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Abstract

Generally, proof procedures based on model generation perform bottom-up processing of
clauses. Several algorithms for generating (minimal) models for disjunctive theories were ad-
vanced in the literature. Used for query answering, bottom-up procedures tend to explore a
much larger search space than is strictly needed. On the other hand, top-down processing
usually has a more focused search space which can result in more efficient query answering.
In this paper we establish a strong connection between model generation and clause derivabi-
lity that allows us to use a (minimal) model generating procedure for evaluating queries in a
top-down fashion. In contrast to other methods our approach requires no extensive rewriting
of the input theory and introduces no new predicates. Rather, it is based on a certain duality
principle for interpreting logical connectives achieved by reversing the direction of implication
connectives in the clauses representing both the theory and the negation of the query. The
application of a generic (minimal) model generating procedure to the transformed clause set
results in top-down query answering. We explain the reasoning behind the transformation and
show how the duality approach can be utilized for refined query answering by specifying the
conditions under which the query becomes derivable from the theory. Our initial testing points
to a clear efficiency advantage of the advanced approach as compared to traditional bottom-up
processing for the class of positive queries against a disjunctive database.

1 Introduction

Model generation received much attention in the literature both as a basis for refutation procedures
and to generate model representations for logic programs under different semantics [17, 9, 16, 26]. Se-
veral efficient implementations were reported in the literature that can serve as a basis for (minimal)
model-based reasoning [5, 11, 20]. Current work is directed at introducing enhancements to get more
general systems in terms of the class of theories being treated. Model generation is generally based
on the bottom-up evaluation of clauses. When used for refutations (e.g. query answering) model
generation procedures tend to explore a search space much larger than that required to generate a
refutation. In a sense they tend to generate answers to all possible queries rather than to the query



under consideration [23]. Improvements directed towards early detection of contradictions were
incorporated into the procedure resulting in substantial performance improvements [5, 11, 20, 24].

On the other hand, top-down methods for query answering tend to perform more focused search
for refutations by exploiting the information contained in the query, a desirable property. In a
deductive database context this can mean substantial time savings in query answering. Several
approaches based on transforming the set of clauses or using certain data structures and special
algorithms to achieve top-down processing of the theory for a given query are available. Many of the
transformations involve the introduction of new predicates and/or the rewriting of clauses to enable
the more focused search [1, 7, 21, 23, 27].

In this paper we offer an alternative method to achieve a top-down evaluation of queries posed
to disjunctive theories using a generic bottom-up model generating procedure. The method 1s based
on a certain concept of duality and utilizes the implicit modification of the interpretation of logical
connectives resulting from the reversal of the implication sign of clauses. Otherwise, no modification
of the theory is needed and effectively the same model generating procedure (with a manual or
automatic selection of direction) can be used for both bottom-up and top-down processing for query
answering.

Our selection of a model generation proof procedure 1s motivated by the wealth of information
it returns even in cases when no refutation is found. This will help us explore the potential of the
advanced approach. For example, we will utilize the information returned by the proof procedure
to allow for refined query answering by specifying the optimal conditions under which the query
becomes derivable from the theory after an update. In addition, by virtue of using a generic minimal
model generating procedure, the advanced approach will be able to benefit from all the efficiency
enhancement modifications and generalizations introduced to the model generating process. In the
context of a deductive database, we show that our approach will make it possible to separate the
query answering process into two stages: the first is the generation of the checks needed to ensure
the derivability of the query, which is based on the interaction of the query with the Intentional part
of the database (IDB), from the theory. The second is the actual look-up of these conditions in the
Extensional part of the database (EDB). In this regard it behaves like a compiled approach to query
answering [10]. Alternatively, one could integrate the two stages to get shallower computations with
the context and associated costs determining the exact choice.

Since our approach is based on model generation, 1t suffers also from all the shortcomings of such
procedures. We address these limitations and discuss some of the ways they can be lifted.

The remainder of the paper is organized as follows. In the next section we give some relevant
definitions and background material. In Section 3 we define our procedure for a restricted class
of disjunctive theories: that of ground databases with no denial rules. In Section 5 we offer some
interpretation and implementation notes on the advanced approach to explain the sources of its
performance, potential and limitations. In Section 4 we show how to relax the restrictions on our
procedure and the problems involved. In Section 6 we compare our approach with others advanced
in the literature and point to the possible directions of further research and development.



2 Preliminaries and Background Material

In this section we review some of the concepts related to query answering in disjunctive deductive
databases. We assume familiarity with the basic concepts as outlined in [15] and therefore limit
ourselves to the basic material needed for the results presented in this paper.

Definition 2.1 A disjunctive deductive database (DDDB), DB, is a set of clauses of the form:
C=AV---VA, — BIA...ABy,

where myn >0 and the As and Bs are atoms in a First Order Language (FOL) L with no function
symbols.

By Head(C), (Body(C)) we denote the set of atoms in the head (body) of a clause C' of DB.
We use the atom L (false) to refer to the empty head and atom T (true) to refer to the empty body.

At the expense of a slightly abused notation we write a clause Sy — S where S1 = {By, ..., B, B, },
So = {Ay, ..., Ay} are sets of atoms and interpret it as the conjunction of atoms in S; implies the
disjunction of atoms of Sy (By A...A By — A1 V-V Ap).

The Herbrand base of DB, HBppg, i1s the set of all ground atoms that can be formed using
the predicate symbols and constants in £. A Herbrand nterpretation is any subset of HBpp. A
Herbrand model of DB, M, is a Herbrand interpretation such that M = DB (all clauses of DB
are true in M). M is minimal if no proper subset of M is a model of DB. The set of all minimal
models of DB is denoted by MM(DB).

In this paper we use (possibly subscripted) z for variables, a,b,¢,d,e, f, g, h for constants,
P, R, S, U,V for predicates (of different arities), @) to denote a query. In examples where only
ground atoms are used, we may replace the atom by a constant (e.g. replace P(a) by a) to avoid
obscuring the relevant material.

Definition 2.2 A clause C is range restricted if every variable occurring in the head of C also
appears in the body of C. A database is range restricted iff all its clauses are range restricted.

Definition 2.3 If C' = A; V...V A, is a disjunction of atoms, then by Neg(C) we denote the set
of clauses in implication form Neg(C) :={A; — L, .., A, — L}, If M = {Ay,..., As} is a finite
interpretation then Neg(M) denotes the clause in implication form Neg(M) = A1 A ... AN A, — L.

Definition 2.4 A DDDB, DB, can be partitioned into three sets of clauses:

1. The extensional part (EDB) a positive disjunctive database corresponding to base relations
and containing facts (clauses with empty bodies, positive clauses).

2. The intensional part (IDB) corresponding to view definitions. The rules of IDB can be used
to derive new pieces of information from the extensional part of the database. They have the
form of clauses with nonempty heads and bodies.



3. The integrity constraints (ICpp ). This is a set of rules that are used to ensure that the theory
consisting of the first two components satisfies certain properties. These can be denial rules
(clauses with empty heads) or general rules (clauses with nonempty heads)*.

The main results of this paper are presented using a model generator with certain properties as
the proof procedure [5, 29]. We extensively utilize denial clauses (rules with empty heads) to restrict
the search space for models. Since denial clauses have only positive body literals they represent
purely negative clauses.

Definition 2.5 Given a DDDB, DB and « model generating procedure P, by P(DB) we denote the
result returned by P run with DB as input. We say that P 1s

1. Sound: if it returns only models of DB: YM € P(DB),M = DB.
2. Minimal-Model sound if it returns only minimal models of its input: P(DB) C MM(DB).
3. Complete: if it returns all the minimal models of DB: MM(DB) C P(DB).

To make the paper complete, next we give a brief description of successively refined model
generating procedures that are sound and complete [5]. Given a DDDB, DB, each of these procedures
constructs a tree (model tree) with the ground unit clauses in each root-to-leaf branch representing
a model of DB. The completeness implies that the tree has at least one branch representing each
minimal model of DB.

Starting from T as the root, the procedure expands a tree for a range restricted DDDB, DB, by
applying the following expansion rules:

Definition 2.6 (expansion rules) Let DB be a DDDB. If the elements above the horizontal line
are in a branch then it can be expanded by the elements below the line.

Positive Unit Hyper-Resolution (PUHR) Rule: Splitting Rule:
B Ei1V Es
: Er | B
B,
Fo

where o is a most general unifier of the body of a clause (A1 AN...ANAm — E) € DB with (B, ..., By).
{Al, ceny Am}O' = {Bl, ceny Bn}

Note that the splitting rule is always applied to ground disjunctions. This is possible since the
theory is range restricted. The head is always ground when the body is ground (or empty).

Definition 2.7 (model tree construction) A Model Tree for a DDDB, DB, is a lree whose
nodes are sets of ground atoms and disjunctions of ground atoms constructed as follows:

TWithout loss of generality, one may assume that the sets of predicates in EDB and IDB do not intersect. That
is, DB has no hybrid predicates [15]. We don’t make this assumption here but discuss how such a separation can
improve the efficiency of the algorithms presented in this paper.



1. {T} is the top (root) node of the tree.

2. If T 1s a leaf node 1n the tree being constructed for DB such that an application of the PUHR
rule (respectively splitting rule) is possible to yield a formula E (respectively, two formulas F;
and ) not subsumed by an atom already in the branch, then the branch is extended by adding
the child node {E} (respectively the two child nodes {E1} and {FE2}) as successor(s) to T.

While the above definition imposes no order on atom expansion, we elect to maintain an order
that will later be exploited for defining the properties of the generated tree.

Definition 2.8 (conventions for model generation) When expanding a model tree we assume
that the procedure adheres to the following rules®:

1. Always select Fy of a disjunction to be atomic.
2. Ezpand the leftmost atom of a disjunction first.

3. As a result of items 1 and 2 atoms of the clause are expanded from left to right (by adding the
remainder of the clause, if any, to the top of the theory to be processed in the sibling branch).

We always expand left branches of the model tree first. Our interest is only in branches with
no occurrences of L (open branches). The branch expansion is stopped when false (L) is added
to a branch (the branch closes). Only (ground) disjunctions that are not subsumed in the branch
are expanded to avoid unnecessary expansions. A branch represents the interpretation in which all
(ground) unit clauses on that branch are assigned the truth value #rue. For the class of of range
restricted disjunctive deductive databases with finite models the tree defined by such a procedure
i1s sound in the sense that it generates only models of the theory and complete in the sense that it
has branches representing all minimal models of DB. However, not all branches represent minimal

models [5].

