
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/227947750

COMPUTING	PERFECT	AND	STABLE	MODELS
USING	ORDERED	MODEL	TREES

Article		in		Computational	Intelligence	·	February	1995

DOI:	10.1111/j.1467-8640.1995.tb00024.x	·	Source:	DBLP

CITATIONS

11

READS

14

3	authors,	including:

Adnan	Yahya

Birzeit	University

41	PUBLICATIONS			439	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Adnan	Yahya

Retrieved	on:	15	August	2016

https://www.researchgate.net/publication/227947750_COMPUTING_PERFECT_AND_STABLE_MODELS_USING_ORDERED_MODEL_TREES?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/227947750_COMPUTING_PERFECT_AND_STABLE_MODELS_USING_ORDERED_MODEL_TREES?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA%3D%3D&el=1_x_7

Computing Perfect and Stable ModelsUsing Ordered Model Trees�Jos�e Alberto Fern�andez2 Jack Minker1;2 Adnan Yahya1;3y1Institute for Advanced Computer Studies2Computer Science DepartmentUniversity of MarylandCollege Park, MD 207423Electrical Engineering DepartmentBirzeit UniversityBirzeit, West BankAbstractOrdered Model trees were introduced as a normal form for disjunctive deductive databases.They were also used to facilitate the computation of minimal models for disjunctive theoriesby exploiting the order imposed on the Herbrand base of the theory. In this work we showhow the order on the Herbrand base can be used to compute perfect models of a disjunctivestrati�ed �nite theory. We are able to compute the stable models of a general �nite theory bycombining the order on the elements of the Herbrand base with previous results that had shownthat the stable models of a theory T can be computed as the perfect models of a correspondingdisjunctive theory ET resulting from applying the so called evidential transformation to T .While other methods consider many models that are rejected at the end, the use of atomordering allows us to guarantee that every model generated belongs to the class of models beingcomputed. As for negation-free databases, the ordered tree serves as the canonical representationof the database.1 IntroductionMinimal model trees were introduced in [6] as a structure sharing approach to represent informationin disjunctive deductive databases (DDDBs). They were shown to capture the semantics of this class�Financial support provided by the National Science Foundation under the grant Nr. IRI-89-16059 and by the AirForce O�ce of Scienti�c Research under the grant Nr. AFOSR-91-0350yThis work was done while visiting at the University of Maryland Institute for Advanced Computer Studies.1

of databases. In [20] ordered minimal model trees were introduced as a normal form for model trees.Informally, given a total order on the atoms of the Herbrand base of a DDDB,DB, an ordered modeltree for DB is a tree structure in which nodes are labeled by atoms of HBDB . With each branch(i.e. path from the root to a leaf node) of the tree we associate the set of atoms encountered inthat branch. Branches represent ordered models of DB and the branches in a left-to-right traversalof the tree are ordered. An ordered minimal model tree is an ordered model tree for which thereis a one to one correspondence between minimal models and branches in the tree. Algorithms forconstructing and updating ordered minimalmodel trees were presented in [20]. Ordered model treestreat the minimization problem of model tree computation by exploiting the order in the tree forrestricting the search space.Perfect models were de�ned in [17] as the proper semantics for disjunctive strati�ed theories.For such theories, perfect model semantics uses the hierarchical structure of the theory to dealwith negative information. In this work we exploit this hierarchical structure to de�ne an orderon the Herbrand base of the theory. This order is used to construct the ordered model tree. Themanipulation of the order allows us to modify the algorithms of [20] to compute perfect, rather thanminimal, models of the theory under consideration.Furthermore, we use the algorithms we develop for computing perfect models and the resultsreported in [5], relating to the computation of the stable models of non-strati�ed theories, to extendour work to the class of disjunctive normal databases. We show that the algorithms developed in thispaper have distinct advantages over existing algorithms for computing perfect and stable models.We can summarize the advantages of our algorithm as follows.� As opposed to other approaches, our algorithm integrates in one process the generation ofmodels and the test for minimization.� The acceptance of a model as perfect or stable is decided as soon as the model is generated.Other approaches must wait until all models are generated until �nally deciding the status ofindividual models.� The algorithm exploits to a great extent the internal structure of the disjunctive database tobe able to direct the computation of stable models.� Our transformational approach to stable model semantics is conservative in the sense that itdiminishes the amount of extra models that need to be inspected.� Finally, the algorithm is parametrized for di�erent semantics which allows us to use the samealgorithm to compute minimal, perfect and stable models on the same program depending onthe parameters.The paper is organized as follows. In section 2 we give de�nitions and background materialrelated to DDDBs and their ordered model trees. In section 3 we describe algorithms based onordered model tree concepts to compute the perfect models of a DDDB and to construct its uniqueordered perfect model tree. In section 4 we address the issue of how to modify the algorithms insection 3 to compute stable, instead of perfect models. We conclude by comparing the results ofthis paper with other approaches reported in the literature. We also discuss possible directions forfuture research. 2

2 Notation and BackgroundA disjunctive deductive database (DDDB) DB is a set of clauses of the form:A1 _ � � � _Ak B1; : : : ; Bnwhere n � 0; k > 0 and the Ai and Bj are atoms de�ned using a FOL L that does not containfunction symbols. We assume that all clauses in DB are ground. Each clause of DB represents thefollowing �rst order formula: A1 _ � � � _Ak _:B1 _ � � � _ :BnIf k = 1 for all clauses in DB, the database is called a de�nite deductive database.1 A clause C ispositive (negative) i� n = 0 (k = 0).De�nition 2.1 [20] Let DB be a DDDB and let A be a ground atom in the Herbrand base of DB.Let C be a clause of DB. Then� A occurs positively (negatively) in C i� A (:A) is a literal of C.� A occurs positively (negatively) in DB i� A occurs positively (negatively) in a clause of DB.� A occurs in C (DB) i� A occurs positively or negatively in C (DB).� A is a purely positive (:A is a purely negative) literal in DB i� A occurs only positively(negatively) in DB.2.1 Minimal Models and Model TreesGiven a DDDB, DB, the Herbrand base of DB, HBDB , is the set of all ground atoms that can beformed using the predicate symbols and constants in the FOL L. A Herbrand interpretation is anysubset of HBDB . A Herbrand model of DB, M , is a Herbrand interpretation such that M j= DB(i.e. all clauses of DB are true in M). M is minimal if no proper subset of M is a model of DB.We use the notationM(DB) andMM(DB) to stand for the set of models and the set of minimalmodels for DB, respectively.De�nition 2.2 [20] Let DB1 and DB2 be DDDBs and letMM(DB1) andMM(DB2) be the setsof their minimal models, respectively. ThenDB1 =mm DB2 i�MM(DB1) =MM(DB2)DB1 and DB2 are said to be minimal model equivalent.De�nition 2.3 [6] Let I be a �nite set of Herbrand interpretations (models) over a FOL L. Aninterpretation (model) tree for I is a tree structure where� The root is labeled by the special symbol ". Other nodes are labeled with atoms in I or thespecial symbol 6 ".1We will use the term non-disjunctive deductive database to emphasize the fact that the database is not disjunctive.3

