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Abstract 

In the case of using classical linear regression models for time series, 

researchers  usually deal with equal frequencies for all the variables. They cannot 

directly apply such models to  a mixed-frequency dataset. The Mixed Data Sampling 

(MIDAS) regression models deal with this type of data; typically the economic 

indicators from those observed daily, monthly, quarterly to those yearly. In this study, 

we introduce MIDAS regression approach which is relatively assumed as a new area. 

We will explain its ability of dealing with mixed frequency data, and its efficiency of 

improving parameters estimation and forecasting performance in the presence of 

extreme observations. To the best of author’s knowledge, this is the first research that 

examines the relationship between the real GDP in Palestine and other indicators 

using MIDAS regressions. The classical temporal aggregation method  is compared 

to the two types of MIDAS regressions; the restricted and the unrestricted, to build 

both long-run and short-run relationships. The study results exhibited that both U-

MIDAS and R-MIDAS were better than the classical Time-Averaging method in 

reducing forecasting errors. 

The results exhibited that the quarterly Palestinian GDP in the long-run affected 

by its cost of imports in the second month computed in each quarter, also, the 

quarterly GDP has increasing general trend and affected by its first lag and the 

quarterly Employment Rate In Israel and Settlements, and all these variables have 

significant positive relationship with GDP. In the short-run, the results showed that 

the quarterly Palestinian GDP is affecting by the second-month  and the third-month 

of the cost of imports of Palestine. 
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 ملخص

فٙ حانح استخذاو ًَارج الاَحذاس انخطٙ انكلاسٛكٙ فٙ دساسح انعلالاخ تٍٛ انسلاسم انزيُٛح فئٌ 

فٙ حٍٛ أَّ لا ًٚكٍ تطثٛك يثم ْزِ انًُارج , انثاحثٍٛ عادج يا ٚتعايهٌٕ يع تشدداخ يتسأٚح ندًٛع انًتغٛشاخ

اعتًذخ ْزِ انشسانح عهٗ . يثاششج فٙ حانح ٔخٕد يدًٕعح تٛاَاخ ٔيتغٛشاخ تشدداتٓا يختهطح ٔغٛش يتسأٚح

دساسح َٕع خاص يٍ ًَارج الاَحذاس انتٙ ًٚكُٓا أٌ تتعايم يع يثم ْزا انُٕع يٍ انثٛاَاخ ٔ انسلاسم انزيُٛح 

راخ انتشدداخ انًختهطح يثم انًؤششاخ الالتصادٚح انتٙ ٚتى يعاُٚح تععٓا ٕٚيٛا ٔانثعط اٜخش ٚتى يعاُٚتٓا 

 (ًَارج يٛذاس)تعشض ْزِ انذساسح ًَارج اَحذاس انثٛاَاخ راخ انتكشاساخ انًختهطح . شٓشٚا أٔ ستعٛا أٔ سُٕٚا

يٍ خلال ْزِ انذساسح سٕف ٚتى ششذ لذسج ْزِ انًُارج عهٗ انتعايم . ٔانتٙ تعتثش يٍ انًٕاظٛع انحذٚثح َسثٛا

يع انثٛاَاخ راخ انتشدداخ انًختهطح, حٛث سٛتى ششذ خصائصٓا ٔكفاءتٓا فٙ تحسٍٛ انتمذٚش ٔانتُثؤ نهًتغٛشاخ 

 يع أسهٕب انتدًٛع انزيُٙ انكلاسٛكٙ (انًمٛذ ٔغٛش انًمٛذ)كًا سٛتى يماسَح ْزِ انًُارج تُٕعٛٓا , الالتصادٚح

 ٔرنك يٍ خلال تُاء انًُارج انتٙ تًثم انعلالاخ تٍٛ انًتغٛشاخ الالتصادٚح عهٗ انًذٖ انطٕٚم حسة الأٔساغ

حٛث أظٓشخ َتائح انذساسح تفٕق ًَارج يٛذاس غٛش انًمٛذج ٔانًمٛذج فٙ تمهٛم , ٔانعلالاخ عهٗ انًذٖ انمصٛش

.  حسة الأٔساغ انتدًٛع انزيُٙ انكلاسٛكٙأخطاء انتُثؤ عهٗ ًَارج 

 حسة يعشفح انًؤنف فئٌ ْزا ْٕ انثحث الأٔل انز٘ ٚذسس انعلالح تٍٛ انُاتح انًحهٙ الإخًانٙ انحمٛمٙ 