Example 1 Let DB be the following set of clauses:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Figure 1 is a model tree for DB. The minimal model {P(a), P(b)} of DB is generated twice. The
tree also has a branch with the nonminimal model {P(a), P(b), P(c)}. Among others, all minimal
models of DB, i.e. {P(a),P(b)}, {P(a), P(d)}, and {P(b), P(c), P(d)} are generated.

Further, it was shown that replacing the splitting rule by the following one called Complement
Splitting Rule preserves the completeness and soundness of the model generating procedure [5].

Definition 2.9 (complement splitting rule)

?These conventions are adopted in the implementation reported in [5]. They correspond to a left-to-right, depth-
first traversal of the search space. However, this is not the only possible expansion ordering. Breadth-first search can
be adopted for the same purpose. Comparing the merits of these two approaches is beyond the scope of this paper.



P(a) v P(b)
| |
P(b) v P(d) P(a) Vv P(c)
/ \
P(b) P(d) P(a) P(c)
|
P(a) Vv P(d)
/ ™~
P(a) P(d)

Figure 1: A Model Tree for Example 1 (with nonminimal and duplicate models).

EyV Es
Ey | s
Neg(FEs) |

The adoption of this rule tends to reduce the search space by closing (adding false to) branches
before they grow into complete nonminimal or duplicate models. Besides, the first (leftmost) model
generated using this rule is minimal.

Example 2 Let DB be the set of clauses of Example 1, t.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) vV P(d)
Figure 2 gives the model tree for DB. Clauses not in the original theory are given in square

brackets. The models of this tree are { P(a), P(d)}, {P(b), P(c), P(a)}, {P(b), P(a)}, and {P(b), P(c), P(d)}.

Note that although some are not minimal, no duplicates are returned and the first model 1s minimal.

If additionally, for each minimal model, M, generated so far we augment the theory by the
negation of M, (Neg(M) = Ay A . ANAm — L if M = {A1,...,An}), then we achieve a model
generating procedure that 1s minimal model sound and complete. It returns all and only minimal
models of its input theory.

Example 3 Figure 3 gives the search spaces of the minimal model generation procedure for the set
of clauses of Fxamples I and 2, i.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) v P(d)

Note that all models returned by the procedure are minimal.



P(a) v P(b)
/
P(a) \ P(b)
[P(b) — 1] ‘
|
P(b) v P(d) P(a) v P(c)
P(b) P(d) P(a) P(e)
[P(d) — 1] [P(c) — 1] ‘
|
L P(a) v P(d)
RN
P(a) P(d)
[P(d) — 1]

Figure 2: The Model Tree with Complement Splitting for Example 2.



P(a) v P(b)
/
P(a) T P)
[P(b) — L] [P(a) A P(d) — 1]
| |
P(b) v P(d) P(a) v P(c)
N P
P(b) P(d) P(a) P(c)
[P(d) — 1] [P(c) — 1] [P(b) A P(a) — 1]
| |
L P(a) v P(d)
/ \
P(a) P(d)
[P(d) — 1] [P(b) A P(c) A P(a) — 1]

Figure 3: A Run of the Minimal Model Generation Procedure MM-Satchmo for Example 3.



In [29] and [5] sound and complete minimal model generation procedures were given for ground
and RR theories, respectively. [5] contains a Prolog implementation of a series of procedures, for
the class of RR theories with finite minimal models and no body negation, called: Satchmo for
the program with splitting [17], CS-Satchmo for the implementation with complement splitting and
MM-Satchmo for the implementation with model minimization (by including negation of generated
minimal models).

3 The Duality Approach

We are interested in answering queries in the context of a DDDB. We limit our consideration to the
class of positive queries. This includes disjunctive queries which are disjunctions of atomic queries
and conjunctive queries which are conjunctions of atomic queries. Atomic queries are a special case of
either of these classes. Other positive queries can be reduced to a conjunction of disjunctive queries
(positive clauses). For now, queries are assumed ground and have yes/no answers. Additionally, we
treat both clauses and models as sets of ground atoms. A set of atoms is interpreted disjunctively
when it is referred to as a clause and conjunctively when it is referred to as a model. We can
even talk about equality of a clause and a model which is to be interpreted as their having the
same underlying set. Unless otherwise stated, we assume that the database under consideration is
consistent.

3.1 Disjunctive Queries

In this section we present the main results of our approach for the case of disjunctive queries: queries
that are disjunctions of atoms. Later we show that the results easily extend to other positive queries.

3.1.1 Goal Set Expansion

Theorem 1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q=q1V..Vqy be a disjunctive query. If DB F @) then a clause subsuming @ occurs wn the head
of some clause of DB.

Proof: () is derivable from DB iff it is true in every model of DB. Assume that () is derivable from
DB and there exists no clause C' € DB such that Head(C') subsumes ). To show contradiction
we construct a model in which no atom of @ is present. Consider M = HB(DB)\{q¢1, ..., ¢n}-
It satisfies all clause heads since none of them consists entirely of atoms in ). M is a model
of DB. |

That Theorem 1 doesn’t hold in the presence of denial constraints is clear from the following
example:

Example 4 Consider DBy = {P(d) — P(a)V P(b)V P(c), P(d)} and DBy = {P(d) — P(a)V
P(b)V P(c), P(d), P(c)—} and @ = P(a)V P(b). Clearly DB2 - Q but DBy I/ Q.

In view of Theorem 1, if a subclause of @ is in the (Extensional) database then the query is true.
This can be verified by inspection. If not, the process of answering ¢ will require more work. We



need to look for a clause €' with a subclause of @ as (instance of) the head and show that C' will
derive () at least in all models of DB in which ) may not be satisfied, ensuring the derivability of
). We can do that, for example, by showing that atoms of the body of C are all elements of the
EDB. However, this is too strong a condition: it is sufficient but not necessary.

A necessary and sufficient condition is given by the following rephrasing of results reported

in [7, 14, 21].

Definition 3.1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints),
Q=q1V..Vq, be a disjunctive query against DB and C' = By N .. A By — A1V ...V A; be a clause
wm DB. We define gg, the goal clause set of @ relative to C', as:

c9 — { {1V ..Vgu VB, uqi V..V g VBrt if {Ar, . A C{ar, o g0}
¢ {n V.. V) if {A1, ., A g, - qnt

By Body(C) Vv Q we denote the set {1V ..V ¢V B1,...,q1V ...V qn V By}

In essence, gg is meant to define a set of clauses, that need to be derivable from DB to prove
that @ follows from DB in as far as clause (' is concerned. C' may contribute to the derivability of
) only when its head subsumes ). While we are replacing the provability of one clause ¢ by the
provability of several, the latter are potentially longer disjunctions and, therefore, each of them has
a better chance of being proved than @ itself.

Clearly a set of clauses is derivable from DB if and only if all of its members are derivable
from DB. Since a clause is always satisfied whenever any clause subsuming it is satisfied it is
possible to delete all nonminimal elements from the clause set gg. In particular, note that if
{41, A} CH{q1,...,qn} and {By, ..., B} N {q1,....,qn} # 0 as well then gg is subsumed by the
single clause {q1 V...V ¢, } and therefore gg ={q1 V...V q,} in this case too. We make this explicit
when defining the consequence operator 77, later in this section (Definition 3.2).

Theorem 2 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q=qV..Vq, be a disjunctive query. DB & Q if and only «f there exists a clause C' in DB such
that Head(C) subsumes Q and the formula (Body(C) V Q) is derivable from DB. Or equivalently
if and only if {(BV Q) | B € Body(C)} is derivable from DB, where B is an atom in Body(C).

Proof: Assume that @ is not true in some model of DB, say M. Then from M |= (Body(C) V Q)
we get that Body(C') € M and consequently Head(C) C @ is true in M. @ is true in M by
an application of clause C', a contradiction.

The other direction follows directly from Theorem 1. Assume that for all clauses C' of DB,
(Body(C) Vv @) is not derivable from DB. Consider a suitable model M of DB: there is a
clause (B V Q) for some B € Body(C) such that both B and @ are false in M. @ is not
derivable from DB (it is false in M). [

Corollary 1 [14] Under the conditions of Theorem 2:

1. (Body(C) V Q) is derivable from DB iff (Body(C)V Q) is derivable from DB\ {C}.
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2. If Body(C)NQ # 0 then DB+ Q iff DB\ {C} F Q.

3. DB Q if and only if for any clause C' in DB such that Head(C') subsumes @), (QV Body(C'))
15 not derwwable from DB.

Proof: 1. If Body(C) Vv @ is derivable from DB \ {C} then @ is derivable from DB by the
application of clause C'.
Let Body(C)V Q be derivable from DB. Assume that DB\ {C} I/ (Body(C)V Q). There
exists a model M such that M = (DB\{C}) but M [~ (Body(C)VQ). Body(C)NM = 0.
M = C and consequently M |= DB and therefore M |= (Body(C)V Q). A contradiction.

2. ITmmediate since in this case Body(C)V @ is subsumed by ). Thatis @ € {(BV Q)| B €
Body(C')}.

3. straightforward.

If all the resulting clauses are subsumed by elements in EDB then the task is over. Otherwise
attempts must be made to prove the new goal set by repeated application of Theorem 2. Consider
the example:

Example 5 Lelt DBs = {C1 =aVb Cy=cVd,Cs=aAd —eVbCo=bAd — fVe,Cs=c—g}.
Let Q1 =bVeVyg, Qa=bVeVfandQs=gV f.

1. Q1 =bveVyg: Applying the clause Cs to Q1 yields the set {Cs =bVeVgVa,Cr=0bVeVgVd}.
Cs is derivable from EDB (subsumed by Cy) while C7 is not so we apply clause Cs to C7 to
yield {Cs = bV eV gVvdVe} which is derivable from EDB (subsumed by Ca) and consequently

50 18 Q1.

