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A Goal-Driven Approach to E�cient Query Processingin Disjunctive DatabasesAdnan YahyaInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen, GermanyElectrical Engineering Department, Birzeit University, Birzeit, Palestineyahya@informatik.uni-muenchen.deAbstractGenerally, proof procedures based on model generation perform bottom-up processing ofclauses. Several algorithms for generating (minimal) models for disjunctive theories were ad-vanced in the literature. Used for query answering, bottom-up procedures tend to explore amuch larger search space than is strictly needed. On the other hand, top-down processingusually has a more focused search space which can result in more e�cient query answering.In this paper we establish a strong connection between model generation and clause derivabi-lity that allows us to use a (minimal) model generating procedure for evaluating queries in atop-down fashion. In contrast to other methods our approach requires no extensive rewritingof the input theory and introduces no new predicates. Rather, it is based on a certain dualityprinciple for interpreting logical connectives achieved by reversing the direction of implicationconnectives in the clauses representing both the theory and the negation of the query. Theapplication of a generic (minimal) model generating procedure to the transformed clause setresults in top-down query answering. We explain the reasoning behind the transformation andshow how the duality approach can be utilized for re�ned query answering by specifying theconditions under which the query becomes derivable from the theory. Our initial testing pointsto a clear e�ciency advantage of the advanced approach as compared to traditional bottom-upprocessing for the class of positive queries against a disjunctive database.1 IntroductionModel generation received much attention in the literature both as a basis for refutation proceduresand to generate model representations for logic programs under di�erent semantics [17, 9, 16, 26]. Se-veral e�cient implementations were reported in the literature that can serve as a basis for (minimal)model-based reasoning [5, 11, 20]. Current work is directed at introducing enhancements to get moregeneral systems in terms of the class of theories being treated. Model generation is generally basedon the bottom-up evaluation of clauses. When used for refutations (e.g. query answering) modelgeneration procedures tend to explore a search space much larger than that required to generate arefutation. In a sense they tend to generate answers to all possible queries rather than to the query1



under consideration [23]. Improvements directed towards early detection of contradictions wereincorporated into the procedure resulting in substantial performance improvements [5, 11, 20, 24].On the other hand, top-down methods for query answering tend to perform more focused searchfor refutations by exploiting the information contained in the query, a desirable property. In adeductive database context this can mean substantial time savings in query answering. Severalapproaches based on transforming the set of clauses or using certain data structures and specialalgorithms to achieve top-down processing of the theory for a given query are available. Many of thetransformations involve the introduction of new predicates and/or the rewriting of clauses to enablethe more focused search [1, 7, 21, 23, 27].In this paper we o�er an alternative method to achieve a top-down evaluation of queries posedto disjunctive theories using a generic bottom-up model generating procedure. The method is basedon a certain concept of duality and utilizes the implicit modi�cation of the interpretation of logicalconnectives resulting from the reversal of the implication sign of clauses. Otherwise, no modi�cationof the theory is needed and e�ectively the same model generating procedure (with a manual orautomatic selection of direction) can be used for both bottom-up and top-down processing for queryanswering.Our selection of a model generation proof procedure is motivated by the wealth of informationit returns even in cases when no refutation is found. This will help us explore the potential of theadvanced approach. For example, we will utilize the information returned by the proof procedureto allow for re�ned query answering by specifying the optimal conditions under which the querybecomes derivable from the theory after an update. In addition, by virtue of using a generic minimalmodel generating procedure, the advanced approach will be able to bene�t from all the e�ciencyenhancement modi�cations and generalizations introduced to the model generating process. In thecontext of a deductive database, we show that our approach will make it possible to separate thequery answering process into two stages: the �rst is the generation of the checks needed to ensurethe derivability of the query, which is based on the interaction of the query with the Intentional partof the database (IDB), from the theory. The second is the actual look-up of these conditions in theExtensional part of the database (EDB). In this regard it behaves like a compiled approach to queryanswering [10]. Alternatively, one could integrate the two stages to get shallower computations withthe context and associated costs determining the exact choice.Since our approach is based on model generation, it su�ers also from all the shortcomings of suchprocedures. We address these limitations and discuss some of the ways they can be lifted.The remainder of the paper is organized as follows. In the next section we give some relevantde�nitions and background material. In Section 3 we de�ne our procedure for a restricted classof disjunctive theories: that of ground databases with no denial rules. In Section 5 we o�er someinterpretation and implementation notes on the advanced approach to explain the sources of itsperformance, potential and limitations. In Section 4 we show how to relax the restrictions on ourprocedure and the problems involved. In Section 6 we compare our approach with others advancedin the literature and point to the possible directions of further research and development.2



2 Preliminaries and Background MaterialIn this section we review some of the concepts related to query answering in disjunctive deductivedatabases. We assume familiarity with the basic concepts as outlined in [15] and therefore limitourselves to the basic material needed for the results presented in this paper.De�nition 2.1 A disjunctive deductive database (DDDB), DB, is a set of clauses of the form:C = A1 _ � � � _Am  B1 ^ : : :^Bn;where m;n � 0 and the As and Bs are atoms in a First Order Language (FOL) L with no functionsymbols.By Head(C), (Body(C)) we denote the set of atoms in the head (body) of a clause C of DB.We use the atom ? (false) to refer to the empty head and atom > (true) to refer to the empty body.At the expense of a slightly abused notation we write a clause S1 ! S2 where S1 = fB1; : : : ; BnBng,S2 = fA1; :::; Amg are sets of atoms and interpret it as the conjunction of atoms in S1 implies thedisjunction of atoms of S2 (B1 ^ :::^Bn ! A1 _ � � � _Am).The Herbrand base of DB, HBDB , is the set of all ground atoms that can be formed usingthe predicate symbols and constants in L. A Herbrand interpretation is any subset of HBDB . AHerbrand model of DB, M , is a Herbrand interpretation such that M j= DB (all clauses of DBare true in M ). M is minimal if no proper subset of M is a model of DB. The set of all minimalmodels of DB is denoted byMM(DB).In this paper we use (possibly subscripted) x for variables, a; b; c; d; e; f; g; h for constants,P;R; S; U; V for predicates (of di�erent arities), Q to denote a query. In examples where onlyground atoms are used, we may replace the atom by a constant (e.g. replace P (a) by a) to avoidobscuring the relevant material.De�nition 2.2 A clause C is range restricted if every variable occurring in the head of C alsoappears in the body of C. A database is range restricted i� all its clauses are range restricted.De�nition 2.3 If C = A1 _ :::_ An is a disjunction of atoms, then by Neg(C) we denote the setof clauses in implication form Neg(C) := fA1 ! ?; :::; An ! ?g. If M = fA1; :::; Ang is a �niteinterpretation then Neg(M ) denotes the clause in implication form Neg(M ) = A1 ^ :::^An !?.De�nition 2.4 A DDDB, DB, can be partitioned into three sets of clauses:1. The extensional part (EDB) a positive disjunctive database corresponding to base relationsand containing facts (clauses with empty bodies, positive clauses).2. The intensional part (IDB) corresponding to view de�nitions. The rules of IDB can be usedto derive new pieces of information from the extensional part of the database. They have theform of clauses with nonempty heads and bodies.3



3. The integrity constraints (ICDB). This is a set of rules that are used to ensure that the theoryconsisting of the �rst two components satis�es certain properties. These can be denial rules(clauses with empty heads) or general rules (clauses with nonempty heads)1.The main results of this paper are presented using a model generator with certain properties asthe proof procedure [5, 29]. We extensively utilize denial clauses (rules with empty heads) to restrictthe search space for models. Since denial clauses have only positive body literals they representpurely negative clauses.De�nition 2.5 Given a DDDB, DB and a model generating procedure P, by P(DB) we denote theresult returned by P run with DB as input. We say that P is1. Sound: if it returns only models of DB: 8M 2 P(DB);M j= DB.2. Minimal-Model sound if it returns only minimal models of its input: P(DB) �MM(DB).3. Complete: if it returns all the minimal models of DB: MM(DB) � P(DB).To make the paper complete, next we give a brief description of successively re�ned modelgenerating procedures that are sound and complete [5]. Given a DDDB,DB, each of these proceduresconstructs a tree (model tree) with the ground unit clauses in each root-to-leaf branch representinga model of DB. The completeness implies that the tree has at least one branch representing eachminimal model of DB.Starting from > as the root, the procedure expands a tree for a range restricted DDDB, DB, byapplying the following expansion rules:De�nition 2.6 (expansion rules) Let DB be a DDDB. If the elements above the horizontal lineare in a branch then it can be expanded by the elements below the line.Positive Unit Hyper-Resolution (PUHR) Rule: Splitting Rule:B1 E1 _E2... E1 j E2BnE�where � is a most general uni�er of the body of a clause (A1^:::^Am! E) 2 DB with (B1; :::; Bn).fA1; :::; Amg� = fB1; :::; Bng.Note that the splitting rule is always applied to ground disjunctions. This is possible since thetheory is range restricted. The head is always ground when the body is ground (or empty).De�nition 2.7 (model tree construction) A Model Tree for a DDDB, DB, is a tree whosenodes are sets of ground atoms and disjunctions of ground atoms constructed as follows:1Without loss of generality, one may assume that the sets of predicates in EDB and IDB do not intersect. Thatis, DB has no hybrid predicates [15]. We don't make this assumption here but discuss how such a separation canimprove the e�ciency of the algorithms presented in this paper.4