� A path from the root to a leaf node is called a branch. No atom occurs more than once in abranch.� I 2 I i� 9bI I = fA : A 2 bIg � f "; 6 "g where bI is a branch in the tree.The symbol 6 " is meant to stand for the absence of an atom for a node.In general, to capture a semantics of a disjunctive database, DB, a model tree needs to representthe set of models that characterize DB under that semantics. Under the minimal model semantics,model trees of databases are de�ned as follows.De�nition 2.4 Let DB be a disjunctive deductive database and let MM(DB) be the minimalmodels of DB. Then TM is called a model tree of DB i�MM(DB) =M:We use the notation TDB to refer to a model tree of DB.2.2 Ordering the Herbrand BaseIn what follows, we present the concept of order on the Herbrand base of a DDDB and the extensionsof this order to more complex structures: interpretations, sets of interpretations and model trees.De�nition 2.5 [20] Let S be a countable set of atoms. An order (>) on S is de�ned by the functionO : S ! f1; :::; card(S)g, one to one and onto and such that:� A > B i� O(A) > O(B) for A and B in S.� B < A i� A > B.A sequence of atoms hA1; : : : ; AN i is ordered i� 8i<jAi > Aj for Ai and Aj in S. We denote by Rothe ordered sequence containing the atoms in the set R, where R � S.We use the term ordered set R to refer to the ordered sequence Ro. In particular, we use theterm ordered Herbrand base, HBL, to refer to the ordered sequence HBoL which completely speci�esthe total order (>) of the atoms of the Herbrand base of L.De�nition 2.6 [20] Given an order (>) on S, let R1 = hA1; : : : ; AN i and R2 = hB1; : : : ; BM i beordered sets of atoms with the Ais and Bjs in S. Then:� R1 > R2 i� 9k > 0 such that 8i<kAi = Bi and either Ak > Bk or M < k � N .� R2 < R1 i� R1 > R2.De�nition 2.7 [20] Given an order (>) on HBL, let I = fI1; : : : ; Ing be a set of interpretations(models or minimal models) over L. Then the ordered set of interpretations (models or minimalmodels) of I is the sequence Io = hIos1 ; : : : ; Iosni such that 8i<jIosi > Iosj . Ioi is referred to as theordered interpretation (model or minimal model) Ii.4

P (c) "P (d) P (c)P (b)P (c)P (a)P (b) P (c)P (b)P (c) "P (b)P (a) " P (c)P (d) P (c)P (b)P (a)P (d) P (b)c: Minimal Ordered Treeb: Minimal Unordered Treea: Nonminimal Unordered TreeFigure 1: Ordered and Unordered Model Trees with P (a) > P (b) > P (c) > P (d)Example 1 Given a set of interpretations I = ffC;A;Bg; fA;D;Bg; fg; fA;Bgg over the or-dered Herbrand base hD;C;B;Ai, the corresponding ordered set of interpretations of I, Io =hhD;B;Ai; hC;B;Ai; hB;Aihii.De�nition 2.8 [20] Let HBL be an ordered Herbrand base and let I be a set of interpretations(models, minimal models) over HBL. Let TI be a model tree for I. Then1. A left-right traversal of TI is a sequence hS1; : : : ; Sni such that hb1; : : : ; bni is a left-to-rightenumeration of the branches in TI and Si is the sequence hAi;1; : : : ; Ai;mii corresponding to aroot-to-leaf traversal of the branch bi.2. TI is ordered i� Io = hS1; : : : ; Sni, the left-right traversal of TI. TI is called the orderedinterpretation (model, minimal model) tree for I, and is denoted as T oI .Example 2 Let DB = fP (a)_ P (b); P (a) _ P (c); P (c)_ P (d); P (b)_ P (c)g. Figure 1 shows: (a)a nonminimal unordered model tree , (b) a minimal unordered model tree and (c) a minimal orderedmodel tree for DB with the order P (a) > P (b) > P (c) > P (d).Theorem 2.9 [20] Let DB1 and DB2 be databases with a common ordered Herbrand base, HBoL,and let T oDBi be the ordered minimal model tree for DBi. Then, DB1 =mm DB2 i� the left-righttraversals of T oDB1 and T oDB2 coincide.That is the ordered minimal model tree representation is unique for a given database and order.2.3 Building Ordered Model TreesHere we give a brief description of the algorithm used in [20] to construct the minimal ordered modeltree for a disjunctive deductive database, DB. 5

A N"
C1; :::;CmgfE01; :::;E0t; C1; :::;CmgfF 01 ; :::; F 0t ;(DBN):A =(DBN)A =Figure 2: A step in the Tree Construction ProcessIn the construction of an ordered model tree for a DDDB, we recursively decompose the databaseby extracting, on each step, the largest atom, in the order (>), that occurs in the database, andconstructing two new smaller databases to be processed further.Assume that we are dealing with a ground disjunctive deductive database with the ordered Her-brand base hA1; : : : ; AN i. Let A be the largest atom that occurs positively in the current database,DB. Let DB be of the form fF1; : : : ; Fn; E1; : : : ; Et; C1; : : : ; Cmg where the Fi are the clauses thatcontain A, the Ek are the clauses containing :A, and the Cj are clauses that do not contain oc-currences either of A or of :A. Let F 0i = Fi � A (i.e. the result of removing the literal A from theclause Fi) and E0k = Ek � :A (i.e. the result of removing the literal :A from the clause Ei). Weassume that no tautologies are present in DB (i.e. no clause contains both A and :A).The �rst order theory represented by DB can be rewritten as f(A _ (F 01 ^ � � � ^ F 0n)); (:A _(E01 ^ � � � ^E0t)); C1; : : : ; Cmg. Hence, after expanding A, the decomposition of DB creates the newdatabases, DBA =fE01; : : : ; E0t; C1; : : : ; CmgDB:A =fF 01; : : : ; F 0n; C1; : : : ; CmgIn each step of the construction, the current database DBN is decomposed to construct subtreesunderneath a particular node N of the tree (initially ", the root). At this point, no atom in thepath from the root to N occurs in DBN . The leftmost child of N is the node A with the database(DBN)A to be expanded underneath A. The database (DBN):A will be expanded underneath Nand to the right of A (it will generate the subtrees of N to the right of A). The process is recursivelyapplied to these two databases. Figure 2 illustrates the expansion process. (DBN)A and (DBN):Aare smaller than DBN in the sense that (DBN)A has less clauses than DB, and some clauses ofDB:A contain fewer literals than the clauses in DB. Two terminating conditions are possible:1. No atom occurs positively in DBN (e.g. DBN is empty). The branch represents a model, not6