2. Qo =bVeV f: Applying the clause Cy to Qo yields the set {Cg =cV fVb Ciog=bVeV fVd}.
Ciy is derivable from EDB while Cy is not. All attempts to solve Co (through C4 fail and
therefore DB I/ Q2. Note that we could have generated Cy alone since Q2 N Body(Cy) is not
empty without changing the final result.

3. Qs =gV f: Applying the clause C5 to Qs yields the set {C11 = eVgV f}. Ci1 is not derivable
from EDB. Applying the clause Cy to Cyq yields the set {C12 = VgV fVb,Cis=cVgVfVd}.
Ch3 is derivable from EDB while C15 is not. No clauses are available to extend C13 so DB Q5.
It is easy to see how the results of Corollary 1 hold for Fxample 5.

In effect, Theorem 2 and Corollary 1 suggest a simple approach to proving (). Keep generating
clauses subsumed by @ until a sufficient group of such clauses is subsumed by clauses in DB. The
following points need to be emphasized in this regard:

e Each of the clauses of the goal clause set, gg, is at least as long as ). The derivability of the
query is expressed in terms of the derivability of other positive clauses. Since, by definition, the
only component of the database that contains positive facts is the EDB then the derivability
of the query must ultimately be reduced to simple searches in EDB for clauses subsuming each
of the elements of a final goal set. The expansion is continued until the goal clause set is found
in the EDB or until no more applications of the rules of DB are possible.

11



e The top-down nature of the expansion process since the clauses are selected on their (head)
matching the goal clause (current query). This may be instrumental in reducing the search
space as compared with the case of using a bottom-up query evaluation procedure e.g. based
on minimal model generation.

e The clause (instance) used for expansion is applied only once and it can be deleted from the
database during the rest of the search process. This results in reducing the size of the DB
component of the database at the expense of increasing the size/number of the clauses that
need to be tested for (simultaneous) derivability from EDB.

It is clear that derivability of the answer @ is being reduced to the derivability of a set of larger
clauses with the final aim of having these larger clauses looked up in the extensional part of the
database (EDB). As far as the nature of gg content is concerned, it is preferable to have the testing
performed on longer clauses. If this set contains clauses subsuming each other then we can limit our
testing to the minimal components alone. If the test succeeds, subsumed clauses will be derivable
as well.

Definition 3.2 Let DB = EDBUIDB be a ground Disjunctive Deductive Database (with no denial
constraints), C' be a ground positive clause and S be a set of ground positive clauses. We define the
consequence operator TS, that maps sets of positive clauses into sels of positive clauses of the
disjunctive Herbrand base of DB as follows:

T4 ({CY) = {CvB| 3C, e IlDB st.Head(Cy) C C, Body(C1)NC =0, B € Body(C1)}.
DB {C} Otherwise

Thp(S) = Uces THs({C})

T5510(8) =8,

T 1 a(S) =T55(TEs 1 (a L1)(S)) for successor ordinal «,

Thp 1 a(S) =wb{Tiy 1 B(S) : B < a} for limit ordinal «,
Up(Thp) = Ths | w(S), where w is the first limit ordinall8, 12, 25].

We may assume that subsumed clauses are deleted (minimization is performed) at each stage.
This is so since subsumed clauses are automatically derivable from DB when the subsuming clauses
are®. However, we elect not to adopt this assumption to make our discussion as general as possible.
Note that our expansion process differs from that of [21] by explicitly prohibiting the generation of
subsumed goals through applicable clauses with nonempty intersection of the clause body and the
current goal.

3Note, however, that the partial order on sets of interpretations 7 and J is defined through the set inclusion
relationship (C) between the minimal elements of the sets. That is, J C 7 if and only if VI € Min(Z),3J €
Min(J),J C I, where Min(T) = {I|I € I, AI' € T s.t. I' C I} . So, rather than minimizing at every step, we
minimize after the complete computation. Clearly, nonminimal elements will have no effect on the partial order and
the results of [8] hold here as well.
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Example 6 Consider DB =
{Ci=aVvbCo=cVd Cs=and—eVbCi=bAd— fVe,Cs=c— g}
Let Q1 =bVeVyg, Qys=bVeVfand Qs =gV f as in Example 5.
Tis 11{Q1}) ={Cs=bVeVvgVva,Cr=bVeVgVd Cs=bVeVgVc}
Tig12({@i}) ={Co=bVeVgVaVve,Cio=bVeVgVdVe}.
Tis 1 w({Q1)) = T8 1 20{Q1)).

T 11{Q2}) = {Cii=bveV [}
Thp 1 w({Q2}) = T35 1 1({Q2}).

Thp 1 1{Qs}) = {Cia=g VeV f}.

T35 12({Qs}) ={Cis=g VeV Vb Ciu=gVeV fVd}

Thp Tw({@s}) = Thp 1 2(1Qs}).

Note that the expansion can produce nonminimal elements. For example, if we let DB' = DB U
{Cy = fAd — aVg} then applying Cy to Co gives TS5 | w({@1}) = {Cia = bVeVgVaVvevd,Ci5 =
bVeVgVaVeV f,Clo=bVeVgVvdVece}.

Clq 1s nonminimal. It is subsumed by Cp.

Later we prove that if we start with clause (disjunctive query) @ then 75, 1 w({Q}) is the set
of clauses that all need to be subsumed by EDB in order to prove ).

3.1.2 The Duality Transformation

As outlined above, the expansion procedure has many of the elements of model generation. Our aim
is to employ a (bottom-up) model generating procedure to simulate the (top-down) computation
suggested by the proved theorems. However, since the elements we are dealing with in the theorems
are clauses and clause subsumption rather than models and clause satisfiability, some changes are
needed to account for this difference.

As a first step, starting from the query to be proved, @), we will try to construct a set of ground
clauses (clause construction) that are to be tested for being subsumed by elements of EDB (sub-
sumption checking) to verify the derivability of @ from DB. Later we incorporate the subsumption
checking part into the clause construction process to get the required procedure. To explain our
approach we need to recall some terminology and definitions.

We recall that a clause C' = Body(C') — Head(C') is always treated as reading the conjunction
of atoms in the set Body(C') implies the disjunction of atoms in the set Head(C'). Changing the
implication direction therefore will have the automatic effect of exchanging V by A and vise versa.

Definition 3.3 (dual clause) Let C = Body(C) — Head(C') be a clause of a DDDB, DB. We
define the dual clause of C', C* = Head(C) — Body(C). Clearly, Head(C) = Body(C%) and
Body(C) = Head(C?). Note that L (T) in the head (body) of C replaced by T (L) in the body
(head) of C¢. The dual of a set of clauses is the set of the duals of each of its members. In
particular, IDB? = {C%C € IDB} is the dual of IDB.

The intended meaning of C'¢ is that in order to show that the disjunction of atoms in the head
of a clause C' is derivable from DB one needs to show that all the disjunctions of an element of the
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body with the head of C' are derivable from DB. So read C% as “to prove the disjunction subsumed
by Body(C?) requires (—) that the clauses corresponding to each element of Head(C?) added to
that disjunction are provable from DB. This is in line with the interpretation of a disjunctive clause
C' = Body(C) — Head(C) as implying Body(C)V D — Head(C)V D for a positive clause D, under
the restriction that Head(C') subsumes D [21, 27]. A different reading that reflects the procedure
being developed in this paper will be advanced in paragraph 5.1.

Now, to start the search for the derivability of @ = q; V... V ¢, in DB we take the set Q¢ =
{q1, ..., g }* and look for a clause C¢ € IDB? such that Q¢ N Body(C?) = Body(C{). (To use the
interpretations terminology, Body(C{) is satisfied in the partial interpretation @%). We extend Q¢
by one element of Head(C{) at a time to create the new set {{Q? B}|B € Head(C{)}. Now, all
the clauses corresponding to the elements of the new set have to be derivable from EDB. If not
the same procedure is applied to those which are not. We may, however, keep generating the new
elements until all those potentially needed are produced (a fixpoint is reached in the computation)
and do the checking at that time. As suggested by Corollary 1 we may also remove a clause of the
theory as soon as it is used to generate its goal clause set (expired) or we can keep it in the database.
With a view on expanding our procedure to the case of nonground theories we elect to postpone
the subsumption checking in the EDB and to keep expired clauses in the database. Note that the
outlined procedure has all the elements of model generation for the dualized database.

Formally, we have the following results:

Lemma 1 Let DB be a ground Disjunctive Deductive Database (with no denial constraints), @ =
g1V ...V q, be a disjunctive query against DB and C = By AN ...AN By — A1V ...V A; be a clause in
DB. Then

o MMH{CYuUQY) c gl
o MM({C% UQY) = Min(GE)

Proof: By definition C% = A1 A ...A A1 — By V ...V By. Recall the definition of gg. Three cases
are possible:

L IEQIN{Ay, ..., Ay # {41, ..., A} then MM{CTY U Q) = {Q%) =62,

2. QN {A, ..., Ay = {A1,.., A} and Q* N {By, ..., By} # 0 then MM{C}uUQ?) =
{Q"} C G¢ and Min(G¢) = {Q*} and MM{CT} U{QY) = Min(GE).

3. QN {A, .. Ay ={A1,..., A} and QTN {By,..., By} = 0 then MM{C}uUQ?) =
{Q U {B1}}, . {QU{B:}}} = G& = Min(GY).

4There is a slight abuse of notation here. However, the correspondence is clarified if one looks at Q as the clause
g1V ...V gn — L the dual of which is T — g1 A ... A gn, which is equivalent to Q¢ = {q1, ..., gn}. The same reasoning
applies to motivate having Q% = ¢1 V ... V ¢, when @ = q1 A ... A qn. Paragraph 5.1 offers a way of looking at the
meaning of such a transformation.
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Note that only the minimal (relative to set inclusion) elements of gg are relevant since they

subsume all other clauses of gg. The nonminimal clauses will be derivable whenever the minimal
ones are. The goal clause set can be further extended by applying the elements of IDB to the recently
generated set. The process can be continued until no further extension is possible.

Definition 3.4 Let DB be a ground Disjunctive Deductive Database (with no denial constraints)
and Q@ = @1V ...V q, be a disjunctive query. Let IDB% =QIUIDBY = {q, ..., ¢, U{CYC € IDB}.
By MM(IDB%) we denote the set of minimal models of IDB%.

