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Abstract

Ordered Model trees were introduced as a normal form for disjunctive deductive databases.
They were also used to facilitate the computation of minimal models for disjunctive theories
by exploiting the order imposed on the Herbrand base of the theory. In this work we show
how the order on the Herbrand base can be used to compute perfect models of a disjunctive
stratified finite theory. We are able to compute the stable models of a general finite theory by
combining the order on the elements of the Herbrand base with previous results that had shown
that the stable models of a theory 7' can be computed as the perfect models of a corresponding
disjunctive theory £T' resulting from applying the so called evidential transformation to 7

While other methods consider many models that are rejected at the end, the use of atom
ordering allows us to guarantee that every model generated belongs to the class of models being
computed. As for negation-free databases, the ordered tree serves as the canonical representation
of the database.

1 Introduction

Minimal model trees were introduced in [6] as a structure sharing approach to represent information
in digjunctive deductive databases (DDDBs). They were shown to capture the semantics of this class
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tThis work was done while visiting at the University of Maryland Institute for Advanced Computer Studies.



of databases. In [20] ordered minimal model trees were introduced as a normal form for model trees.
Informally, given a total order on the atoms of the Herbrand base of a DDDB, DB, an ordered model
tree for DB is a tree structure in which nodes are labeled by atoms of H Bpg. With each branch
(i.e. path from the root to a leaf node) of the tree we associate the set of atoms encountered in
that branch. Branches represent ordered models of DB and the branches in a left-to-right traversal
of the tree are ordered. An ordered minimal model tree is an ordered model tree for which there
is a one to one correspondence between minimal models and branches in the tree. Algorithms for
constructing and updating ordered minimal model trees were presented in [20]. Ordered model trees
treat the minimization problem of model tree computation by exploiting the order in the tree for
restricting the search space.

Perfect models were defined in [17] as the proper semantics for disjunctive stratified theories.
For such theories, perfect model semantics uses the hierarchical structure of the theory to deal
with negative information. In this work we exploit this hierarchical structure to define an order
on the Herbrand base of the theory. This order is used to construct the ordered model tree. The
manipulation of the order allows us to modify the algorithms of [20] to compute perfect, rather than
minimal, models of the theory under consideration.

Furthermore, we use the algorithms we develop for computing perfect models and the results
reported in [5], relating to the computation of the stable models of non-stratified theories, to extend
our work to the class of disjunctive normal databases. We show that the algorithms developed in this
paper have distinct advantages over existing algorithms for computing perfect and stable models.
We can summarize the advantages of our algorithm as follows.

e As opposed to other approaches, our algorithm integrates in one process the generation of
models and the test for minimization.

e The acceptance of a model as perfect or stable is decided as soon as the model is generated.
Other approaches must wait until all models are generated until finally deciding the status of
individual models.

e The algorithm exploits to a great extent the internal structure of the disjunctive database to
be able to direct the computation of stable models.

e Our transformational approach to stable model semantics is conservative in the sense that it
diminishes the amount of extra models that need to be inspected.

e Finally, the algorithm is parametrized for different semantics which allows us to use the same
algorithm to compute minimal, perfect and stable models on the same program depending on
the parameters.

The paper is organized as follows. In section 2 we give definitions and background material
related to DDDBs and their ordered model trees. In section 3 we describe algorithms based on
ordered model tree concepts to compute the perfect models of a DDDB and to construct its unique
ordered perfect model tree. In section 4 we address the issue of how to modify the algorithms in
section 3 to compute stable, instead of perfect models. We conclude by comparing the results of
this paper with other approaches reported in the literature. We also discuss possible directions for
future research.



2 Notation and Background
A disjunctive deductive database (DDDB) DB is a set of clauses of the form:
AV - VA, — By,..., B,

where n > 0,k > 0 and the A; and B; are atoms defined using a FOL £ that does not contain
function symbols. We assume that all clauses in DB are ground. FEach clause of DB represents the

following first order formula:
AV VA, VaB V.- V-B,

If k = 1 for all clauses in DB, the database is called a definite deductive database.® A clause C is
positive (negative) iff n =0 (k = 0).

Definition 2.1 [20] Let DB be ¢ DDDB and let A be a ground atom in the Herbrand base of DB.
Let C' be a clause of DB. Then

o A occurs positively (negatively ) in C iff A (=A) is a literal of C.

o A occurs positively (negatively ) in DB iff A occurs positively (negatively } in a clause of DB.

A occurs in C' (DB) iff A occurs positively or negatively in C' (DB).

e A is a purely positive (—A is a purely negative) literal in DB iff A occurs only positively
(negatively) in DB.

2.1 Minimal Models and Model Trees

Given a DDDB, DB, the Herbrand base of DB, HBppg, is the set of all ground atoms that can be
formed using the predicate symbols and constants in the FOL £. A Herbrand interpretation is any
subset of HBppg. A Herbrand model of DB, M, is a Herbrand interpretation such that M = DB
(i.e. all clauses of DB are true in M). M is minimal if no proper subset of M is a model of DB.
We use the notation M(DB) and MM(DB) to stand for the set of models and the set of minimal
models for DB, respectively.

Definition 2.2 [20] Let DBy and DBy be DDDBs and let MM(DBy) and MM(DBs) be the sets

of their minimal models, respectively. Then
DB and DBy are said to be minimal model equivalent.

Definition 2.3 [6] Let T be a finite set of Herbrand interpretations (models) over a FOL L. An
interpretation (model) tree for 7 is a tree structure where

e The root 1s labeled by the special symbol ¢. Other nodes are labeled with atoms in T or the
special symbol £.

