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Abstract

Minimal models underly one of the major semantics for disjunctive theories and a substantial
research effort was directed at minimal model reasoning. In this paper we investigate the process
of generalized query answering under the minimal model semantics for the class of Disjunctive
Deductive Databases. We cover several classes of queries that are of practical importance for
database maintenance. Answers that are true in all and those that are true in some minimal
models of the theory are considered and their monotonicity properties are discussed. Our
approach is based on having the generalized query induce an order on the models returned by a
sound and complete minimal model generating procedure. This makes it possible to introduce
refinements to the query answering process such as allowing the specification of conditions under
which a query becomes derivable from the database and checking for answer minimality.

1 Introduction

Minimal model semantics was one of the first to be defined for disjunctive theories[15, 12]. Tt is a
natural extension of the semantics usually adopted for the definite case. Several of the model classes
defined under other semantics, such as the perfect and stable models for digjunctive theories with
body negation, are subsets of the minimal models of the theory and reduce to the minimal models
in the absence of body negation.

Minimal models proved to be important for defining database completion: the mechanism to
avoid the explicit storage of negative data. The Closed World Assumption which makes it possible
to assume a negative ground atom of a Horn theory if it is not derivable was extended to the case of
disjunctive theories [18, 15]. The extension was defined in terms of minimal models. Limiting our
attention to the class of minimal models of the theory reconciles the concepts of derivability in all
models and in all minimal models of the completed theory for positive and negative formulas [21, 25].

Model generating procedures have been used both for conventional theorem proving tasks [13]
and to construct representations of a theory in terms of its minimal model structure and its set of
minimally derivable ground clauses (minimal model state) [6, 24, 27]. One problem is that the static
model representation of the theory is sensitive to minor updates: an update may require a radical
modification of the model structure. Such an alternative representation is not really adequate since



one may need to consult the original clausal theory to correctly reflect the effect of updates on the
model structure. The close connection between the minimal model structure of a database and
the set of minimally derivable ground clauses is well established [20, 27]. This connection makes
it possible to switch between representations based on these concepts and to utilize them both to
achieve efficient query processing.

Adopting minimal model semantics makes 1t natural to use minimal models in defining query
answers. There can be more than one type of answer depending on the number of models in which
the query is satisfied. It is of interest to determine the properties of various answer types including
the monotonicity of their behavior. This is important for predicting the effects of database updates
on repeated answering of a generalized query. Another issue that arises when answering queries
against disjunctive databases is the minimality of answers since indefinite answers are possible. A
good query answering procedure must try to return only minimal answers or to identify the minimal
components of a nonminimal answer.

In this paper we present an approach to generalized query answering based on minimal model
generation. The queries covered include those of importance for database maintenance and exploi-
tation. The approach is based on having the query induce an order on the models returned by a
sound and complete minimal model generation procedure. This order is used to answer the query,
to check for answer minimality and to refine the query answering process by specifying updates that
will make the query derivable. We also address the issue of answer monotonicity for the different
classes of queries and answers considered.

The rest of the paper is organized as follows. In the next section we give some relevant definitions
and describe a class of model generating procedures that will later be used for query answering. We
define the concept of a generalized query and two classes of query answers: those {rue in all minimal
models and those that are ¢rue in some minimal models. In Section 3 we address the issue of using a
minimal model generating procedure for generalized query answering. We also point to the possible
use of an alternative representation based on the minimally derivable ground clauses to answer
queries. In Section 4 we refine the process so that it is possible to return conditions under which
the query becomes derivable/nonderivable and to designate a minimal component of a nonminimal
answer. In Section 5 we discuss the monotonicity properties of the generalized query answering
process for the classes of queries and answers considered. In section 6 we comment on the merits
of our approach and compare it with others discussed in the literature and point to the possible
extensions and further research.

2 Preliminaries and Background Material

In this section we review some of the basic concepts related to query answering in disjunctive
deductive databases. We assume familiarity with the basic concepts as outlined in [12] and therefore
limit ourselves to the basic material needed for the results presented in this paper.

Definition 2.1 A disjunctive deductive database (DDDB), DB, is a set of clauses of the form:
C=AV---VA, — BIA...ABy,

where myn >0 and the As and Bs are atoms in a First Order Language (FOL) L with no function
symbols. C' is positive if n =0 and denial (negative) if m = 0.



The Herbrand base of DB, HBppg, i1s the set of all ground atoms that can be formed using
the predicate symbols and constants in £. A Herbrand interpretation' is any subset of HBpp. A
Herbrand model of DB, M, is a Herbrand interpretation such that M = DB (all clauses of DB
are true in M). M is minimal if no proper subset of M is a model of DB. The set of all minimal

models of DB is denoted by MM(DB).

Definition 2.2 A clause C is range restricted if every variable occurring in the head of C also
appears in a the body of C'. A database s range restricted iff all its clauses are range restricted.

In this paper we assume the theory to be range restricted.

2.1 Minimal Model Semantics

Under the minimal model semantics the meaning of the database is defined by its set of minimal
models. A formula is a consequence of a theory if and only if that atom is true in every minimal
model of the theory.

Definition 2.3 Two DDDBs DBy and DBs are minimal-model equivalent if and only if they have
exactly the same set of minimal models. DBy =, DB iff MM(DB1) = MM(DB>).

Usually, negative information is not explicitly expressed in the database. Default rules are used
to derive negative information. For definite databases the Closed World Assumption (CW A) is
usually used [18]. Under CW A an atom A is assumed to be false iff A is not in the unique minimal
model of the database. C'W A is not applicable to DDDBs since it may produce inconsistent results.
For DDDBs the rule used to define negated atoms is the Generalized Closed World Assumplion
(GCW A) which is an extension of the CWA rule to the disjunctive case [15]. GCW A is able
to consistently define those atoms whose negation can be assumed to be {rue in the database. To
assume negative clauses the Ertended Generalized Closed World Assumption (EGCW A)is used[25].
The default rules for the disjunctive case are formally defined as follows:

Definition 2.4 [15, 7, 25] Let DB be a DDDB. Then CWA(DB) = {-A;V---V-A,|A4; € HBpp
and n >0 and A a minimal model of DB, M such that {A; A---ANA} C M}
n always equal to 1 gives the GCWA and allowing arbitrary values for n results in EGCWA.

The completed database refers to the set of positive and negative ground clauses derivable from
DB when the derivation process is augmented by the appropriate default rule for negation. We
adopt the EGCWA because of the following result:

Lemma 1 [25] Let DB be a DDDB. Then DB® = DBU EGCW A(DB) has as its models the set
of minimal models of DB. That is, M |= DB® iff M € MM(DB).

Definition 2.5 Given an inclusion free finite set of finite interpretations T it is always possible to
construct a positive ground theory DBz such that MM(DBz) = Z. The subsumption free version
of DBz is the minimal model state of DBz, MS(DBz) [12].

TAs is common in the field, an interpretation is identified by the set of ground atoms assigned true in that
interpretation. All other atoms of the Herbrand base are assigned false.



A procedure to construct the theory DB for 7 is to produce all clauses containing at least one
atom from each element of 7. Removing subsumed clauses will produce the minimal model state.

In [27] it was shown that it is also possible to construct the minimal model state by the application
of a complete minimal model generation procedure to the set of models 7 provided we treat the
elements of 7 as clauses (the clause corresponding to an element of I € 7 is the disjunction of the
atoms of T).

Definition 2.6 If C' = A1 V ...V A, is a disjunction of atoms, then by Neg(C) we denote the set
of clauses in implication form Neg(C) :={A; — L, .., A, — L}, If M = {Ay,..., As} is a finite
interpretation then Neg(M) denotes the clause in implication form Neg(M) = A1 A ... AN A, — L.

Definition 2.7 If DBy and DBy are sets of ground clauses then by DB = DBy V DBy we denote
the set of all clauses we get by expanding a clause in DBy with a clause in DBy and removing
duplicates. That is, DB = {A1V ...V Ay|A11V ..V A1 € DBy, A1V ...V Ay, € DBy, and
{41, Ant={4d11, .., A} U{421, ..., Ay m} and A's are ground atoms}

Lemma 2 [26F Let DB be a theory with the set of minimal models MM(DB). Let MM, and
MMy be a partition of MM(DB) such that MMy UMMy = MM(DB) and MM NMM, = 0.
If DB; denotes MS(MM,;) then MM(DB) = MM(DB, V DBy).

2.2 Model Generation

The main results of this paper are based on using model generating procedures with certain proper-
ties [3, 24]. We extensively utilize denial clauses (rules with empty heads) to impose an order on
the generated models by restricting the search space in certain branches.

