other hand were shown to have a nonmonotonic nature and therefore needed re-computation after database updates. While other types of queries exhibited nonmonotonic behaviorfor all types of answers considered, we de�ned the conditions under which the answers are monotonic.Determining if these conditions hold is a byproduct of the query answering process. This was shownto be useful for incremental construction of the minimal model structure of the theory.The de�nition of a MAYBE answer adopted here di�ers from the maybe components of theI-tables and M-tables in [10] and [11]. There, A is a maybe answer if it occurs in a positive clausederivable from the database even when all such clauses are subsumed by others not containing A.A need not be in some minimal model of the current state of the database (or a component of aminimal inde�nite answer) although it may have been in such a model at an earlier stage. In essence,that is treating disjunctions inclusively rather than exclusively as we do in our case which is based onminimalmodels. The approach in [10] and [11] relies on minimal model constructs as well to derive12Reference [28] o�ers an approach to using a minimal model generation procedure to perform top-down answeringof positive queries in disjunctive deductive databases. 30



sure answers. However, maybe components are not based on a minimal model characterization butrather on the syntactic structure of the (historical) database (and on the inclusive interpretation ofdisjunctions). We believe that basing sure answers on the minimal model structure that naturallyassumes an exclusive interpretation of disjunctions while basingmaybe answers on syntactical historyof the database and an inclusive interpretation of disjunctions will complicate closed world inferencesand may not be appropriate for all types of real life disjunctions. It may result in an atom classi�edboth as a possible/maybe answer and belonging to the database completion, which are, in our view,two not compatible properties. The structures developed for maintaining the ground clauses of theextended relational database in [10] and [11] (I-tables, M-tables) may be utilized as appropriatedata structures in our approach. The minimal model generation algorithm described here may alsobe utilized to generate the information content (minimal model structure) of the these tables.Our de�nition also di�ers from that of a possible (pos) answers of [23], which, while relying onthe derivability of the answer from certain components of the database, does not limit itself to thecase of minimal models of the theory. Certain possible answers may be in no minimal model of thetheory but in some disjunctive clause possibly subsumed by another clause of the theory.Basing the de�nition of an answer on nonminimal models or on structures that are not modelsof the current state of the database necessitate rede�ning the concept of database closure (GCWA,EGCWA, ECWA) [15, 7, 25] which are de�ned in terms of the minimalmodel structure of the theory.In a DDDB context, the maybe and pos atoms of [10] and [23] (with possible participation ofde�nite data) will still participate in generating new atoms with a similar truth assignment, similarto the MAYBE answers in our case. An advantage of basing (maybe and pos) on syntactic featuresis better monotonicity behavior that is not enjoyed by the MAY BE answers as de�ned here.The issue of minimality of answers addressed here was addressed in other approaches to queryanswering as well [14]. In addition to the modi�ed notion of an answer, our approach tries toexploit the properties of the model generating process and the order it imposes on the minimalmodels returned to determine the minimality of answers rather than using multiple applicationsof the model generation procedure to subsets of the required (ground) answer. Testing for answerminimality when the minimal model state is used is part of the query evaluation process and comesat no additional cost.The approaches for e�cient query evaluation discussed in [26, 4] can be applied as pre-processingstep in our approach.The use of a similar approach to answering queries under di�erent database semantics such asstable and perfect semantics and the development of an integrated system based on using minimalmodel generators for di�erent aspects of database processing such as integrity enforcement are amongthe possible topics of future work.AcknowledgmentsI thank F. Bry for useful discussions and suggestions on the topic of this paper. This researchwas done while the author was visiting with the PMS-Group at the Institut f�ur Informatik, LMUM�unchen on an Alexander von Humboldt Research Fellowship. The support of the PMS-Group andthe Alexander von Humboldt Stiftung is appreciated.31
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