1. f>g is the top (root) node of the tree.2. If T is a leaf node in the tree being constructed for DB such that an application of the PUHRrule (respectively splitting rule) is possible to yield a formula E (respectively, two formulas E1and E2) not subsumed by an atom already in the branch, then the branch is extended by addingthe child node fEg (respectively the two child nodes fE1g and fE2g) as successor(s) to T .While the above de�nition imposes no order on atom expansion, we elect to maintain an orderthat will later be exploited for de�ning the properties of the generated tree.De�nition 2.8 (conventions for model generation) When expanding a model tree we assumethat the procedure adheres to the following rules2:1. Always select E1 of a disjunction to be atomic.2. Expand the leftmost atom of a disjunction �rst.3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding theremainder of the clause, if any, to the top of the theory to be processed in the sibling branch).We always expand left branches of the model tree �rst. Our interest is only in branches withno occurrences of ? (open branches). The branch expansion is stopped when false (?) is addedto a branch (the branch closes). Only (ground) disjunctions that are not subsumed in the branchare expanded to avoid unnecessary expansions. A branch represents the interpretation in which all(ground) unit clauses on that branch are assigned the truth value true. For the class of of rangerestricted disjunctive deductive databases with �nite models the tree de�ned by such a procedureis sound in the sense that it generates only models of the theory and complete in the sense that ithas branches representing all minimal models of DB. However, not all branches represent minimalmodels [5].Example 1 Let DB be the following set of clauses:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 1 is a model tree for DB. The minimal model fP (a); P (b)g of DB is generated twice. Thetree also has a branch with the nonminimal model fP (a); P (b); P (c)g. Among others, all minimalmodels of DB, i.e. fP (a); P (b)g, fP (a); P (d)g, and fP (b); P (c); P (d)g are generated.Further, it was shown that replacing the splitting rule by the following one called ComplementSplitting Rule preserves the completeness and soundness of the model generating procedure [5].De�nition 2.9 (complement splitting rule)2These conventions are adopted in the implementation reported in [5]. They correspond to a left-to-right, depth-�rst traversal of the search space. However, this is not the only possible expansion ordering. Breadth-�rst search canbe adopted for the same purpose. Comparing the merits of these two approaches is beyond the scope of this paper.5



>P (a) _ P (b)iiiiiiiiii UUUUUUUUUUP (a) P (b)P (b) _ P (d)ssss LLLL P (a)_ P (c)rrrr QQQQQQP (b) P (d) P (a) P (c)P (a)_ P (d)mmmmmm LLLLP (a) P (d)Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).E1 _E2E1 j E2Neg(E2) jThe adoption of this rule tends to reduce the search space by closing (adding false to) branchesbefore they grow into complete nonminimal or duplicate models. Besides, the �rst (leftmost) modelgenerated using this rule is minimal.Example 2 Let DB be the set of clauses of Example 1, i.e.:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Figure 2 gives the model tree for DB. Clauses not in the original theory are given in squarebrackets. The models of this tree are fP (a); P (d)g, fP (b); P (c); P (a)g, fP (b); P (a)g, and fP (b); P (c); P (d)g.Note that although some are not minimal, no duplicates are returned and the �rst model is minimal.If additionally, for each minimal model, M , generated so far we augment the theory by thenegation of M , (Neg(M ) = A1 ^ ::: ^ Am ! ? if M = fA1; :::; Amg), then we achieve a modelgenerating procedure that is minimal model sound and complete. It returns all and only minimalmodels of its input theory.Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the setof clauses of Examples 1 and 2, i.e.:>! P (a)_ P (b) P (a)! P (b)_ P (d)>! P (a)_ P (c) P (b)! P (a) _ P (d)Note that all models returned by the procedure are minimal.6



>P (a)_ P (b)kkkkkkkk VVVVVVVVVVVVP (a) P (b)[P (b)! ?]P (b)_ P (d)ppppp HHHH P (a) _ P (c)ppppp NNNNNP (b) P (d) P (a) P (c)[P (d)! ?] [P (c)! ?]? P (a) _ P (d)ppppp HHHHP (a) P (d)[P (d)! ?]Figure 2: The Model Tree with Complement Splitting for Example 2.
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>P (a)_ P (b)ssss UUUUUUUUUP (a) P (b)[P (b)! ?] [P (a) ^ P (d)! ?]P (b)_ P (d)xxxx 999 P (a)_ P (c)qqqqq RRRRRRRP (b) P (d) P (a) P (c)[P (d)! ?] [P (c)! ?] [P (b)^ P (a)! ?]? P (a) _ P (d)lllllll TTTTTTTTTP (a) P (d)[P (d)! ?] [P (b) ^ P (c) ^ P (a)! ?]?Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.
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In [29] and [5] sound and complete minimal model generation procedures were given for groundand RR theories, respectively. [5] contains a Prolog implementation of a series of procedures, forthe class of RR theories with �nite minimal models and no body negation, called: Satchmo forthe program with splitting [17], CS-Satchmo for the implementation with complement splitting andMM-Satchmo for the implementation with model minimization (by including negation of generatedminimal models).3 The Duality ApproachWe are interested in answering queries in the context of a DDDB. We limit our consideration to theclass of positive queries. This includes disjunctive queries which are disjunctions of atomic queriesand conjunctive queries which are conjunctions of atomic queries. Atomic queries are a special case ofeither of these classes. Other positive queries can be reduced to a conjunction of disjunctive queries(positive clauses). For now, queries are assumed ground and have yes/no answers. Additionally, wetreat both clauses and models as sets of ground atoms. A set of atoms is interpreted disjunctivelywhen it is referred to as a clause and conjunctively when it is referred to as a model. We caneven talk about equality of a clause and a model which is to be interpreted as their having thesame underlying set. Unless otherwise stated, we assume that the database under consideration isconsistent.3.1 Disjunctive QueriesIn this section we present the main results of our approach for the case of disjunctive queries: queriesthat are disjunctions of atoms. Later we show that the results easily extend to other positive queries.3.1.1 Goal Set ExpansionTheorem 1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1 _ ::: _ qn be a disjunctive query. If DB ` Q then a clause subsuming Q occurs in the headof some clause of DB.Proof: Q is derivable fromDB i� it is true in every model of DB. Assume that Q is derivable fromDB and there exists no clause C 2 DB such thatHead(C) subsumes Q. To show contradictionwe construct a model in which no atom of Q is present. Consider M = HB(DB) n fq1; :::; qng.It satis�es all clause heads since none of them consists entirely of atoms in Q. M is a modelof DB.That Theorem 1 doesn't hold in the presence of denial constraints is clear from the followingexample:Example 4 Consider DB1 = fP (d) ! P (a) _ P (b) _ P (c); P (d)g and DB2 = fP (d) ! P (a) _P (b)_ P (c); P (d); P (c)!g and Q = P (a) _ P (b). Clearly DB2 ` Q but DB1 6` Q.In view of Theorem 1, if a subclause of Q is in the (Extensional) database then the query is true.This can be veri�ed by inspection. If not, the process of answering Q will require more work. We9



need to look for a clause C with a subclause of Q as (instance of) the head and show that C willderive Q at least in all models of DB in which Q may not be satis�ed, ensuring the derivability ofQ. We can do that, for example, by showing that atoms of the body of C are all elements of theEDB. However, this is too strong a condition: it is su�cient but not necessary.A necessary and su�cient condition is given by the following rephrasing of results reportedin [7, 14, 21].De�nition 3.1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints),Q = q1_ :::_ qn be a disjunctive query against DB and C = B1 ^ :::^Bk ! A1_ :::_Al be a clausein DB. We de�ne GQC , the goal clause set of Q relative to C, as:GQC = � fq1 _ :::_ qn _B1; :::; q1_ :::_ qn _Bkg if fA1; :::; Alg � fq1; :::; qngfq1 _ :::_ qng if fA1; :::; Alg 6� fq1; :::; qngBy Body(C) _Q we denote the set fq1 _ :::_ qn _B1; :::; q1_ :::_ qn _BkgIn essence, GQC is meant to de�ne a set of clauses, that need to be derivable from DB to provethat Q follows from DB in as far as clause C is concerned. C may contribute to the derivability ofQ only when its head subsumes Q. While we are replacing the provability of one clause Q by theprovability of several, the latter are potentially longer disjunctions and, therefore, each of them hasa better chance of being proved than Q itself.Clearly a set of clauses is derivable from DB if and only if all of its members are derivablefrom DB. Since a clause is always satis�ed whenever any clause subsuming it is satis�ed it ispossible to delete all nonminimal elements from the clause set GQC . In particular, note that iffA1; :::; Alg � fq1; :::; qng and fB1; :::; Bkg \ fq1; :::; qng 6= ; as well then GQC is subsumed by thesingle clause fq1_ :::_ qng and therefore GQC = fq1_ :::_ qng in this case too. We make this explicitwhen de�ning the consequence operator T gDB later in this section (De�nition 3.2).Theorem 2 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1 _ :::_ qn be a disjunctive query. DB ` Q if and only if there exists a clause C in DB suchthat Head(C) subsumes Q and the formula (Body(C) _ Q) is derivable from DB. Or equivalentlyif and only if f(B _Q) j B 2 Body(C)g is derivable from DB, where B is an atom in Body(C).Proof: Assume that Q is not true in some model of DB, say M . Then from M j= (Body(C) _ Q)we get that Body(C) � M and consequently Head(C) � Q is true in M . Q is true in M byan application of clause C, a contradiction.The other direction follows directly from Theorem 1. Assume that for all clauses C of DB,(Body(C) _ Q) is not derivable from DB. Consider a suitable model M of DB: there is aclause (B _ Q) for some B 2 Body(C) such that both B and Q are false in M . Q is notderivable from DB (it is false in M ).Corollary 1 [14] Under the conditions of Theorem 2:1. (Body(C) _Q) is derivable from DB i� (Body(C) _Q) is derivable from DB n fCg.10



2. If Body(C) \Q 6= ; then DB ` Q i� DB n fCg ` Q.3. DB 6` Q if and only if for any clause C in DB such that Head(C) subsumes Q, (Q_Body(C))is not derivable from DB.Proof: 1. If Body(C) _ Q is derivable from DB n fCg then Q is derivable from DB by theapplication of clause C.Let Body(C)_Q be derivable fromDB. Assume that DB nfCg 6` (Body(C)_Q). Thereexists a modelM such thatM j= (DBnfCg) butM 6j= (Body(C)_Q). Body(C)\M = ;.M j= C and consequently M j= DB and therefore M j= (Body(C)_Q). A contradiction.2. Immediate since in this case Body(C)_Q is subsumed by Q. That is Q 2 f(B _Q) j B 2Body(C)g.3. straightforward.If all the resulting clauses are subsumed by elements in EDB then the task is over. Otherwiseattempts must be made to prove the new goal set by repeated application of Theorem 2. Considerthe example:Example 5 Let DB3 = fC1 = a_b; C2 = c_d;C3 = a^d! e_b; C4 = b^d! f _c; C5 = c! gg.Let Q1 = b _ e _ g, Q2 = b _ c _ f and Q3 = g _ f .1. Q1 = b_e_g: Applying the clause C3 to Q1 yields the set fC6 = b_e_g_a;C7 = b_e_g_dg.C6 is derivable from EDB (subsumed by C1) while C7 is not so we apply clause C5 to C7 toyield fC8 = b_ e_ g _ d_ cg which is derivable from EDB (subsumed by C2) and consequentlyso is Q1.2. Q2 = b_ c_f : Applying the clause C4 to Q2 yields the set fC9 = c_f _ b; C10 = b_ c_f _dg.C10 is derivable from EDB while C9 is not. All attempts to solve C9 (through C4 fail andtherefore DB 6` Q2. Note that we could have generated C9 alone since Q2 \ Body(C4) is notempty without changing the �nal result.3. Q3 = g_f : Applying the clause C5 to Q3 yields the set fC11 = c_g_fg. C11 is not derivablefrom EDB. Applying the clause C4 to C11 yields the set fC12 = c_g_f_b; C13 = c_g_f_dg.C13 is derivable from EDB while C12 is not. No clauses are available to extend C12 so DB 6` Q2.It is easy to see how the results of Corollary 1 hold for Example 5.In e�ect, Theorem 2 and Corollary 1 suggest a simple approach to proving Q. Keep generatingclauses subsumed by Q until a su�cient group of such clauses is subsumed by clauses in DB. Thefollowing points need to be emphasized in this regard:� Each of the clauses of the goal clause set, GQC , is at least as long as Q. The derivability of thequery is expressed in terms of the derivability of other positive clauses. Since, by de�nition, theonly component of the database that contains positive facts is the EDB then the derivabilityof the query must ultimately be reduced to simple searches in EDB for clauses subsuming eachof the elements of a �nal goal set. The expansion is continued until the goal clause set is foundin the EDB or until no more applications of the rules of DB are possible.11