The result of Lemma 1 can be extended further by the following:

Theorem 3 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q = q1V...Vq, be a disjunctive query. Let IDB% =1{q1,...,qu}U{CYC € IDB}. Let MM(IDB%)
be the set of minimal models of IDB%. Then:

o MM(IDBY) CTSp 1 w({Q)).
o MM(IDB) = Min(T§g 1 w({Q))).

Proof: (Sketch). M € MM(IDB%). QIC M. Th, 10({Q}) = {Q}.
T35 11({Q}) ={QV B|3C € IDB s.t.Head(C) C @, Body(C)N Q = 0 and B in Body(C)}.
By Lemma 1 the minimal models of {C'%} U Q% are in the set 7/, 1 1({Q}). Using this as
the base step ¢, an induction step can be constructed by applying the operator 7} 5 to the set
755 1 1({Q}) and using Lemma 1 to show that the minimal models of the set consisting of
the atoms of each clause generated at step ¢ and a matching clause in /DB? are among the
elements returned by the new application of the operator 7. [ ]

M e MM(IDB%) is saturated (depth-wise) with regard to the the rules of IDB?. No rule of
IDB? can be applied to M to extend it further. Whenever a rule is applicable by having its body
atoms in M at least one head literal of that rule has an atom of M as well. This follows from the
definition of a model.

The set MM(IDB%) is also saturated (width-wise) in the sense that all possible expansions
are attempted whenever the body of a rule C? in IDB? is satisfied by the atoms in a branch. The
branch containing no atom of Head(C?) is developed into a set of branches each of which extends
the branch by a single head atom of Head(C?). If the branch already has an atom of Head(C?) no
extension is performed in accordance with Corollary 1.

Because no further application of the rules of IDB? is possible, it follows that a clause corre-
sponding to an element of the set MM(IDB%) is derivable from DB if and only if it 1s subsumed
by a clause in EDB. That is, @ is derivable from DB if and only if all elements of MM(IDB%) are
subsumed by clauses in EDB. Note also that MM(IDB%) depends only on ) and the generally
static IDB and is independent from the dynamically changing EDB.

Theorem 4 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q = q1V...Vq, be a disjunctive query. Let IDB% =1{q1,...,qu}U{CYC € IDB}. Let MM(IDB%)
be the set of minimal models of IDB%. Then: @ is derivable from DB if and only if EDB derives
clause M for all M € MM(IDB%): (EDBFCy=A1V...VA fM={A1, ..., A&1}).
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Proof:

e Let M bein MM(IDB%) and @ be derivable from DB. We show that C}y, the clause
corresponding to M, is derivable from EDB.

Assume that EDB does not derive Cys. There exists a model M’ of EDB such that
M'0nM =0. Clearly M’ [ @, since Q¥ C M. We extend M’ into a model of DB, M",
such that M” £ Q.

All clauses in IDB the dual of which participated in generating M (fired during the
generation of M) are trivially satisfied in M’ since at least one of their body atoms is
not in M'. That is {VC|C' € IDB, Head(C) € M}, an atom A of Body(C') is in M and
therefore A ¢ M’ since M’ N M = 0.

For any other clause of IDB, say C, if Body(C') is satisfied in M’ and Head(C) is not
then add an atom A &€ M of Head(C) to M'. Such an A exists since otherwise C' would
have participated in the derivation of M (and is already satisfied in M’). The resulting
M" is a superset of M’ a model of DB, and M” }£ @) contradicting the derivability of
Q from DB.

Assume that for all M € MM(IDB%), Cy is derivable from EDB. We show that in this
case () is derivable from DB.

Let N € MM(DB) such that N [~ Q. We describe how we can extend Q¢ into an
M € MM(IDB{) such that N N M = 0 and therefore N f= Cyr.

1. Let i := 0 and Let M° := Q%
2. Clearly, N N\ M*® = ) (recall that @ is a disjunctive query).
If Mi e MM(IDB%) then exit with M = M?.
Otherwise there exists a clause C; € IDB such that Head(C;) N M* = Head(C;).
Since N [£ Body(C;) there must be an atom A; € Body(C;) such that A4; &€ N.
Now let M*+! := M* U {A;};i:=i+ 1 and go to step 2.
Since all models are finite, the process terminates generating an M € MM(IDB%) such
that NN M =0, N E DB and N £ M contradicting our assumption that all such M
are derivable from DB.

We apply this theorem to the database of Example 5:

Example 7 Let DB={Cy =aVbh,Cy =cVd,Cs=aANd —eVbCy=bAd— fVe,Cs=c— g}
Let Q1 =bVeVyg, Qa=bVeVfandQs=gV f.
IDB={Cs=aANd—eVbCi=bAd— fVe,C5s=c— g}

IDBY={Cd=eNb—aVd Cl=fAhc—bVd Cld=g—c}.

IDB%1 :IDBdUQf:{Cél:e/\b—>a\/d’04il:f/\c—>b\/d’0g:g_>c’b’e’g}

IDBgz =IDB'UQS={Ci=enb—aVd Ci=fAc—bVd Cl=g—cbec [}

IDB%S:IDBdUQg:{C’g:e/\b—>a\/d,Cf:f/\c—>b\/d’Cg:g_>c’g’f}’

16



MM(IDB%I) = {{a’bacaeag}’ {ba C,d,@,g}}.
BothavbVeVeVgandbVeVdVeVyg are subsumed by clauses in EDB. ()1 is an answer.

MM(IDB%Q) ={{b,c, f}}. Clause bV ¢V [ is not derivable from EDB and therefore Q2 is not

an answer.

MM(IDBE,) = {{b,c, f, g}, {c.d, f,g}}.
eVdV fVygis subsumed by (eVd) € EDB while bV eV fV g is not and so Q3 is not an answer.

This approach has the advantage of separating the stage of generating the checks from the stage
of actual checking. It may be helpful in cases when the IDB is in the core memory while the EDB is
in secondary storage. Gains may be achieved from optimizing access to external memory. However,
this is not the only way of testing for derivability. Recognizing that certain clauses may become
derivable from EDB long before the full model is generated, the processes of model generation and
checking can be integrated so that derivability is detected as soon as it occurs, even before the
generation of the entire model.

In the following theorem we show how to integrate the checking for clause satisfiability into the
model generation process.

Theorem 5 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q = q1V..Vq, be a disjunctive query. If DB% ={q1,..,q.} U{C?C € IDB} U {Head(C) —
1l|C e EDB} = IDB% U{Head(C) — L|C € EDB}. Then: Q is derivable from DB if and only
if/\/l/\/l(DBg) =10.

Proof: A clause corresponding to M € MM(DB%) is derivable from DB if and only if it is
subsumed by a clause C'in EDB. M will be eliminated by the presence Head(C) — L in DB%.
Since M is arbitrary, MM(DB%) = (). The result follows immediately from Theorem 4°. m

Corollary 2 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q=q1V..Vq, be a disjunctive query. Let MM(DB%) + 0 be the nonempty set of minimal models
of DB%. Then:

1. @ is not derivable from DB.

2. DB, F Q where DB, = DBUC and VM € MM(DB%)EIC’ € C s.t.C' subsumes M. That is,
DB, is achieved by adding to DB the set of clauses C subsuming all the minimal models of
IDBY.

Q

3 8= MM(DB%) is the weakest such set that can be added to DB to guarantee the derivability
of @ from the updated database DB, .

5Note that for the class of theories and queries considered here, the emptiness of minimal model set is equivalent
to the existence of a refutation. In this case, the results extend naturally to other refutationally complete proof
procedures. In the absence of a refutation, Corollary 2, however, utilizes the results returned by the model generation
procedure for refined query answering.
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Proof: 1. Immediate.
2. Needed to guarantee the condition of theorem 5.

3. Consider M € MM(DB%). Clearly any clause C' that is subsumed by M, (M C (),
will not remove M from the model set when its corresponding denial (Head(C) — L), is
added to DB%. Any clause that subsumes M (C' C M) can be weakened by augmenting
it with the remaining elements of M (elements of M \ C') and still guarantee the removal
of M from the model set.

Example 8 For the database and queries of Example 7,
DB={Ci=aVbhCo=cVd Cs=aAd—eVbCi=bAd— fVe,(Cs=c— g}
Let Q1 =bVeVyg, Qa=bVeVfandQs=gV f.

DBl ={Cf{=anb— L, C{=cAhd— L,C{=enb—aVdC{=fAc—bVd Cl=g—c}.

DBY = DBIUQ! =
{Cl=anb— 1L, C¢=cAhd— L, C¢=enb—aVd C{=fAc—bVdCl=g—cbeg}

DB%, = DB*UQ =
{Cl=anb— 1, C¢=cAhd— L,C¢=enb—aVd Ci=fAc—bVd Cl=g—cbec [}

DB}, = DBTUQ] =
{Cl=anb— L, C¢=cAhd— L,C¢=enb—aVd,C{=fAc—bVd Cl=g—cyg, [}

MM(DBE ) =0. Q1 is an answer.

MM(DB%Q) = {{b,e, f}}. bV eV [ is not derivable from EDB and therefore Qo is notl an
answer. It will be an answer if we add bV cV f to DB.

MM(DBga) = {{b,c, f,9}}. Qs is not an answer but adding bV ¢V fV g will make Q3 an

answer.

3.2 Conjunctive Queries

In the previous discussion we considered only ground disjunctive queries. The basic idea in treating
a disjunctive query @ was to take its dual, Q¢ (the set of atoms in @) and apply the minimal model
generation algorithm to Q¢ together with the dual of the database itself. Atomic queries are a special
case of disjunctive queries and no further treatment is needed. Conjunctive queries can be reduced
to the set of their atomic components. Each of these atoms can be run alone and the query succeeds
if all its atomic components are successful. This approach, however, may prove inappropriate for
two reasons:

e There may be some duplication in the various runs of the procedure for the individual atoms.
The goal clause sets of individual atoms need not be disjoint.
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e This approach cannot be lifted automatically to the case of more complex ground queries
and nonground queries when the separation of individual atoms may result in a different
interpretation (and consequently different answers) from the intended one.

It turns out that the same approach developed for disjunctive queries is applicable to conjunctive
queries as demonstrated by the following theorem:

Theorem 6 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q= qiA...Nqy be a conjunctive query. Let IDB% =QYUIDBY = {q.V..Vq,}U{C?C € IDB}.
Let MM(IDB%) be the set of minimal models of IDB%. Then: @ is derivable from DB if and
only if EDB derives clause M for all M € MM(IDB%).