Definition 2.8 Given a« DDDB, DB, and a model generating procedure P, by P(DB) we denote
the result returned by P run with DB as input. We say that P is:

1. Sound: if it returns only models of DB: YM € P(DB), M &£ DB.

2. Minimal-Model sound if it returns only minimal models of its input: P(DB) C MM(DB).
3. Complete: if it returns all the minimal models of DB: MM(DB) C P(DB).

4. Strict: of it returns no duplicates.

Next we give a brief description of successively refined model generating procedures that are
sound and complete [3]. Given a DDDB, DB, each of these procedures constructs a tree (model
tree) with the ground unit clauses in each root-to-leaf branch representing a model of DB. The
completeness implies that the tree has at least one branch representing each minimal model of DB.

Starting from T as the root, the procedure expands a tree for a range restricted DDDB, DB, by
applying the following expansion rules:

Definition 2.9 (expansion rules) Let DB be a DDDB. If the elements above the horizontal line
are i @ branch B then B can be expanded by the elements below the line.

2 A stronger version of this Definition holds where the subsets of the minimal models need not be disjoint.



Positive unit hyper-resolution (PUHR) rule: Splitting rule:

By EiV B,

: Ey | B
B,

Eo

where o 1s a most general unifier of the body of a clause
(ALN . NA, — E)€ DB with (By, ..., By).
{Al, ceny Am}O' = {Bl, ceny Bn}

Note that the splitting rule is always applied to ground disjunctions. This is possible since our
theory is range restricted. The head is always ground when the body is ground (or empty).

Definition 2.10 (model tree) A Model Tree for a DDDB, DB, is a lree the nodes of which are
sets of ground atoms, disjunctions and denials constructed as follows:

1. {T} is the top (root) node of the tree.

2. If T is a leaf node in the tree for DB, such that an application of the PUHR rule (respectively
splitting rule) is possible to yield a formula E (respectively, two formulas Ey and Ea) not
subsumed by an atom already in the branch, then the branch is extended by adding the child
node {E} (respectively the two child nodes {E1} and {F2}) as successor(s) to T.

While the above definition imposes no order on the node expansions, we elect to maintain an
order that will later be exploited for defining the properties of the generated tree.

Definition 2.11 (conventions for model generation) When ezpanding a model tree we assume
that the procedure adheres to the following rules:

1. Always select By for splitting a disjunction (E1V E3) to be atomic.
2. Ezpand the leftmost atom of a disjunction first.

3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding the
remainder of the clause, if any, to the top of the theory to be processed in the sibling branch).

We always expand left branches of the model tree first. Our interest is only in branches with no
occurrences of false (open branches). The branch expansion is stopped when false (L) is added (the
branch closes). Only (ground) disjunctions that are not subsumed in the branch are expanded to
avoid unnecessary expansions. The expansion continues until no new expansions are applicable (all
branches are saturated). A branch represents the interpretation in which all (ground) unit clauses
on that branch are assigned the truth value {rue. For the class of of range restricted DDDBs the
procedure is sound in the sense that all tree branches represent models of the theory and complete
in the sense that the tree has at least one branch representing each minimal model of DB. However,
not all branches represent minimal models and some branches may be duplicates [3].



P(a) v P(b)
| |
P(b) v P(d) P(a) Vv P(c)
/ \
P(b) P(d) P(a) P(c)
|
P(a) Vv P(d)
/ ™~
P(a) P(d)

Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).

Example 1 Let DB be the following set of clauses:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) vV P(d)
Figure 1 is a model tree for DB. The minimal model {P(a), P(b)} of DB is generated twice. The

tree also has a branch with the nonminimal model {P(a), P(b), P(c)}. Among others, all minimal
b

models of DB, i.e. {P(a),P(b)}, {P(a), P(d)}, and {P(b), P(c), P(d)} are generated.

Further, it was shown that replacing the splitting rule by the following one called Complement
Splitting Rule preserves the completeness and soundness of the model generating procedure.

Definition 2.12 (complement splitting rule)

EyVE,
E1 | E2
[Neg(E2)] |
The adoption of this rule tends to reduce the search space by closing (adding false to) branches

before they grow into complete nonminimal or duplicate models. Besides, the first (leftmost) model
generated by a procedure using this rule is minimal.

Example 2 Let DB be the set of clauses of Example 1:
T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) vV P(d)

Figure 2 gives the model tree for DB. The models of this tree are { P(a), P(d)}, {P(b), P(c), P(a)},
{P(b), P(a)}, and {P(b), P(c), P(d)}. Note that although some are not minimal, no duplicates are
returned and the first model is minimal.



P(a) v P(b)
/
[P(b) — 1] \ P(b)
P(a) ‘
|
P(b) v P(d) P(a) v P(c)
/ N - g
[P(d) — 1] P(d) [P(c) — 1] P(e)
P(b) P(a) ‘
|
[L] P(a) v P(d)
-
[P(d) — L] P(d)
P(a)

Figure 2: The Model Tree with Complement Splitting for Example 2.



P(a) v P(b)
/ \
[P(b) — L] < Pla)AP(d) — L >
P(a) P(b)
| |
P(b) v P(d) P(a) v P(c)
RN T
[P(d) — 1] ‘ [P(e) — 1] < P(B)AP(a)— L >
P(b) P(d) P(a) P(c)
| |
(1] P(a) v P(d)
/ \
[P(d) — 1] P(d)
P(a)
|
<Ll>

Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.

If additionally, for each minimal model, M, generated so far we augment the theory by the
negation of M, (< Neg(M) >), then we achieve a model generating procedure that is minimal
model sound and complete. It returns all and only minimal models of its input theory.

Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the set
of clauses of Framples 1 and 2:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Note that all models returned by the procedure are minimal.

Given a DDDB, DB, with the top clause C' = A1 V...V A, the procedure will generate the set of
minimal models of DB rooted at T with the first (leftmost) branch containing the minimal models
with A; and none of As, ..., A4, the second branch containing the minimal models with A», possibly
Ay and none of {As, ..., A,}, the i"" branch with minimal models with A;, possibly some Aj, 5 <t
and none of {A4;41,..., A,}. The last branch contains A, possibly with other atoms of C.

[3] contains a Prolog implementation of a series of procedures, for the class of range restricted
theories with finite minimal models, called: Satchmo for the program with splitting [13], CS-Satchmo
for the implementation with complement splitting and MM-Satchmo for the implementation with
model minimization (by including negation of generated minimal models).



2.3 Queries, Answers and Minimal Model Semantics

Given a DDDB, DB, the definition of the answer to an atomic query P(z) against DB makes it
necessary for a digjunction of atoms with predicate P to be derivable from DB. a; + ...+ a, is an
answer to P(z) iff DB | P(a1) V ...V P(ay). If minimality is needed then it must additionally be
the case that DB [£ P(a1) V ...V P(an,) for m < n. Minimality may be needed so as not to get too
many subsumed answers.

If such a disjunction (pure in predicate P) is not derivable then no answers are assumed (or
reported) although mixed clauses (containing atoms in P together with other predicates) may still
be minimally derivable. That is P(x)|o for some substitution ¢ may be in some minimal models
of DB when no answers to the query are reported. This asymmetry can be criticized as unfair
to mixed clauses that can be used to describe disjunctive information in the database[2]. Clauses
with a single predicate are a major source of disjunctive information in the database (P(a)V P(b)
- we know that the phone number is @ or b but we are not sure which), but they need not be the
only source. Consider the case when we know the phone number of a person (it is @) but are not
sure whether it is a voice phone or a fax P(a) V F'(a). It may be worthwhile for a query answering
procedure to state that a belongs to the person and that he/she can be reached at it (voice or fax).
This statement may be more informative than having two possibilities for his phone: one is his own
number and the other is not. For that we modify the definition of an answer to account for the
admissibility of mixed clauses minimally derivable from DB to generate answers.

To accommodate answers that are true in only some minimal models of the theory, we elect
to define two concepts of an answer to a query: SURE which is the traditional one and refers to
substitutions that make the query #rue in all minimal models of DB and M AY BE answers referring
to substitutions that make the query ¢rue in some minimal models of DB. Clearly, for SURE answers
it is worth distinguishing definite and indefinite answers while for the M AY BE case this distinction
is, in general, less useful® .

Definition 2.13 (syntactic definition of an answer) Let P(z) be an atomic query against DB.

o The set {ay,...,an} (written also as, a1 +...+ap ) is a SURE (minimal SURE) answer to P(x)
iff DB derives C'= P(a1) V...V P(an). Or equivalently, if C is in the Model State of DB.