� The top-down nature of the expansion process since the clauses are selected on their (head)matching the goal clause (current query). This may be instrumental in reducing the searchspace as compared with the case of using a bottom-up query evaluation procedure e.g. basedon minimal model generation.� The clause (instance) used for expansion is applied only once and it can be deleted from thedatabase during the rest of the search process. This results in reducing the size of the IDBcomponent of the database at the expense of increasing the size/number of the clauses thatneed to be tested for (simultaneous) derivability from EDB.It is clear that derivability of the answer Q is being reduced to the derivability of a set of largerclauses with the �nal aim of having these larger clauses looked up in the extensional part of thedatabase (EDB). As far as the nature of GQC content is concerned, it is preferable to have the testingperformed on longer clauses. If this set contains clauses subsuming each other then we can limit ourtesting to the minimal components alone. If the test succeeds, subsumed clauses will be derivableas well.De�nition 3.2 Let DB = EDB[IDB be a ground Disjunctive Deductive Database (with no denialconstraints), C be a ground positive clause and S be a set of ground positive clauses. We de�ne theconsequence operator T gDB that maps sets of positive clauses into sets of positive clauses of thedisjunctive Herbrand base of DB as follows:T gDB(fCg) = � fC _Bj 9C1 2 IDB s:t:Head(C1) � C;Body(C1) \C = ;; B 2 Body(C1)g:fCg OtherwiseT gDB(S) = SC2S T gDB(fCg)T gDB " 0(S) = S,T gDB " �(S) = T gDB(T gDB " (�� 1)(S)) for successor ordinal �,T gDB " �(S) = lubfT gDB " �(S) : � < �g for limit ordinal �,lfp(T gDB) = T gDB " !(S), where ! is the �rst limit ordinal[8, 12, 25].We may assume that subsumed clauses are deleted (minimization is performed) at each stage.This is so since subsumed clauses are automatically derivable fromDB when the subsuming clausesare3. However, we elect not to adopt this assumption to make our discussion as general as possible.Note that our expansion process di�ers from that of [21] by explicitly prohibiting the generation ofsubsumed goals through applicable clauses with nonempty intersection of the clause body and thecurrent goal.3Note, however, that the partial order on sets of interpretations I and J is de�ned through the set inclusionrelationship (�) between the minimal elements of the sets. That is, J v I if and only if 8I 2 Min(I);9J 2Min(J ); J � I, where Min(I) = fIjI 2 I; 6 9I 0 2 I s:t: I 0 � Ig . So, rather than minimizing at every step, weminimize after the complete computation. Clearly, nonminimal elements will have no e�ect on the partial order andthe results of [8] hold here as well. 12



Example 6 Consider DB =fC1 = a _ b; C2 = c _ d;C3 = a ^ d! e _ b; C4 = b ^ d! f _ c; C5 = c! gg.Let Q1 = b _ e _ g, Q2 = b _ c _ f and Q3 = g _ f as in Example 5.T gDB " 1(fQ1g) = fC6 = b _ e _ g _ a;C7 = b _ e _ g _ d;C8 = b _ e _ g _ cg.T gDB " 2(fQ1g) = fC9 = b _ e _ g _ a _ c; C10 = b _ e _ g _ d _ cg.T gDB " !(fQ1g) = T gDB " 2(fQ1g).T gDB " 1(fQ2g) = fC11 = b _ c _ fg.T gDB " !(fQ2g) = T gDB " 1(fQ2g).T gDB " 1(fQ3g) = fC12 = g _ c _ fg.T gDB " 2(fQ3g) = fC13 = g _ c _ f _ b; C14 = g _ c _ f _ dg.T gDB " !(fQ3g) = T gDB " 2(fQ3g).Note that the expansion can produce nonminimal elements. For example, if we let DB0 = DB [fC0 = f^d! a_gg then applying C0 to C9 gives T gDB0 " !(fQ1g) = fC14 = b_e_g_a_c_d;C15 =b _ e _ g _ a _ c _ f; C10 = b _ e _ g _ d _ cg.C14 is nonminimal. It is subsumed by C10.Later we prove that if we start with clause (disjunctive query) Q then T gDB " !(fQg) is the setof clauses that all need to be subsumed by EDB in order to prove Q.3.1.2 The Duality TransformationAs outlined above, the expansion procedure has many of the elements of model generation. Our aimis to employ a (bottom-up) model generating procedure to simulate the (top-down) computationsuggested by the proved theorems. However, since the elements we are dealing with in the theoremsare clauses and clause subsumption rather than models and clause satis�ability, some changes areneeded to account for this di�erence.As a �rst step, starting from the query to be proved, Q, we will try to construct a set of groundclauses (clause construction) that are to be tested for being subsumed by elements of EDB (sub-sumption checking) to verify the derivability of Q from DB. Later we incorporate the subsumptionchecking part into the clause construction process to get the required procedure. To explain ourapproach we need to recall some terminology and de�nitions.We recall that a clause C = Body(C) ! Head(C) is always treated as reading the conjunctionof atoms in the set Body(C) implies the disjunction of atoms in the set Head(C). Changing theimplication direction therefore will have the automatic e�ect of exchanging _ by ^ and vise versa.De�nition 3.3 (dual clause) Let C = Body(C) ! Head(C) be a clause of a DDDB, DB. Wede�ne the dual clause of C, Cd = Head(C) ! Body(C). Clearly, Head(C) = Body(Cd) andBody(C) = Head(Cd). Note that ? (>) in the head (body) of C replaced by > (?) in the body(head) of Cd. The dual of a set of clauses is the set of the duals of each of its members. Inparticular, IDBd = fCdjC 2 IDBg is the dual of IDB.The intended meaning of Cd is that in order to show that the disjunction of atoms in the headof a clause C is derivable from DB one needs to show that all the disjunctions of an element of the13



body with the head of C are derivable from DB. So read Cd as \to prove the disjunction subsumedby Body(Cd) requires (!) that the clauses corresponding to each element of Head(Cd) added tothat disjunction are provable fromDB. This is in line with the interpretation of a disjunctive clauseC = Body(C)! Head(C) as implyingBody(C)_D ! Head(C)_D for a positive clause D, underthe restriction that Head(C) subsumes D [21, 27]. A di�erent reading that re
ects the procedurebeing developed in this paper will be advanced in paragraph 5.1.Now, to start the search for the derivability of Q = q1 _ ::: _ qn in DB we take the set Qd =fq1; :::; qng4 and look for a clause Cdi 2 IDBd such that Qd \Body(Cdi ) = Body(Cdi ). (To use theinterpretations terminology,Body(Cdi ) is satis�ed in the partial interpretation Qd). We extend Qdby one element of Head(Cdi ) at a time to create the new set ffQd; BgjB 2 Head(Cdi )g. Now, allthe clauses corresponding to the elements of the new set have to be derivable from EDB. If notthe same procedure is applied to those which are not. We may, however, keep generating the newelements until all those potentially needed are produced (a �xpoint is reached in the computation)and do the checking at that time. As suggested by Corollary 1 we may also remove a clause of thetheory as soon as it is used to generate its goal clause set (expired) or we can keep it in the database.With a view on expanding our procedure to the case of nonground theories we elect to postponethe subsumption checking in the EDB and to keep expired clauses in the database. Note that theoutlined procedure has all the elements of model generation for the dualized database.Formally, we have the following results:Lemma 1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints), Q =q1 _ :::_ qn be a disjunctive query against DB and C = B1 ^ :::^Bk ! A1 _ :::_Al be a clause inDB. Then� MM(fCdg [Qd) � GQC� MM(fCdg [Qd) =Min(GQC )Proof: By de�nition Cd = A1 ^ :::^ Al ! B1 _ ::: _Bk. Recall the de�nition of GQC . Three casesare possible:1. If Qd \ fA1; :::; Alg 6= fA1; :::; Alg thenMM(fCdg [Qd) = fQdg = GQC .2. If Qd \ fA1; :::; Alg = fA1; :::; Alg and Qd \ fB1; :::; Bkg 6= ; then MM(fCdg [ Qd) =fQdg � GQC and Min(GQC ) = fQdg andMM(fCdg [ fQd) = Min(GQC ).3. If Qd \ fA1; :::; Alg = fA1; :::; Alg and Qd \ fB1; :::; Bkg = ; then MM(fCdg [ Qd) =ffQd [ fB1gg; :::fQd [ fBkggg = GQC = Min(GQC ).4There is a slight abuse of notation here. However, the correspondence is clari�ed if one looks at Q as the clauseq1 _ :::_ qn ! ? the dual of which is > ! q1 ^ :::^ qn which is equivalent to Qd = fq1; :::; qng. The same reasoningapplies to motivate having Qd = q1 _ ::: _ qn when Q = q1 ^ ::: ^ qn. Paragraph 5.1 o�ers a way of looking at themeaning of such a transformation. 14