1 We will use the term non-disjunctive deductive database to emphasize the fact that the database is not disjunctive.



e A path from the root to a leaf node is called a branch. No atom occurs more than once in a
branch.

e JTeZ iffFbr I={A: A €br}—{ ¢, £} where by is a branch in the tree.

The symbol £ is meant to stand for the absence of an atom for a node.

In general, to capture a semantics of a disjunctive database, DB, a model tree needs to represent
the set of models that characterize DB under that semantics. Under the minimal model semantics,
model trees of databases are defined as follows.

Definition 2.4 Let DB be a disjunctive deductive database and let MM(DDB) be the minimal
models of DB. Then Ty is called @ model tree of DB ff

MM(DB) = M.

We use the notation Tpp to refer to a model tree of DB.

2.2 Ordering the Herbrand Base

In what follows, we present the concept of order on the Herbrand base of a DDDB and the extensions
of this order to more complex structures: interpretations, sets of interpretations and model trees.

Definition 2.5 [20] Let S be a countable set of atoms. An order (>) on S is defined by the function
OS5 —{l,...,card(S)}, one to one and onto and such that:

e A> B iff O(A) > O(B) for A and B in S.
e B<AffA>B.

A sequence of atoms (A1,..., An) is ordered iff Vic; Ai > A; for A; and A; in S. We denote by R°

the ordered sequence containing the atoms in the set R, where R C S.

We use the term ordered set R to refer to the ordered sequence R°. In particular, we use the
term ordered Herbrand base, H B, to refer to the ordered sequence H B} which completely specifies
the total order (>) of the atoms of the Herbrand base of L.

Definition 2.6 [20] Given an order (>) on S, let Ry = (A1,..., An) and Ro = (B1,..., By) be
ordered sets of atoms with the A;s and Bjs in S. Then:

e Ry > Ry off 3k > 0 such that Vi< A; = B; and either Ay > By, or M < k< N.
3 Rz < R1 ZﬁRl > Rz.

Definition 2.7 [20] Given an order (>) on HB;, let T = {I1,...,I,} be a set of interpretations
(models or minimal models) over L. Then the ordered set of interpretations (models or minimal
models) of T is the sequence 1° = (I7 ..., I7 ) such that ¥ic; 1 > I3, I7 s referred to as the
ordered interpretation (model or minimal model) I;.



P(a) P P(a) P®) P(a) (1)
P(d)
o P(d) P(b)  P(e)
P(c
Ple) P(e) P(e) P(c)
P(b) P(e) P(b) P(d)
a: Nonminimal Unordered Tree b: Minimal Unordered Tree c: Minimal Ordered Tree

Figure 1: Ordered and Unordered Model Trees with P(a) > P(b) > P(c) > P(d)

Example 1 Given a set of interpretations T = {{C, A, B},{A, D, B},{},{A, B}} over the or-
dered Herbrand base (D,C, B, A), the corresponding ordered set of interpretations of T, I° =
<<DaBaA>a<C’B’A>’<B’A><>>

Definition 2.8 [20] Let HB; be an ordered Herbrand base and let T be a set of interpretations
(models, minimal models) over HBg. Let T1 be a model tree for T. Then

1. A left-right traversal of T1 is a sequence (S1,...,Sn) such that {by,... b,) is a left-to-right
enumeration of the branches in Tr and S; is the sequence (A; 1, ..., A; m,;) corresponding to a

sy

root-to-leaf traversal of the branch b;.

2. Tr is ordered iff I° = (S1,...,Sn), the left-right traversal of Tr. Tz is called the ordered

interpretation (model, minimal model) tree for Z, and is denoted as 7.

Example 2 Let DB = {P(a)V P(b), P(a)V P(c), P(c)V P(d), P(b)V P(c)}. Figure 1 shows: (a)
a nonminimal unordered model tree , (b) a minimal unordered model tree and (¢) a minimal ordered
model tree for DB with the order P(a) > P(b) > P(c) > P(d).

Theorem 2.9 [20] Let DBy and DBy be databases with a common ordered Herbrand base, H B,
and let Tp be the ordered minimal model tree for DB;. Then, DB1 =mm DB iff the left-right
traversals of Tgp and Tgp, coincide.

That is the ordered minimal model tree representation is unique for a given database and order.

2.3 Building Ordered Model Trees

Here we give a brief description of the algorithm used in [20] to construct the minimal ordered model
tree for a disjunctive deductive database, DB.
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Figure 2: A step in the Tree Construction Process

In the construction of an ordered model tree for a DDDB, we recursively decompose the database
by extracting, on each step, the largest atom, in the order (>), that occurs in the database, and
constructing two new smaller databases to be processed further.

Assume that we are dealing with a ground disjunctive deductive database with the ordered Her-
brand base {(A1,..., An). Let A be the largest atom that occurs positively in the current database,
DB. Let DB be of the form {Fy,..., Fy, E1,...,E;,Cy, ... Cp} where the F; are the clauses that
contain A, the E} are the clauses containing —=A, and the C; are clauses that do not contain oc-
currences either of A or of =A. Let F/ = F; — A (i.e. the result of removing the literal A from the
clause F;) and Ej, = E; — —A (i.e. the result of removing the literal —=A from the clause E;). We
assume that no tautologies are present in DB (i.e. no clause contains both 4 and —A4).