فٙ فهسطٍٛ ٔغٛشْا يٍ انًؤششاخ الالتصادٚح تاستخذاو ًَارج اَحذاس انثٛاَاخ راخ انتكشاساخ انًختهطح 

 تٍٛ انُاتح انًحهٙ الإخًانٙعهٗ انًذٖ انطٕٚم حٛث أظٓشخ َتائح انذساسح ٔخٕد علالح دانح إحصائٛا , يٛذاس

ٔيعذل انعًانح فٙ إسشائٛم , انشتعٙ فٙ فهسطٍٛ ٔكم يٍ تكهفح انٕاسداخ انًحسٕتح فٙ ثاَٙ شٓش يٍ كم ستع

كًا أظٓشخ انُتائح ٔخٕد دانح يتزاٚذج نهُاتح انًحهٙ انشتعٙ فٙ فهسطٍٛ عهٗ انًذٖ انطٕٚم , ٔانًستٕطُاخ

عهٗ ٔخٕد علالح دانح إحصائٛا يٍ َاحٛح أخشٖ أظٓشخ َتائح انذساسح  . ٔتأثشِ راتٛا تمًّٛ انساتمح أٔ انًتأخشج

 انشتعٙ فٙ فهسطٍٛ ٔ تكهفح انٕاسداخ انًحسٕتح فٙ أٔل ٔ ثاَٙ شٓش تٍٛ انُاتح انًحهٙ الإخًانٙانًذٖ انمصٛش 

 .يٍ كم ستع
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Chapter 1 : Introduction 

1.1 Background 

The analysis of time series data is a pivotal issue. The most of time series are 

economic or financial variables that affect and are affected by each other. Studying  

such variables is with a great deal of importance. Both economic and financial 

variables give us information about the economic level that was reached by any 

country. Studying such variables help to investigate the effects caused by some 

indicators on the economic activity in general, then to assist the decision making 

process. 

In order to study the relationships between these variables, the most efficient 

widely used method is to build regression models. Regression models of time series 

variables can be univariate or multivariate models. The univariate models investigate 

the relationship between the variable and itself; in other words, with its time 

delays(lags) like Autoregressive Integrated Moving Averages(ARIMA) models. From 

the other hand, the multivariate models investigate the relationship between 

dependent (response) variable and independent variables(indicators or predictors). 

Multivariate regression models may investigate the effect of response lags with other 

predictors on the response,  so in this case the model is called autoregressive model. 

In building model stage, it is supposed that data(dependents or independents) 

are frequency-unified or have fixed frequency; this means that each observation of 

the dependent variable is matched with an observation of the independent variable/s; 

in other words, each observation of the dependent corresponding to an observation of 

the independent/s. In this case, it is simply possible to build regression models to 

investigate the relationship between these variables. Let's suppose that the gross 

domestic product(GDP) and the cost of imports(CIM) in Palestine are computed 

monthly by the Palestinian Central Bureau of Statistics; in this case each observation 

of GDP corresponds to an observation of CIM; the GDP in January is matched with 

the CIM in January; also, the GDP in February is matched with the CIM in February, 

and so on for the rest of months and years. So we can easily construct regression 

model to investigate the relationship between the GDP as dependent (response) and 

the CIM as independent(predictor). 

 In fact, most of research and statistics centers in the world cannot provide 

monthly information about GDP, but they can for CIM. They can just provide 

quarterly information about GDP, so in this case we have economic variables with 

different frequencies(mixed frequencies). The GDP has quarterly frequency 
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observations, but the CIM has monthly frequency observations. It is clear that the 

frequency of the CIM observations is larger than the frequency of the GDP 

observations. We call the GDP as low-frequency variable and the CIM as high-

frequency variable. We can imagine such mixed frequency data(mixed-data-sampled) 

as a mixture of observed and missing data; each monthly observation of CIM does 

not have corresponding observation of GDP since the GDP is quarterly sampled. So 

the form of data can be imagined by thinking of availability of CIM observations as 

three times per quarter. In the first quarter of any year, the observation of CIM in 

January has no corresponding observation of GDP in January; also the observation of 

CIM in February has no corresponding observation of GDP in February, but the 

observation of CIM in March has corresponding observation of GDP in March. So we 

have two missing observations of GDP in both January and February but not in 

March, whereas there are no missing observations of CIM in the three months. In the 

same way we have missing observations of GDP in both April and May but not in 

June, whereas there are no missing observations of CIM in the three months in the 

second quarter, and so on for the rest of months and quarters of the year. 