{a1,...,an} is @ minimal SURE iff DB + C and DB ¥/ C' such that C' subsumes C. Or
equivalently, if C' 1s wn the Minimal Model State of DB.

o A constant a is a MAY BE answer to P(z) iff DB minimally derives P(a) V C for some
positive clause C' not derivable from DB (DB If C). Or equivalently, if P(a) occurs in the
Minimal Model State of the theory.

Definition 2.14 (semantic definition of an answer) Let P(x) be an atomic query against DB.

o The set{ay,...,an} is a SURE answerto P(x) iff P(a1)V..VP(ay) is true in all minimal models
of DB. {ai,...,an} is minimal if, additionally, Ya; IM € MM(DB) st. a; € M and ¥Vj #
i, aj ¢ M.

30One may take the number of models in which a formula is true as a measure of its closeness to being a SURE
answer. This is not pursued here.



e ais a MAY BE answer to P(x) iff P(a) is in some minimal models of DB.

It 1s straightforward to extend these definitions to the case of disjunctive and conjunctive queries:
queries that are digjunctions of atomic queries and conjunctions of atomic queries, respectively. The
syntactic and semantic definitions of SURE and M AY BE answers are equivalent [25].

Example 4 Consider DB = {P(a)V P(b), P(c), P(d) vV R(a)}, and the Query P(x). {a+ b,c}
are (SURE) answers to P(x) while d is not. a and b are MAY BE only answers and under our
definition so is d. Note that d s not part of any SURE answer of the query.

We will also be interested in yes/no answers to general ground queries.

Definition 2.15 (elementary generalized query) An elementary generalized query is a ground
clause: 1t is positive if the head is empty, negative if the body is empty and mized otherwise.

Definition 2.16 (positive/negative queries) We say that a query Q is positive (negative) if it
can be translated into a set of positive (negative, denial) clauses. Q is mizved if it is neither positive
nor negative.

Clearly, Atomic, Conjunctive and disjunctive queries are all positive queries. For a query @, by
{@} and Neg(Q) we denote the set of clauses that represent ¢ and the negation of @, respectively.

Definition 2.17 (query answer) Let DB be a DDDB and let Q be a ground query*.

e () is a SURE answer in DB ff Q s true in all minimal models of DB.
@ s minemal if, additionally, no proper subset of Q) 1s a SURFE answer in DB.

e () isa MAY BE answer in DB iff Q) is true in some minimal models of DB.

Clearly, every component of a minimal SURE answer is also a M AY BE answer and every
MAYBE answer is a component of a (minimal) SURE answer to a query. For positive queries the
concepts of derivability and being true in all minimal models coincide [17, 21]. Since any superset
of a minimal SURE answer 1s a SURE answer, we are particularly interested in minimal SURE
answers.

It is generally desirable that a query answering procedure be able to return the most strict
answer possible, unless instructed otherwise. A SURE answer cannot be reported as M AY BE
and nonminimal answers are not to be returned (at least have to be labeled as nonminimal with
identification of the minimal answer component).

Theorem 1 Let DB be a DDDB, I be an interpretation and C be a set of ground denial rules
(constraints): C = {C': Ay A....ANA, — L, where A; are ground atoms, i = 1..n for some n}; then:

4If Q is positive clause then (along the lines of the syntactic characterization of an answer given in Definition 2.13)
it is a SURFE answer iff it is derivable from DB or equivalently, iff it is in a the model state of DB. ) is a minimal
SURE answer if additionally no subset of @) is derivable from DB or equivalently, iff it is in the minimal model state
of DB. @ is a M AY BE answer iff one of its atoms occurs in the minimal model state of DB.

10



1. If C is violated in I then it is also violated in all supersets of I. That is if I = C then I' [£ C,
for all I' such that I C I'.

2. Assume I =C then: I=DBUC if IEDB and I [ DBUC iff I £ DB.

Proof: Recalling that a denial rule (negative clause) is satisfied in 7 iff an atom of its body in not
in I the proof is straight forward [3]. [

As a counterexample for the case of nondenial rules consider DB = {P(a)}, the constraint
P(a) — P(b) and the interpretations {P(a)} and {P(a), P(b)}. Only the latter satisfies the cons-
traint.

Corollary 1 Let DB be a DDDB, M be a set of models of DB such that MM(DB)NM = MM,
and DB_pq = DBU{Neg(M)|M € M}. Then: MM(DB_p) = MM(DB)\ MM;.

Proof: Given two distinct minimal models of DB, M7 and Ms, clearly M1\ My # 0 and Mo\ M; # 0.
Therefore, My [ Neg(My) and My = Neg(Ms).

A model of DB_q 18 also a model for DB C DB_. If M is not minimal for DB then
M’ C M is a minimal model for DB. As a subset of M, M’ satisfies all elements of DB_ 5.
A contradiction. [ ]

The essence of Corollary 1 is that the addition of the negative clauses corresponding to non-
minimal models of the theory has no effect on the minimal model structure of the theory. Only
negative clauses corresponding to minimal models (or subsets of them) can affect the minimal model
structure. Special cases of Corollary 1 are the following:

o If M is complete: MM(DB) C M then MM(DB_ ) = 0.

o If M contains no minimal models: MM(DB) N M = § then MM(DB_ p) = MM(DB).
Corollary 2 Let DB be a disjunctive theory and let C be a set of denial rules. Then:

1. If M is a munimal model for DB UC then M s a minimal model for DB alone.
MM(DBUC) = MM(DB)\{M : M [£C}.
IfC={Neg(M)|M € MM(DB)} then MM(DBUC) is inconsistent (MM(DBUC)=10).

If C1,...,Cy are sets of denial rules such that C,, C ... C Cy . Then:
MM(DBUC) C...C MM(DBUC,).

Corollaries 1 and 2 show that the addition of denial constraints can change the status of models
to nonmodels but cannot affect the minimality of models.
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3 Query Answering

Two representations of the entire answer set of the theory are possible: one based of the set of
(minimal) ground clauses derivable from the theory and another based on the set of (minimal)
models of the theory. Answering positive queries can be based on the syntactic or semantic defini-
tion/representation.

Using the syntactic definition of an answer one can construct the Minimal Model State or the
Clause Tree for the database: a representation of DB in the form of a tree with branches corre-
sponding to the minimally derivable clauses of the database. These are the clauses that need to be
searched. It was shown that the minimal clause tree is the dual of the minimal model tree and either
of them, if ordered, can serve as a Normal Form for a DDDB [20, 27]. Under such a representation
of the theory, finding answers may be reduced to the process of a tree search for clauses with the
atoms of interest. We give a brief description of this approach at the end of paragraph 3.3 for the
completeness of the presentation.

The other approach is to use the semantic definition of the query answer and to utilize the
minimal model representation to search for answers. It is this approach, which is applicable to
generalized queries, that we elaborate on in this paper. We try to reduce the process of query
answering to the invocation of a minimal model sound and complete model generating procedure
(e.g MM-Satchmo [3]).

Using a minimal model generating procedure for query answering in disjunctive theories can be
done in two ways:

The first is to use a static representation of the theory in terms of its minimal models (say in the
form of a minimal model tree [6, 24]). The minimal model generating procedure is used to construct
such a tree and query answering is converted into searches in the tree. The representation is generally
independent of the query and special arrangements such as indexing or tree restructuring are needed
to facilitate the search for elements of the query in the tree. If the theory changes state then the
minimal model generating procedure can be used to regenerate the minimal model structure. The
drawback is that one may need to store two representations of the theory. The original (clausal)
one and the minimal model representation since the two representations are only minimal model
equivalent but are not equivalent in the more general sense. To demonstrate this point consider the
following example:

Example 5 Consider the DDDB, DB = {P(c), P(a) — P(b)} with the only minimal model {P(c)}.
Updating DB by adding P(a) will have different results in the two representations. It gemerates
{P(c), P(a)} and {P(c), P(a), P(b)} for the minimal model and clausal representations of the updated
theory, respectively®.

If updates are frequent then reconstructing the minimal model tree may become costly.

The second way is to retain only the clausal representation and generate the minimal models,
possibly in a query induced order, at query answering time. We concentrate on this approach
here and show that it can be useful for the incremental construction of a static minimal model
representation.

5This could be looked upon as the satisfiability of clause P(a) — P(b) being nonmonotonic for clause addition
updates of DB. In Section 5 we address this issue and discuss the conditions the satisfiability property is monotonic.
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3.1 Answering Positive and Negative Queries

The standard approach for query answering is to try to refute the theory augmented by the negation
of the query. For positive queries the negation is in the form of negative clauses or denial constraints
(headless clauses in implication form). Minimal model reasoning is the same as reasoning under “all
models semantics”. It was shown that a complete minimal model generating procedure is sound
and complete for refutations (for DDDBs) [13, 3]. However, minimal model generation produces
information that can be used to enrich the query answering process.