The first order theory represented by DB can be rewritten as {(AV (F{ A--- A F!)),(mAV
(ELAN - ANED),Ch, ..., Cr ). Hence, after expanding A, the decomposition of DB creates the new
databases,

DBy ={E},...,E;,C1,...,Cn}
DBy ={F|,.. ,F.Cy,...,Cp}

In each step of the construction, the current database D Bjr is decomposed to construct subtrees
underneath a particular node A of the tree (initially ¢, the root). At this point, no atom in the
path from the root to N occurs in DBys. The leftmost child of A is the node A with the database
(DBar)a to be expanded underneath A. The database (DBar)-a will be expanded underneath N
and to the right of A (it will generate the subtrees of A" to the right of A). The process is recursively
applied to these two databases. Figure 2 illustrates the expansion process. (DBar)a and (DBar)-a
are smaller than DByr in the sense that (DBar)a has less clauses than DB, and some clauses of
DB_ 4 contain fewer literals than the clauses in DB. Two terminating conditions are possible:

1. No atom occurs positively in DBy (e.g. DBy is empty). The branch represents a model, not



necessarily minimal, of the original database.

2. DBy contains the empty clause, O, (the clause with no literals). In this case, DBys is incon-
sistent, it has no model, and the node N is labeled nil.

After a recursive expansion of a node A is completed, any nil child of N is removed from the
tree. If all children of A are nil, then the node itself is labeled nil. If the root node becomes nil,
then the original database has no models. It is inconsistent.

One of the most important properties of the ordered model tree construction algorithm presented
in [20] is that it guarantees that the rightmost branch of the resulting tree corresponds to a minimal
model of the database. Based on this result, it is possible to devise an algorithm that generates only
minimal models of DB.

After a minimal model of DB, M € MM(DB), is found, DB =, MV (DB U{M™}),
where M™ = <\/AeM —|A) (the negative clause containing negative occurrences of all and only the
atoms of M). The idea is that, we are suppressing the minimal models already generated and their
supersets by including the negation of the model M as a denial M ™ in the remaining database. The
process terminates when all minimal models are found and the database, together with the added
negative clauses, is inconsistent. The order in the tree makes it unnecessary to pass all atoms of an
already found minimal model. Tt is sufficient to pass only the negative clause corresponding to the
components in that model not shared by the (potential) model being constructed [20].

Algorithm 1 presents formally the recursive construction of the ordered minimal model tree
incorporating this model minimization approach. The parameter NegSet in the algorithm is an
internal output parameter the purpose of which is to pass minimization information between tree
branches during the ordered minimal model tree construction process. Initially, Algorithm 1 is called
as BuildTree(DB, e, NegSet), where DB is a disjunctive deductive database and ¢ is the root node
for the tree (the output value of NegSet is considered irrelevant in this call).

Example 3 Let

P(d) Vv P(f),
~P(a)V —P(d)}

We build an ordered minimal model tree for DB assuming the following order P(a) > P(b) > P(c) >
P(d)> P(e) > P(f).



Algorithm 1 Constructing Ordered Minimal Model Trees for Disjunctive Deductive
Databases.
Procedure BuildTree(DB, Root; Out:NegSet) returns tree;
If O € DB then Return nil with NegSet := {};
If no atom occurs positively in DB then
return Root with NegSet := {O};
Let A := largest atom that occurs positively in DB;
Let Tr := BuildTree(DB-4, Root, Negr);
Let 77 := BuildTree(DB, U Negr, A, Negr);
Let NegSet := NegrU{(mAV C)|C € Negr};
If 7r = nil then return Tg; /*¥Negp = {}*/
Else if Tr = nil then return AttachLeftNode(Root, Tr); /¥Negrp = {}*/
Else return AttachLeftNode(Tg, 1)

We start with P(a)

DBy = DBpay ={P(e) V ~P(b) V ~P(c); P(b); P(e)V P(d)V P(£); P(f)V ~P(d)}
DB} = DB p(ay ={P(e) V~P(B) V ~P(e); P(b); P(c): P(e)V P(d)V P(f)}.

The expansion of DB on P(b) yields

DBY = (DB})p(s) ={P(c); Ple)V ~P(c)}
(DB})-pisy ={0: P(e); P(e)V P(d)V P(])}

P(a) and P(b) are all the siblings. Further expansion is detailed in Figure 3-a.

After the first minimal model My = {P(b), P(¢), P(e)} is found we retain it and add the clause
(1) = =P(b)v=P(c)V-P(e) to DBy. When the second minimal model My = {P(a), P(b), P(f)} is
generated, only the relevant portions of it, clause (3) = =P(f), is added to (DB1 U{(1)})p))p(c),
which corresponds to the submodel {A € My : P(¢) > A}. Figure 3-a details the full expansion
which produces the minimal ordered model tree of Figure 3-b.

3 Computing Perfect Models

In this section and the next, we extend the algorithms for computing minimal ordered model trees
to the case of disjunctive normal databases. That 1s, databases with clauses of the form

AV .. A — By,...,By, not Dy,..., not Dy,.

The Dy atoms are said to be negated in the clause as opposed to positive (4;) and negative (B;)
atoms.



P(b)
P(f)v =P(d)
P(c)v P(d) v P(f)
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1- —|P(6) \% —|P(b) \% —|P(C)
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P(b)
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P(f) P(e)
b

Figure 3: Generating Ordered Minimal Model Trees



For disjunctive normal databases, the usage of minimal model semantics to describe the meaning
of databases does not produce the expected set of logical consequences. Let the database contain
the single clause DB = {P(a) V P(b) — not P(c)}. If we interpret the operator “not” as denoting
logical negation (“=”), DB has three minimal models {P(a)}, {P(b)} and {P(c)}. By the minimal
models semantics, the only logical consequence of DB is the clause P(a) vV P(b) V P(¢). But, from
the syntax, the intended meaning of DB is that P(a) V P(b) is a logical consequence if P(e) is
false, which follows since there is no rule with P(c) on its left hand side. Hence in our intended
meaning, the positive clause P(a) V P(b) must be a logical consequence, which implies that the
semantic characterization of the database must be based only on the two minimal models {P(a)}
and {P(b)}. The minimal model {P(¢)} must be excluded from the semantic characterization. The
perfect model semantics for stratified databases [17], and the stable model semantics —presented in
the next section— for normal databases [9, 18] resolve this situation.