Proof: For Q = g1 A ... A q, to succeed, ¢, ..., q, must all succeed simultaneously. By Theorem 4
this happens if and only if EDB derives clause M for all M € MM(IDBi) foralli =1,...,n.

To prove the theorem we need only to show that the elements of MM(IDB%) subsume all
the elements of UZf MM(IDBY,). That is for any M € U.Z} MM(IDBY.) there exists
M' e MM(IDB%) such that M’ C M.

This is the case since MM(IDB%) = Min(Uﬁi’f/\/l/\/l(IDBi)), where Min(S) returns only
the minimal elements of a set of models S. Clearly, any minimal model of IDBgl is also a (not

necessarily minimal) model of IDB% since it satisfies IDB? which is common to both as well
as () by having its ¢; as an element. [ ]

The following is an immediate result:

Corollary 3 Let DB be a ground Disjunctive Deductive Database (with no denial constraints) and
Q = g1 \...\qp be a conjunctive query. IfDBg = QY{CYC e IDB}U{Head(C) — L|C € EDB}
Then:

1. Q is derivable from DB if and only if/\/l/\/l(DBg) = 0.
2. If MM(DB%) is nonempty then:

(a) @ is not derivable from DB.

(b) Q becomes derivable from the updated database DB, achieved by adding to DB the set of
clauses 8 such that YM € MM(DB%)EIC’ €S 5.t.C subsumes M.

(¢) S = MM(DB%) is the weakest such set that can be added to DB to guarantee the
derivability of Q from the updated database DB, .

Example 9 Let DB={Cy =aVb(Cy=cVd Cs=aAd —eVbCi=bAd— fVe,(C5=c—
g,CzlId—>h,02226—>i,023:6—>i,0242f—>i,0252g—>h}. LetQ4:h/\i, Q5Ih/\6.

IDBY={C¢=enb—aVd C{=fAc—bVd Cl=g—c,Cl=h—dC=i—rc Cl=
i—e,Cl=i— f,C& =h— g}
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IDBY, = IDB'UQ) ={C§=enb—aVdC{=fAe—=bVvdC{=9g9—cC=h—
d,Cy=i—c¢,Cl=i—eCl=i—fCh=h—ghVi}

IDBY =1IDB'UQf ={C{=enb—aVdCi=fAc—=bVdC{=yg—cCl=h—
d,Cd=i—c,Clh=i—eCl=i—fCk=h—ghVe}.

MM(IDB&) ={{c,d,g,h},{a,b,c,e, f,i}, {c,d,e, f,i}}. All of these clauses are subsumed by

clauses in FDB. Q4 15 an answer.

MM(IDB%S) ={{e,d,g,h},{e}}. Clause e is not derivable from EDB and therefore Qs is not

an answer.

On the other hand: /\/l/\/l(IDBg4 U{Cd C4Y) =0 since Qa is an answer while /\/l/\/l(IDBg5 U
{CE,C4}) = {e} since Q5 is not an answer. Adding e to DB will make Q5 an answer.

3.3 Compound Queries

So far we dealt with conjunctive and disjunctive queries on the assumption that they constitute the
major type of queries encountered in applications. The results of this section can be extended to
a more general class of queries we call positive queries: those that can be translated into a set of
ground positive clauses (a conjunction of a set of disjunction queries). Clearly an answer to such as
query is affirmative if every clause has a yes answer and is negative otherwise.

To answer such a query one could run each clause separately as a disjunctive query and combine
the results. Alternatively, one may run a single process with the elements of each clause being
the starting set for individual branches. The resulting set of minimal models, which may be more
compact than the union of minimal model sets of individual clauses, will represent the clauses that
need to be true in EDB for the compound query to have a yes answer. The compactness is the result
of exploiting the shared pieces of information between the processes corresponding to individual
disjunctive components of the query. Consider the following example:

Example 10 Let DB = {C) = aVb,(Cy = c¢Vd,C3=aAd — eVb,Cy =bAd — fVe,C5=c— g}.
Let Qe =aVgVfand Qr=aVeVf.

MM(IDB%G) ={{a,b,¢, f,9},{a,c,d, f,q}}.

MM(IDB%) ={{a,b,c, f},{a,c,d, f}}.

(Qe A Q)" ={a, f,gV c}.

MM(IDB%GAQ7) = MM(IDB%J ={{a,b,c, f},{a,c,d, f}}.

However, if we run the procedure in refutation mode (Theorem 5) then it may be more advan-
tageous to operate each process separately since the failure of one of the disjunctive queries will
indicate a failure of the entire query. Refined query answering where we can augment the theory
with the constraints needed to make the query derivable is still applicable as in the case of disjunctive
and conjunctive queries.
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4 Removing Restrictions

In our discussion so far two major restrictions were imposed on the type of theory being treated.
The first is the requirement that the query and the database be ground and the second is that the
database has no denial rules (clauses with empty heads). Some of these restrictions simplified the
discussion while others are common in procedures dealing with DDDB. However, we would like our
approach extended beyond these restrictions.

4.1 Denial Constraints

Denial constraints are rules with empty heads of the form C' = Body(C) — L. In [5] we prove the
following result:

Lemma 2 Let S be a set of clauses and Ay, ..., Ay(n > 1) be atoms.

1. If M is a minimal Herbrand model of S such that M & Ay A ... AN Ay, then M is a minimal
Herbrand model of SU{A1 A AN Ay — L},

2. If M is a mintmal Herbrand model of SU{A; A ... AN A, — L}, then M is also a minimal
Herbrand model of §.

Lemma 2 shows that adding denial rules to the theory contribute to the minimal model structure
of the database only by removing those minimal models which satisfy the body of a denial rule. That
1s, no minimal models of the database DB are extended nor new minimal models are created for the
new theory DB UC, where C is a set of denial rules and additionally, MM(DBUC) C MM(DB).

Clearly, if a positive query () is derivable from DB then it is also derivable from DBUC. However,
it is possible that @ is not derivable from DB but is derivable from DB U C due to the fact that
the rules of € remove all the minimal models of the set MM(DB) \ MM(DB UC). This was
demonstrated by Example 4. So, in a sense, the presence of denial rules must enhance the potential
derivability from the database (for positive queries). The form this enhancement can take is to
expand the clauses in the goal clause set of the query so as to contain more atoms.

Indeed, that is what happens. Formally we have the following result:

Theorem 7 Let DB be a ground Disjunctive Deductive Database. Let C be the set of denial rules in
DB and Q be a positive query. Then: DB+ Q if and only if the formula (Body(C)V Q) is derivable
from DB for some C € C. Or equivalently, if and only if {(BV Q)|B € Body(C)} is derivable from
DB.

Proof: If DB F (Body(C) vV @) for some C' € C then the minimal models of DB in which @ is not
satisfied will have to satisfy Body(C') and will be nonmodels of DB by an application of C'
making DB Q.

Assume DB+ ). Then by Lemma 2, for any model M € MM(DB\C) and M & MM(DB)
there must exist a clause C' € C such that Body(C) C M. Clearly, M = (Body(C)V ®). =
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This theorem is basically suggesting that denial rules have the effect of expanding the goal clause
set of the query unconditionally by extending the query @ with atoms from Body(C'), one at a time.
Since denial rules of DB will convert into positive clauses in the dual database DB? according to
our definitions, it is clear that these rules can be treated on the same footing as other rules of the
theory. It is straightforward to extend all the results established so far to the case of databases
containing denial rules. The result is summarized in the following theorem®:

Theorem 8 Let DB be a ground Disjunctive Deductive Database with the set of denial rules C:
DB=EDBUIDBUC and @ be a positive query.

e Let EDBY = {C?C € EDB}.
Let ¢ = {C?|C e ¢}.

[ ]
e Let IDBY = {CYC € IDB}.
o Let IDB) = Q*UIDB* = Q*U{C|C € IDB}.

e Let DB = EDBYUIDBYUCY,

Let DB% =Q*UEDB*UIDBYuUCY.
Then

1. DB+ Q if and only if EDB derives clause M for all M € MM(C* U IDB%).
That is, EDB+F Cap = A1V ...V A if M = {44, ..., At}

2. DBFQ if and only zf/\/l/\/l(DBg) = 0.
3. If MM(DB%) is nonempty then:

(a) @ is not derivable from DB.

(b) Q becomes derivable from the updated database DB, achieved by adding to DB the set of
clauses 8 such that YM € MM(DB%)EIC’ €S 5.t.C subsumes M.

(¢) S = MM(DB%) is the weakest such set that can be added to DB to guarantee the
derivability of Q from the updated database.

Proof: Along the lines of earlier proofs. |

Consider the following example:

6The result is quite natural. The empty head L of the denial clause trivially subsumes every positive clause
and therefore the goal set of the query can be expanded using such a clause, unconditionally. As expected, in the
transformed theory such clauses are converted into facts where they can be used for this unconditional expansion.
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Example 11 Let DB =
{Ci=aVvbCo=cvd Cs=aAd —eVbCi=bAd— fVe,Cs=c—g,Cs=ard— L}. Lel
Qi=bVeVy Qa=bVevfandQs=gVvVf. C={Cs=ard— L}.

IDBYUCI={Cld=eNb—aVd Cl=fAhc—bVd Cl=g—c,Ci=T—aVvd}.

IDBS uCt=1DB'UQfuct =
{Cd=enb—aVvd Cl=fAc—=bVdCl=g—cCi=T —=aVvdhbegt

IDBY uC!=1IDBUQiuUC =
{Cd=enb—aVvd,Cl=fAc—bVdCl=g—c Cé=T —=aVvdb,ec [}

IDBY UC!=1IDBUQ§uUC =
{Cd=enb—aVdCi=fAc—bVdCl=g—c Céi=T—=aVvd,yg, f}.

/\/l/\/l(IDBg1 uc?) = {{a,b,c,e,g},{b,c,d e, g}}.
Both avbVeVeVgandbVeVdVeV g are subsumed by clauses in EDB. ()1 ts an answer and
1s not affected by the added constraint Cs.