Theorem 2 Let DB be a DDDB and @) be a positive query. Then:
MM(DB) = Min(MM(DBU Neg(Q)) UMM(DB U{Q}),
where Min(S) returns the set of minimal elements of the set S.

Proof: (—) Let M € MM(DB). Either M = Q and M }£ Neg(Q): M € MM(DBU{QR}) and
is also in Min(MM(DBU Neg(Q)) U MM(DBU{Q})).

Orelse M = Neg(@) and M = Q. M € MM(DBUNeg(Q)) and is also in Min(MM(DBU
Neg(Q)) U MM(DB) U{Q}).

(—)Let M € MM(DBU{Q}). Two cases are possible: M € MM(DB) and M ¢ MM(DBU
Neg(®)) and therefore M € Min(MM(DB U Neg(Q)) U MM(DBU{Q}). Or else, M is a
nonminimal model of DB. There exists M; C M such that My € MM(DB). M, £ Q. M, =
Neg(®). M1 € MM(DBU Neg(Q)). My € Min(MM(DB U Neg(Q)) UMM(DBU{R})).

If M € MM(DB U Neg(®)) then it is also a minimal model of DB by Theorem 2 since
Neg(Q®) consists entirely of denial rules. m

The proof of Theorem 2 shows that for a positive query model subsumption (if any) is unidirec-
tional: minimal models of the theory augmented by negative clauses (DB U Neg(Q)) can subsume
minimal models of DB U{@} but not the reverse. This is so since a model of DB U Neg(@) has no
elements of () while DB U {Q} must have some. This is demonstrated by the following example:

Example 6 Consider DB = {P(a) — P(b)} and the query Q@ = P(a). DB has the only minimal
model {}. The minimal model for DBU{=P(a)} is {} while the minimal model for DBU{P(a)} is
{P(a), P(b)} which is subsumed by {}.

Note, however, that MM(DB) = Min(MM(DBU Neg(Q)) U MM(DBU{Q}) ={}.

Another point proved by Theorem 2 is that the models abandoned during the model generation
process for DB U Neg(@) have no influence on the minimality of the models in the other branch
(DB U{®}). Such models are abandoned for not satisfying Neg(Q). They must satisfy @ and
are bound to appear in the other branch (by completeness of the procedure) resulting in a correct
minimization process.

When only SURE answers are needed one can run MM-Satchmo on DBUNeg(Q). Substitutions
for the variables in @ that generate a closed (empty) tree are SURE answers. No more cases need to
be considered. When we are interested in M AY BE answers as well as more refined query answering,
more cases need to be considered. Theorem 2 suggests a simple procedure for answering positive
queries posed to DB. Partition the set of minimal models of DB into two sets: one in which @ is
true and the other in which @ is false. The way is to run two MM-Satchmo processes (Figure 4):
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e The first process of MM-Satchmo will operate on the set union of the theory DB and the
negation of the query under consideration: DB U Neg(Q). We denote the (possibly empty)
set of minimal models returned by this application of the procedure by MM(DB)ycy(q)-

e The second will operate on the set union of the theory DB, ) and the constrains corre-
sponding to the minimal models returned by the first process: DB U {Q} U {Neg(M)|M €
MM(DB)negq)}- We call the (possibly empty) set of minimal models returned by this
application of the procedure MM (DB)q;} .

The constraints in the second process are used to remove the models that satisfy @@ but are not
minimal for DB alone. If the second process is run without the constraints it is easy to note that
nonminimal models can be returned since models of the second process can be subsumed by the
models of the first. This was demonstrated by Example 6 above [3, 24]. So the two processes are
not independent.

It is easy to see that, in the second branch, one can avoid adding the positive query to the theory
since the minimal models that are produced by its presence and that are not models of the original
theory will anyway be deleted by the integrity constraints corresponding to the models generated in
the first branch. However, later we will exploit the presence of ) to impose a certain order on set
of minimal models generated.

The entire process may be viewed as equivalent to augmenting DB with the clause =Q V @, a
tautology, and therefore a minimal model preserving modification to DB. From the implementation
point of view the invocation may consist of prepending the clauses {¢V @, ¢}, where € is an atom not
occuring in DB that will be discarded in all resulting models. The left branch (first process) will
have ¢ and Neg(Q) (by complement splitting of € V ) while the right branch (second process) will
have only {@, €}. The effect of atom € in the left branch is offset by the clause ¢ in the right. The
first (left) process will generate the minimal models of the theory in which the query is not satisfied.
The second process will return the minimal models of the theory satisfying the query. This will give
us better flexibility in answering such queries. The structure of the resulting tree is displayed in
Figure 4. If DB is consistent (MM (DB) # 0), we can have the following possible cases:

L. MM(DB)neyq) = MM(DB) and MM(DB);qy = 0. That is, the first process returns all
the minimal models of DB and the second returns no minimal models. In this case the query
is false in all minimal models of DB and its negation for the generated substitutions can be
assumed to be true under the Closed World Assumption.

2. MM(DB)qy = MM(DB) and MM(DB)neyq) = 0. That is, the second process returns
all the minimal models of DB and the first returns no minimal models. In this case the query
is true in all minimal models of DB (a logical consequence of DB). The substitutions in the
query will serve as, (not necessarily minimal) SURE answers.

3. MM(DB)Neg(q) # 0 and MM(DB)qy # 0. That is, each of the two processes returns some
minimal models of DB. In this case the query is {rue in some minimal models (MM(DB);qg})
and false in others ( MM(DB)ncy(@))- The resulting substitution is M AY BE answer.

Running two processes makes it possible to compare the models in each branch to the entire set of
minimal models. Without that one can only detect complete refutations. The absence of a refutation
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Figure 4: The Minimal Model Tree Structure for Positive Queries.

gives no indication about the number of models in which the query is satisfied. In our approach one
always have the entire set of minimal models. One may elect to have the procedure stop when the
first process generates no models on the assumption that the query is a logical consequence of the
theory. However, running the second process will have the added advantage of showing that there
are models for the theory and therefore it is consistent. Additionally we may want to use the second
pass to designate the minimal components of @) that are derivable from DB as will be elaborated
on in paragraph 4.1.

When @ is a negative query its negation, Neg(Q), is positive. The two copies of MM-Satchmo will
operate on () and Neg(Q®), in that order so that to maintain the unidirectional model subsumption
property. That is, we still process the negative component first. The results obtained for positive
queries can be applied here with the obvious modifications. For negative queries, the need for the
two branches is easy to see.

Consider the following example:

Example 7 DB ={T —aVba—cb—c,d—e}, Q1 =c, Qs =~d and Q3 = b.
e DBU{—c}F O. (DBU{-c} has no models).

e DBU{d} I/ O. (DB U {d} has the minimal models {a,c,d,e} and {b,c,d,e}). None of
these models is minimal for DB.DB U {=d} has the set of minimal models {{a,c}{b,c}}.
-d € GCWA(DB).

e DBU{=b}H O. (DBU{=b} has the only minimal model {a,c}, a minimal model for DB).

The corresponding trees are given in Figures 5, 6 and 7. Frample 13 offers more complex cases.

3.2 Mixed Queries

Mixed ground queries that contain both negative and positive atoms can be represented as a clause in
implication form with the conjunction of negatively occurring atoms as the body and the disjunction
of positively occurring atoms as the head. So let @ = Body(Q) — Head(Q) or @ = - Body(Q) V
Head(Q). @ is true in DB if all minimal models of DB satisfy @ and false otherwise. That is, @ is
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Figure 6: A Minimal Model Tree Structure for Q)3 = =d for Example 7.
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Figure 7: A Minimal Model Tree Structure for @3 = b for Example 7.

false if and only if there exists a minimal model of DB in which @Q is false: IM € MM(DB)|M =
Body(Q) and M £ Head(Q).

We use the order induced by the query on the minimal model set to find the elements in which the
query 1s falsified, if any. To retain the unidirectionality of model subsumption, we work with most
constrained theories first (Corollary 2). We start by searching for minimal models in which Head(Q)
is false by adding Head(Q)) — L to the theory to be expanded in the current branch. Denote the
set of these models by MM . The set of remaining minimal models of DB, those in which the head
of @ is true, is denoted by MMs. Clearly, MM(DB) = MM; U MMs. Further, we split MM,
into two sub-branches: first we find the set of minimal models in which Body(Q) is false by adding
Body(Q) — L and denote this set by MMM, ;. Then we find the minimal models in which Body(Q)
is true by adding Body(Q)) and the negation of all elements of MM, 1: {Neg(M)|M € MM 1}.
We call this set MM, 5. Figure 8 displays the model structure for the resulting tree.