In this section we present the algorithms for the class of digjunctive stratified databases (DSDB)
and in the next we discuss algorithms for the general class of disjunctive normal databases (DNDB).

Definition 3.1 [10, 17] A disjunctive normal database, DB, is called a disjunctive stratified
database (DSDB) if it is possible to partition the (finite) set S of all predicate symbols in DB
wto sets S1,...,S,, called strata, such that for every clause of DB

Ay V.. A — By1,...,By,not Dy, ..., not Dy, (1>0)

Je a constant, 1 < ¢ < v, such that Vi<i<y, Stratum(A;) = ¢, Vi<j<n, Stratum(B;) < ¢ and
Vi<k<m, Stratum(By) < c¢. Where Stratum(A) = i iff the predicate symbol of the atom A is in

stratum S;. Any partition Sy, ...,5, of S satisfying the above conditions is called a stratification of
DB.

To verify that a database is stratified, Definition 3.1 calls for the analysis of the database only
at the predicate level. For finite ground databases it 1s possible to go further, to the atomic level.
That 1s, to let the set S = HBpp and have S; form the partition blocks of the Herbrand base.
This is called local stratification [17]. In what follows, we will use local stratification to present
our results. Nevertheless, the results also apply to the case of regular stratification since regular
stratified databases are also locally stratified (but not vice versa) [10, 17].

Definition 3.2 [17] Let DB be a disjunctive normal database with the local stratification Sy, .. .,
Sr. Let A € S; and B € S; be two distinct atoms of the Herbrand base of HBpp. Then B has a
higher priority (for minimization) than A (A < B) ifi>j.

Definition 3.3 [17] Let M and N be two distinct models of a normal disjunciive database, DB.
N is preferable to M (N << M) If for every ground atom A € (N \ M) there is a ground atom
B e (M\N) such that A < B. A model M is perfect if no model of DB is preferable to M.

Perfect models can also be define in de following way.

Definition 3.4 [17] Let DB be a disjunctive normal database and let Sy, ..., S, be a local stratifi-
cation of DB. M is a perfect model of DB iff for every j < r the set of atoms of S; in M (the set
S; N M ) is minimal among all models N of DB for which the atoms of US; 11 < j are the same for
M and N.

10



Lemma 3.5 [17] Let M and N be models of a disjunctive deductive database (negation-free). Then
N << Miff NC M.

Lemma 3.5 points to the fact that the concepts of a perfect and minimal model for disjunctive
deductive databases coincide. In disjunctive normal databases, these concepts are different.
In general, every perfect model is a minimal model but not vice versa [17]. Consider the following
example:

Example 4 Let DB = {P(d) — P(b), P(b) — not P(a)}. {P(a)} and {P(b), P(d)} are the two
minimal models of DB only the second of which is perfect.

The algorithms developed in [20] and presented in Section 2 construct ordered model trees for
the class of disjunctive deductive databases. A normal program, DB, can be converted into a
negation-free DDDB, using the following transformation.

Definition 3.6 Let DB be a disjunctive normal database. Then,
DB+ = {Al\/...Al\/Dl,...,\/Dm %Bl,...,Bn :
A1V... A — By,...,Bn,not Dy,..., not D, € DB}.

That is, DBT is the disjunctive deductive database obtained by substituting the default negation
(not) by the logical operator (=) and moving the resulting negative literal in the body by their
positive counterpart in the head (-—4 = A).

Lemma 3.7 Let DB be a disjunctive normal database. Let DBT be the disjunctive deductive
database achieved by the transformation in Definition 3.6. Then DBY =,,,, DB.

Proof: The proof is immediate since the transformation preserves logical equivalence. [ ]

We would like to have our algorithms operate on the modified programs (DB™T) and manipulate
the order selection process to generate the perfect models of the normal database from the negation-
free database corresponding to it. To achieve this, the order assigned to an atom needs to reflect the
hierarchical structure of the database. Atoms occurring (negated) in rule bodies need to be processed
before atoms appearing in the head of that particular rule and the order of the atoms during the
tree construction process must reflect this property as it propagates throughout the database. This
approach can be utilized to compute the perfect model tree for DB.

Definition 3.8 Let DB be a disjunctive normal database with the ordered Herbrand base H B, p.
We say that the order (>) of the Herbrand base is compatible with the hierarchical structure of DB
iff it is possible to subdivide the range of the order function, {1,... card(HBppg)}, into disjoint
wintervals, INTY, ..., INT,, such that for every clause of DB of the form:

ALV ... VA — By,...,By, not Dy,..., not Dy,
1. INT(A;) > INT(B)).

11



3. INT(A;)) =INT(Ag). That is, The elements in the head belong to the same interval.
where INT(A) = ¢ ff O(A) € INT..

Definition 3.9 Lel DB be a disjunctlive stratified database with the ordered Herbrand base HBY, g
and local stratification Sy, ..., S,. We say that the order (>) is compatible with the stratification iff
Vic; when A€ S; and B € S; then O(A) > O(B), (A > B).

The following theorem establishes the relationship between local stratifiability of a disjunctive
normal database, DB, and the ability to assign an order to the underlying Herbrand base H Bppg
compatible with the hierarchical structure of DB.

Theorem 3.10 Let DB be a normal deductive database with the Herbrand base H Bppg. It is possible
to assign an order to HBpp compatible with the hierarchical structure of DB iff DB s locally
stratifiable.

Proof: Trivial. [

3.1 Ordered Models and Preferable Models

We now define the relation between the order relation (>) and the preference relation (<~<) between
models as presented in Definition 3.3.