Note that only the minimal (relative to set inclusion) elements of GQC are relevant since theysubsume all other clauses of GQC . The nonminimal clauses will be derivable whenever the minimalones are. The goal clause set can be further extended by applying the elements of IDB to the recentlygenerated set. The process can be continued until no further extension is possible.De�nition 3.4 Let DB be a ground Disjunctive Deductive Database (with no denial constraints)and Q = q1_ :::_qn be a disjunctive query. Let IDBdQ = Qd[IDBd = fq1; :::; qng[fCdjC 2 IDBg.ByMM(IDBdQ) we denote the set of minimal models of IDBdQ .The result of Lemma 1 can be extended further by the following:Theorem 3 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1_ :::_qn be a disjunctive query. Let IDBdQ = fq1; :::; qng[fCdjC 2 IDBg. LetMM(IDBdQ)be the set of minimal models of IDBdQ . Then:� MM(IDBdQ) � T gDB " !(fQg).� MM(IDBdQ) =Min(T gDB " !(fQg)).Proof: (Sketch). M 2MM(IDBdQ). Qd �M . T gDB " 0(fQg) = fQg.T gDB " 1(fQg) = fQ_Bj9C 2 IDB s:t:Head(C) � Q;Body(C) \Q = ; and B in Body(C)g.By Lemma 1 the minimal models of fCdg [ Qd are in the set T gDB " 1(fQg). Using this asthe base step i, an induction step can be constructed by applying the operator T gDB to the setT gDB " 1(fQg) and using Lemma 1 to show that the minimal models of the set consisting ofthe atoms of each clause generated at step i and a matching clause in IDBd are among theelements returned by the new application of the operator T gDB.M 2 MM(IDBdQ) is saturated (depth-wise) with regard to the the rules of IDBd . No rule ofIDBd can be applied to M to extend it further. Whenever a rule is applicable by having its bodyatoms in M at least one head literal of that rule has an atom of M as well. This follows from thede�nition of a model.The set MM(IDBdQ) is also saturated (width-wise) in the sense that all possible expansionsare attempted whenever the body of a rule Cd in IDBd is satis�ed by the atoms in a branch. Thebranch containing no atom of Head(Cd) is developed into a set of branches each of which extendsthe branch by a single head atom of Head(Cd). If the branch already has an atom of Head(Cd) noextension is performed in accordance with Corollary 1.Because no further application of the rules of IDBd is possible, it follows that a clause corre-sponding to an element of the setMM(IDBdQ) is derivable from DB if and only if it is subsumedby a clause in EDB. That is, Q is derivable from DB if and only if all elements ofMM(IDBdQ) aresubsumed by clauses in EDB. Note also that MM(IDBdQ) depends only on Q and the generallystatic IDB and is independent from the dynamically changing EDB.Theorem 4 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1_ :::_qn be a disjunctive query. Let IDBdQ = fq1; :::; qng[fCdjC 2 IDBg. LetMM(IDBdQ)be the set of minimal models of IDBdQ. Then: Q is derivable from DB if and only if EDB derivesclause M for all M 2 MM(IDBdQ): (EDB ` CM = A1 _ :::_Al if M = fA1; :::; Alg).15



Proof: � Let M be inMM(IDBdQ) and Q be derivable fromDB. We show that CM , the clausecorresponding to M , is derivable from EDB.Assume that EDB does not derive CM . There exists a model M 0 of EDB such thatM 0 \M = ;. Clearly M 0 6j= Q, since Qd � M . We extend M 0 into a model of DB, M 00,such that M 00 6j= Q.All clauses in IDB the dual of which participated in generating M (�red during thegeneration of M ) are trivially satis�ed in M 0 since at least one of their body atoms isnot in M 0. That is f8CjC 2 IDB;Head(C) � Mg, an atom A of Body(C) is in M andtherefore A 62M 0 since M 0 \M = ;.For any other clause of IDB, say C, if Body(C) is satis�ed in M 0 and Head(C) is notthen add an atom A 62M of Head(C) to M 0. Such an A exists since otherwise C wouldhave participated in the derivation of M (and is already satis�ed in M 0). The resultingM 00 is a superset of M 0, a model of DB, and M 00 6j= Q contradicting the derivability ofQ from DB.� Assume that for allM 2MM(IDBdQ), CM is derivable from EDB. We show that in thiscase Q is derivable from DB.Let N 2 MM(DB) such that N 6j= Q. We describe how we can extend Qd into anM 2MM(IDBdQ) such that N \M = ; and therefore N 6j= CM .1. Let i := 0 and Let M0 := Qd;2. Clearly, N \M i = ; (recall that Q is a disjunctive query).If M i 2MM(IDBdQ) then exit with M = M i.Otherwise there exists a clause Ci 2 IDB such that Head(Ci) \M i = Head(Ci).Since N 6j= Body(Ci) there must be an atom Ai 2 Body(Ci) such that Ai 62 N .Now let M i+1 :=M i [ fAig; i := i + 1 and go to step 2.Since all models are �nite, the process terminates generating an M 2MM(IDBdQ) suchthat N \M = ;, N j= DB and N 6j= M contradicting our assumption that all such Mare derivable from DB.We apply this theorem to the database of Example 5:Example 7 Let DB = fC1 = a_ b; C2 = c_d;C3 = a^d! e_ b; C4 = b^d! f _ c; C5 = c! gg.Let Q1 = b _ e _ g, Q2 = b _ c _ f and Q3 = g _ f .IDB = fC3 = a ^ d! e _ b; C4 = b ^ d! f _ c; C5 = c! gg.IDBd = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! cg.IDBdQ1 = IDBd [Qd1 = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; b; e; ggIDBdQ2 = IDBd [Qd2 = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; b; c; fg.IDBdQ3 = IDBd [Qd3 = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; g; fg.16



MM(IDBdQ1 ) = ffa; b; c; e; gg; fb; c; d; e; ggg.Both a _ b _ c _ e _ g and b _ c _ d _ e _ g are subsumed by clauses in EDB. Q1 is an answer.MM(IDBdQ2 ) = ffb; c; fgg. Clause b_ c_ f is not derivable from EDB and therefore Q2 is notan answer.MM(IDBdQ3 ) = ffb; c; f; gg; fc; d; f; ggg.c_ d_ f _ g is subsumed by (c_ d) 2 EDB while b_ c_ f _ g is not and so Q3 is not an answer.This approach has the advantage of separating the stage of generating the checks from the stageof actual checking. It may be helpful in cases when the IDB is in the core memory while the EDB isin secondary storage. Gains may be achieved from optimizing access to external memory. However,this is not the only way of testing for derivability. Recognizing that certain clauses may becomederivable from EDB long before the full model is generated, the processes of model generation andchecking can be integrated so that derivability is detected as soon as it occurs, even before thegeneration of the entire model.In the following theorem we show how to integrate the checking for clause satis�ability into themodel generation process.Theorem 5 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1 _ ::: _ qn be a disjunctive query. If DBdQ = fq1; :::; qng [ fCdjC 2 IDBg [ fHead(C) !?jC 2 EDBg = IDBdQ [ fHead(C) ! ?jC 2 EDBg. Then: Q is derivable from DB if and onlyifMM(DBdQ) = ;.Proof: A clause corresponding to M 2 MM(DBdQ) is derivable from DB if and only if it issubsumed by a clause C in EDB.M will be eliminated by the presence Head(C)!? in DBdQ.Since M is arbitrary,MM(DBdQ) = ;. The result follows immediately from Theorem 45.Corollary 2 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1_ :::_ qn be a disjunctive query. LetMM(DBdQ) 6= ; be the nonempty set of minimal modelsof DBdQ . Then:1. Q is not derivable from DB.2. DBu ` Q where DBu = DB [ C and 8M 2 MM(DBdQ)9C 2 C s:t:C subsumes M . That is,DBu is achieved by adding to DB the set of clauses C subsuming all the minimal models ofIDBdQ .3. S =MM(DBdQ) is the weakest such set that can be added to DB to guarantee the derivabilityof Q from the updated database DBu.5Note that for the class of theories and queries considered here, the emptiness of minimal model set is equivalentto the existence of a refutation. In this case, the results extend naturally to other refutationally complete proofprocedures. In the absence of a refutation, Corollary 2, however, utilizes the results returned by the model generationprocedure for re�ned query answering. 17



Proof: 1. Immediate.2. Needed to guarantee the condition of theorem 5.3. Consider M 2 MM(DBdQ). Clearly any clause C that is subsumed by M , (M � C),will not remove M from the model set when its corresponding denial (Head(C)!?), isadded to DBdQ. Any clause that subsumes M (C �M ) can be weakened by augmentingit with the remaining elements of M (elements of M nC) and still guarantee the removalof M from the model set.Example 8 For the database and queries of Example 7,DB = fC1 = a _ b; C2 = c _ d;C3 = a ^ d! e _ b; C4 = b ^ d! f _ c; C5 = c! gg.Let Q1 = b _ e _ g, Q2 = b _ c _ f and Q3 = g _ f .DBd = fCd1 = a^ b!?; Cd2 = c^ d!?; Cd3 = e^ b! a_ d;Cd4 = f ^ c! b_ d;Cd5 = g ! cg.DBdQ1 = DBd [Qd1 =fCd1 = a ^ b!?; Cd2 = c ^ d!?; Cd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g! c; b; e; ggDBdQ2 = DBd [Qd2 =fCd1 = a ^ b!?; Cd2 = c ^ d!?; Cd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g! c; b; c; fg.DBdQ3 = DBd [Qd3 =fCd1 = a ^ b!?; Cd2 = c ^ d!?; Cd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g! c; g; fg.MM(DBdQ1 ) = ;. Q1 is an answer.MM(DBdQ2 ) = ffb; c; fgg. b _ c _ f is not derivable from EDB and therefore Q2 is not ananswer. It will be an answer if we add b _ c _ f to DB.MM(DBdQ3 ) = ffb; c; f; ggg. Q3 is not an answer but adding b _ c _ f _ g will make Q3 ananswer.3.2 Conjunctive QueriesIn the previous discussion we considered only ground disjunctive queries. The basic idea in treatinga disjunctive query Q was to take its dual, Qd (the set of atoms in Q) and apply the minimal modelgeneration algorithm to Qd together with the dual of the database itself. Atomic queries are a specialcase of disjunctive queries and no further treatment is needed. Conjunctive queries can be reducedto the set of their atomic components. Each of these atoms can be run alone and the query succeedsif all its atomic components are successful. This approach, however, may prove inappropriate fortwo reasons:� There may be some duplication in the various runs of the procedure for the individual atoms.The goal clause sets of individual atoms need not be disjoint.18