Theorem 3 Under the above partitioning of the set of minimal models of DB induced by components
of Q(Figure 8):
o () is true in DB if and only if MM, 5 = 0.
Proof: The correctness of the model computation process is the result of computing most restricted
models first as required by Corollary 2.
Q) is satisfied by elements of MM by having Head(Q) satisfied.
@ is satisfied by elements of MM, 1 by having Body(Q)) falsified.
() can be falsified only by an element M € MM, 5 satisfying Body(Q)) while Head(Q) is
falsified in M. The result follows immediately. [ ]

Example 8 Let DB={T —aVe, T —bVeVe, T —ceVdVe c—dVe}, Q1 =aAb—cVd and
@:=alANd—cVe.

For Q1: MM 2 =0 and therefore Q1 is true in DB. The tree is given in Figure 9.

For Qq: MMy 5 = {{a,b,d}} and therefore ()2 is false in DB. The corresponding tree is given
mn Frigure 10.
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Figure 8: The Model Tree Structure for Nonpositive Queries.

It is easy to verify the answers by noting that MM(DB) = {{a,b,d},{a,e},{c,d},{c,e}}.

Note that a mixed query can be interpreted as an integrity constraint. Answering it is checking
for the satisfiability of the integrity constraint in the current state of the database. Satisfiability
of a constraint under the SURE semantics is interpreted as having it {rue in all minimal models
of the theory (theoremhood approach) [9]. One can elect to weaken this concept so as to give an
affirmative answer under the M AY BFE semantics when @ is satisfied in at least one minimal model
of DB. Clearly this will be the case when MM (DB) \ MM » = MM, 1 UMMy is nonempty®.

Answering @) in this case is integrity checking where the satisfiability of a constraint is interpreted

as having it {rue in at least one minimal model of the theory (consistency approach) [9].

Answering mixed queries can be treated as a generalization of other cases. Other queries are

special cases of the mixed query as follows:

e Positive queries have empty bodies: @) can be rewritten as T — ) and:

Head(Q) — L is Neg(Q),

Body(Q) — L is T — L: a contradiction.
Body(@) = T and adding it has no effect,
MM, 1 =0 (in view of item 2),

MM 2 = MMpyey(q),

Ot = W N

6The set MM(DB)\ MM, > is the set of minimal models in which the constraint (Q) is satisfied. This may be

interpreted as the set of the legitimate minimal models of DB given the constraint ) and its consistency interpretation.

The detailed treatment of this issue is beyond the scope of this paper.
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Figure 9: The Model Tree Structure for )1, Example 8.
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Figure 10: The Model Tree Structure for ()2, Example 8.
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|| # | Ttem | Positive Query | Negative Query ||
0 Query @ empty body: T — @ empty head: @ — L
1 | Head(Q) — L Neg(Q) adds nothing
2 | Body(@Q)— L | T — L: a contradiction Q
3 Body(Q) T, adding it has no effect Neg(Q)
4 MM, 0 (In view of item 2) MMy (In view of item 2)
5 MM, » MMy MM eg(g) (In view of item 3)
6 MM, MM gy 0, (Head(Q) = 1)

Table 1: Correspondence Between Mixed and Positive/Negative Queries.

6. MMz = MMq;.
e Negative queries have empty heads @) is @ — L,

Head(Q) — L adds nothing,

Body(Q) — L is Q,

Body(Q) is Neg(Q),

MMy = MMygy (in view of item 2),
MM 5 = MMy(q) (in view of item 3),
MMy =0, (Head(Q) = L1).

SO e W N =

These results are summarized in Table 1.

The common feature of the seemingly different classes: the class of positive and negative queries
and the class of mixed queries under the minimal model semantics is that the queries themselves are
not allowed to “actively” participate in the model generation process. No positive atom is added
to the model tree with the sole purpose of satisfying a generalized query. In this regard they look
more like integrity constraints and differ from positive facts and derivation rules which are used to
add atoms to the model tree. The generalized query answering process consists of checking that the
query holds in every minimal model of the theory. In a sense, the query is treated as an element
external to the theory: it may participate in ordering the tree branches or even closing them but not
in their expansion. The approach presented here can be viewed as a way to achieve this behavior.

Another point to stress is that while we used the collection of constraints corresponding to
generated minimal models to ensure minimal model soundness, other approaches for minimality
checking can be utilized [17, 29].

3.3 Query Answering with Minimal Model States

Given a DDDB, DB, one possible approach to use a model generating procedure for answering a
positive query is to use the duality principle to construct the minimal model state for the theory.
The minimal model state MS(DB) is the set of minimal ground disjunctions derivable from DB.
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Given such a representation, the process of query answering can be reduced to a search process in
the (tree) representation of the minimal model state.

In [27] it was shown that the minimal clause tree (the tree representation of the minimal model
state) of a DDDB, DB, is the dual of the minimal model representation of DB. Tt can be constructed
by applying a minimal model generating procedure to the set of minimal models of DB treated as
a set of clauses (or alternatively, to the set of minimal models when both clauses and models are
treated as sets of atoms).

So, the approach is to apply the minimal model generating procedure (say MM-Satchmo) a first
time to DB producing the set of minimal models MM(DB), then a second time to MM(DB)
to generate the set of minimal clauses of DB, MS(DB). The process of query answering is then
performed over MS(DB) and is basically a search process for the relevant clauses in MS(DB)
corresponding to the given query. Details on how to perform this operation are described in [27].

A point to note is that the first run of the procedure is applied to the database itself which in
principle can be any range restricted theory with finite minimal models (see [3] for how to deal
with non-range restricted theories). This is a more general class than the one presented in [27],
and encompasses a large subset of real life applications in the database field. The second run of the
minimal model generation procedure is applied to the set of minimal models produced at the first
stage. On the negative side, the set MM(DB) can be much larger than the set of elements in DB
and therefore the second application may be costly. On the positive side the elements of the set
MM(DB) are all ground. The groundness property can be exploited to make the second pass of
the model generating procedure more efficient [27, 17]. Consider the following example:

Example 9 [20] Let DB = {PATH(x,z), PATH(z,y) — PATH (x,y),
ARC(z,y) — PATH(z,y), ARC(a,b)V ARC(a,c), ARC(b,d), ARC(c,d)}.

Let Q1 = PATH(a,d), Q2 = PATH(a,z) and Q2 = PATH(b,d)V PATH (e, d).

The first run of MM-SATCHMO generates the set of minimal models:

MM(DB) = {M; = {PATH(a,d), PATH (a,b), PATH(b,d), PATH(e,d)},
Ms; ={PATH(a,d), PATH(a,c), PATH(b,d), PATH (c,d)}}. Clearly PATH (a,d) is in both mi-
nimal models and s therefore true in DB. Searching one can see that b+ ¢ i1s an answer to ()s.
Qs has a yes answer. Running MM-SATCHMO on the set of clauses {Cy = M = PATH(a,d)V
PATH(a,b)V PATH(b,d)V PATH(c,d),Cy = M& = PATH(a,d)V PATH(a,c)V PATH(b,d)V
PATH(c,d)} generates the set of minimal clauses:
MS(DB) ={PATH (a,d),PATH(a,c)V PATH(a,b), PATH(b,d), PATH (c,d)}.

Searching for the answers to both Q1 and Q2 as well as verifying that Q3 is ¢ nonminimal answer
15 straightforward.

Updates to the database will be reflected on the structure of its minimal state representation.
Therefore, these updates need to be propagated to the set of clauses derivable from the database
either through updating the clause tree to reflect the current state or by reconstructing the new
clause tree by twice applying the model generation procedure to the new state of the database. The
choice may depend on such factors as the frequency and nature of updates.

The fact that our definitions of SURFE and M AY BE answers were defined both syntactically and
semantically makes it possible to express them in terms of minimal models or minimally derivable
clauses. Detecting a M AY BE answer is a straightforward operation in view of Definition 2.13. It
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just needs to occur in the minimal clause representation of the database. Testing for minimality
under the minimal model state representation of the database is easy. A clause @) is a minimal
answer if and only if it is in the minimal model state. If ¢) is not minimal then all subclauses of )
that are members of the minimal model state are minimal answers. That was the case for Q3 above.

4 Refined Query Answering

The fact that our approach to query answering is based on a query-induced ordering of the minimal
models of the theory can be further utilized to refine the process. We consider two possibilities for
this refinement: specifying the conditions under which the query becomes derivable from the theory
and 1solating a minimal component of a not necessarily minimal answer.