Sometimes, economic and financial data and variables are available only on an 

annual basis. For example if we assume that the GDP is sampled annually in the end 

of each year, and the CIM is sampled monthly; so in this case, we have eleven 

missing observations of GDP from January to November; while the CIM 

observations are available completely for the twelve months in that year. So the 

question that arises here is how can we investigate the relationship between variables 

that are sampled with mixed frequencies like the GDP as dependent and the CIM as 

independent?. 

The availability of data sampled at different frequencies always presents a 

problem for researchers working with time series data. If one deleted all cases 

containing the missing observations, then he would lose much important information, 

because variables  that are available  at high  frequency contain potentially valuable  

information[1,4]. The simplest idea that comes into mind after that is to aggregate the 

high-frequency observations by taking the average of them, and then, the high-

frequency variable becomes as the low-frequency variable. For instance, taking the 

average of the three monthly observations of the CIM in each quarter to get one 

averaged observation matched with the quarterly observation of the GDP; but it is 

clear, by this way that we assign the same importance level for the partitions of  the 

high-frequency variable. Therefore, we lose important monthly information, and the 

results of the analysis will be less accurate[18].  
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The previous explanations can be summarized by aggregating the high-

frequency observations like the monthly observations of the CIM series, and 

converting it into a quarterly observations to be matched with the quarterly GDP data. 

Instead of this method, the common solution in such cases is to estimate missing 

observations of  the low-frequency variable like the quarterly GDP. This can be done 

by using the Kalman filter process, and these subjects are outside the framework of 

this thesis[4,8,10,18]. Nowadays, Some scientists have proposed methods which can 

deal with variables sampled at different frequencies such as monthly and quarterly 

data. Such methods have many advantages and properties comparing with old and 

common methods had known. We call these methods Mixed Data Sampling(MIDAS) 

Regressions. 

1.2 Literature Reviews  

We Always find statisticians interested in getting good properties and 

improvement on estimations that can be yielded by traditional high level methods 

such as ARIMA and regression models that deal with time series data. Ghysels, 

Santa-Clara and Valkanov in 2004 have recently proposed regression models that 

directly accommodate variables that are sampled at different frequencies. These 

regression models combining for example monthly and quarterly data together, or 

quarterly with annually data. Their Mixed Data Sampling – or MIDAS – regressions 

represent simple, parsimonious, and flexible class of time series models. They 

showed that their MIDAS regressions will always lead to more efficient(less error-

variance) estimation than the classical approach that aggregate all series to be in the 

same frequencies. 

Ghysels, Santa-Clara and Valkanov[1] used many functional forms dealing 

with few number of parameters in order to estimate MIDAS models. They examined 

the asymptotic properties of MIDAS regression estimation, and they discussed 

challenging econometric issues. Clements and Galvao[5, 22] investigated whether the 

MIDAS approach of Ghysels can be successfully adapted to the short term 

forecasting of output growth, given that it has been used for forecasting financial 

variables with daily observations. They extended the distributed lag MIDAS 

specification to include an autoregressive term (the MIDAS-AR). Sinko[2] discussed 

two lag parameterizations of MIDAS regressions; the Exponential Almon and Beta. 

He introduced several new MIDAS specifications that include more general mixed-

data structures of unequally spaced observations. Klaus[4] in his thesis compared the 

forecasting success of two new mixed-frequency time series models: the mixed-

frequency VAR and the MIDAS approach. During his work, he outlined the data 
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generating processes (DGP) that have been used for model comparisons. Klaus listed 

some conclusions about model specification of mixed-frequency time series models. 

Due to him, forecast performance, lag length selection and restrictions of the 

weighting functions in the MIDAS framework are interrelated. He concluded that 

whether the weighting functions should be restricted or not, depends on the data 

structure. 

 Andreou, Ghysels and Kourtellos[8] covered MIDAS regressions and the 

relationship with the Kalman filter. They discussed DL-MIDAS(Distributed Lag 

Mixed Data Sampling) models with autoregressive high-frequency predictors. 

Armesto, Engemann and Owyang[18] compared between Time- Aggregation 

techniques which include Time-Averaging, Step Weighting and MIDAS regressions. 