necessarily minimal, of the original database.2. DBN contains the empty clause, 2, (the clause with no literals). In this case, DBN is incon-sistent, it has no model, and the node N is labeled nil.After a recursive expansion of a node N is completed, any nil child of N is removed from thetree. If all children of N are nil, then the node itself is labeled nil. If the root node becomes nil,then the original database has no models. It is inconsistent.One of the most important properties of the ordered model tree construction algorithm presentedin [20] is that it guarantees that the rightmost branch of the resulting tree corresponds to a minimalmodel of the database. Based on this result, it is possible to devise an algorithm that generates onlyminimal models of DB.After a minimal model of DB, M 2 MM(DB), is found, DB =mm M _ (DB [fM:g),where M: = �WA2M :A� (the negative clause containing negative occurrences of all and only theatoms of M). The idea is that, we are suppressing the minimal models already generated and theirsupersets by including the negation of the modelM as a denial M: in the remaining database. Theprocess terminates when all minimal models are found and the database, together with the addednegative clauses, is inconsistent. The order in the tree makes it unnecessary to pass all atoms of analready found minimal model. It is su�cient to pass only the negative clause corresponding to thecomponents in that model not shared by the (potential) model being constructed [20].Algorithm 1 presents formally the recursive construction of the ordered minimal model treeincorporating this model minimization approach. The parameter NegSet in the algorithm is aninternal output parameter the purpose of which is to pass minimization information between treebranches during the ordered minimalmodel tree construction process. Initially, Algorithm 1 is calledas BuildTree(DB; ";NegSet), where DB is a disjunctive deductive database and " is the root nodefor the tree (the output value of NegSet is considered irrelevant in this call).Example 3 Let DB = fP (e) P (b) ^ P (c);P (a) _ P (b);P (a) _ P (c);P (c) _ P (d)_ P (f);P (b);P (f) P (a) ^ P (d)gAfter translating the rules into clausal formDB = fP (e) _ :P (b) _ :P (c);P (a) _ P (b);P (a) _ P (c);P (b);P (c) _ P (d) _ P (f);P (f) _ :P (a)_ :P (d)gWe build an ordered minimal model tree for DB assuming the following order P (a) > P (b) > P (c) >P (d) > P (e) > P (f). 7

Algorithm 1 Constructing Ordered Minimal Model Trees for Disjunctive DeductiveDatabases.Procedure BuildTree(DB, Root; Out:NegSet) returns tree;If 2 2 DB then Return nil with NegSet := fg;If no atom occurs positively in DB thenreturn Root with NegSet := f2g;Let A := largest atom that occurs positively in DB;Let TR := BuildTree(DB:A, Root, NegR);Let TL := BuildTree(DBA [NegR, A, NegL);Let NegSet := NegR [f(:A _C)jC 2 NegLg;If TL = nil then return TR; /*NegL = fg*/Else if TR = nil then return AttachLeftNode(Root, TL); /*NegR = fg*/Else return AttachLeftNode(TR, TL)We start with P (a)DB1 = DBP (a) =fP (e) _ :P (b) _ :P (c); P (b); P (c) _ P (d)_ P (f); P (f) _ :P (d)gDB01 = DB:P (a) =fP (e) _ :P (b) _ :P (c); P (b); P (c); P (c) _ P (d)_ P (f)g:The expansion of DB01 on P (b) yieldsDB001 = (DB01)P (b) =fP (c); P (e) _ :P (c)g(DB01):P (b) =f2; P (c); P (c) _ P (d)_ P (f)gP (a) and P (b) are all the siblings. Further expansion is detailed in Figure 3-a.After the �rst minimal model M1 = fP (b); P (c); P (e)g is found we retain it and add the clause(1) = :P (b)_:P (c)_:P (e) to DB1. When the second minimal modelM2 = fP (a); P (b); P (f)g isgenerated, only the relevant portions of it, clause (3) = :P (f), is added to (DB1 [f(1)g)P (b))P (c),which corresponds to the submodel fA 2 M2 : P (c) > Ag. Figure 3-a details the full expansionwhich produces the minimal ordered model tree of Figure 3-b.3 Computing Perfect ModelsIn this section and the next, we extend the algorithms for computing minimal ordered model treesto the case of disjunctive normal databases. That is, databases with clauses of the formA1 _ : : :Al B1; : : : ; Bn; notD1; : : : ; notDm:The Dk atoms are said to be negated in the clause as opposed to positive (Ai) and negative (Bj)atoms. 8

P (e) _:P (b) _:P (c)P (a)
P (c) P (d)P (f)P (f)2 323 23nil nil1- :P (e)_ :P (b)_:P (c)2- :P (e)_ :P (c)3- :P (f)4- :P (e)

P (b) "P (b)P (b)P (c)P (c)P (e) _:P (c)P (c)P (e)P (e)
P (c) _ P (d)_ P (f)

P (b) P (b)"
2 1P (b)P (f)_:P (d)P (d) _ P (f)P (f)_ :P (d)P (e) _:P (b)_ :P (c)P (c)_ P (d)_ P (f)P (c) _ P (d) _ P (f)P (e)_ :P (c)P (f)_:P (d) a

b
P (f)34P (e)P (f)_:P (d)

P (e)P (f)P (a) P (c)Figure 3: Generating Ordered Minimal Model Trees9

For disjunctive normal databases, the usage of minimal model semantics to describe the meaningof databases does not produce the expected set of logical consequences. Let the database containthe single clause DB = fP (a) _ P (b) not P (c)g. If we interpret the operator \not " as denotinglogical negation (\:"), DB has three minimal models fP (a)g; fP (b)g and fP (c)g. By the minimalmodels semantics, the only logical consequence of DB is the clause P (a) _ P (b) _ P (c). But, fromthe syntax, the intended meaning of DB is that P (a) _ P (b) is a logical consequence if P (c) isfalse, which follows since there is no rule with P (c) on its left hand side. Hence in our intendedmeaning, the positive clause P (a) _ P (b) must be a logical consequence, which implies that thesemantic characterization of the database must be based only on the two minimal models fP (a)gand fP (b)g. The minimal model fP (c)g must be excluded from the semantic characterization. Theperfect model semantics for strati�ed databases [17], and the stable model semantics |presented inthe next section| for normal databases [9, 18] resolve this situation.In this section we present the algorithms for the class of disjunctive strati�ed databases (DSDB)and in the next we discuss algorithms for the general class of disjunctive normal databases (DNDB).De�nition 3.1 [10, 17] A disjunctive normal database, DB, is called a disjunctive strati�eddatabase (DSDB) if it is possible to partition the (�nite) set S of all predicate symbols in DBinto sets S1; : : : ; Sr, called strata, such that for every clause of DBA1 _ : : :Al B1; : : : ; Bn; notD1; : : : ; notDm (l � 0)9c a constant, 1 � c � r, such that 81�i�l; Stratum(Ai) = c, 81�j�n; Stratum(Bj) � c and81�k�m; Stratum(Bk) < c. Where Stratum(A) = i i� the predicate symbol of the atom A is instratum Si. Any partition S1; : : : ; Sr of S satisfying the above conditions is called a strati�cation ofDB.To verify that a database is strati�ed, De�nition 3.1 calls for the analysis of the database onlyat the predicate level. For �nite ground databases it is possible to go further, to the atomic level.That is, to let the set S = HBDB and have Si form the partition blocks of the Herbrand base.This is called local strati�cation [17]. In what follows, we will use local strati�cation to presentour results. Nevertheless, the results also apply to the case of regular strati�cation since regularstrati�ed databases are also locally strati�ed (but not vice versa) [10, 17].De�nition 3.2 [17] Let DB be a disjunctive normal database with the local strati�cation S1; : : : ;Sr. Let A 2 Si and B 2 Sj be two distinct atoms of the Herbrand base of HBDB . Then B has ahigher priority (for minimization) than A (A � B) if i > j.De�nition 3.3 [17] Let M and N be two distinct models of a normal disjunctive database, DB.N is preferable to M (N �� M) If for every ground atom A 2 (N nM) there is a ground atomB 2 (M nN) such that A � B. A model M is perfect if no model of DB is preferable to M .Perfect models can also be de�ne in de following way.De�nition 3.4 [17] Let DB be a disjunctive normal database and let S1; : : : ; Sr be a local strati�-cation of DB. M is a perfect model of DB i� for every j � r the set of atoms of Sj in M (the setSj \M) is minimal among all models N of DB for which the atoms of [Si : i < j are the same forM and N . 10