Theorem 3.11 Let DB be a normal disjunctive database with the local stratification Si,...,S5;.
Let the order of HBpp (>) be compatible with the stratification of DB. That is, atoms with higher
priority for minimization (lower strata) are always expanded first using, say Algorithm 1. Then for
any two ordered models M and N of DB, if M << N then M < N.

Proof: Assume that M << N and the conditions of the theorem hold. M # N. Assume that
M > N. By Definition 2.6 there is an atom A € M and B € N such that A > B and all
elements in the models less than A or less than B are equal. Since the models are ordered, N
cannot have A as all elements below B in the ordered model are less than B. If A and B belong
to different strata then N << M. A contradiction. If A and B belong to the same stratum,
S;, then M cannot be preferable to N since the elements of M in S; (the set M N S;) cannot
be a subset of the elements of S; in N (the set N NS;) since A € (M NS;) but A& (NNS;).
That is, it cannot be the case that (M N.S;) C (N N S;). A contradiction. n

Theorem 3.11 can be used to characterize the type of models generated using Algorithm 1 (with
or without minimization).

Corollary 3.12 Let DB be a normal deductive database and let the order of expansion be compatible
with the stratification of DB. Let DB7T be the disjunctive deductive database corresponding to DB.
Then

1. If M << N then M is generated before N (M appears to the right of N} in the ordered model
tree expansion of DBY.
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2. The first model generated, M,, (the rightmost model in the tree expansion of DBT ) is a perfect
model of DB.

3. If DB has one perfect model then the tree construction algorithm will generate the perfect
model as the rightmost model of the ordered model tree for DBT.

Proof: 1. The proof is straight forward from the definition of the tree (Definition 2.8), the rela-
tionship between the models in the tree and Theorem 3.11.

2. A result of the M, being minimal as shown in [20]. Any model preferable to M, will
appear to the right of M,. But M, has no right siblings and consequently no minimal
models preferable to it. M), is a perfect model of DB.

3. A direct consequence of 2.

Corollary 3.12 guarantees only that the first model generated is perfect. This result can be helpful
if we are interested in an individual perfect model. In this case, we can treat normal programs as
regular disjunctive programs with no negation in the body and construct the perfect model of DB
as long as we restrict ourselves to expanding the atoms in the order of their stratification. Elements
of the same stratum can be expanded in arbitrary order.

However, if the database has more than one perfect model then, using the tree construction
algorithm (Algorithm 1), other nonperfect models can be generated as perfect models need not be
consecutive in the ordered minimal model tree corresponding to DB. This is demonstrated by the
following example:

Example 5 Let DB be the following disjunctive stratified database,

E(;)j—_P_(C; X not P(c),
R(a) — P(B)A notQ(d) }
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Figure 4: The Minimal Model Tree for Example b
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Let HBY,p = (P(a), P(b), P(c),Q(c), Q(d), Q(e), R(a)). The construction process and the final
ordered minimal model tree is shown in Figure 4. The minimal models are {P(a), P(c),Q(c)},

{P(a),Q(c), R(a)}, {P(b),Q(d),Q(e)}, {P(b),Q(e), R(a)} from left-to-right. The second and last are
the only perfect models.

This can be attributed to the fact that the tree construction process assigns a total order to
the atoms of the Herbrand base. All atoms are treated equally as far as minimization is concerned.
The construction is oriented to minimizing the total number of atoms in a model rather than the
atoms of a higher stratum at the expense of the atoms of lower strata. We would like to adapt the
minimization approach used in [20] and discussed briefly in Section 2 to account for the priorities
assigned to the different atoms and in this way ensure that no nonperfect model i1s generated in the
tree construction process.

Definition 3.4 and Corollary 3.12 suggest an approach to do this. Given two models M and N,
M —<74 N iff 3; such that V]'<Z'(S]'QM) = (SJ ﬂN) and (SZQN) Z (SZQM) and (SZQM) Z (SZQN)
It will be sufficient to suppress a model, M, when there is an already found perfect model, N, such
that 3; V]'<Z'(S]' ﬂM) = (SJ ﬂN), (SZ ﬁN) C (SZ ﬁM).

Assume as in Figure 5, that we are currently expanding atom A under node A, where A belongs
to stratum S; (A € S;). Let M; be a previously found perfect model of DB that has all the root-to-
N atoms. Add the negative clause corresponding to the (possibly empty) set of atoms of stratum
S; in M; (the set S; N M;), not expanded so far, to the database being processed. This will have
the effect of suppressing models with components in 5; that are supersets of the .S; components of
M; and agreeing with M; on the atoms of lower strata; that is, nonperfect models during the tree
expansion under N

Sj—l
L(N)
N L(N)OS]'
S
A C;
"o_
Sig1 DB" =
(DB_/\/’)AU
{..,cr
LM,

Figure 5: A Step in the Order Perfect Tree Construction
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3.2 Building an Ordered Perfect Model Tree

We modify Algorithm 1 to make it construct the set of perfect models for a disjunctive stratified
database, DB. The new algorithm operates on DB* and the order of the Herbrand base of DB is
chosen to be compatible with the stratification of DB.

Assume that we are expanding atom A under node A as shown in Figure 5. Let the (local)
stratification of DB be S1,...,5, and A € S;. Let L(N') be the (partial) interpretation associated
with the root-to-A path in the tree. Assume that My, Ms, ..., M, are the perfect models found so
far such that M; N L(N) = L(N), Vi € {1,2,...,s}, These are the perfect models that contain
L(N) as a prefix. Let C; = (M; \ L(N))NS;. That is, C; is the set of atoms from S; present in M;
but not processed in the current database so far.