They also offered some forecasting issues such as the End-Of-Period forecasting and 

the Intra-Period forecasting. Miguel[20] introduced robust procedure that pre-cleans 

the data by exponential smoothing before the MIDAS regression constructed. His 

results showed that in the presence of outliers, utilizing the robust version of 

exponential smoothing to clean the contaminated dataset prior to use MIDAS reduces 

forecast errors consistently. Chen and Tsay[9] presented a generalized autoregressive 

distributed lag (GADL) model in order to conduct regression estimations that involve 

mixed-frequency data. They offer comparisons between the relative performance of 

the OLS-based GADL specifications and the NLS-MIDAS(Nonlinear Least Squares 

Mixed Data Sampling models). Foroni, Marcellino and Schumacher[6] discussed the 

unrestricted MIDAS(U-MIDAS) models based on a simple linear lag polynomial. 

They showed that U-MIDAS work better than MIDAS method if the differences in 

sampling frequencies are small.  

Goetz, Hecq and Urbain[21] proposed in their paper, mixed frequency error 

correction model in order to model non-stationary variables that are possibly co-

integrated. Foroni, Marcillino & Shumacher[3] studied the performance of MIDAS 

models which does not depend on the functional distributed lag polynomials. They 

compared  U-MIDAS models with MIDAS models, and they showed that U-MIDAS 

performs better than MIDAS in the case of small differences in sampling frequencies. 

Foroni & Marcillino[3] showed by simulation experiments and actual data, that the 

use of mixed-frequency data, combined with a proper estimation approach, can 

alleviate the temporal aggregation bias, mitigate the identification issues, and yield 

more reliable policy conclusions. Foroni and Marcellino[7] clarified that MIDAS 

models appear to be more robust than bridge equation models and the state-space 

approaches in miss-specification, and computationally simpler. 
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On the empirical side, Shi[17] studied the effect of lag numbers on MIDAS 

regressions. He concluded that there exists seasonal effect of the lag numbers in 

different  horizons. He noted that the out-of -sample and in-sample results of realized 

volatility(RV) and realized absolute volatility(RAV) are quite similar, but in 

sometimes, out-of sample performs better. Shi stated several findings from 

predictability of daily to monthly realized volatility of Chinese market. 

Asimakopoulos, Paredes and Warmedinger[19] concentrated on forecasting annual 

budgetary executions and their subcomponents issues. They assessed the effect of 

intra-annual fiscal data on the annual outturn of disaggregated series. They employed 

MIDAS approach to analyze mixed frequency fiscal data. They concluded that timely 

and good quality data are powerful tools to improve forecasts. 

1.3 Problem And Methodology 

In this thesis, we will study the problem of specifying the factors affect the 

Palestinian Gross Domestic Product(GDP) which is sampled quarterly, where some 

of these probable factors are sampled  monthly and the others are sampled quarterly, 

and we will forecast the future quarterly real GDP using these mixed sampled data 

using MIDAS regression approach without resorting to fix data frequencies or 

dealing with missing data. 

The MIDAS approach may relate the observations of the low-frequency 

variable to the lagged observations of the high-frequency variable by distributed lag 

functions. The proper choice of the functional form, such as the exponential 

distributed lag polynomial, allows assigning few number of parameters to large 

number of lags in order to obtain a parsimonious model which implies to simply 

interpretation of results[18]. As an alternative to such parameterization, we will 

discuss an unrestricted MIDAS(U-MIDAS), based on a simple linear lag polynomial. 

This specification has the advantage of a higher flexibility compared to the functional 

lag polynomials in the standard MIDAS approach[18]. However, U-MIDAS has 

disadvantage that it need to estimate a lot of parameters if the lag order is large, this 

leads to difficulty of interpretations. On the other hand, U-MIDAS can be helpful 

when differences in sampling frequencies are small[6]. For example, monthly-

quarterly data; such as if quarterly GDP should be related to monthly cost of imports, 

and generally a small number of lags is necessary to capture the dynamic relations.  

We will explain some models, and other methods will be discussed in the study; 

such as the usage of MIDAS regressions in building Cointegrating relationships, and 

the equilibrium (error) correction models, in order to study long-run and short-run 
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relationships between variables. We will improve the discussion of all topics by 

applications and examples supported by data tables, reports and summaries that can 

expand our understanding of the subject. 