Lemma 3.5 [17] Let M and N be models of a disjunctive deductive database (negation-free). ThenN ��M i� N �M .Lemma 3.5 points to the fact that the concepts of a perfect and minimal model for disjunctivedeductive databases coincide. In disjunctive normal databases, these concepts are di�erent.In general, every perfect model is a minimal model but not vice versa [17]. Consider the followingexample:Example 4 Let DB = fP (d) P (b); P (b) not P (a)g. fP (a)g and fP (b); P (d)g are the twominimal models of DB only the second of which is perfect.The algorithms developed in [20] and presented in Section 2 construct ordered model trees forthe class of disjunctive deductive databases. A normal program, DB, can be converted into anegation-free DDDB, using the following transformation.De�nition 3.6 Let DB be a disjunctive normal database. Then,DB+ = fA1 _ : : :Al _D1; : : : ;_Dm B1; : : : ; Bn :A1 _ : : :Al B1; : : : ; Bn; notD1; : : : ; notDm 2 DBg:That is, DB+ is the disjunctive deductive database obtained by substituting the default negation(not) by the logical operator (:) and moving the resulting negative literal in the body by theirpositive counterpart in the head (::A = A).Lemma 3.7 Let DB be a disjunctive normal database. Let DB+ be the disjunctive deductivedatabase achieved by the transformation in De�nition 3.6. Then DB+ =mm DB.Proof: The proof is immediate since the transformation preserves logical equivalence.We would like to have our algorithms operate on the modi�ed programs (DB+) and manipulatethe order selection process to generate the perfect models of the normal database from the negation-free database corresponding to it. To achieve this, the order assigned to an atom needs to re
ect thehierarchical structure of the database. Atoms occurring (negated) in rule bodies need to be processedbefore atoms appearing in the head of that particular rule and the order of the atoms during thetree construction process must re
ect this property as it propagates throughout the database. Thisapproach can be utilized to compute the perfect model tree for DB.De�nition 3.8 Let DB be a disjunctive normal database with the ordered Herbrand base HBoDB .We say that the order (>) of the Herbrand base is compatible with the hierarchical structure of DBi� it is possible to subdivide the range of the order function, f1; : : : ; card(HBDB)g, into disjointintervals, INT1; : : : ; INTr, such that for every clause of DB of the form:A1 _ : : :_Al B1; : : : ; Bn; notD1; : : : ; notDm1. INT (Ai) � INT (Bj).2. INT (Ai) > INT (Dk), (Ai > Dk). 11

3. INT (Ai) = INT (Ak). That is, The elements in the head belong to the same interval.where INT (A) = c i� O(A) 2 INTc.De�nition 3.9 Let DB be a disjunctive strati�ed database with the ordered Herbrand base HBoDBand local strati�cation S1; : : : ; Sr . We say that the order (>) is compatible with the strati�cation i�8i<j when A 2 Si and B 2 Sj then O(A) > O(B), (A > B).The following theorem establishes the relationship between local strati�ability of a disjunctivenormal database, DB, and the ability to assign an order to the underlying Herbrand base HBDBcompatible with the hierarchical structure of DB.Theorem 3.10 LetDB be a normal deductive database with the Herbrand base HBDB . It is possibleto assign an order to HBDB compatible with the hierarchical structure of DB i� DB is locallystrati�able.Proof: Trivial.3.1 Ordered Models and Preferable ModelsWe now de�ne the relation between the order relation (>) and the preference relation (��) betweenmodels as presented in De�nition 3.3.Theorem 3.11 Let DB be a normal disjunctive database with the local strati�cation S1; : : : ; Sr.Let the order of HBDB (>) be compatible with the strati�cation of DB. That is, atoms with higherpriority for minimization (lower strata) are always expanded �rst using, say Algorithm 1. Then forany two ordered models M and N of DB, if M �� N then M < N .Proof: Assume that M �� N and the conditions of the theorem hold. M 6= N . Assume thatM > N . By De�nition 2.6 there is an atom A 2 M and B 2 N such that A > B and allelements in the models less than A or less than B are equal. Since the models are ordered, Ncannot have A as all elements below B in the ordered model are less than B. If A and B belongto di�erent strata then N �� M . A contradiction. If A and B belong to the same stratum,Si, then M cannot be preferable to N since the elements of M in Si (the set M \ Si) cannotbe a subset of the elements of Si in N (the set N \ Si) since A 2 (M \ Si) but A 62 (N \ Si).That is, it cannot be the case that (M \ Si) � (N \ Si). A contradiction.Theorem 3.11 can be used to characterize the type of models generated using Algorithm 1 (withor without minimization).Corollary 3.12 Let DB be a normal deductive database and let the order of expansion be compatiblewith the strati�cation of DB. Let DB+ be the disjunctive deductive database corresponding to DB.Then1. If M �� N then M is generated before N (M appears to the right of N) in the ordered modeltree expansion of DB+ . 12

2. The �rst model generated, Mp, (the rightmost model in the tree expansion of DB+) is a perfectmodel of DB.3. If DB has one perfect model then the tree construction algorithm will generate the perfectmodel as the rightmost model of the ordered model tree for DB+ .Proof: 1. The proof is straight forward from the de�nition of the tree (De�nition 2.8), the rela-tionship between the models in the tree and Theorem 3.11.2. A result of the Mp being minimal as shown in [20]. Any model preferable to Mp willappear to the right of Mp. But Mp has no right siblings and consequently no minimalmodels preferable to it. Mp is a perfect model of DB.3. A direct consequence of 2.Corollary 3.12 guarantees only that the �rst model generated is perfect. This result can be helpfulif we are interested in an individual perfect model. In this case, we can treat normal programs asregular disjunctive programs with no negation in the body and construct the perfect model of DBas long as we restrict ourselves to expanding the atoms in the order of their strati�cation. Elementsof the same stratum can be expanded in arbitrary order.However, if the database has more than one perfect model then, using the tree constructionalgorithm (Algorithm 1), other nonperfect models can be generated as perfect models need not beconsecutive in the ordered minimal model tree corresponding to DB. This is demonstrated by thefollowing example:Example 5 Let DB be the following disjunctive strati�ed database,DB = f Q(d) _Q(e) P (b);Q(e) Q(d) ^ P (b);P (a) _ P (b);P (c) _Q(c) P (a);Q(c) P (c) ^P (a);� �� �� ��R(a) P (a) ^ not P (c);R(a) P (b)^ notQ(d) gTransforming into the corresponding DDDB, and in clausal form, we getDB+ = f Q(d) _Q(e) _ :P (b);Q(e) _:Q(d) _ :P (b);P (a) _ P (b);P (c) _Q(c) _ :P (a);Q(c) _ :P (c) _ :P (a);�� �� �� �R(a) _ P (c) _ :P (a);R(a) _Q(d) _ :P (b) g13