� This approach cannot be lifted automatically to the case of more complex ground queriesand nonground queries when the separation of individual atoms may result in a di�erentinterpretation (and consequently di�erent answers) from the intended one.It turns out that the same approach developed for disjunctive queries is applicable to conjunctivequeries as demonstrated by the following theorem:Theorem 6 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1^ :::^ qn be a conjunctive query. Let IDBdQ = Qd [ IDBd = fq1_ :::_ qng[ fCdjC 2 IDBg.Let MM(IDBdQ) be the set of minimal models of IDBdQ. Then: Q is derivable from DB if andonly if EDB derives clause M for all M 2 MM(IDBdQ).Proof: For Q = q1 ^ ::: ^ qn to succeed, q1; :::; qn must all succeed simultaneously. By Theorem 4this happens if and only if EDB derives clause M for allM 2 MM(IDBdqi ) for all i = 1; :::; n.To prove the theorem we need only to show that the elements of MM(IDBdQ) subsume allthe elements of [i=ni=1MM(IDBdqi ). That is for any M 2 [i=ni=1MM(IDBdqi ) there existsM 0 2MM(IDBdQ) such that M 0 �M .This is the case since MM(IDBdQ) = Min([i=ni=1MM(IDBdqi )), where Min(S) returns onlythe minimal elements of a set of models S. Clearly, any minimal model of IDBdqi is also a (notnecessarily minimal) model of IDBdQ since it satis�es IDBd which is common to both as wellas Q by having its qi as an element.The following is an immediate result:Corollary 3 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) andQ = q1^:::^qn be a conjunctive query. If DBdQ = Qd[fCdjC 2 IDBg[fHead(C)!?jC 2 EDBgThen:1. Q is derivable from DB if and only ifMM(DBdQ) = ;.2. IfMM(DBdQ) is nonempty then:(a) Q is not derivable from DB.(b) Q becomes derivable from the updated database DBu achieved by adding to DB the set ofclauses S such that 8M 2 MM(DBdQ)9C 2 S s:t:C subsumes M .(c) S = MM(DBdQ) is the weakest such set that can be added to DB to guarantee thederivability of Q from the updated database DBu.Example 9 Let DB = fC1 = a _ b; C2 = c _ d;C3 = a ^ d ! e _ b; C4 = b ^ d ! f _ c; C5 = c !g; C21 = d! h;C22 = c! i; C23 = e! i; C24 = f ! i; C25 = g ! hg. Let Q4 = h ^ i, Q5 = h ^ e.IDBd = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; Cd21 = h! d;Cd22 = i! c; Cd23 =i! e; Cd24 = i! f; Cd25 = h! gg. 19



IDBdQ4 = IDBd [ Qd4 = fCd3 = e ^ b ! a _ d;Cd4 = f ^ c ! b _ d;Cd5 = g ! c; Cd21 = h !d;Cd22 = i! c; Cd23 = i! e; Cd24 = i! f; Cd25 = h! g; h_ ig.IDBdQ5 = IDBd [ Qd2 = fCd3 = e ^ b ! a _ d;Cd4 = f ^ c ! b _ d;Cd5 = g ! c; Cd21 = h !d;Cd22 = i! c; Cd23 = i! e; Cd24 = i! f; Cd25 = h! g; h_ eg.MM(IDBdQ4 ) = ffc; d; g; hg; fa; b; c; e; f; ig; fc; d; e; f; igg. All of these clauses are subsumed byclauses in EDB. Q4 is an answer.MM(IDBdQ5 ) = ffc; d; g; hg; fegg. Clause e is not derivable from EDB and therefore Q5 is notan answer.On the other hand: MM(IDBdQ4 [ fCd1 ; Cd2g) = ; since Q4 is an answer whileMM(IDBdQ5 [fCd1 ; Cd2g) = feg since Q5 is not an answer. Adding e to DB will make Q5 an answer.3.3 Compound QueriesSo far we dealt with conjunctive and disjunctive queries on the assumption that they constitute themajor type of queries encountered in applications. The results of this section can be extended toa more general class of queries we call positive queries: those that can be translated into a set ofground positive clauses (a conjunction of a set of disjunction queries). Clearly an answer to such asquery is a�rmative if every clause has a yes answer and is negative otherwise.To answer such a query one could run each clause separately as a disjunctive query and combinethe results. Alternatively, one may run a single process with the elements of each clause beingthe starting set for individual branches. The resulting set of minimal models, which may be morecompact than the union of minimal model sets of individual clauses, will represent the clauses thatneed to be true in EDB for the compound query to have a yes answer. The compactness is the resultof exploiting the shared pieces of information between the processes corresponding to individualdisjunctive components of the query. Consider the following example:Example 10 Let DB = fC1 = a_b; C2 = c_d;C3 = a^d! e_b; C4 = b^d! f _c; C5 = c! gg.Let Q6 = a _ g _ f and Q7 = a _ c _ f .MM(IDBdQ6 ) = ffa; b; c; f; gg; fa; c; d; f; ggg.MM(IDBdQ7 ) = ffa; b; c; fg; fa; c; d; fgg.(Q6 ^Q7)d = fa; f; g _ cg.MM(IDBdQ6^Q7 ) =MM(IDBdQ7 ) = ffa; b; c; fg; fa; c; d; fgg.However, if we run the procedure in refutation mode (Theorem 5) then it may be more advan-tageous to operate each process separately since the failure of one of the disjunctive queries willindicate a failure of the entire query. Re�ned query answering where we can augment the theorywith the constraints needed to make the query derivable is still applicable as in the case of disjunctiveand conjunctive queries. 20



4 Removing RestrictionsIn our discussion so far two major restrictions were imposed on the type of theory being treated.The �rst is the requirement that the query and the database be ground and the second is that thedatabase has no denial rules (clauses with empty heads). Some of these restrictions simpli�ed thediscussion while others are common in procedures dealing with DDDB. However, we would like ourapproach extended beyond these restrictions.4.1 Denial ConstraintsDenial constraints are rules with empty heads of the form C = Body(C) !?. In [5] we prove thefollowing result:Lemma 2 Let S be a set of clauses and A1; :::; An(n � 1) be atoms.1. If M is a minimal Herbrand model of S such that M 6j= A1 ^ ::: ^ An, then M is a minimalHerbrand model of S [ fA1 ^ :::^An !?g.2. If M is a minimal Herbrand model of S [ fA1 ^ ::: ^ An ! ?g, then M is also a minimalHerbrand model of S.Lemma 2 shows that adding denial rules to the theory contribute to the minimalmodel structureof the database only by removing those minimalmodels which satisfy the body of a denial rule. Thatis, no minimal models of the database DB are extended nor new minimal models are created for thenew theory DB [ C, where C is a set of denial rules and additionally,MM(DB [ C) �MM(DB).Clearly, if a positive query Q is derivable fromDB then it is also derivable fromDB[C. However,it is possible that Q is not derivable from DB but is derivable from DB [ C due to the fact thatthe rules of C remove all the minimal models of the set MM(DB) n MM(DB [ C). This wasdemonstrated by Example 4. So, in a sense, the presence of denial rules must enhance the potentialderivability from the database (for positive queries). The form this enhancement can take is toexpand the clauses in the goal clause set of the query so as to contain more atoms.Indeed, that is what happens. Formally we have the following result:Theorem 7 Let DB be a ground Disjunctive Deductive Database. Let C be the set of denial rules inDB and Q be a positive query. Then: DB ` Q if and only if the formula (Body(C)_Q) is derivablefrom DB for some C 2 C. Or equivalently, if and only if f(B _Q)jB 2 Body(C)g is derivable fromDB.Proof: If DB ` (Body(C) _Q) for some C 2 C then the minimal models of DB in which Q is notsatis�ed will have to satisfy Body(C) and will be nonmodels of DB by an application of Cmaking DB ` Q.Assume DB ` Q. Then by Lemma 2, for any model M 2MM(DB n C) and M 62 MM(DB)there must exist a clause C 2 C such that Body(C) �M . Clearly, M j= (Body(C) _Q).21



This theorem is basically suggesting that denial rules have the e�ect of expanding the goal clauseset of the query unconditionally by extending the query Q with atoms from Body(C), one at a time.Since denial rules of DB will convert into positive clauses in the dual database DBd according toour de�nitions, it is clear that these rules can be treated on the same footing as other rules of thetheory. It is straightforward to extend all the results established so far to the case of databasescontaining denial rules. The result is summarized in the following theorem6:Theorem 8 Let DB be a ground Disjunctive Deductive Database with the set of denial rules C:DB = EDB [ IDB [ C and Q be a positive query.� Let EDBd = fCdjC 2 EDBg.� Let Cd = fCdjC 2 Cg.� Let IDBd = fCdjC 2 IDBg.� Let IDBdQ = Qd [ IDBd = Qd [ fCdjC 2 IDBg.� Let DBd = EDBd [ IDBd [ Cd.� Let DBdQ = Qd [EDBd [ IDBd [ Cd.Then1. DB ` Q if and only if EDB derives clause M for all M 2MM(Cd [ IDBdQ).That is, EDB ` CM = A1 _ :::_Al if M = fA1; :::; Alg.2. DB ` Q if and only ifMM(DBdQ) = ;.3. IfMM(DBdQ) is nonempty then:(a) Q is not derivable from DB.(b) Q becomes derivable from the updated database DBu achieved by adding to DB the set ofclauses S such that 8M 2 MM(DBdQ)9C 2 S s:t:C subsumes M .(c) S = MM(DBdQ) is the weakest such set that can be added to DB to guarantee thederivability of Q from the updated database.Proof: Along the lines of earlier proofs.Consider the following example:6The result is quite natural. The empty head ? of the denial clause trivially subsumes every positive clauseand therefore the goal set of the query can be expanded using such a clause, unconditionally. As expected, in thetransformed theory such clauses are converted into facts where they can be used for this unconditional expansion.22