/\/l/\/l(IDBg2 uc?y = {{a,b,c, f},{b,c, f,d}}. Both clauses are derivable from EDB and there-

fore Q2 1s an answer as a result of adding Cs.

MM(IDBE U C?) = {{a,b,c, f g}, {c.d [ g}}.

eVdV fVygis subsumed by (¢cVd) € EDB and aVbVeV fVg is subsumed by (aVb) € EDB
and so QQz is an answer.

Note that MM(DB%I) = MM(DB%Q) = MM(DBga) = 0. Comparing the results with

Ezample 8 shows how adding the constraints contributed to deriwving more yes answers.

4.2 Nonground Terms

We considered only ground databases and queries. While one may argue that a DDDB can always
be grounded so that the results are applicable, grounding can result in huge databases. So it is
always better to be able to deal with DDDBs with variables and perform instantiations only when
necessary. In this regard we consider two issues: nonground queries and nonground rules.

4.2.1 Nonground Queries

For definite databases only atomic answers are allowed and possible, DDDBs allow the derivation of
indefinite answers to queries. While one copy of the query is needed in the derivation of an answer to
an atomic query in a definite database, more copies may be necessary to derive an indefinite answer.
This stems from the definition of an answer to a query in a DDDB. a; + as + ... + a, 1s an answer
to Q(x) iff Q(a1) V...V Q(ay) is derivable from DB.

So in our procedure, when failing to derive the empty clause with a single ground substitution for
the variables in the query attempts should be taken with additional instantiations. The additions
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will in general help the refutation process by generating longer clauses (models) that are to be
subsumed by the elements of EDB (closed by clauses the transformed EDB).

In the case of disjunctive queries the issue of insuring the compatibility of substitutions with the
original query must be accounted for. But since all the elements (atoms) of the query are added to
the same branch, they can be instantiated simultaneously. In case additional variables remain they
have to inherit the naming so that compatibility of subsequent substitutions can be guaranteed. For
conjunctive queries elements (atoms) of the transformed query (Q¢) constitute a clause and therefore
the occurrences of a variable are instantiated simultaneously.

In a sense variables in transformed (dualized) queries are treated as universally quantified. They
can have multiple instantiations in the same branch resulting in longer clauses to be checked against
the EDB. Of course such multiple instantiations will result in disjunctive answers to the query which
is in line with treating elements of a single branch as disjunctions of the corresponding atoms.

Example 12 Let DB, = {C; =SV R,Ca = R— P(a),C3=5 — P(b)}.
Let DBy = {Ca = TV U,Cs =T — P(c)V P(d),Cs = U — P(d)V P(e)}.

Let Q@ = P(z). IDBY = {C4 = P(a) — R,C% = P(b) — S}. The only minimal model ofIDBlé
derivable from EDB;y is {P(a), R, P(b), S} which includes two instances of the query. a+b is an
answer to ¢ in DBy.

On the other hand IDBY = {CZ = P(c)AP(d) — T,C& = P(d)AP(e) — U}. The only minimal
model of IDBZ% derivable from EDBy is {P(¢), P(d), T, P(e), U} which includes three instances of
the query. ¢+ d+ e s an answer to ¢ in DB,.

Both answers generated are minimal. Note, however, that combining the two databases in dif-
ferent orders will generate both minimal and nonminimal answers even when derivability of clauses
is detected as soon as il appears. For example for DB = {Cy,Cy, C5, Cs, Cs,Cs} will generate the
nonminimal answer ¢ +d+ a + b.

4.2.2 Nonground Rules

While we described our procedure relative to a ground DDDB, the extension to the case of nonground
databases is possible if the procedure for minimal model computations can find all the minimal mo-
dels of the theory starting from the set of facts. The procedure we use to implement our approach is
complete and sound for the class of theories that are range restricted and have only finite minimal
models. For non-range restricted theories our procedure needs to make them so by a simple trans-
formation. This transformation is a substitute for, and can generally be more efficient than, blind
instantiation [5].

In our approach, given a DDDB, DB, the minimal model generating procedure is applied to the
dual DB®. As far as finiteness of minimal models this property is always guaranteed in the absence of
function symbols and under the finiteness of underlying domains of the theory in the case of DDDBs.
As for range restrictedness, even if the original database is range restricted, the transformed (dual)
one need not be so. This happens when a variable in the body of a rule doesn’t occur in the head of
that same rule. In this case we’ll need to apply the range restriction transformation to the dualized
theory to make our algorithm applicable [5]. Of course there may be instances when the original
theory is not range restricted and the dual is. No action is needed in this instance. In all cases we
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need to make sure that the range restriction transformation is not taken into account during the
dualization process but only after the dualization is completed.

One point to emphasize here i1s that a multiple use of a nonrange restricted dual clause will
result in the variables in the body being treated as existentially quantified. Each copy produces a
possible candidate for an answer to the query and the number of such copies used is a reflection
of the indefiniteness of the answer. To be able to perform testing after model generation, variables
resulting from different application of the same rule may be given different place-holding names (say
subscripted variables) that can be matched against elements of the EDB. Different occurrences of the
same variable in different branches need to maintain the same naming to ensure compatible future
substitutions. Of course such an approach tends to obscure the concept of model minimality which is
defined in terms of ground atoms. Range restrictedness of the dual database implies that whenever
the query is used to ground the body of a dual clause, the head of that clause is also grounded.
This removes the issue of maintaining substitution compatibility in different model tree branches.
Of course if the query itself is nonground then range restrictedness will be less helpful. Issues of
answer minimality are raised by the brute force instantiation. Consider the following example:

Example 13 [14, 12]

o Let DBy = {01 = R(a) vV S(b), Cy = S(C), C3= S(d) vV P(e),
Cy = R(x) — P(2),Cs = S(x) — R(x)} and let @1 = P(a)V P(b),Q2 = P(d),Qs = P(x).
IDBY = {C¢ = P(z) — R(z),C¢ = R(z) — S(z)}.
The only minimal model of IDBlgl is {P(a), P(b), R(a), R(b), S(a), S(b)} which is derivable
from EDB. ()1 is a yes answer.
The only minimal model of 1D B, %2 is {P(d), R(d), S(d)} which is not derivable from EDB.

Q)2 is a no answer.

The only minimal model ofIDBléa is one with any number of instances of {P(x), R(x), S(x)}.
The derivable components return the answers. It is easy to see that the answers to Q3 are a+b, ¢
and d+e corresponding to the instances: {P(a), P(b), R(a), R(b),S(a), S(b)} {P(e), R(c), S(¢)}
and {P(d), P(e), R(d), R(e), S(d), S(e)}.

Note that DB is range restricted and that not being able to detect derivability as soon as it
occurs or using a different clause ordering may result in generating nonminimal answers to
nonground queries. Splitting didn’t occur here since the dual database s Horn. In case of
splitting on nonground disjunctions substitutions compatibility needs to be guaranteed.

o Let DBy = {Cy = Person(z) A Cold(x) — Sneeze(z),Cy = Person(z) A HayFever(z) —
Sneeze(x),Cs = T — Person(Tom),Cy = Person(x) A Cold(z) A R(z)HayFever(z) — L}.
Let Q = Sneeze(Tom). Q¢ = Sneeze(Tom).

DB = {C% = Sneeze(z) — Person(z)VCold(z), C§ = Sneeze(x) — Person(x)VHayF ever(z),
C{ =T — Person(z) vV Cold(z) V HayFever(z),C§ = Person(Tom) — L}.

The only minimal model of DBQ% is {Sneeze(Tom), Cold(Tom), Hayever(Tom)}. @Q is not

a yes answer and Sneeze(Tom) V Cold(Tom)V HayFever(Tom) is the possible update. Note
that {Cold(Tom) vV HayFever(Tom)} is the nontrivial update.
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Since DBE is not range restricted, having more constants in the Herbrand base would have
generated longer (and more) minimal models. Once one knows that the branch will not close
the decision on when to stop the expansion may be influenced by the type of update desired.

5 Interpretation and Implementation Issues

In this section we briefly discuss the reasoning behind the duality approach adopted in this pa-
per to achieve top-down reasoning using a bottom-up procedure and argue that working with the
transformed theory is as naturael as working with the original clause set. We also address some
implementation issues.

5.1 Interpretations of the Duality Approach

We give some thoughts to explain what is happening in the transition from the theory to its dual as
the input to the model generation procedure. We show that this process can be viewed as a switch
to reasoning in a theory with reversed polarities of literals in which the dual clauses are used to
propagate a truth value different from that propagated by the clauses of the original theory. The
hope is to get some insight into the change in efficiency resulting from the application of the proof
procedure to DB? and Q¢ instead of to DB and —Q .

5.1.1 Reversed Polarities of Clauses

Usually, proving the query is done by trying to refute the theory augmented by the negation of
the query. When all clauses are represented as disjunctions of literals, the dual transformation has
the effect of consistently reversing the polarity of each literal of both the theory and the negation
of the query. Positive literals are changed into their negative counterparts and vise versa. This
is so since C' = Head(C)V =Body(C) while C* = ~Head(C) V Body(C)”. The same reasoning
applies to the relationship between =@ and Q?. Clearly, this syntactic transformation preserves the
consistency properties. So, DBU{=Q} F O if and only if DBYU{Q%}  O. The change in efficiency
in the transition from DB to DB? can be attributed to the fact that the bottom-up computational
procedure used in both cases (e.g. model generator) tends to treat positive and negative literals
asymmetrically. For example, model generation provers are generally driven by positive facts that
are then used to generate new facts through theory clauses. Negative clauses are only used to
close branches when applicable. Therefore, working with the transformed theory DB? can affect
the performance of the algorithm by reducing the number of positive literal occurrences and thus
limiting the number of possible expansions at the expense of increasing the number of negative literal
occurrences which can speed up branch closure. The overall effect may be faster refutations under
favorable circumstances.