"P (a) P (b)P (c)Q(c)Q(c) :Q(d)_Q(e)_:P (b)
"P (a)Q(c) Q(c) R(a)P (b)Q(e)

:Q(d)_Q(e)_:P (b)Q(d)_R(a)_:P (b) P (b)Q(d) _Q(e) Q(e)Q(d)Q(e)Q(e) R(a)R(a)Q(c)R(a)Q(d)_Q(e)_ :P (b) Q(d)_Q(e)_:P (b)R(a)R(a)_ P (c)P (c) _Q(c):P (c) _Q(c) R(a)_:P (b)_Q(d)R(a)_Q(d):Q(d)_Q(e)
Q(e)Q(d)P (c) R(a)Figure 4: The Minimal Model Tree for Example 514

Let HBoDB = hP (a); P (b); P (c); Q(c); Q(d); Q(e); R(a)i. The construction process and the �nalordered minimal model tree is shown in Figure 4. The minimal models are fP (a); P (c); Q(c)g;fP (a); Q(c); R(a)g; fP (b); Q(d); Q(e)g; fP (b);Q(e); R(a)g from left-to-right. The second and last arethe only perfect models.This can be attributed to the fact that the tree construction process assigns a total order tothe atoms of the Herbrand base. All atoms are treated equally as far as minimization is concerned.The construction is oriented to minimizing the total number of atoms in a model rather than theatoms of a higher stratum at the expense of the atoms of lower strata. We would like to adapt theminimization approach used in [20] and discussed brie
y in Section 2 to account for the prioritiesassigned to the di�erent atoms and in this way ensure that no nonperfect model is generated in thetree construction process.De�nition 3.4 and Corollary 3.12 suggest an approach to do this. Given two models M and N ,M �6� N i� 9i such that 8j<i(Sj\M) = (Sj \N) and (Si\N) 6� (Si\M) and (Si\M) 6� (Si\N).It will be su�cient to suppress a model, M , when there is an already found perfect model, N , suchthat 9i 8j<i(Sj \M) = (Sj \N), (Si \N) � (Si \M).Assume as in Figure 5, that we are currently expanding atom A under node N , where A belongsto stratum Sj (A 2 Sj). Let Mi be a previously found perfect model of DB that has all the root-to-N atoms. Add the negative clause corresponding to the (possibly empty) set of atoms of stratumSj in Mi (the set Sj \Mi), not expanded so far, to the database being processed. This will havethe e�ect of suppressing models with components in Sj that are supersets of the Sj components ofMi and agreeing with Mi on the atoms of lower strata; that is, nonperfect models during the treeexpansion under N .
A" : : : ;Mi; : : :N L(N) \ SjDB00 =(DBN)A[f: : : ; C:i ; : : :gSj+1Sj�1Sj CiL(N)

Figure 5: A Step in the Order Perfect Tree Construction15

3.2 Building an Ordered Perfect Model TreeWe modify Algorithm 1 to make it construct the set of perfect models for a disjunctive strati�eddatabase, DB. The new algorithm operates on DB+ and the order of the Herbrand base of DB ischosen to be compatible with the strati�cation of DB.Assume that we are expanding atom A under node N as shown in Figure 5. Let the (local)strati�cation of DB be S1; : : : ; Sr and A 2 Sj . Let L(N) be the (partial) interpretation associatedwith the root-to-N path in the tree. Assume that M1;M2; : : : ;Ms are the perfect models found sofar such that Mi \ L(N) = L(N); 8 i 2 f1; 2; : : : ; sg, These are the perfect models that containL(N) as a pre�x. Let Ci = (Mi nL(N)) \Sj . That is, Ci is the set of atoms from Sj present in Mibut not processed in the current database so far.We denote by C:i the clause whose literals are all the negated atoms of Ci. That is, if Ci =fA1; A2; : : : ; Amg then C:i = f:A1 _ :A2 _ � � � _ :Amg. If Ci is empty then C:i is the emptyclause, 2. The addition of fC:1 ; : : : ; C:s g to the subdatabase (DBN)A (rather than the negativeclauses corresponding to the whole models in Algorithm 1), guarantees that the models generatedare perfect. The correctness of Algorithm 2 is shown by the following theorem.Theorem 3.13 Let DB be a normal disjunctive database. Let the order of HBDB be compatiblewith the local strati�cation of DB, S1; : : : ; Sr . Assume that the atom being expanded is A 2 Sj undernode N . Let Ci = (Mi \ Sj) n L(N), where Mi is an already found perfect model of DB such thatMi has as pre�x the partial interpretation associated with the root-to-N path in the tree, L(N). LetC1; : : : ; Cs be all such sets and let C:i be the negative clause containing occurrences of all and onlyatoms of Ci (2 if Ci is empty). Let DB00 = (DBN)A [fC:1 ; : : : ; C:s g. Then, operating on DB+and consistently expanding DB00 under A, Algorithm 2 will generate only perfect models of DB.Proof: Without loss of generality, let the next model to be generated during the tree constructionprocess, if any, be M . M > Mi; 8 i 2 f1; 2; : : : ; sg since it is to the left of these models (Mcontains A and none of the models found so far contains A). M is smaller than (<) any modelgenerated after it (to the right of M) for the same reason. Therefore, by Theorem 3.11 andCorollary 3.12, M can be nonperfect i� 9i 2 f1; 2; : : : ; sg such that Mi �� M . That is, 9j8k<j(Sk \Mi) = (Sk \M), (Sj \Mi) � (Sj \M). The extension of atoms from Sj inMi mustbe a subset of the extension of atoms from Sj in M . Let Ci = fBjB 2 (Sj \Mi) and B < Ng.Equivalently, Ci = (Sj \Mi) n L(N). By construction, C:i 2 DB00. Since Ci � M then Mcannot be a model of DB00 which has the negative clause C:i . A contradiction.On the other hand, since a perfect model must have the minimal extension of the �rst stratumon which it di�ers from other models (De�nition 3.4), it follows that perfect models cannot besuppressed by the addition of the corresponding C: elements. These elements will be satis�ed byany of the perfect models since a perfect model cannot contain all the atoms of a C: clause.Combined with the fact that the �rst model generated is perfect, Algorithm 2 is guaranteed togenerate all and only the perfect models of DB. Algorithm 2 constructs the ordered perfect modeltree for DB when it is called with the parameters: BuildTree(DB+, ", 0, NegSet) (we areassuming that stratum 1 is the �rst set in the strati�cation). The tree is ordered since the atomsare expanded in the order of their position HBoDB .The following example demonstrates the work of Algorithm 2.16