Example 11 Let DB =fC1 = a _ b; C2 = c _ d;C3 = a ^ d! e _ b; C4 = b ^ d! f _ c; C5 = c! g; C6 = a ^ d! ?g. LetQ1 = b _ e _ g, Q2 = b _ c _ f and Q3 = g _ f . C = fC6 = a ^ d!?g.IDBd [ Cd = fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; Cd6 = >! a _ dg.IDBdQ1 [ Cd = IDBd [Qd1 [ Cd =fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; Cd6 = >! a _ d; b; e; ggIDBdQ2 [ Cd = IDBd [Qd2 [ Cd =fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; Cd6 = >! a _ d; b; c; fg.IDBdQ3 [ Cd = IDBd [Qd3 [ Cd =fCd3 = e ^ b! a _ d;Cd4 = f ^ c! b _ d;Cd5 = g ! c; Cd6 = >! a _ d; g; fg.MM(IDBdQ1 [ Cd) = ffa; b; c; e; gg; fb; c; d; e; ggg.Both a_ b_ c_ e_ g and b_ c_ d_ e_ g are subsumed by clauses in EDB. Q1 is an answer andis not a�ected by the added constraint C6.MM(IDBdQ2 [ Cd) = ffa; b; c; fg; fb; c; f; dgg. Both clauses are derivable from EDB and there-fore Q2 is an answer as a result of adding C6.MM(IDBdQ3 [ Cd) = ffa; b; c; f; gg; fc; d; f; ggg.c _ d _ f _ g is subsumed by (c _ d) 2 EDB and a _ b_ c _ f _ g is subsumed by (a _ b) 2 EDBand so Q3 is an answer.Note that MM(DBdQ1 ) = MM(DBdQ2 ) = MM(DBdQ3 ) = ;. Comparing the results withExample 8 shows how adding the constraints contributed to deriving more yes answers.4.2 Nonground TermsWe considered only ground databases and queries. While one may argue that a DDDB can alwaysbe grounded so that the results are applicable, grounding can result in huge databases. So it isalways better to be able to deal with DDDBs with variables and perform instantiations only whennecessary. In this regard we consider two issues: nonground queries and nonground rules.4.2.1 Nonground QueriesFor de�nite databases only atomic answers are allowed and possible, DDDBs allow the derivation ofinde�nite answers to queries. While one copy of the query is needed in the derivation of an answer toan atomic query in a de�nite database, more copies may be necessary to derive an inde�nite answer.This stems from the de�nition of an answer to a query in a DDDB. a1 + a2 + :::+ an is an answerto Q(x) i� Q(a1) _ :::_Q(a1) is derivable from DB.So in our procedure, when failing to derive the empty clause with a single ground substitution forthe variables in the query attempts should be taken with additional instantiations. The additions23



will in general help the refutation process by generating longer clauses (models) that are to besubsumed by the elements of EDB (closed by clauses the transformed EDB).In the case of disjunctive queries the issue of insuring the compatibility of substitutions with theoriginal query must be accounted for. But since all the elements (atoms) of the query are added tothe same branch, they can be instantiated simultaneously. In case additional variables remain theyhave to inherit the naming so that compatibility of subsequent substitutions can be guaranteed. Forconjunctive queries elements (atoms) of the transformed query (Qd) constitute a clause and thereforethe occurrences of a variable are instantiated simultaneously.In a sense variables in transformed (dualized) queries are treated as universally quanti�ed. Theycan have multiple instantiations in the same branch resulting in longer clauses to be checked againstthe EDB. Of course such multiple instantiations will result in disjunctive answers to the query whichis in line with treating elements of a single branch as disjunctions of the corresponding atoms.Example 12 Let DB1 = fC1 = S _R;C2 = R! P (a); C3 = S ! P (b)g.Let DB2 = fC4 = T _ U;C5 = T ! P (c) _ P (d); C6 = U ! P (d)_ P (e)g.Let Q = P (x). IDBd1 = fCd2 = P (a)! R;Cd3 = P (b)! Sg. The only minimal model of IDB1dQderivable from EDB1 is fP (a); R; P (b); Sg which includes two instances of the query. a + b is ananswer to Q in DB1.On the other hand IDBd2 = fCd5 = P (c)^P (d)! T;Cd6 = P (d)^P (e)! Ug. The only minimalmodel of IDB2dQ derivable from EDB2 is fP (c); P (d); T; P (e); Ug which includes three instances ofthe query. c + d+ e is an answer to Q in DB2.Both answers generated are minimal. Note, however, that combining the two databases in dif-ferent orders will generate both minimal and nonminimal answers even when derivability of clausesis detected as soon as it appears. For example for DB = fC1; C4; C5; C2; C3; C6g will generate thenonminimal answer c + d+ a + b.4.2.2 Nonground RulesWhile we described our procedure relative to a ground DDDB, the extension to the case of nongrounddatabases is possible if the procedure for minimal model computations can �nd all the minimal mo-dels of the theory starting from the set of facts. The procedure we use to implement our approach iscomplete and sound for the class of theories that are range restricted and have only �nite minimalmodels. For non-range restricted theories our procedure needs to make them so by a simple trans-formation. This transformation is a substitute for, and can generally be more e�cient than, blindinstantiation [5].In our approach, given a DDDB, DB, the minimal model generating procedure is applied to thedualDBd . As far as �niteness of minimalmodels this property is always guaranteed in the absence offunction symbols and under the �niteness of underlying domains of the theory in the case of DDDBs.As for range restrictedness, even if the original database is range restricted, the transformed (dual)one need not be so. This happens when a variable in the body of a rule doesn't occur in the head ofthat same rule. In this case we'll need to apply the range restriction transformation to the dualizedtheory to make our algorithm applicable [5]. Of course there may be instances when the originaltheory is not range restricted and the dual is. No action is needed in this instance. In all cases we24



need to make sure that the range restriction transformation is not taken into account during thedualization process but only after the dualization is completed.One point to emphasize here is that a multiple use of a nonrange restricted dual clause willresult in the variables in the body being treated as existentially quanti�ed. Each copy produces apossible candidate for an answer to the query and the number of such copies used is a re
ectionof the inde�niteness of the answer. To be able to perform testing after model generation, variablesresulting from di�erent application of the same rule may be given di�erent place-holding names (saysubscripted variables) that can be matched against elements of the EDB. Di�erent occurrences of thesame variable in di�erent branches need to maintain the same naming to ensure compatible futuresubstitutions. Of course such an approach tends to obscure the concept of model minimality which isde�ned in terms of ground atoms. Range restrictedness of the dual database implies that wheneverthe query is used to ground the body of a dual clause, the head of that clause is also grounded.This removes the issue of maintaining substitution compatibility in di�erent model tree branches.Of course if the query itself is nonground then range restrictedness will be less helpful. Issues ofanswer minimality are raised by the brute force instantiation. Consider the following example:Example 13 [14, 12]� Let DB1 = fC1 = R(a) _ S(b); C2 = S(c); C3 = S(d) _ P (e);C4 = R(x)! P (x); C5 = S(x)! R(x)g and let Q1 = P (a)_ P (b); Q2 = P (d); Q3 = P (x).IDBd1 = fCd4 = P (x)! R(x); Cd5 = R(x)! S(x)g.The only minimal model of IDB1dQ1 is fP (a); P (b); R(a); R(b); S(a); S(b)g which is derivablefrom EDB. Q1 is a yes answer.The only minimal model of IDB1dQ2 is fP (d); R(d); S(d)g which is not derivable from EDB.Q2 is a no answer.The only minimal model of IDB1dQ3 is one with any number of instances of fP (x); R(x); S(x)g.The derivable components return the answers. It is easy to see that the answers to Q3 are a+b, cand d+e corresponding to the instances: fP (a); P (b); R(a); R(b); S(a); S(b)g fP (c); R(c); S(c)gand fP (d); P (e); R(d); R(e); S(d); S(e)g.Note that DBd1 is range restricted and that not being able to detect derivability as soon as itoccurs or using a di�erent clause ordering may result in generating nonminimal answers tononground queries. Splitting didn't occur here since the dual database is Horn. In case ofsplitting on nonground disjunctions substitutions compatibility needs to be guaranteed.� Let DB2 = fC1 = Person(x) ^ Cold(x) ! Sneeze(x); C2 = Person(x) ^ HayFever(x) !Sneeze(x); C3 = >! Person(Tom); C4 = Person(x) ^Cold(x) ^R(x)HayFever(x) !?g.Let Q = Sneeze(Tom). Qd = Sneeze(Tom).DBd2 = fCd1 = Sneeze(x) ! Person(x)_Cold(x); Cd2 = Sneeze(x) ! Person(x)_HayFever(x);Cd4 = >! Person(x) _Cold(x) _HayFever(x); Cd3 = Person(Tom)!?g.The only minimal model of DB2dQ is fSneeze(Tom); Cold(Tom);Hayever(Tom)g. Q is nota yes answer and Sneeze(Tom) _Cold(Tom) _HayFever(Tom) is the possible update. Notethat fCold(Tom) _HayFever(Tom)g is the nontrivial update.25



Since DBd2 is not range restricted, having more constants in the Herbrand base would havegenerated longer (and more) minimal models. Once one knows that the branch will not closethe decision on when to stop the expansion may be in
uenced by the type of update desired.5 Interpretation and Implementation IssuesIn this section we brie
y discuss the reasoning behind the duality approach adopted in this pa-per to achieve top-down reasoning using a bottom-up procedure and argue that working with thetransformed theory is as natural as working with the original clause set. We also address someimplementation issues.5.1 Interpretations of the Duality ApproachWe give some thoughts to explain what is happening in the transition from the theory to its dual asthe input to the model generation procedure. We show that this process can be viewed as a switchto reasoning in a theory with reversed polarities of literals in which the dual clauses are used topropagate a truth value di�erent from that propagated by the clauses of the original theory. Thehope is to get some insight into the change in e�ciency resulting from the application of the proofprocedure to DBd and Qd instead of to DB and :Q .5.1.1 Reversed Polarities of ClausesUsually, proving the query is done by trying to refute the theory augmented by the negation ofthe query. When all clauses are represented as disjunctions of literals, the dual transformation hasthe e�ect of consistently reversing the polarity of each literal of both the theory and the negationof the query. Positive literals are changed into their negative counterparts and vise versa. Thisis so since C = Head(C) _ :Body(C) while Cd = :Head(C) _ Body(C)7. The same reasoningapplies to the relationship between :Q and Qd. Clearly, this syntactic transformation preserves theconsistency properties. So, DB [f:Qg ` 2 if and only if DBd [fQdg ` 2. The change in e�ciencyin the transition from DB to DBd can be attributed to the fact that the bottom-up computationalprocedure used in both cases (e.g. model generator) tends to treat positive and negative literalsasymmetrically. For example, model generation provers are generally driven by positive facts thatare then used to generate new facts through theory clauses. Negative clauses are only used toclose branches when applicable. Therefore, working with the transformed theory DBd can a�ectthe performance of the algorithm by reducing the number of positive literal occurrences and thuslimiting the number of possible expansions at the expense of increasing the number of negative literaloccurrences which can speed up branch closure. The overall e�ect may be faster refutations underfavorable circumstances.Viewed as disjunctions of literals, the clauses of DBd specify which atoms need to be false whilethose of DB specify which atoms are to be true in order for the clauses of the theory DB to hold.For example, while C = >! b _ c = b _ c says that either b, c or both are to be true for C to hold,7Recall that the heads and bodies of clauses are treated as sets of atoms. The negations are, therefore, disjunctionsof negative literals. 26