4.1 Update Specifications

The cases when all the minimal models of DB satisfy the query or none of them does correspond
to the usual (SURE) interpretation to affirming the query or its negation under CWA| respectively.
The remaining case, when the query is satisfied in some but not all minimal models, leaves room for
more refined answers. This is possible since the procedure partitions the set of minimal models of
the theory into two subsets: the first is the one in which the query is true and the other is the set
in which the query is false. By Lemma 2 the original theory DB =, DBiqy V DBney(q), where
DByg; is the ground theory with the minimal models MM(DB)qy and DByegy(q) is the ground
theory with the minimal models MM (D B)y¢y(q) (recall Definitions 2.5 and Theorem 2).

The procedure in a sense returns the components of the minimal model structure of the theory
that need to be updated to guarantee that the query becomes a SURE answer or to assume its
negation under CWA. The issue of how to modify the theory to achieve the required properties has
all the elements and complications of the database update problem and the full treatment of this
issue has been a topic of extensive research [8]. For example, one can think of two ways under which
a positive clause C' can become a logical consequence of DB. The first is roughly to remove all
models of the theory in which no atom of C' appears. The second is to add every such model an
atom (or more) of C' so that the clause C' becomes true in all minimal models of DB. The reverse
needs to be done to make ' false in all minimal models of DB. Similar reasoning can be applied to
other query types. While the full treatment of this topic is beyond the scope of this paper, we give
some glimpses about the possibility of achieving this goal by showing how to remove the unwanted
minimal models of a theory. The method we outline i1s compatible with the way the procedure used
for query answering operates. For brevity, we limit our treatment to the case of a positive query.
The extension to the general case is straight forward.

Theorem 4 Let DB be a DDDB and @) be a positive query. Let DB =pm DByegq) V DByqy,
where DBNegy(q) and DBiqy are the ground theories (model states) corresponding to the first and
second branches of the model tree of DB, respectively. Then:

e DB = DBU{Neg(M)|M € MM(DBnNcyq))} F Q. Additionally, MM(DB') = MM(DB)N
MM(DB){Q} = MM(DB){Q} = MM(DB{Q}) and DB' =,,,, DBgy.
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e DB" = DB U {Neg(M)|M € MM(DB);g,} and Neg(Q) € EGCWA(DB"). Additio-
nally, MM(DB") = MM(DB)NMM(DB)Negq) = MM(DB)Neyq) = MM(DBneyq))-
DB =pm DByeyq) =mm DB U Neg(Q)

Proof: e The added constraints remove all undesirable models of DB: the minimal models of
DB falsifying ) and the models of DB in which @ is #rue but are nonminimal for being
subsumed by one of the abandoned minimal models”.

e The added constraints remove all the models satisfying @.

Consider the following example:

)
DBippyy = DBU{P(b)} = {P(b), P(a)V P(d), P(c)V P(d) vV .
MM(DByppyy) = {H{P (), P(a), P(c)}, {P(a), P(b), P(e)}, {P(b), P(d)}}.
DBnegp@y) = DBU{=P(b)} = {P(a), P(c)V P(e)}.
MM(DByegy(pry) = {{P(a), P(c)}, {P(a), P(e)}}.
DB = DBU{P(a) A P(¢c) — L,P(a)AN P(e) — L} and DB' F P(b).
MM(DB') = {{P(b), P(d)}}.
DB" =DBU {P(b) N P(d) — 1}=DBU {ﬁP(b)}.
MM(DB") = {{P(a), P(c)},{P(a), P(e)}} and P(b) € EGCW A(DB").

The advantage of this approach to update is that it is passive: it involves only adding constraints
that prune some models while retaining the original set of clauses. The update can be incorporated
into the query answering procedure or left to the user. Other approaches to updates can be adopted
to achieve particular results such as better efficiency or minimality of change to the original theory [§].
Note that while the input theory is not necessarily ground, the updates are specified in terms of
ground clauses which can be a major simplification factor.

4.2 Answer Minimality

If the procedure returns no when looking for yes/no SURE answers to a positive query @ then there
is no issue of minimality involved. However, it may be the case that both @ and a subset of () are
yes answers. In this case we would like to be able to report this fact or even to give the minimal
component of ) that is still an answer.

Finding the minimal answer of a query is not a straightforward operation [14]. The brute force
approach 1s to try all possible subsets of the query for derivability from the database, probably
starting from sets with the least cardinality. Since the number of subsets of the query can be large,
the amount of work needed may be prohibitive. Towards this aim we may utilize the order imposed
on the search space of our minimal model generation procedure.

"Clearly, one can remove from each constraints atoms shared by all minimal models of the original theory. This
may reduce the size of individual constraints, although not their number [24].
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To answer a disjunctive query ¢ = q1 V ...V q,, the model tree is split into two branches: the
first is the one with Neg(Q) added to DB. If this returns a nonempty set of minimal models then
@ 1s not an answer. If it returns no models then @ 1s a yes answer and further processing may be
discontinued if we are not concerned about minimality. If minimality is of interest, the other branch
of the model tree starts with ) as the top clause. Since @ is derivable from DB adding it will not
change the resulting model structure: only minimal models of DB are returned.

Now we are set to partition the minimal models in which @ is true. In the first branch are all
minimal models containing only ¢; and none of the other disjuncts of @, if any. If this branch (the
one with {¢1,7qa, ..., 7¢n}) is empty no judgment can be made about the membership of ¢; in a
minimal answer. There is, however, some minimal answer component of ¢ not including ¢;. We
ignore q; and pursue that component as if we are testing the minimality of the yes answer ¢2V...Vq,.
On the other hand, if the branch with {¢1, g2, ..., 7¢,} is not empty then by Definition 2.14, ¢; is
in a minimal component of @. We pursue (one of) the minimal component of ¢ containing ¢;.

The second branch will have models with ¢, possibly ¢; but none of ¢;,¥i > 2. By Definition
2.14, g9 will be 1n the same minimal answer as ¢; only if this branch contains models in which ¢
is false. We pursue these models first within the second branch to decide if ¢5 1s in the minimal
answer together with ¢;. If the set with models of the form {q2, g1, g3, ...¢,} is not empty then
q1 and g9 are in the same minimal answer and we continue to pursue this answer. If the set with
models of the form {g2, —q1, 7¢s, ...—¢,} is empty then ¢ need not be in the same minimal answer
as q1. The minimal answer is true in the models of the current branch since it has the disjunct ¢;.
The remaining minimal models will satisfy some elements of the set {q¢s, ..., q,}. Therefore, we can
ignore ¢ and look for disjuncts from the set {gs, ..., ¢, }.

On processing element ¢; we first check for the models containing none of elements ¢; (j < 4)
already shown to be in the minimal answer being developed. We proceed in the same spirit until
the n'® branch. Note that when @ has more than one minimal component we pursue the rightmost
among them. In this sense the result depends on the order of the atoms in Q.

The pseudo code in Algorithm 1 is a rough description of the approach to isolating a minimal
component MinAnswer of a true disjunctive query Query (also represented as the set of its atoms
{Query}) against a DDDB, Database. The minimal answer is to be interpreted as the disjunction
of atoms in MinAnswer. NotProcessed is the set of atoms of Query not processed so far. Neg(S)
is the set of negative literals corresponding to atoms in S.

Algorithm 1 Minimal Answer of a Disjunctive query Q.

Procedure FindMinAnswer(Database, Query) ;

{ Query is a ground disjunctive query represented as the set of its atomic
components {Query}*}

Let NotProcessed = {Query};
Let MinAnswer = {};

While NotProcessed # {} do
Let Atom = Next(NotProcessed);
Let NotProcessed = NotProcessed \ {Atom};
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If MM(Database U AtomU Neg(MinAnswer)U Neg(NotProcessed)) N MM (Database) #
{}

Then Let MinAnswer = MinAnswer U {Atom};
Done;

Return (MinAnswer);

An example of the possible cases for a query @ = a V bV c is displayed in Table 2. A “y” entry
indicates a nonempty set of models with corresponding set of literals. The negative literals in the
entry represent additional constraints on the model set to be tested for emptiness. For example,
[-a] is added to check for models with no a in addition to the constraints in the header. These
constraints represent atoms that are already known to be in the minimal component. An X in the
term status entry reflects the unknown nature of the inclusion of that atom in a minimal answer set
(though it is definitely not in the minimal answer being constructed).