We denote by C}" the clause whose literals are all the negated atoms of C;. That is, if C; =
{41, As,..., A} then C7 = {-A; vV -A4a V.-V ALY If Gy is empty then C] is the empty
clause, O. The addition of {C7,...,C} to the subdatabase (DBa)a (rather than the negative
clauses corresponding to the whole models in Algorithm 1), guarantees that the models generated
are perfect. The correctness of Algorithm 2 is shown by the following theorem.

Theorem 3.13 Let DB be a normal disjunctive database. Let the order of HBpp be compatible
with the local stratification of DB, S1,...,S,. Assume that the atom being expanded 1s A € S; under
node N'. Let C; = (M; N.S;)\ L(N), where M; is an already found perfect model of DB such that
M; has as prefiz the partial interpretation associated with the root-to-N path in the tree, L(N'). Let
Ch,...,Cs be all such sets and let C be the negative clause containing occurrences of all and only
atoms of C; (O if C; is empty). Let DB"” = (DBar)a U{CT,...,C}. Then, operating on DB*
and consistently expanding DB" under A, Algorithm 2 will generate only perfect models of DB.

Proof: Without loss of generality, let the next model to be generated during the tree construction
process, if any, be M. M > M;, ¥ i € {1,2,...,s} since it is to the left of these models (M
contains A and none of the models found so far contains A). M is smaller than (<) any model
generated after it (to the right of M) for the same reason. Therefore, by Theorem 3.11 and
Corollary 3.12, M can be nonperfect iff 3i € {1,2,...,s} such that M; << M. That is, 3;
Viei(Se N M;) = (Sy M), (S;NM;) C (S;NM). The extension of atoms from S; in M; must
be a subset of the extension of atoms from S; in M. Let C; = {B|B € (S; N M;) and B < N'}.
Equivalently, C; = (S; N M;) \ L(N). By construction, C;" € DB”. Since C; C M then M
cannot be a model of DB’ which has the negative clause C;". A contradiction. ]

On the other hand, since a perfect model must have the minimal extension of the first stratum
on which it differs from other models (Definition 3.4), it follows that perfect models cannot be
suppressed by the addition of the corresponding C™ elements. These elements will be satisfied by
any of the perfect models since a perfect model cannot contain all the atoms of a C™ clause.

Combined with the fact that the first model generated is perfect, Algorithm 2 is guaranteed to
generate all and only the perfect models of DB. Algorithm 2 constructs the ordered perfect model
tree for DB when it is called with the parameters: BuildTree(DBT, =, 0, NegSet) (we are
assuming that stratum 1 is the first set in the stratification). The tree is ordered since the atoms
are expanded in the order of their position H B, 5.

The following example demonstrates the work of Algorithm 2.

16



Algorithm 2 Constructing Ordered Perfect Model Trees for Disjunctive Stratified
Databases.
Procedure BuildTree(DB, Root, Strata; Out:NegSet) returns tree ;
If O € DB then Return nil with NegSet := {};
If no atom occurs positively in DB then
return Root with NegSet := {O};
Let A := largest atom that occurs positively in DB;
Let Ty := BuildTree(DB-4, Root, St(A), Negr);
Let 77 := BuildTree(DB, U Negr, A, Strata, Negr);
If Strata < St(A) then NegSet := {0O};
Else NegSet := NegrU{(mAV C)|C € Negr};
If 77 = nil then return Tg;
Else if Tr = nil then return AttachLeftNode(Root, 11);
Else return AttachLeftNode(Tg, 1)

Example 6 Let DB be as given in Example 5.

Let HBY g = {P(a), P(b), P(c), Q(c), Q(d), Q(e), R(a)) which is compatible with the stratification
of DB. The construction process and the final ordered minimal model tree are shown in Figure 6.

As before (see Example 5), the first model generated, My = {P(b), Q(e), R(a)} is perfect. Prior
to the generation of My we had no perfect models and thus the current databases are not augmented
by any additional negative clauses. When N = P(b) and A = Q(d), that is, we are expanding atom
Q(d) under node P(b). The only right sibling of Q(d) is Q(e). The only element of My in the same
stratum as Q(d) is Q(e). Therefore, C1 = Q(e) and CT = —=Q(e). R(a), which belong to My, was
dropped from C7 since it belongs to a higher stratum and should not be propagated any further in the
tree. When added to the current database {Q(e)}, CT will cause suppression of the (minimal but)
nonperfect model {P(b), Q(d), Q(e)} since =Q(e) and Q(e) will generate the empty clause.

Clause 1, = P(b) vV =Q(e), is used when expanding P(a) under the root. However, since neither
P(b) nor Q(e) occurs positively in the current subtree this clause has no effect on generating the
(perfect) model My = {P(a),Q(c), R(a)}. When N = P(a) and A = P(c) (expanding the lefimost
branch of the tree), the clause = P(b) V =Q(e) is retained from the previous stage and additionally
the new clause Cs is generated from the perfect model My = {P(a),Q(c), R(a)}. Cy = Q(c) and
C3 = -Q(c) . Cq will cause suppression of the (minimal but) nonperfect model {P(a), P(c), Q(c)}.

The only models of the tree are {P(a), Q(c), R(a)}, {P(b), Q(e), R(a)} which are the perfect models
of DB.

It is worthwhile to note that Algorithm 2 generalizes Algorithm 1 in the sense that for a DDDB,

the former computes its minimal model tree. Moreover, since for a DNDB, DB, the database DBT
is negation-free, it can be used to compute the minimal, rather than the perfect, model tree of DB.
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4 Computing Stable Models

In a disjunctive normal database there are no restrictions on the way negative literals are used. For
this class, we have chosen the meaning of a disjunctive normal database, DB, to be given by the
stable model semantics.?