Cd = b^ c!? = :b_:c says that either :b, :c or both must be false to satisfy C, two equivalentstatements. This property is preserved by resolution between clauses of DBd: the resolvent of twoclauses of DBd speci�es what must be false in the same way as the resolving clauses do. Considerthe following example:Example 14 Let DB = fC1 = b _ c; C2 = b ! a _ e; C3 = c ! a _ d;C4 = b ^ e ! ?g. LetQ = a _ d.DBd = fCd1 = b ^ c!?; Cd2 = a ^ e! b; Cd3 = a ^ d! c; Cd4 = >! b _ eg.The clausal representation of DB [ fQ!?g and DBd [Qd arefC1 = b _ c; C2 = :b _ a _ e; C3 = :c _ a _ d;C4 = :b_ :eg [ f:a;:dg andfCd1 = :b_ :c; Cd2 = b _ :a_ :e; Cd3 = c _ :a _ :d;Cd4 = b _ eg [ fa; dg, respectively.The correspondence between the two sets and the reversal of polarities is clear.Resolvent(C1; C2) = a _ c _ e and Resolvent(Cd1 ; Cd2 ) = :a _ :c _ :e.Note that any resolution of two clauses in DB can be simulated by a resolution of the correspon-ding clauses in DBd with the resulting resolvents having reversed polarities of their literals.5.1.2 Propagating Di�erent Truth ValuesAnother way to look at the dual transformation as outlined so far is to interpret it in terms of usingthe theory rules to (backward) propagate the falsity of the head atoms to the body atoms of eachclause. This is in contrast to the (more usual forward) propagation of the truth of the body atomsto the head atoms when the bottom-up model generation approach is applied to the original clauses.The falsity here can be interpreted as the nonderivability of the respective atom/formula throughthe given rule.Usually, the derivability of a (positive) query Q from a theory DB is proved by showing thatthe model tree of fDB;:Qg has no open branches (models). When a model generation procedureis applied to fDB;:Qg one starts from the true atoms of the theory (elements of the EDB, facts,positive clauses) and uses the rules (elements of IDB) to discover the new atoms that can be assignedtrue (from heads of clauses with bodies satis�ed in the current branch) in the hope that some ofthem will close branches containing literals of the negation of the query (or constraints, original orintroduced e.g. if complement splitting is employed). A branch of the tree is closed by having itcontain two complementary literals8. The proof procedure expands individual branches of the treeby adding new atoms until no additions are possible or the branch closes [5]. The aim is to show thatto assume that the query is false is inconsistent with the theory and therefore Q must be derivablefrom DB. If one of the branches cannot be closed then the query is not derivable from the theory(DB 6` Q) and the atoms of an open branch represent a counter model in which both DB and :Qare satis�ed.Clearly, changing the polarity of every literal in a branch of the tree will not change the propertyof the branch as being closed or open. Dualizing followed by applying the model generation procedureto the transformed theory and query (DBd[Qd) can be viewed as the process of consistently reversingthe polarity of atoms in the model tree. However, under the duality approach we begin by applyingthe model generating procedure to the dual of the query, Qd, which represents the negation of the8Technically, closure happens when ? is added to the branch which has all the body atoms of a clause with anempty (?) head (representing a purely negative clause). 27



# Query/Clause Dual1 Q = q1 _ :::_ qn Qd = fq1; :::; qng:Q = f:q1; :::;:qng Atom i of Qd is trueAll qis are false if Q is false when atom i of :Q is false2 Q = q1 ^ :::^ qn Qd = q1 _ :::_ qn:Q = :q1 _ :::_:qn Atom i of Qd is true whenSome qis are false if Q is false atom i of :Q is false3 C = B1 ^ :::^Bk ! A1 _ :::_Al Cd = A1 ^ :::^Al ! B1 _ :::_BkIf all Bis are true then If all Ajs are false thensome of the Ajs are true some of the Bis are false4 C = >! A1 _ :::_Al Cd = A1 ^ :::^Al ! ?C = A1 _ :::_Al Cd = :A1 _ :::_:AlSome of the Ais are true Some of the Ais are false5 C = B1 ^ :::^Bk !? Cd = >! B1 _ :::_BkC = :B1 _ :::_ :Bk Cd = B1 _ :::_BkSome of the Bi are false Some of the Bis are trueTable 1: The Dual Transformation and its E�ects.query with reversed (positive) polarities. This is equivalent to specifying the atoms that need to befalse in order for Q to be false (nonderivable). Next we have the bottom-up procedure operate withthe transformed rules to derive the other relevant atoms that must be false as a result of assumingthe falsity of the query.The search is initiated by the query elements and only relevant clauses of the transformed theoryare invoked. Branches are extended by elements the falsity (nonderivability) of which is determinedfrom the current elements of the branch through the propagation of falsity from heads to bodies of theoriginal clauses (or from the bodies to the heads of the dual clauses). During this expansion processa branch may close or may remain open. Contradiction (and closing a branch) is reached whencertain atoms are required to be false (nonderivable) in order for the query to be false while they aretrue in (derivable from) the theory (e.g. elements of the EDB). An open branch M corresponds tothe disjunction of atoms that needs to be false in (not derivable from) the theory DB (by having allits atoms false or not derivable) so that DB 6` Q. To close such a branch there must exist a clause ofDB that consists entirely of elements of M . The dualization takes care of this by making the dualof a DB-fact (headless clause) derive the empty clause when all its atoms are present in the branch(it has ? in the head, see entry 4 of Table 1). The full details of how dualization enables a modelgeneration procedure to interpret clauses in terms of propagating the falsity (nonderivability) of thehead to the body rather than the truth of the body to the head of the clause are summarized inTable 1. Clearly, the head of a (ground) clause C is false only when all atoms of Head(C) are false.For that to happen and still have C satis�ed it must be the case that at least one of the atoms ofBody(C) is false (entry 3). A positive clause is false when all of its atoms are false. Otherwise theclause is satis�ed (entry 4). For a negative clause, one can derive false only if all its atoms are true.Otherwise, if one of the atoms is false then the clause is satis�ed (entry 5). When a disjunction ofatoms is to be false it must be the case that none of its subdisjunctions is true. That is, all clauses28



with heads subsuming the disjunction must have false heads. This falsity has to be propagated tothe bodies to maintain that such clauses hold in all states of the theory (entry 3). Note, in particular,that the roles of facts and denials are interchanged (entry 5). The relationship between the negationof the query and its dual in terms of reversed polarities is re
ected in entries 1 and 2 of Table 1.With the reversal of polarities accounted for, the correspondence between the tree structureresulting from the application of the model generation procedure to DBd [ Qd and general modeltrees is clear. An open branch of the tree represents the set of atoms that must be false for the queryto be false. Each such branch represents a way in which the falsity (nonderivability) of the querycan be proved. Only if all possible ways fail (the model tree has no open branches) then the query isshown to be true. A closed branch represents a failing attempt to account for the nonderivability ofthe query: the failure results from requirement that a single atom be assigned both true and false.A cut in the tree (the disjunction of an element from each open branch) speci�es the falsity of whichatoms must be ensured to guarantee the falsity of the query. By the completeness of the modelgenerating procedure, the open branches of a saturated tree (one in which no further expansions arepossible) is the counterpart of the model tree and speci�es the branches that need to be closed tomake the query derivable as suggested by Theorem 8. Clearly, it is su�cient to close only brancheswith minimal sets of atoms and other branches will close automatically.5.2 Implementation IssuesThe discussion so far points to a simple algorithm for answering a positive query Q against adisjunctive deductive database DB. Two steps are involved:� The �rst is the transformation of DB and :Q into its dual database DBd and Qd. This isdone by reversing the direction of the implication signs in all clauses. Since Heads and Bodiesof clauses are treated as sets of atoms, the change of the logical connective is sort of a sidee�ect to this transformation. The transformation is applicable to clauses with empty headsand bodies as well.� The second step is to apply a sound and complete minimal model generating procedure tothe dual database augmented by the dual of the query being answered. That is, to the setDBdQ = (DBd[fQdg). The set of minimalmodels ofDBdQ carries the answer to the derivabilityof Q from DB as well as the conditions under which this derivability is possible/not possible.In [5] we have developed an e�cient, sound and complete minimalmodel generation procedure calledMM-Satchmo. One way to accommodate MM-Satchmo to the present task is rewriting the procedureto account for the dualization and the changed roles of the query and the EDB to the initial partialinterpretation and the set of constraints, respectively. Another is to write a small program (module)to convert the input theory into the required form (perform the dualization of DB and Q). One mayeven elect to modify the procedure so that the roles of _ and ^ can be exchanged and the directionof the implication symbol is interpreted in reverse depending on input parameters. For the testingof our results we used the plain version of our minimal model generator and supplied it with thedualized directly. The dualization was done manually.Another degree of freedom in our procedure is the possibility of separating the check generationprocess from that of the actual checking. The �rst is performed on the generally static IDB and29



the query. The second is done against the more dynamic EDB. The separation of the two steps,which could be viewed as operating the procedure in a model generation mode, could be of valueto minimize the number of accesses to the EDB component. It is also possible to compile the querywith the IDB so as not to recompute (regenerate checks) each time the same query is posed [10].Integrating the two steps on the other hand, which can be viewed as running the procedure in arefutation mode makes it possible to abandon models before they are fully generated. This mayimprove the e�ciency if the cost of accessing the EDB component is not very large. The survivingmodels in the latter case are helpful in de�ning updates su�cient to make the query derivable fromthe database.The advanced procedure is based on minimal model generation for a simple (syntactical) mo-di�cation of the input database. The model generation process is driven by the query itself whilethe elements of the extensional component of the database serve as constraints on the generatedmodels working only to reduce their number . Therefore, one would expect that the number ofmodels having a query as basis will generally be not very large. Clauses that are not relevant to thequery do not participate in the model generation process. The exact size of the model tree, however,depends on the nature of the database and the interconnections between its clauses.Working with the dual structure on the other hand will most likely involve having many dis-junctive elements representing the bodies of original clauses. This will tend to increase the size ofthe model structure by generating a large number of models. For example, such a situation willarise when one has a de�nite database with rules that have large bodies. The dual database will beheavily disjunctive resulting in a large search space for our procedure. This may contrast stronglywith the single model of the original de�nite database.An additional e�ciency consideration is that the database resulting from the transformationmay not be range restricted while the original theory is. This will mandate resorting to additionaltransformations to achieve range restrictedness or to other bottom-up procedures capable of handlingsuch theories.Of course under the best case scenario the opposite may happen. A heavily disjunctive databasein which short bodies and long heads are the norm will transform into a more manageable onewith a more compact model structure. An originally non-range restricted database can becomerange restricted after the transformation resulting in simpler processing. In all cases it is importantto emphasize that the transformation itself can be implemented in linear time in the size of thedatabase.During the model generation process we may want to give priority to clauses that reduce thesearch space by pruning models as early as possible. Denial rules constitute one such class of clauses.If checking for the derivability of clauses representing the set of minimal models is performedagainst the elements of EDB then only atoms occuring in EDB are relevant to this checking process.One can take this optimization a step further if the set of atoms of EDB is known. Call this setS. Clearly only elements of the set Min(fM 0jM 2 MM(IDBdQ) and M 0 = M \ Sg) are relevant.The fact that only minimal elements need to be checked is evident. One can even incorporate thisoptimization into the minimalmodel generating process by abandoning models in which the elementsof S is a superset of an already generated model. Additionally, any rule that cannot contribute tothe S content of models (in a particular computation of models) may be disabled.30