No. | a,=b,mce M | b,mce M | ¢€ M | Term Status | Minimal Answer
a, b, ¢
0 0 0 0 NN, N (0 € DB)
1 0 0 J] XX Y (¢)
2 0 Y 0 XY, N (b)
3 0 J Yy XYY (b+e)
4]
4 Yy 0 0 Y N, N (a)
5 Yy 0 Yy Y X,V (a+¢)
[—a]
6 y Yy 0 Y)Y, N (a+b)
[—a]
7 Yy Yy Yy YY. Y (a+b+c)
[—a] [-a, ~b]

Table 2: Checking the Minimality of a yes Answer a + b+ ¢

Additionally, the order in which the atoms of the negative counterpart of () were introduced
into the refutation process usually bears information about the minimality of ) that can be further
exploited to narrow down the search for minimally derivable components of (). Note that the
negation of @ is a set of negative unit clauses (denial rules) that can be incorporated into the
refutation process one at a time. Clearly, if this approach is adopted then we can always assert that
the disjunction of atoms the denials of which were used before the refutation was achieved cannot
be nonminimal. Only the last added item can cause nonminimality. It is this information that we
can use in the other component of the process to search for minimality.
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5 Monotonicity Properties of Generalized Query Answering

The class of queries discussed span many of the applications encountered in database maintenance
and exploitation. For each we considered both MAYBE and SURE answers. Of interest is the
monotonicity of the query answering process. This refers to the validity of an already generated
answer to a query after the database undergoes a clause addition update.

In this section we show that different classes of queries/answers exhibit different monotonicity
properties and use the results to prove that certain inferences used for the query answering process
can be nonmonotonic for DDDBs even for positive queries.

Definition 5.1 (monotonicity) Let DB and DBY be two consecutive states of ¢ DDDB such that
DB? is the result of adding some clauses to DB: DB C DBY. Then®: property m is monotonic if
whenever © holds in DB then 7w also holds in DBT.

The following lemma is an extension of a result in [5] that relates the models of successive states
of a DDDB before and after a clause addition update.

Lemma 3 Let DB and DBY be two consecutive states of @ DDDB such that DB7T is the result of
adding some clauses to DB: DB C DBY. Then:

e For all M™ = DBTY there erists M = DB such that M C M™Y. In particular: for all
M* € MM(DB') there exists M € MM(DB) such that M C M.

o There may exist models M € MM(DB) but no M+ € MM(DBY) such that M C M.
Proof: Immediate in view of Theorem 1 and Corollaries 1 and 2 and Example 11. ]

Consider the following example:

Example 11 DB = {aVb,c}. DB = {aVb,c,a — b}. MM(DB) = {{a,c}, {b,c}}. MM(DBT)
{{b,¢}}.

Note that for a definite database the only relevant cardinality is that of 1ts only minimal model.
Adding a (positive) definite fact will result in extending the minimal model by adding that and other
atoms that were not previously derivable. The minimal model remains unchanged otherwise.

When adding clauses to a DDDB, DB, the models may remain the same or some may attempt
to expand. The expansion process may, however, render some of the expanded models nonminimal
for the updated theory and call for their removal (e.g. for being subsumed by other minimal models
of DB*). There may be minimal models of DB that are not subsets of any model of DBT. 1Tt is
important to determine which query answers are monotonic (and the queries themselves are persistent
[22]) and which answers are nonmonotonic (and queries based on them are not persistent [22]). This
can simplify inference revision after database updates. Next we explore this issue:

Theorem 5 Let DB and DBT be two states of a DDDB such that DBT is the result of adding
clauses to DB: DB C DBY and @ be a generalized query such that ) = Body(Q) — Head(Q).

8We assume that DB and DB7 are consistent.
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o Assume that Q) is true in all minimal models of DB (¢ SURE answer). If this is because:

1. Head(Q) is true in all minimal models of DB then @ is true in all minimal models of
DB™T (Monotonic).

2. Or else Body(Q) is false in some minimal models of DB then Q) need not be true in all
minimal models of DB (Nonmonotonic).

o IfQ is true in some, but not all, minimal models of DB (a MAYBE answer) then @ need not
be true in any minimal models of DBT (Nonmonotonic).

Proof: e Let DBT be the result of updating DB by clause addition. If the added clause is
negative (denial rule) then by Theorem 1, MM(DBT) C MM(DB) and the result is
clear. Otherwise, by Theorem 3, for any M+t € MM(DB?) there is an M € MM (DB)
such that M C MT.

1. If Head(Q) is true in all elements of MM(DB) then ) necessarily holds for any M+
since M ™ is a (not necessarily proper) superset of an element in MM (DB).

2. If Head(Q) is true in only some elements of MM C MM(DB), then it may hold for
no element of MM (DB') if every one of the expansions of the elements of MM, call
this set MM | is subsumed by elements in the set (MM(DBT)\ MM™). That is,
if for all M+ € MM™ IM € (MM(DB1)\ MM) such that M C M*. Therefore,
property P may not hold for DBT.

o If Body(Q) is false in some elements of MM (DB) then Body(Q) may become true in the
expansions of such models and thus make the @ false if its head was not earlier satisfied.

Note that while the content of individual models grows monotonically with respect to database
growth (during the interval on which it is defined), the set of minimal models itself need not. The
cardinality of the minimal model set may decrease as a result of such updates. The overall effect
will be the nonmonotonic nature of some properties that are affected by this model pruning. It is
possible that the number of elements having the property will not decrease if the relevant models are
retained (maybe after expanding) or may decrease when some of the relevant models are rendered
nonminimal.

Corollary 3 Given a DDDB, DB, DB7T the updated version of DB by clause addition and a query
Q. Then:
1. If Q s positive:

e The SURFE answer property is monotonic. If Q is a SURE answer in DB then it is also
a SURE answer in DBT.

e The MAY BE answer property ts nonmonotonic. Q can be a MAY BE answer in DB
but not a MAY BE answer in DBT.

2. If Q is nonpositive (negative or mized) then both SURE and M AY BE answers are nonmo-
notonic.
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Proof: Immediately follows from Theorem 5 and Definition 2.14 of answers”. ]

Example 13 Let DB = {P(a)V P(b), (a ,Q(b), P(c)V P(d), P(d) — P(c) V P(a)}.
Q1 = Pla), Q2 = Pa) AQ(a), @z = (P(a) A Q(a)) V (P(b) A Q()), Qa = P(c) V P(d),
Qs = Q(a) — P(a), Qs = P(e) — P(a), Q7=P§b)AP(6)—>l; Qs = P(b) A Q(b) —

b L.
MM(DB) = {{P(a), Q(a), Q(b), P(e)}. {P(8), Qa), Qb), P(e)}, {P(a), Qa), Q(b), P(d)}}.
Consider DBT = DB U {P(b), P(c), P(e)}.
MM(DB*) = {{P(8), Qa), Qb), P(e), P(e)}}.
Q1 is a MAYBE answer in DB but not in DB1.
Q2 is a MAYBE answer in DB but not in DB1.
Qs and Q4 are SURE answers in DB and DB™.
Qs is a MAYBE answer in DB but not in DB1.
Qs 15 a SURE answer in DB but not in DBT.
Q7 is a SURE answer in DB but not in DBT.
Qs is a MAYBE answer in DB but not in DB1.

The monotonicity of the SURE answers for positive queries was established in [1] in the context
of defining the sub-implication which is also based on minimal model properties'®. Our results show
that, in general, the monotonicity of answers depends not only on the query itself but also on the
minimal model structure of the theory and how it relates to the query under consideration.

The derivation of negative information under closed world reasoning (e.g. CWA, GCWA, EG-
CWA, ECWA) [15, 7, 25] is based on the absence of certain atoms in the minimal models and its
nonmonotonicity is in line with the results of Theorem 5.

We considered only addition updates but didn’t limit ourselves to adding positive clauses. Non-
positive clauses are allowed as well. Positive and mixed clause addition updates may change the
status of individual minimal models in the transition (from DB to DB*), when some of the minimal
models of DB attempt to expand. Negative clauses, however, cannot cause model expansion. They
can at most make minimal models of DB nonmodels of DB, as suggested by Corollaries 1 and 2,
including making DBT inconsistent.

It is possible also to use similar reasoning to obtain monotonicity results, parallel to those dis-
cussed here, for the case of no answers to queries. One may also consider the case when updates are
performed through clause deletions. However, we don’t elaborate on these issues here.

9A closely related result is the fact that reasoning under stable (and perfect) model semantics for the class of
disjunctive databases with body negation (disjunctive normal databases) is nonmonotonic. Note that the set of stable
(perfect) models is a subset of the set of minimal models of a database.

Example 12 Let DB = {notP(a) — S(a)}. The only stable (and perfect) model of DB is {S(a)}. Q = S(a) is true
(derivable) under the stable (and perfect) model semantics. However, for DBT = {P(a),notP(a) — S(a)} the only
stable (and perfect) model of DB is P(a). Q@ = S(a) is not true (not derivable) under the stable (and perfect) model
semantics in DBT and DB C DB,

The detailed study of this issue is beyond the scope of this paper since it is not relevant for the class of theories
considered here (perfect, stable and minimal models are the same for DDDBs). This fact may be viewed as an
advantage of the minimal model semantics: SURFE answers under this semantics are monotonic.