Algorithm 2 Constructing Ordered Perfect Model Trees for Disjunctive Strati�edDatabases.Procedure BuildTree(DB, Root, Strata; Out:NegSet) returns tree ;If 2 2 DB then Return nil with NegSet := fg;If no atom occurs positively in DB thenreturn Root with NegSet := f2g;Let A := largest atom that occurs positively in DB;Let TR := BuildTree(DB:A, Root, St(A), NegR);Let TL := BuildTree(DBA [NegR, A, Strata, NegL);If Strata < St(A) then NegSet := f2g;Else NegSet := NegR [f(:A _C)jC 2 NegLg;If TL = nil then return TR;Else if TR = nil then return AttachLeftNode(Root, TL);Else return AttachLeftNode(TR, TL)Example 6 Let DB be as given in Example 5.Let HBoDB = hP (a); P (b); P (c); Q(c); Q(d); Q(e); R(a)i which is compatible with the strati�cationof DB. The construction process and the �nal ordered minimal model tree are shown in Figure 6.As before (see Example 5), the �rst model generated, M1 = fP (b); Q(e); R(a)g is perfect. Priorto the generation of M1 we had no perfect models and thus the current databases are not augmentedby any additional negative clauses. When N = P (b) and A = Q(d), that is, we are expanding atomQ(d) under node P (b). The only right sibling of Q(d) is Q(e). The only element of M1 in the samestratum as Q(d) is Q(e). Therefore, C1 = Q(e) and C:1 = :Q(e). R(a), which belong to M1, wasdropped from C1 since it belongs to a higher stratum and should not be propagated any further in thetree. When added to the current database fQ(e)g, C:1 will cause suppression of the (minimal but)nonperfect model fP (b); Q(d); Q(e)g since :Q(e) and Q(e) will generate the empty clause.Clause 1, :P (b) _ :Q(e), is used when expanding P (a) under the root. However, since neitherP (b) nor Q(e) occurs positively in the current subtree this clause has no e�ect on generating the(perfect) model M2 = fP (a); Q(c); R(a)g. When N = P (a) and A = P (c) (expanding the leftmostbranch of the tree), the clause :P (b) _ :Q(e) is retained from the previous stage and additionallythe new clause C2 is generated from the perfect model M2 = fP (a); Q(c); R(a)g. C2 = Q(c) andC:2 = :Q(c) . C2 will cause suppression of the (minimal but) nonperfect model fP (a); P (c); Q(c)g.The only models of the tree are fP (a); Q(c); R(a)g; fP (b); Q(e); R(a)gwhich are the perfect modelsof DB.It is worthwhile to note that Algorithm 2 generalizes Algorithm 1 in the sense that for a DDDB,the former computes its minimal model tree. Moreover, since for a DNDB, DB, the database DB+is negation-free, it can be used to compute the minimal, rather than the perfect, model tree of DB.17

"P (a) P (b)P (c) :Q(d)_Q(e)_:P (b)R(a)_ :P (b)_Q(d)
"P (a) P (b)

R(a)_Q(d):Q(d)_Q(e) P (b)Q(d) _Q(e) Q(e)Q(d) R(a)R(a)Q(c)R(a) Q(e):Q(e)2:Q(c) R(a)*1 = :P (b)_:Q(e)
R(a)Q(c) Q(e)R(a)

Q(d)_Q(e)_:P (b):Q(d)_Q(e) _:P (b)Q(d)_Q(e)_:P (b)Q(d)_R(a)_:P (b):P (c)_Q(c)R(a)_ P (c)P (c) _Q(c)1*21Q(c) 1
Figure 6: The Perfect Model Tree for Example 618

4 Computing Stable ModelsIn a disjunctive normal database there are no restrictions on the way negative literals are used. Forthis class, we have chosen the meaning of a disjunctive normal database, DB, to be given by thestable model semantics.2De�nition 4.1 [9] Let DB be a disjunctive normal database and let I be an interpretation. Then,we de�ne the Gelfond-Lifschitz (GL) transformation of DB with respect to I,DBI = f(A1_ � � � _Al B1; : : : ; Bn) : fD1; : : : ; Dmg \ I = ; and(A1 _ � � � _Al B1; : : : ; Bn; notD1; : : : ; notDm) is a ground instance of DBgwhere the Ai, Bj and Dk are atomic formulae and I is an interpretation.M is called a stable model of DB i� M is a minimal model of DBM .DBM is a disjunctive deductive database (negation-free) whose semantics is de�ned by its set ofminimal models,MM(DBM). Using this declarative de�nition, to check if an interpretation M isstable is an expensive process, we must guess the interpretation M , construct a new database DBM ,and compute its minimal models. Moreover, non-strati�ed de�nite normal databases can have morethan one stable model or no stable models at all. Fern�andez et al. [5] proposed a method for reducingthe search space (i.e. the interpretations to be tested) and the amount of work necessary to test forstability. They �nd a set of models that covers the set of stable models, and they reduce the testfor stability to a test of consistency with some particular class of integrity constraints.4.1 Strati�ed Evidential TransformationThe approach of [5] transforms a disjunctive normal database, DB, into a disjunctive strati�eddatabase DBE for which we must compute the perfect models. This new database DBE uses anadditional set of predicate symbols called evidences. For each predicate symbolP ofDB we introducea new predicate symbol EP whose intended meaning is \there is evidence of P". The role of the\evidence" is to separate the positive use of an atom A in the body of a clause, which has a classicalmeaning, from the use of its negation (i.e. notA) where the usage is non-monotonic. Given an atomA � P (~x), we will denote the atom EP (~x) by EA. Given M � HBDB , EM = fEA : A 2Mg.This role separation allows us to express our clauses in the following classical way:A1 _ � � � _Ak B1; : : : ; Bn;:ED1; : : : ;:EDmwhere some Aj is true if the Bi are true and \there is no evidence of the Dl" atoms.Fern�andez et al. [5] also noticed that, since for disjunctive strati�ed databases perfect and stablemodels coincide [16], it was possible to apply their transformation to a strati�ed database andcompute its stable models (i.e. perfect models). However, with the evidential transformation, onemay generate a DDDB with many more minimal models than those that are stable (possibly anexponential number of extra models). The reason is that the evidential transformation disregardscompletely the original structure of the database. This structure is what guides the algorithms2Other semantics have been proposed. See [1, 2, 19] for details.19

presented in [7] to generate only perfect models. The solution of [5] was to modify the transformationto take into account the structure of the database. They compute the perfect models of the richerdisjunctive strati�ed database produced by the following transformation.De�nition 4.2 [5] Let DB be a disjunctive normal database. A semi-strati�cation, S1; : : : ; Sr,of DB is a partition of the set of predicate symbols de�ned in DB such that if P 2 Si then anypredicate Q, on which P depends, belongs to a partition Sj where j � i and if P depends negativelyon Q then j < i unless Q depends on P .Any disjunctive normal database has a semi-strati�cation, and all predicates involved in a recur-sion through negation will belong to the same semi-stratum. The strati�ed evidential transformationtakes a disjunctive semi-strati�ed database and produces a disjunctive strati�ed database.De�nition 4.3 [4, 5] Let DB be disjunctive normal database with semi-strati�cation S1; : : : ; Sr .The strati�ed evidential transformation of DB de�nes a disjunctive strati�ed database DBE suchthat:1. For each clause A1_� � �_Ak B1; : : : ; Bn; notD1; : : : ; notDm; notE1; : : : ; notEs de�ningpredicates in Si, the clause A1_� � �_Ak_ED1_� � �_EDm B1; : : : ; Bn; notE1; : : : ; notEsbelongs to DBE where the predicate symbols of the Dl, are de�ned in semi-stratum i and thepredicate symbols of the Ej, are de�ned in the semi-strata strictly below i.2. For each predicate symbol P 2 Si, the clause EP (~x) P (~x) belongs to DBE .3. For each predicate symbol P 2 Si, DBE contains a clause of the form ? EP (~x); not P (~x).Nothing else belongs to the DBE .The transformation only substitutes by evidences those occurrences of negated literals that can-not be dealt with by the use of strati�cation techniques. It only modi�es normal semi-strata so thatthe recursions through negation are changed into an evidence. As for strati�cation, we can de�nelocal semi-strati�cations by partitioning the Herbrand base instead of the set of predicate symbolsin the obvious way.Theorem 4.4 [5] Let DB be a disjunctive normal database. Then (M [EM) is a perfect model ofDBE i� M is a stable model of DB .Models that are unstable, will contain the special symbol ? denoting that the model is inconsis-tent with the axiom ?. Hence, a clause C can be de�ned to be a logical consequence of DB bythe following test on DBE .Theorem 4.5 [4] Let DB be a disjunctive normal database, let DBE be the strati�ed evidentialtransformation of DB, and let C be a ground positive clause. Then1. DB is inconsistent i� ? is true in every perfect model of DBE .2. C is true in every stable model of DB i� (C _?) is true in every perfect model of DBE .20