6 Conclusions and Future WorkWe presented a simple approach to utilize an essentially forward chaining model generation procedureto process queries in a backward chaining mode. The idea is to utilize a certain version of the dualityprinciple to reinterpret the clauses of the input theory so that the application of a model generatingprocedure will answer the posed query in a top-down fashion.From a theoretical perspective, the results reported here constitute an elaboration on the strongconnection between the seemingly separated concepts used to characterize disjunctive theories interms of clauses and models; minimal model set and minimal model state; model trees and clausaltrees; forward chaining and backward chaining; and query answering and model generation [30,25]. From a practical point of view, the gain achieved from processing queries as proposed by ouralgorithm can result in substantial savings due to the limited search space explored. This is especiallyfelt when using approaches based on model generating procedures for query answering [17, 5] whichtend to expand a much larger space than required for query answering. In fact they usually processthe entire set of clauses in EDB before starting to expand elements of the IDB which may be theonly components directly matching the query. At the same time we achieve our aim which is tobene�t from the wealth of theory and algorithms available and under development for e�cient modelgeneration to perform a goal focused search for answers to the given query [29, 9, 5, 20, 24]. Ourpreliminary testing points to orders of magnitude performance improvement in using a minimalmodel based query answering procedure on the dual theory to achieve the top-down processingmode as opposed to having the same procedure operate on the input theory in a bottom-up modeon the same query9. The fact that the same procedure can be used in both directions gives the usermuch 
exibility in selecting the direction of processing depending on the theory and query underconsideration.In contrast to other approaches reported in the literature for achieving a similar e�ect, ours isapplicable to disjunctive theories [19] and avoids the explicit introduction of new predicates intothe theory for this purpose [1, 7, 23, 27]. Rather we achieve the required results by reinterpretingthe clauses (and consequently the logical connectives) in a dual mode. As is the case for theoriginal database, the transformed theory is a disjunctive deductive database (DDDB). The dualtransformation is quite simple and involves only changing the direction of implications in all clauses.Only clauses relevant to the query under consideration need to be processed in this fashion. Theresult is the creation of a (tree) structure that consists of positive clauses the subsumption of whichin the original theory (more precisely, the EDB component of the theory) implies the derivability ofthe query. The inclusion of the clauses corresponding to the elements of the extensional databasein the model generation process makes it act in a refutation-like manner and may improve theperformance by detecting clause subsumption as early as possible. The reasoning behind the dualityapproach was shown to be natural and based on solid logical grounds. It is equivalent to workingwith reversed polarities of literals and using clause to propagate particular truth values.The method discussed in [14] uses special data structures (deduction trees) and algorithms toachieve top-down query answering without transforming the theory. But the approach there doesn'to�er the re�ned query answering capabilities of the approach outlined here.9Our testing was performed on a prototype implementation of the minimal model generator MM-Satchmo asdescribed in [5]. The theory and the query were presented in both original form and manually transformed dual form.The gains were achieved when both ground and range-restricted (in both directions) theories were used.31



[21] outlines a method based on using SLO-resolution to modify the WAM approach so that itdeals with disjunctive logic programs. The modi�cation, Disjunctive WAM (DWAM), uses clausesubsumption as the basic expansion mechanism and operates in a goal oriented fashion for queryanswering. In contrast with the method outlined in this paper, the DWAM approach is applied totheories without constraints. However, it is straight forward to extend the DWAM methodologyto the case of headless clauses, since subsumption for such clauses is trivial. As in the case here,caution should be exercised so that not to over-expand goal sets using constraints (with triviallysubsumed clause heads).A more substantive di�erence is that our approach avoids much of the nondeterminism thatcauses problems for the SLO-based DWAM approach. Rather than searching for alternative ways tosubsume a goal we try all possible subsumptions in a predetermined order. Additionally, as opposedto the approach of [21], our de�nition of the goal set explicitly excludes a major class of irrelevantclause expansions that can cause the search space to explode. Matching clauses are expanded only ifthey can contribute something new to the refutational process. No clause is used for expansion morethan once in a single branch and we never expand using a clause with body atoms intersecting withthe set of atoms in the current branch. This makes it possible to avoid many useless expansions.While we still have to choose from among clauses with matching heads, our expansion of the goaltree is deterministic: we always select the leftmost goal from the �rst (in the given clause order)potentially useful clause and insist on solving it (or failing) before moving (backtracking) to the nextgoal in that clause. In a sense this makes our search more focused: at every stage we are concernedwith the solvability of a particular goal set. Subsequent goal sets are considered, if required, onlyafter the decision on the current set is made (success or failure).The fact that our approach is based on a di�erent clause expansion paradigmmakes it possible toavoid the extensive rewriting (I-code) needed for the DWAM approach to account for the nondeter-minism of subsumption checking and the indexing needed to keep track of clause usage. Rather, weuse the syntactic duality transformation and that alone makes it possible to utilize already existingbottom-up procedures, with their e�ciency enhancing techniques, to process queries top-down.An added advantage of our approach is that it is able to specify the conditions under which thegoal set expansion can be discontinued and to interpret the cases when the expansion succeeds orfails. The results of the latter can be used to re�ne the query answering process.Our approach makes it possible for the user to divide the query answering process into twostages: generating a complete (su�cient) set of clauses that need to be checked for derivability inthe extensional component of the database and the actual checking process. This can be employedto achieve optimal access time to the EDB when it is stored in slower memory. In this case theprocedure will be run in the model generating mode in which the elements of EDB do not participatein the �rst stage of query processing. Additionally, the separation of the two stages makes it possibleto localize updates to individual components of the database. If one accepts the premise that updatesare performed on the EDB component then the model generation process will not be a�ected bythe update process [13]. It is even possible to use di�erent representations for the two components.For example one may select to represent the set of clauses that need to be checked for derivability(MM(IDBdQ)) in the form of a model tree which can be viewed as the compiled version of the queryand IDB while representing EDB as a clausal tree [26, 10]. Alternatively, interleaving accesses to thedi�erent components of the database will make it possible to operate the procedure in the refutationmode, where the aim is to derive the empty clause. In this case the procedure will operate on a32



(possibly much) larger theory that includes the transformed EDB component of the database butwill tend to abandon models before they are fully constructed. The choice of the mode will dependon the relative sizes of the database components and their relative access times.While other proof procedures can be utilized to describe the utilization of the duality approach,we selected the model generation procedure due to the wealth of information it can produce that wasof use in explaining the potential of the advanced method. A side e�ect of the approach adopted hereis that it enables more re�ned query answering: we are no more con�ned to returning yes/no answersto the query but we can also specify the conditions under which this query becomes derivable. Theset of models returned by the model generating component can be viewed as a sort of intentionalanswer to the query: it speci�es the necessary conditions under which the query becomes derivablefrom the database. Even when run in the refutation mode, the surviving models still specify theconditions under which the query can be made to become derivable from the database. Theseconditions are minimal in the sense that they specify the least information (weakest clauses) thatneed to be added to the EDB to ensure the derivability of the query. This part is relevant to theview update problem in deductive databases which has been the focus of a major research e�ort.The various aspects for the utility of our approach to solving the update problem is to be furtherinvestigated.While we emphasized the use of a minimal model generating procedure, that was for e�ciencyreasons. Any complete model generating procedure (one that returns all the minimal models ofits input, among others) will do the job. A sound minimal model generating procedure is clearlysuperior especially when operating in the model generating mode. It returns exactly the necessaryand su�cient set of clauses that need to be tested to ensure the query derivability. Nonminimalmodels are irrelevant if the query is derivable since the minimal components need to be checkedanyway. The gains can be substantial. If the user is interested in yes/no answers only; then thefailure to derive nonminimal clauses as well can be used as a basis for abandoning the subsequentprocessing and reporting a no answer. In fact any procedure that is refutational sound and completecan be employed to generate answers to positive queries using the duality approach outlined in thispaper.The debate over which direction for clause evaluation: bottom-up or top-down performs bestwas addressed extensively in the literature [6, 19, 22, 27, 28]. Our presentation here is not meant tosolve this issue but rather to o�er the user a choice. As a matter of fact, since (DBd)d = DB it isimmediate to note that for any theory that performs better for one approach there is a theory thatperforms worse. A strong argument for the top-down approach is that many deductive databases fallinto the class where it is likely to perform better [27]. The main disadvantage of the approach outlinedin this paper is the requirement that the transformed theory be range restricted before it is submittedto the model generating procedure. The range restricted transformation may introduce too muchinstantiations, especially in the cases when the model generation and checking are performed asseparate stages of the query answering process. Nonground queries may also contribute to thetransformed theory becoming nonrange restricted. However, interesting results are being reportedin the literature to relax the need for the range restrictedness property when using model generationbased procedures [3, 2, 4]. Our method will be able to utilize these results. The detailed study ofthis utility is a possible topic for future research. Additionally, in cases when inde�nite answers areallowed the issue of answer minimality is still as problematic in our approach as is the case for otherapproaches [18]. 33
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