Definition 4.1 [9] Let DB be a disjunctive normal database and let T be an interpretation. Then,
we define the Gelfond-Lifschitz (GL) transformation of DB with respect to I,

DBII{(Al\/ "'\/Al%Bl,...,Bn)Z{Dl,...,Dm}ﬂfzw and
(A1 V-V A — By,...,By,not Dy,..., not Dp,) is a ground instance of DB}

where the A;, B; and Dy, are atomic formulae and I is an interpretation.
M s called a stable model of DB iff M is a minimal model of DBM .

DBM is a disjunctive deductive database (negation-free) whose semantics is defined by its set of
minimal models, MM(DBM). Using this declarative definition, to check if an interpretation M is
stable is an expensive process, we must guess the interpretation M, construct a new database DB
and compute its minimal models. Moreover, non-stratified definite normal databases can have more
than one stable model or no stable models at all. Fernandez et al. [5] proposed a method for reducing
the search space (i.e. the interpretations to be tested) and the amount of work necessary to test for
stability. They find a set of models that covers the set of stable models, and they reduce the test
for stability to a test of consistency with some particular class of integrity constraints.

4.1 Stratified Evidential Transformation

The approach of [5] transforms a disjunctive normal database, DB, into a disjunctive stratified
database DB? for which we must compute the perfect models. This new database DB uses an
additional set of predicate symbols called evidences. For each predicate symbol P of DB we introduce
a new predicate symbol &P whose intended meaning is “there is evidence of P”. The role of the
“evidence” is to separate the positive use of an atom A in the body of a clause, which has a classical
meaning, from the use of its negation (i.e. not A) where the usage is non-monotonic. Given an atom
A = P(Z), we will denote the atom EP(¥) by £A. Given M C HBpp, EM = {£A: A€ M}.

This role separation allows us to express our clauses in the following classical way:
Al \/\/Ak %Bl,...,Bn,_'ng,...,_'gDm

where some A; is true if the B; are true and “there is no evidence of the D);” atoms.

Fernandez et al. [5] also noticed that, since for disjunctive stratified databases perfect and stable
models coincide [16], it was possible to apply their transformation to a stratified database and
compute its stable models (i.e. perfect models). However, with the evidential transformation, one
may generate a DDDB with many more minimal models than those that are stable (possibly an
exponential number of extra models). The reason is that the evidential transformation disregards
completely the original structure of the database. This structure is what guides the algorithms

2Other semantics have been proposed. See [1, 2, 19] for details.
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presented in [7] to generate only perfect models. The solution of [5] was to modify the transformation
to take into account the structure of the database. They compute the perfect models of the richer
disjunctive stratified database produced by the following transformation.

Definition 4.2 [5] Let DB be a disjunclive normal database. A semi-stratification, Si,...,S,,
of DB s a partition of the set of predicate symbols defined in DB such that if P € S; then any
predicate ), on which P depends, belongs to a partition S; where j <1 and if P depends negatively
on () then j <t unless () depends on P.

Any disjunctive normal database has a semi-stratification, and all predicates involved in a recur-
sion through negation will belong to the same semi-stratum. The stratified evidential transformation
takes a digjunctive semi-stratified database and produces a disjunctive stratified database.

Definition 4.3 [/, 5] Let DB be disjunctive normal database with semi-stratification Sy, ..., S,.
The stratified evidential transformation of DB defines a disjunctive stratified database DB such
that:

1. For each clause A1V-- VA — By,..., By, not D1,..., not Dy, not B, ..., not E defining
predicates in S;, the clause AV -- - VA VEDLV-- - VED,, — By,...,By, not B, ..., not
belongs to DB where the predicate symbols of the Dy, are defined in semi-stratum i and the
predicate symbols of the E;, are defined in the semi-strata strictly below ¢.

2. For each predicate symbol P € S;, the clause EP(Z) — P(¥) belongs to DB¢.
3. For each predicate symbol P € S;, DB® contains a clause of the form — — EP(¥), not P(Z).

Nothing else belongs to the DB .

The transformation only substitutes by evidences those occurrences of negated literals that can-
not be dealt with by the use of stratification techniques. It only modifies normal semi-strata so that
the recursions through negation are changed into an evidence. As for stratification, we can define
local semi-stratifications by partitioning the Herbrand base instead of the set of predicate symbols
in the obvious way.

Theorem 4.4 [5] Let DB be a disjunctive normal database. Then (M UEM) is a perfect model of
DB¢ iff M is a stable model of DB.

Models that are unstable, will contain the special symbol — denoting that the model is inconsis-
tent with the axiom «— —. Hence, a clause (' can be defined to be a logical consequence of DB by
the following test on DB?.

Theorem 4.5 [/] Let DB be a disjunctive normal database, let DB be the stratified evidential
transformation of DB, and let C' be a ground positive clause. Then

1. DB is inconsistent iff — is true in every perfect model of DBE .

2. C is true in every stable model of DB iff (C'V —) is true in every perfect model of DB .
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Hence, we can compute the stable models of DB by computing, using Algorithm 2, the ordered
perfect model tree of DB . The addition of — to the clause C' in Theorem 4.5, effectively eliminates
from consideration any model of DB? that does not represent a stable model of DB. Therefore, we
could directly eliminate these models from the model tree since they are useless for expressing the
semantics of DB.

Note that the unstable perfect models of the transformed theory can be used to eliminate some
other models that are not perfect but seem to be stable otherwise. Hence, eliminating unstable
models before using them for minimization can result in the generation of models of DB¢ that do
not correspond to stable models of DB.

Example 7 Let DB = {P(a) — not P(a)}. DB® = {P(a)V £P(a);EP(a) «— P(a);— «— EP(a),
not P(a)}. The theory has the set of models {{EP(a),—},{EP(a), P(a)}}, only the first of which
1s perfect. However, the perfect model is unstable and therefore should be removed. Note that the
nonperfect model seems to be stable since 1t has no —. Eliminating unstable models first will remove
the perfect model and leave {P(a)} as a stable model for DB which clearly has no stable models.