Viewed as disjunctions of literals, the clauses of DB? specify which atoms need to be false while
those of DB specify which atoms are to be true in order for the clauses of the theory DB to hold.
For example, while C' = T — bV ¢ = b V ¢ says that either b, ¢ or both are to be true for C' to hold,

"Recall that the heads and bodies of clauses are treated as sets of atoms. The negations are, therefore, disjunctions
of negative literals.
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C%=bAc— L =-bV-csays that either b, =¢ or both must be false to satisfy C', two equivalent
statements. This property is preserved by resolution between clauses of DB?: the resolvent of two
clauses of DB? specifies what must be false in the same way as the resolving clauses do. Consider
the following example:

Example 14 Let DB = {C}; = bVe¢,Co =b —aVe (Cs=c—aVdCy=bAe — L}, Lel
Q=avd.
DBY={Cl=bAc— L, Cé=ane—bCi=aAd—c,C{=T —bVe}.
The clausal representation of DBU{Q — L} and DB U Q% are
{Ci=bve,Ca==bVaVe Cs=-cVaVvd,Cy=-bV-e}U{-a,~d} and
{Cf==bV —c,Cd=bV—=aV—e Cl=cV-aV-d Cl=0bVe}U]{a,d}, respectively.
The correspondence between the two sets and the reversal of polarities is clear.
Resolvent(Cy,C3) = aV e Ve and Resolvent(C{,C%) = =aV =eV —e.
Note that any resolution of two clauses in DB can be simulated by a resolution of the correspon-
ding clauses in DB® with the resulting resolvents having reversed polarities of their literals.

5.1.2 Propagating Different Truth Values

Another way to look at the dual transformation as outlined so far is to interpret it in terms of using
the theory rules to (backward) propagate the falsity of the head atoms to the body atoms of each
clause. This is in contrast to the (more usual forward) propagation of the truth of the body atoms
to the head atoms when the bottom-up model generation approach is applied to the original clauses.
The falsity here can be interpreted as the nonderivability of the respective atom /formula through
the given rule.

Usually, the derivability of a (positive) query @ from a theory DB is proved by showing that
the model tree of {DB, =@} has no open branches (models). When a model generation procedure
is applied to {DB, @} one starts from the true atoms of the theory (elements of the EDB, facts,
positive clauses) and uses the rules (elements of IDB) to discover the new atoms that can be assigned
true (from heads of clauses with bodies satisfied in the current branch) in the hope that some of
them will close branches containing literals of the negation of the query (or constraints, original or
introduced e.g. if complement splitting is employed). A branch of the tree is closed by having it
contain two complementary literals®. The proof procedure expands individual branches of the tree
by adding new atoms until no additions are possible or the branch closes [5]. The aim is to show that
to assume that the query is false is inconsistent with the theory and therefore ) must be derivable
from DB. If one of the branches cannot be closed then the query is not derivable from the theory
(DB Q) and the atoms of an open branch represent a counter model in which both DB and =@
are satisfied.

Clearly, changing the polarity of every literal in a branch of the tree will not change the property
of the branch as being closed or open. Dualizing followed by applying the model generation procedure
to the transformed theory and query (DB?UQ?) can be viewed as the process of consistently reversing
the polarity of atoms in the model tree. However, under the duality approach we begin by applying
the model generating procedure to the dual of the query, Q¢, which represents the negation of the

8 Technically, closure happens when L is added to the branch which has all the body atoms of a clause with an
empty (L) head (representing a purely negative clause).
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| # | Query/Clause | Dual ||

1 Q=qV.. Vg, QT =A{q1, .. an}
=Q ={—q1, ..., qn} Atom ¢ of Q7 is true
All ¢;s are false if ) 1s false when atom 7 of =) is false
2 Q=g N..Nqn QY=q V.. Vg,
Q@ =—qV..V-g, Atom 7 of Q% is true when
Some ¢;s are false if ) is false atom 7 of =) is false
3| C=BAN..AB, —A V. VA | CT=A AN..NA —BLV..VB
If all B;s are true then If all A;s are false then
some of the A;s are true some of the B;s are false
4 C=T—=A,V..VA4 CT=A AN ANA — L
C=A4A1V .. VA4 Cl==A, V.. V-4
Some of the A;s are frue Some of the A;s are false
5 C=B/A..ANB, — 1 Cl'=T—=B,V..VB
C=-B,V..V-B; Cl'=B,V..VBy
Some of the B; are false Some of the B;s are true

Table 1: The Dual Transformation and its Effects.

query with reversed (positive) polarities. This is equivalent to specifying the atoms that need to be
false in order for ) to be false (nonderivable). Next we have the bottom-up procedure operate with
the transformed rules to derive the other relevant atoms that must be false as a result of assuming
the falsity of the query.

The search is initiated by the query elements and only relevant clauses of the transformed theory
are invoked. Branches are extended by elements the falsity (nonderivability) of which is determined
from the current elements of the branch through the propagation of falsity from heads to bodies of the
original clauses (or from the bodies to the heads of the dual clauses). During this expansion process
a branch may close or may remain open. Contradiction (and closing a branch) is reached when
certain atoms are required to be false (nonderivable) in order for the query to be false while they are
true in (derivable from) the theory (e.g. elements of the EDB). An open branch M corresponds to
the digjunction of atoms that needs to be false in (not derivable from) the theory DB (by having all
its atoms false or not derivable) so that DBt/ ). To close such a branch there must exist a clause of
DB that consists entirely of elements of M. The dualization takes care of this by making the dual
of a DB-fact (headless clause) derive the empty clause when all its atoms are present in the branch
(it has L in the head, see entry 4 of Table 1). The full details of how dualization enables a model
generation procedure to interpret clauses in terms of propagating the falsity (nonderivability) of the
head to the body rather than the #ruth of the body to the head of the clause are summarized in
Table 1. Clearly, the head of a (ground) clause C'is false only when all atoms of Head(C') are false.
For that to happen and still have (' satisfied it must be the case that at least one of the atoms of
Body(C') is false (entry 3). A positive clause is false when all of its atoms are false. Otherwise the
clause is satisfied (entry 4). For a negative clause, one can derive false only if all its atoms are true.
Otherwise, if one of the atoms is false then the clause is satisfied (entry 5). When a disjunction of
atoms is to be false it must be the case that none of its subdisjunctions is true. That is, all clauses
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with heads subsuming the disjunction must have false heads. This falsity has to be propagated to
the bodies to maintain that such clauses hold in all states of the theory (entry 3). Note, in particular,
that the roles of facts and denials are interchanged (entry 5). The relationship between the negation
of the query and its dual in terms of reversed polarities is reflected in entries 1 and 2 of Table 1.

With the reversal of polarities accounted for, the correspondence between the tree structure
resulting from the application of the model generation procedure to DB? U Q? and general model
trees is clear. An open branch of the tree represents the set of atoms that must be false for the query
to be false. Fach such branch represents a way in which the falsity (nonderivability) of the query
can be proved. Only if all possible ways fail (the model tree has no open branches) then the query is
shown to be true. A closed branch represents a failing attempt to account for the nonderivability of
the query: the failure results from requirement that a single atom be assigned both true and false.
A cut in the tree (the disjunction of an element from each open branch) specifies the falsity of which
atoms must be ensured to guarantee the falsity of the query. By the completeness of the model
generating procedure, the open branches of a saturated tree (one in which no further expansions are
possible) is the counterpart of the model tree and specifies the branches that need to be closed to
make the query derivable as suggested by Theorem 8. Clearly, it is sufficient to close only branches
with minimal sets of atoms and other branches will close automatically.

5.2 Implementation Issues

The discussion so far points to a simple algorithm for answering a positive query ) against a
disjunctive deductive database DB. Two steps are involved:

e The first is the transformation of DB and =@ into its dual database DB? and Q?. This is
done by reversing the direction of the implication signs in all clauses. Since Heads and Bodies
of clauses are treated as sets of atoms, the change of the logical connective is sort of a side
effect to this transformation. The transformation is applicable to clauses with empty heads
and bodies as well.

e The second step 1s to apply a sound and complete minimal model generating procedure to
the dual database augmented by the dual of the query being answered. That is, to the set
DB% = (DB?U{Q?}). The set of minimal models of DB% carries the answer to the derivability
of @ from DB as well as the conditions under which this derivability is possible/not possible.

In [5] we have developed an efficient, sound and complete minimal model generation procedure called
MM-Satchmo. One way to accommodate MM-Satchmo to the present task is rewriting the procedure
to account for the dualization and the changed roles of the query and the EDB to the initial partial
interpretation and the set of constraints, respectively. Another is to write a small program (module)
to convert the input theory into the required form (perform the dualization of DB and @). One may
even elect to modify the procedure so that the roles of V and A can be exchanged and the direction
of the implication symbol is interpreted in reverse depending on input parameters. For the testing
of our results we used the plain version of our minimal model generator and supplied it with the
dualized directly. The dualization was done manually.

Another degree of freedom in our procedure is the possibility of separating the check generation
process from that of the actual checking. The first is performed on the generally static IDB and
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the query. The second is done against the more dynamic EDB. The separation of the two steps,
which could be viewed as operating the procedure in a model generation mode, could be of value
to minimize the number of accesses to the EDB component. It is also possible to compile the query
with the IDB so as not to recompute (regenerate checks) each time the same query is posed [10].
Integrating the two steps on the other hand, which can be viewed as running the procedure in a
refutation mode makes it possible to abandon models before they are fully generated. This may
improve the efficiency if the cost of accessing the EDB component is not very large. The surviving
models in the latter case are helpful in defining updates sufficient to make the query derivable from
the database.

The advanced procedure is based on minimal model generation for a simple (syntactical) mo-
dification of the input database. The model generation process is driven by the query itself while
the elements of the extensional component of the database serve as constraints on the generated
models working only to reduce their number . Therefore, one would expect that the number of
models having a query as basis will generally be not very large. Clauses that are not relevant to the
query do not participate in the model generation process. The exact size of the model tree, however,
depends on the nature of the database and the interconnections between its clauses.

Working with the dual structure on the other hand will most likely involve having many dis-
junctive elements representing the bodies of original clauses. This will tend to increase the size of
the model structure by generating a large number of models. For example, such a situation will
arise when one has a definite database with rules that have large bodies. The dual database will be
heavily disjunctive resulting in a large search space for our procedure. This may contrast strongly
with the single model of the original definite database.

An additional efficiency consideration is that the database resulting from the transformation
may not be range restricted while the original theory is. This will mandate resorting to additional
transformations to achieve range restrictedness or to other bottom-up procedures capable of handling
such theories.