Hence, we can compute the stable models of DB by computing, using Algorithm 2, the orderedperfect model tree of DBE . The addition of ? to the clause C in Theorem 4.5, e�ectively eliminatesfrom consideration any model of DBE that does not represent a stable model of DB. Therefore, wecould directly eliminate these models from the model tree since they are useless for expressing thesemantics of DB.Note that the unstable perfect models of the transformed theory can be used to eliminate someother models that are not perfect but seem to be stable otherwise. Hence, eliminating unstablemodels before using them for minimization can result in the generation of models of DBE that donot correspond to stable models of DB.Example 7 Let DB = fP (a) not P (a)g. DBE = fP (a) _ EP (a); EP (a) P (a);? EP (a);not P (a)g. The theory has the set of models ffEP (a);?g; fEP (a); P (a)gg, only the �rst of whichis perfect. However, the perfect model is unstable and therefore should be removed. Note that thenonperfect model seems to be stable since it has no ?. Eliminating unstable models �rst will removethe perfect model and leave fP (a)g as a stable model for DB which clearly has no stable models.Given a general disjunctive normal database, DB, Algorithm 2, operating on the transformeddatabase DBE , constructs the ordered stable model tree for DB. To achieve this, Algorithm 2exploits the evidential transformation and the ordering of the atoms in the extended Herbrand base(HBDBE) that re
ects the induced semi-strati�cation. Inconsistency resulting from a clause with? in Algorithm 2 signals that the model does not satisfy the integrity constraints introduced bythe evidential transformation. However, the relevant parts of such models are retained for use inminimization, a need that was demonstrated in Example 7. The following example demonstrates theuse of this approach to construct the ordered stable model tree for a nonstrati�ed normal disjunctivedatabase.Example 8Let DB = fP notQ;Q not P ;R P ;R Qg:DBE = fP _ EQ;Q_ EP ;R P ;R Q; EP P ; EQ Q; ER R;? EP; not P ;? EQ; notQ;? ER; notR; ?g:The ordered stable model tree built using Algorithm 2 on the (strati�ed) database DBE is shownin Figure 7.5 Conclusions and Future WorkIn this paper we emphasized the connection between the ordering of the Herbrand base of a disjunc-tive database and its hierarchical structure. We used this connection to compute the perfect modeltree for strati�ed databases. Combining this with the evidential transformation, which transformsa nonstrati�ed database into a strati�ed database and a set of integrity constraints, we were ableto use the ordering of the extended Herbrand base to compute the stable model tree of a generalnormal database.For the perfect and stable model tree generation, the construction proceeds in a sequentialmanner. To expand a node, the results of expanding nodes to its right are needed. Order and21

"P EQ;Q_ EP ;R_ :Q;:EP _?;
EQ;?;:EQ_?;?;?;:ER_ ?;EP ;QR;EQ;:EP _ ?;EQ;:R_ ER;:R_ ER; ?;EQ;2

:EQ_:EP ;R ? EPEQ:EQ_ :EP ;R :EQ_?;:EP _?;EQ;ER;:EP ;EREP ;:EQ_:ER;:ER_:EP ;
:EQ_Q_ ?;:Q_ EQ;:R_ ER;Q:EQ_ :EP ;EQ;ER;EP ;EQ22:EQ; :ER;ER;2EQ;ER;:ER;

:EQ_Q _?;:ER_R _?; EP ;:EP _ ?;:ER_R _?;:EQ_?;EQ;REQ;:EQ_:EP ;:EQ; :ER_?;:ER_?;R;EP ;EQ;:EQ_:EP ;:R_ ER; :EQ_:EP ;REP:EQ;EREREREP ; :EP _?;ER;EQ;:R_:ER_:EP ;:EQ_ :EP ;R _:Q;EP ;R;:Q _:R_:EQ_:ER;:R_:ER_:EP ;:R_ :EQ_ :ER; EP ;R;:EQ_:EP ;:EQ_ ?;:R_ ER; :EQ_?;:EP _ ?;EP ;EQ;:R_ ER;a EP
PREPER Q RERb EQ" "P QR RcFigure 7: The Stable Model Tree for Example 822

strati�cation considerations can be used to allow for parallelism and improved e�ciency in the treeconstruction process. When a child is in a di�erent stratum than its parent, the computations underthe two nodes can proceed independently since the child's subtree cannot a�ect the subtrees to theleft of the parent node. The two computations can proceed in parallel. On the other hand whentwo siblings belong to di�erent strata we can abandon the left sibling (the one in the lower stratum)since its models cannot be perfect.Minimal ordered model trees were used in [20] as a normal form for representing disjunctivedeductive databases. In the same way ordered perfect and ordered stable model trees can serve asnormal forms to represent the corresponding class of disjunctive databases.An issue closely related to strati�cation is the concept of prioritized circumscription [12, 13, 14,15]. In view of the results given in [17] on the equivalence of perfect models and the prioritizedcircumscription of a given theory, Algorithm 2 can be readily applied to compute the prioritizedcircumscription of the theory as well.The trees constructed using Algorithm 2 can be used to answer queries to the database underthe relevant semantics. The algorithm presented in [8] can be used for this purpose. The orderimposed on the tree can be utilized to improve the e�ciency of answer extracting algorithms. Thesetrees can also be used to compute the completions of the database and therefore to answer negativequeries.Other researchers have developed algorithms to compute perfect and stable models of disjunctivenormal databases and logic programs [3, 5, 6, 11].Fern�andez et al. [5, 6], as discussed before, use the same evidential transformation as we do.The major di�erence is in the way minimization is achieved. Their algorithms expand the modeltree eagerly when a rule is evaluated. Once this is done a minimization step is applied, where allbranches of the tree are compared against each other and non-minimal branches are eliminated. Thecost of this process is polynomial in the total number of models generated. On the other hand, thecost of maintaining only minimal models in our algorithms is polynomial in the number of minimalmodels obtained.Bell, Nerode, Ng and Subrahmanian [3] developed an algorithm for computing stable modelsof normal databases that uses linear programming techniques at the core of the approach. Groundclauses are translated into constraints that are evaluated to compute the set of minimal models ofthe database (i.e. minimal solutions to the linear problem). Stable models are then computed byapplying the GL-transformation for each minimal model and solving the corresponding new linearproblem. In contrast, we integrate the generation of models with the veri�cation of their stability.Moreover, using semi-strati�cation, we are able to restrict the number of partial models being testedfor stability to the perfect models of the transformed database rather than the entire set of minimalmodels as in the case of [3].Inoue et al. [11] developed a di�erent transformation to use in the computation of stable models.Using this transformation they have implemented a parallel algorithm to compute the stable modelsof a disjunctive normal database. Their approach requires the generation of the set of all constructivemodels of the transformed theory. The minimal elements of this set have to be checked for stability,as in the case of [5] and [3]. Additionally, Inoue's transformation does not take into consideration anyhierarchical structure existent in the database. This results in the introduction of additional literalsand rules, when compared with the strati�ed evidential transformation introduced by Fern�andez etal. [5]. This represents a substantial increase in the size of the database. Given the way models are23