Given a general disjunctive normal database, DB, Algorithm 2, operating on the transformed
database DB¢, constructs the ordered stable model tree for DB. To achieve this, Algorithm 2
exploits the evidential transformation and the ordering of the atoms in the extended Herbrand base
(HBppe) that reflects the induced semi-stratification. Inconsistency resulting from a clause with
— in Algorithm 2 signals that the model does not satisfy the integrity constraints introduced by
the evidential transformation. However, the relevant parts of such models are retained for use in
minimization, a need that was demonstrated in Example 7. The following example demonstrates the
use of this approach to construct the ordered stable model tree for a nonstratified normal disjunctive
database.

Example 8

Let DB= {P+« nol@;Q «— not P;R+— P;R— Q}.
DBf = {PV‘(/‘Q’QV‘E‘P’RFP,RFQ,SP<—P,5Q<—Q,€R<—R,
— — &P, not P;— — £Q, not Q; — — ER, not R;«— —}.

The ordered stable model tree built using Algorithm 2 on the (stratified) database DB¢ is shown
mn Figure 7.

5 Conclusions and Future Work

In this paper we emphasized the connection between the ordering of the Herbrand base of a disjunc-
tive database and its hierarchical structure. We used this connection to compute the perfect model
tree for stratified databases. Combining this with the evidential transformation, which transforms
a nonstratified database into a stratified database and a set of integrity constraints, we were able
to use the ordering of the extended Herbrand base to compute the stable model tree of a general
normal database.

For the perfect and stable model tree generation, the construction proceeds in a sequential
manner. To expand a node, the results of expanding nodes to its right are needed. Order and
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stratification considerations can be used to allow for parallelism and improved efficiency in the tree
construction process. When a child is in a different stratum than its parent, the computations under
the two nodes can proceed independently since the child’s subtree cannot affect the subtrees to the
left of the parent node. The two computations can proceed in parallel. On the other hand when
two siblings belong to different strata we can abandon the left sibling (the one in the lower stratum)
since its models cannot be perfect.

Minimal ordered model trees were used in [20] as a normal form for representing disjunctive
deductive databases. In the same way ordered perfect and ordered stable model trees can serve as
normal forms to represent the corresponding class of disjunctive databases.

An issue closely related to stratification is the concept of prioritized circumscription [12, 13, 14,
15]. In view of the results given in [17] on the equivalence of perfect models and the prioritized
circumscription of a given theory, Algorithm 2 can be readily applied to compute the prioritized
circumscription of the theory as well.

The trees constructed using Algorithm 2 can be used to answer queries to the database under
the relevant semantics. The algorithm presented in [8] can be used for this purpose. The order
imposed on the tree can be utilized to improve the efficiency of answer extracting algorithms. These
trees can also be used to compute the completions of the database and therefore to answer negative
queries.

Other researchers have developed algorithms to compute perfect and stable models of disjunctive
normal databases and logic programs [3, 5, 6, 11].

Fernandez et al. [5, 6], as discussed before, use the same evidential transformation as we do.
The major difference is in the way minimization is achieved. Their algorithms expand the model
tree eagerly when a rule is evaluated. Once this is done a minimization step is applied, where all
branches of the tree are compared against each other and non-minimal branches are eliminated. The
cost of this process is polynomial in the total number of models generated. On the other hand, the
cost of maintaining only minimal models in our algorithms is polynomial in the number of minimal
models obtained.

Bell, Nerode, Ng and Subrahmanian [3] developed an algorithm for computing stable models
of normal databases that uses linear programming techniques at the core of the approach. Ground
clauses are translated into constraints that are evaluated to compute the set of minimal models of
the database (i.e. minimal solutions to the linear problem). Stable models are then computed by
applying the GL-transformation for each minimal model and solving the corresponding new linear
problem. In contrast, we integrate the generation of models with the verification of their stability.
Moreover, using semi-stratification, we are able to restrict the number of partial models being tested
for stability to the perfect models of the transformed database rather than the entire set of minimal
models as in the case of [3].

Inoue et al. [11] developed a different transformation to use in the computation of stable models.
Using this transformation they have implemented a parallel algorithm to compute the stable models
of a disjunctive normal database. Their approach requires the generation of the set of all constructive
models of the transformed theory. The minimal elements of this set have to be checked for stability,
as in the case of [5] and [3]. Additionally, Inoue’s transformation does not take into consideration any
hierarchical structure existent in the database. This results in the introduction of additional literals
and rules, when compared with the stratified evidential transformation introduced by Fernandez et
al. [5]. This represents a substantial increase in the size of the database. Given the way models are

23



screened for stability, the same comment made concerning [3] applies. An added advantage of our
algorithm is that the first model generated is known to be stable. This can be of help in cases when
a single model of the theory is needed. There is no need to generate all the minimal models of the
theory to find a single stable model.

The approaches of [5, 6] and [11] are incremental in the sense that they process the clauses of
the database one at a time. Our approach is based on processing atoms, rather than clauses. All
clauses containing the atom under consideration are processed simultaneously. Together with the
order imposed on atom expansion, this can help in pruning irrelevant models and consequently faster
termination of the tree construction process.

The algorithms presented in this paper were implemented in Quintus Prolog. The examples of
this paper were verified using this implementation. Further experimentation is planned. A topic
for further research is the study of additional criteria that can be used to impose a total order on
the elements of the Herbrand base and the possible effects of the resulting ordering on the tree
construction process and on the structure of the resulting tree. An experimental analysis of the
performance of the tree construction algorithm under various ordering criteria is planned.
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