10Even with the assignment of the intermediate truth value 1/2 (1 being true and 0 being false) to elements that are
MAYBE answer of the query, as in [1], the nonmonotonicity is still observed by noting that the truth value assignment
may decrease after a database update.
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Once more, the information returned by a generalized query answering procedure based on model
generation can be utilized to decide the monotonicity properties of individual queries. As suggested
by Theorem 3 and the model tree structure for generalized queries depicted in Figure 8, it is easy
to see that a query ) is monotonic if and only if MMy = MM(DB) for yes answers. Recall that
MMy is the set of minimal models of DB in which the head of the query is true.

In a sense, this is suggesting that the outlined procedure not only answers queries but also
makes it possible tag them as monotonic/nonmonotonic in which case they may not need to be
recomputed (no rechecking of constraints is needed) after an update, at no extra cost. Once a
query is tagged as monotonic, future database updates will not affect 1ts status and it need not be
checked any more. This can be employed to enable incremental integrity constraints checking [16]
and/or incremental construction of the minimal model tree for a theory. After an update, only
nonmonotonic rules (queries) need to be rechecked. If not satisfied then further additions may be
initiated to guarantee their satisfaction''. Actually, one may reduce the granularity by relating the
monotonicity of individual clauses to individual models. However, the gain achieved by incremental
checking needs to be weighted against the overhead cost of maintaining the necessary tables.

We note here that the source of nonmonotonicity for MAYBE answers to positive queries is
confined to the disjunctive component of the database. Atoms that are definite, and consequently
occur in every minimal model of the database, are monotonic by the virtue of them being SURE
answers to a positive query. They cannot change status as a result of (clause addition) updates.
Only indefinite atoms of the Herbrand base exhibit the nonmonotonic behavior. Any growth of
the database will keep the set of derivable atoms as is or increase it (assuming the change keeps
the database consistent). The Herbrand base is partitioned into two sets of atoms: those that are
monotonic (definite) and those that are nonmonotonic (occur only in indefinite minimal clauses).
Therefore, to determine the effect of an update on the status of different atoms of the Herbrand
base revisions can be confined to atoms with only disjunctive occurrences in the theory (atoms that
occur in a non-unit clause of the minimal model state of the database [12])

The nonmonotonicity of M AY BE answers under the model state representation is reflected in
the fact that while (clause addition) updates cannot shrink a clause derivable from the current state
it can nevertheless generate a clause subsuming it. Therefore, an atom occurring in the minimal
clause structure of the original database may have no occurrences in the representation of the
updated theory. SURE answers on the other hand are monotonic. A clause corresponding to a
SURE answer can only be subsumed by a newly generated clause which doesn’t change the status
of the SURE answer, although it may affect its minimality.

6 Conclusion and Remarks

We presented an approach for generalized query answering under the minimal model semantics for
the class of range restricted disjunctive deductive databases. It is based on the use of a minimal
model generating procedure . The concept of a query was extended to cover most classes of practical
importance for database maintenance and exploitation. The efficiency of the approach depends
on the efficiency of the used model generating procedure. Experiments with a prototype for our

I Note that a monotonically satisfied rule (a rule with a ¢rue head) acts like a query in that it adds nothing to the
minimal model structure of the theory after an update.
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procedure pointed to its efficiency as compared with similar ones reported in the literature [17, 19].
It was able to handle theories with large numbers of models [3]. Of course, since the procedure
retains already generated minimal models for subsequent model generation, one should expect the
performance to degrade when the number of minimal models is very large. However, this is a
major improvement on approaches that produce models then compare them to detect nonminimality.
Additionally, any efficiency enhancement tuning of the model generating procedure will reflect on
the query answering process outlined in this paper without affecting the reported theoretical results
[17, 19, 29, 24]. Of course, the size of individual models can be large and the number of models will
generally depend on the degree of indefiniteness of the theory. Adopting the model tree structure and
optimization techniques will enable sharing of atoms between models [6, 24]. An added advantage of
the advanced approach is that it deals with a single class of theories, namely DDDBs, at all stages
of query evaluation. In principle, it is possible to convert queries to denials, and thus prevent their
active participation in the model generation process, by moving head atoms to the body resulting
in a normal disjunctive database. However, care must be observed when processing negative body
atoms to ensure the correctness of the query evaluation process. Concepts like stratification and
perfect models come into play [5, 29].

Approaches based on model generation are bottom-up in nature and tend to explore a much
larger than needed search space for answering a query'?. In our case the extensive use of negative
clause addition to the theory can be viewed as a way to prune the search space and thus obtain
shallower refutations. Additionally, we used the wealth of information returned by the outlined
approach to refine the query answering process in more than one direction: to decide the minimality
of disjunctive answers and to isolate a minimal component of a nonminimal answers. The results
returned by the procedure were also used to determine the updates (e.g. in the form of ground
denial rules) that need to be incorporated into the theory so that to guarantee certain properties of
the returned answers.

We also made a distinction between SURFE and M AY BE answers to a query. Both concepts
were defined in terms of minimal models. We presented some results regarding the monotonicity
properties of different types of answers to different classes of queries. SURE answers to positive
queries were shown to be monotonic relative to updating the database by clause addition. M AY BE
answers on the other hand were shown to have a nonmonotonic nature and therefore needed re-
computation after database updates. While other types of queries exhibited nonmonotonic behavior
for all types of answers considered, we defined the conditions under which the answers are monotonic.
Determining if these conditions hold is a byproduct of the query answering process. This was shown
to be useful for incremental construction of the minimal model structure of the theory.

The definition of a M AY BE answer adopted here differs from the maybe components of the
I-tables and M-tables in [10] and [11]. There, A is a maybe answer if it occurs in a positive clause
derivable from the database even when all such clauses are subsumed by others not containing A.
A need not be in some minimal model of the current state of the database (or a component of a
minimal indefinite answer) although it may have been in such a model at an earlier stage. In essence,
that is treating disjunctions inclusively rather than exclusively as we do in our case which is based on
minimal models. The approach in [10] and [11] relies on minimal model constructs as well to derive

12Reference [28] offers an approach to using a minimal model generation procedure to perform top-down answering
of positive queries in disjunctive deductive databases.
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sure answers. However, maybe components are not based on a minimal model characterization but
rather on the syntactic structure of the (historical) database (and on the inclusive interpretation of
disjunctions). We believe that basing sure answers on the minimal model structure that naturally
assumes an exclusive interpretation of disjunctions while basing maybe answers on syntactical history
of the database and an inclusive interpretation of disjunctions will complicate closed world inferences
and may not be appropriate for all types of real life disjunctions. It may result in an atom classified
both as a possible/maybe answer and belonging to the database completion, which are, in our view,
two not compatible properties. The structures developed for maintaining the ground clauses of the
extended relational database in [10] and [11] (I-tables, M-tables) may be utilized as appropriate
data structures in our approach. The minimal model generation algorithm described here may also
be utilized to generate the information content (minimal model structure) of the these tables.

Our definition also differs from that of a possible (pos) answers of [23], which, while relying on
the derivability of the answer from certain components of the database, does not limit itself to the
case of minimal models of the theory. Certain possible answers may be in no minimal model of the
theory but in some disjunctive clause possibly subsumed by another clause of the theory.

Basing the definition of an answer on nonminimal models or on structures that are not models
of the current state of the database necessitate redefining the concept of database closure (GCWA,
EGCWA, ECWA) [15, 7, 25] which are defined in terms of the minimal model structure of the theory.

In a DDDB context, the maybe and pos atoms of [10] and [23] (with possible participation of
definite data) will still participate in generating new atoms with a similar truth assignment, similar
to the M AY BE answers in our case. An advantage of basing (maybe and pos) on syntactic features
is better monotonicity behavior that is not enjoyed by the M AY BE answers as defined here.

The issue of minimality of answers addressed here was addressed in other approaches to query
answering as well [14]. In addition to the modified notion of an answer, our approach tries to
exploit the properties of the model generating process and the order it imposes on the minimal
models returned to determine the minimality of answers rather than using multiple applications
of the model generation procedure to subsets of the required (ground) answer. Testing for answer
minimality when the minimal model state 1s used 1s part of the query evaluation process and comes
at no additional cost.

The approaches for efficient query evaluation discussed in [26, 4] can be applied as pre-processing
step in our approach.

The use of a similar approach to answering queries under different database semantics such as
stable and perfect semantics and the development of an integrated system based on using minimal
model generators for different aspects of database processing such as integrity enforcement are among
the possible topics of future work.
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