screened for stability, the same comment made concerning [3] applies. An added advantage of ouralgorithm is that the �rst model generated is known to be stable. This can be of help in cases whena single model of the theory is needed. There is no need to generate all the minimal models of thetheory to �nd a single stable model.The approaches of [5, 6] and [11] are incremental in the sense that they process the clauses ofthe database one at a time. Our approach is based on processing atoms, rather than clauses. Allclauses containing the atom under consideration are processed simultaneously. Together with theorder imposed on atom expansion, this can help in pruning irrelevant models and consequently fastertermination of the tree construction process.The algorithms presented in this paper were implemented in Quintus Prolog. The examples ofthis paper were veri�ed using this implementation. Further experimentation is planned. A topicfor further research is the study of additional criteria that can be used to impose a total order onthe elements of the Herbrand base and the possible e�ects of the resulting ordering on the treeconstruction process and on the structure of the resulting tree. An experimental analysis of theperformance of the tree construction algorithm under various ordering criteria is planned.AcknowledgementsWe greatly appreciate the �nancial support of the National Science Foundation, provided under thegrant Nr. IRI-89-16059 and the Air Force O�ce of Scienti�c Research, provided under the grantNr. AFOSR-91-0350 to J. Minker, and the Fulbright Scholar Program (awarded to A. Yahya) thatmade this work possible. This work was carried out while the third author was a visiting scientistat the University of Maryland Institute for Advanced Computer Studies (UMIACS). The supportof UMIACS is also appreciated.References[1] C. Baral, J. Lobo, and J. Minker. Non-monotonic reasoning and generalised disjunctive well-founded semantics. under preparation.[2] Chitta Baral, Jorge Lobo, and Jack Minker. WF 3 semantics for negation in normal and dis-junctive logic programs. Draft, 1990.[3] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Computation and implementation of non-monotonic deductive databases. Technical Report CS-TR-2801, University of Maryland, 1991.Submitted for journal publication.[4] Jos�e Alberto Fern�andez and Jorge Lobo. A proof procedure for stable theories. Technical ReportUMIACS{TR{93{14 and CS{TR{3034, University of Maryland Institute for Advance ComputerStudies, College Park, MD 20742, 1993. Submitted to the Journal of Logic Programming.[5] Jos�e Alberto Fern�andez, Jorge Lobo, Jack Minker, and V.S. Subrahmanian. Disjunctive LP +integrity constraints = stable model semantics. Annals of Mathematics and Arti�cial Intelli-24

https://www.researchgate.net/publication/226469719_WF3_A_semantics_for_negation_in_normal_disjunctive_logic_programs?el=1_x_8&enrichId=rgreq-1d4393f9161ab70d3442a86a63ca5ff8-XXX&enrichSource=Y292ZXJQYWdlOzIyNzk0Nzc1MDtBUzoxNzk2ODI0MTQ3MDI1OTJAMTQxOTg1MTAzNDU5MA==

gence, 1993. To appear. Preliminary version presented at the Second International Symposiumon Arti�cial Intelligence and Mathematics, Florida, 1992.[6] Jos�e Alberto Fern�andez and Jack Minker. Bottom-up evaluation of Hierarchical DisjunctiveDeductive Databases. In Koichi Furukawa, editor, Logic Programming Proceedings of the EighthInternational Conference, pages 660{675. MIT Press, 1991.[7] Jos�e Alberto Fern�andez and Jack Minker. Computing perfect models of disjunctive strati-�ed databases. In Don Loveland, Jorge Lobo, and Arcot Rajasekar, editors, Proceedings ofthe ILPS'91 Workshop on Disjunctive Logic Programs, pages 110{117, San Diego, California,October 1991. An extended version has been submitted to the Journal of Logic Programming.[8] Jos�e Alberto Fern�andez and Jack Minker. Semantics of disjunctive deductive databases. InProceedings of the International Conference on Database Theory, pages 332{356, 1992. InvitedPaper.[9] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In R.A.Kowalski and K.A. Bowen, editors, Proc. 5th International Conference and Symposium on LogicProgramming, pages 1070{1080, Seattle, Washington, August 15-19 1988.[10] M. Gelfond, H. Przymusinska, and T.C. Przymusinski. On the Relationship between Circum-scription and Negation as Failure. Arti�cial Intelligence, 38:75{94, 1989.[11] Katsumi Inoue, Miyuki Koshimura, and Ryuzo Hasegawa. Embedding negation as failure intoa model generation theorem prover. In Proceedings of the Eleventh International Conferenceon Automated Deduction, Saratoga Springs, NY, 1992.[12] V. Lifschitz. Closed world databases and circumscription. Arti�cial Intelligence, 27(2):229{235,November 1985.[13] V. Lifschitz. Computing circumscription. Proc. Ninth International Joint Conference on Arti-�cial Intelligence, pages 121{127, 1985. Morgan Kaufman Publishers, Inc.[14] V. Lifschitz. On the declarative semantics of logic programs with negation. In J. Minker, editor,Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.[15] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Arti�cial Intelligence, 13(1and 2):27{39, 1980.[16] T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation ComputingJournal, 9:401{424, 1991. Extended Abstract appeared in [18].[17] Teodor C. Przymusinski. On the declarative semantics of deductive databases and logic pro-gramming. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,chapter 5, pages 193{216. Morgan Kaufmann Pub., Washington, D.C., 1988.[18] Teodor C. Przymusinski. Extended stable semantics for normal and disjunctive programs. InWarren and Szeredi, editors, Proceedings of the 7th International Logic Programming Confer-ence, pages 459{477, Jerusalem, 1990. MIT Press. Extended Abstract.25

[19] A. Van Gelder, K. Ross, and J.S. Schlipf. Unfounded Sets and Well-founded Semantics forGeneral Logic Programs. In Proc. 7th Symposium on Principles of Database Systems, pages221{230, 1988.[20] A. Yahya, J. A. Fernandez, and J. Minker. Ordered model trees: a normal form for disjunctivedeductive databases. Technical Report UMIACS{TR{93{63 and CS{TR{3103, University ofMaryland Institute for Advance Computer Studies, College Park, MD 20742, 1993. Submittedto the Journal of Automated Reasoning.

26