Of course under the best case scenario the opposite may happen. A heavily disjunctive database
in which short bodies and long heads are the norm will transform into a more manageable one
with a more compact model structure. An originally non-range restricted database can become
range restricted after the transformation resulting in simpler processing. In all cases it is important
to emphasize that the transformation itself can be implemented in linear time in the size of the
database.

During the model generation process we may want to give priority to clauses that reduce the
search space by pruning models as early as possible. Denial rules constitute one such class of clauses.

If checking for the derivability of clauses representing the set of minimal models is performed
against the elements of EDB then only atoms occuring in EDB are relevant to this checking process.
One can take this optimization a step further if the set of atoms of EDB is known. Call this set
§. Clearly only elements of the set Min({M'|M € MM(IDB%) and M’ = M N S}) are relevant.
The fact that only minimal elements need to be checked is evident. One can even incorporate this
optimization into the minimal model generating process by abandoning models in which the elements
of § is a superset of an already generated model. Additionally, any rule that cannot contribute to
the S content of models (in a particular computation of models) may be disabled.
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6 Conclusions and Future Work

We presented a simple approach to utilize an essentially forward chaining model generation procedure
to process queries in a backward chaining mode. The idea is to utilize a certain version of the duality
principle to reinterpret the clauses of the input theory so that the application of a model generating
procedure will answer the posed query in a top-down fashion.

From a theoretical perspective, the results reported here constitute an elaboration on the strong
connection between the seemingly separated concepts used to characterize disjunctive theories in
terms of clauses and models; minimal model set and minimal model state; model trees and clausal
trees; forward chaining and backward chaining; and query answering and model generation [30,
25]. From a practical point of view, the gain achieved from processing queries as proposed by our
algorithm can result in substantial savings due to the limited search space explored. This is especially
felt when using approaches based on model generating procedures for query answering [17, 5] which
tend to expand a much larger space than required for query answering. In fact they usually process
the entire set of clauses in EDB before starting to expand elements of the IDB which may be the
only components directly matching the query. At the same time we achieve our aim which is to
benefit from the wealth of theory and algorithms available and under development for efficient model
generation to perform a goal focused search for answers to the given query [29, 9, 5, 20, 24]. Our
preliminary testing points to orders of magnitude performance improvement in using a minimal
model based query answering procedure on the dual theory to achieve the top-down processing
mode as opposed to having the same procedure operate on the input theory in a bottom-up mode
on the same query”. The fact that the same procedure can be used in both directions gives the user
much flexibility in selecting the direction of processing depending on the theory and query under
consideration.

In contrast to other approaches reported in the literature for achieving a similar effect, ours is
applicable to disjunctive theories [19] and avoids the explicit introduction of new predicates into
the theory for this purpose [1, 7, 23, 27]. Rather we achieve the required results by reinterpreting
the clauses (and consequently the logical connectives) in a dual mode. As is the case for the
original database, the transformed theory is a disjunctive deductive database (DDDB). The dual
transformation is quite simple and involves only changing the direction of implications in all clauses.
Only clauses relevant to the query under consideration need to be processed in this fashion. The
result is the creation of a (tree) structure that consists of positive clauses the subsumption of which
in the original theory (more precisely, the EDB component of the theory) implies the derivability of
the query. The inclusion of the clauses corresponding to the elements of the extensional database
in the model generation process makes it act in a refutation-like manner and may improve the
performance by detecting clause subsumption as early as possible. The reasoning behind the duality
approach was shown to be natural and based on solid logical grounds. It is equivalent to working
with reversed polarities of literals and using clause to propagate particular truth values.

The method discussed in [14] uses special data structures (deduction trees) and algorithms to
achieve top-down query answering without transforming the theory. But the approach there doesn’t
offer the refined query answering capabilities of the approach outlined here.

?Qur testing was performed on a prototype implementation of the minimal model generator MM-Satchmo as
described in [5]. The theory and the query were presented in both original form and manually transformed dual form.
The gains were achieved when both ground and range-restricted (in both directions) theories were used.
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[21] outlines a method based on using SLO-resolution to modify the WAM approach so that it
deals with disjunctive logic programs. The modification, Disjunctive WAM (DWAM), uses clause
subsumption as the basic expansion mechanism and operates in a goal oriented fashion for query
answering. In contrast with the method outlined in this paper, the DWAM approach is applied to
theories without constraints. However, it is straight forward to extend the DWAM methodology
to the case of headless clauses, since subsumption for such clauses is trivial. As in the case here,
caution should be exercised so that not to over-expand goal sets using constraints (with trivially
subsumed clause heads).

A more substantive difference is that our approach avoids much of the nondeterminism that
causes problems for the SLO-based DWAM approach. Rather than searching for alternative ways to
subsume a goal we try all possible subsumptions in a predetermined order. Additionally, as opposed
to the approach of [21], our definition of the goal set explicitly excludes a major class of irrelevant
clause expansions that can cause the search space to explode. Matching clauses are expanded only if
they can contribute something new to the refutational process. No clause is used for expansion more
than once in a single branch and we never expand using a clause with body atoms intersecting with
the set of atoms in the current branch. This makes it possible to avoid many useless expansions.

While we still have to choose from among clauses with matching heads, our expansion of the goal
tree is deterministic: we always select the leftmost goal from the first (in the given clause order)
potentially useful clause and insist on solving it (or failing) before moving (backtracking) to the next
goal in that clause. In a sense this makes our search more focused: at every stage we are concerned
with the solvability of a particular goal set. Subsequent goal sets are considered, if required, only
after the decision on the current set is made (success or failure).

The fact that our approach is based on a different clause expansion paradigm makes i1t possible to
avoid the extensive rewriting (I-code) needed for the DWAM approach to account for the nondeter-
minism of subsumption checking and the indexing needed to keep track of clause usage. Rather, we
use the syntactic duality transformation and that alone makes it possible to utilize already existing
bottom-up procedures, with their efficiency enhancing techniques, to process queries top-down.

An added advantage of our approach is that it is able to specify the conditions under which the
goal set expansion can be discontinued and to interpret the cases when the expansion succeeds or
fails. The results of the latter can be used to refine the query answering process.

Our approach makes it possible for the user to divide the query answering process into two
stages: generating a complete (sufficient) set of clauses that need to be checked for derivability in
the extensional component of the database and the actual checking process. This can be employed
to achieve optimal access time to the EDB when it is stored in slower memory. In this case the
procedure will be run in the model generating mode in which the elements of EDB do not participate
in the first stage of query processing. Additionally, the separation of the two stages makes it possible
to localize updates to individual components of the database. If one accepts the premise that updates
are performed on the EDB component then the model generation process will not be affected by
the update process [13]. Tt is even possible to use different representations for the two components.
For example one may select to represent the set of clauses that need to be checked for derivability
(MM(IDB%)) in the form of a model tree which can be viewed as the compiled version of the query
and IDB while representing EDB as a clausal tree [26, 10]. Alternatively, interleaving accesses to the
different components of the database will make it possible to operate the procedure in the refutation
mode, where the aim is to derive the empty clause. In this case the procedure will operate on a
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(possibly much) larger theory that includes the transformed EDB component of the database but
will tend to abandon models before they are fully constructed. The choice of the mode will depend
on the relative sizes of the database components and their relative access times.

While other proof procedures can be utilized to describe the utilization of the duality approach,
we selected the model generation procedure due to the wealth of information it can produce that was
of use in explaining the potential of the advanced method. A side effect of the approach adopted here
is that it enables more refined query answering: we are no more confined to returning yes/no answers
to the query but we can also specify the conditions under which this query becomes derivable. The
set of models returned by the model generating component can be viewed as a sort of intentional
answer to the query: it specifies the necessary conditions under which the query becomes derivable
from the database. Even when run in the refutation mode, the surviving models still specify the
conditions under which the query can be made to become derivable from the database. These
conditions are minimal in the sense that they specify the least information (weakest clauses) that
need to be added to the EDB to ensure the derivability of the query. This part is relevant to the
view update problem in deductive databases which has been the focus of a major research effort.
The various aspects for the utility of our approach to solving the update problem is to be further
investigated.

While we emphasized the use of a minimal model generating procedure, that was for efficiency
reasons. Any complete model generating procedure (one that returns all the minimal models of
its input, among others) will do the job. A sound minimal model generating procedure is clearly
superior especially when operating in the model generating mode. It returns exactly the necessary
and sufficient set of clauses that need to be tested to ensure the query derivability. Nonminimal
models are irrelevant if the query is derivable since the minimal components need to be checked
anyway. The gains can be substantial. If the user is interested in yes/no answers only; then the
failure to derive nonminimal clauses as well can be used as a basis for abandoning the subsequent
processing and reporting a no answer. In fact any procedure that is refutational sound and complete
can be employed to generate answers to positive queries using the duality approach outlined in this
paper.

The debate over which direction for clause evaluation: bottom-up or top-down performs best
was addressed extensively in the literature [6, 19, 22, 27, 28]. Our presentation here is not meant to
solve this issue but rather to offer the user a choice. As a matter of fact, since (DB%)¢ = DB it is
immediate to note that for any theory that performs better for one approach there is a theory that
performs worse. A strong argument for the top-down approach is that many deductive databases fall
into the class where it is likely to perform better [27]. The main disadvantage of the approach outlined
in this paper is the requirement that the transformed theory be range restricted before it is submitted
to the model generating procedure. The range restricted transformation may introduce too much
instantiations, especially in the cases when the model generation and checking are performed as
separate stages of the query answering process. Nonground queries may also contribute to the
transformed theory becoming nonrange restricted. However, interesting results are being reported
in the literature to relax the need for the range restrictedness property when using model generation
based procedures [3, 2, 4]. Our method will be able to utilize these results. The detailed study of
this utility is a possible topic for future research. Additionally, in cases when indefinite answers are
allowed the issue of answer minimality is still as problematic in our approach as is the case for other
approaches [18].
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The duality approach as outlined here suggests using the same direction (top-down or bottom-
up) for processing all clauses of the theory. Tt is of interest to combine both directions for clause
evaluation in a single query answering run to try to achieve optimal performance.

Other topics of further study are the ability of the duality approach to handle query answering
under various database semantics, e.g. in the presence of negation as failure in clause bodies and
multiple types of negation and the use of the defined approach in database update, abduction and
answering nonpositive queries.
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