In next sections, we discuss simple time-averaging, step-weighting function(U-

MIDAS), and the restricted MIDAS regressions(R-MIDAS). We will compare 

between these methods by modeling Palestinian GDP on some important factors 

using the three methods. We will use MIDAS regressions to forecast the future value 

of quarterly Palestinian GDP. The main model in this study is defined as: 

𝐿𝐺𝐷𝑃𝑡
 𝑄 

= 𝛽0 + 𝛽1𝑡 + 𝛽2𝐿𝐺𝐷𝑃𝑡−1
 𝑄 

+ 𝛽3𝐿𝐸𝐼𝐼𝑡
 𝑄 

+  𝛽𝑘,4 𝐿𝐶𝑃𝐼
𝑡−

𝑘
𝑚

 𝑚 
𝑚−1

𝑘=0
+ 

                 𝛽𝑖,5 𝐿𝐶𝐼𝑀
𝑡−

𝑖

𝑚

(𝑚)𝑚−1
𝑖=0 + 𝑢𝑡  

Where: 

𝐿𝐺𝐷𝑃𝑡
 𝑄 

: the log of the Quarterly Gross Domestic Product as low-frequency 

Variable. 

t: time as low-frequency Variable. 

𝐿𝐺𝐷𝑃𝑡−1
 𝑄 

: the log of the first lag of the Quarterly Gross Domestic Product as 

low-frequency Variable. 

𝐿𝐸𝐼𝐼𝑡
 𝑄 

: the log of the Quarterly Employment in Israel and Settlements as low-

frequency Variable. 

𝐿𝐶𝑃𝐼
𝑡−

𝑘

𝑚

 𝑚 
: the log of the Monthly Consumer Price Index as high-frequency 

Variable. 

𝐿𝐶𝐼𝑀
𝑡−

𝑖

𝑚

(𝑚)
: the log of the Monthly Cost of Imports as high-frequency Variable. 

𝑢𝑡 : is the white Noise Process(independent identically distributed random 

variables with zero mean and constant variance). 

Finally, we will use the same frequencies of the high-frequency Variables that 

are monthly, we will not use weekly or daily high-frequency Variables.  
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Chapter 2 : MIDAS Regressions 

2.1 The Forecasting Environment And Notations 

The problem of mixed sampling frequencies is exemplified in Figure (1) which 

shows quarterly real GDP and monthly cost of imports for the period 1999 to 2012
*
. 

From the figure, we note that monthly cost of imports observations fluctuate between 

quarterly GDP observations(monthly observations are more concentrated through 

quarterly observations into the same time period)[18]. 

 

When comparing across modeling environments, it is important to use common 

notations. In the econometric procedures that we will follow, our objective is to 

forecast a lower-frequency variable (y); sampled at periods denoted by time index t. 

Past realizations of the lower-frequency variable are denoted by the lag operator, L. 

                                                           
*
 The data used in plotting figure(1) were collected from Palestinian Central Bureau of 

Statistics(PCBS). 
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t-2 t-1 t t+1 

 

𝑥
𝑡−1− 

𝑘
𝑚
 

 𝑚 
 𝑥

𝑡− 
𝑘
𝑚
 

 𝑚 
 

 

𝑥
𝑡+1− 

𝑘
𝑚
 

 𝑚 
 

 

𝑦t−2 

 

𝑦t−1 

 

𝑦t  𝑦t+1 

𝑥𝑡−2
 𝑚 

 𝑥𝑡−1
 𝑚 

 𝑥𝑡+1
 𝑚 

 𝑥𝑡
 𝑚 

 

For example, if y is the quarterly GDP, then the GDP one quarter prior would be the 

first lag of 𝑦t  , L𝑦t  = 𝑦t−1 , two quarters prior would be 𝐿2𝑦t = 𝑦t−2 , and so on. In 

addition, we are interested in the information contents of the higher-frequency 

variable x which is sampled m times between the sample periods of y (between t–1 

and t), so we will denote to x as 𝑥𝑡
 𝑚 

 . 𝐿
𝑘

𝑚  denotes the lag operator for the higher-

frequency variable. If 𝑥𝑡
 𝑚 

 is the monthly cost of imports used to forecast quarterly 

GDP denoted by 𝑦t , then 𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

= 𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 
 denotes the cost of imports of the k'th 

previous month in the same quarter[18].  

 

 

 

 

 

 

 

Figure (2) represents the forecast timeline, which for simplicity shows one-

period-ahead forecasts. Assume that at time t we are interested in forecasting 𝑦t+1 

(the circled observation on the timeline). Standard forecasting experiments would use 

data available up to time t; this is depicted in the dashed section of the timeline. The 

dotted section of the timeline depicts information that becomes available during the 

t+1 period; which is called leads, these information may be relevant for forecasting 

𝑦t+1. Using MIDAS methods, we can perform intra-period forecasting experiments 

using both data specified in the dashed section and that in the dotted section[18]. 

2.2 Data Form 

Before modeling high and low frequency data, it is important to know how is 

the form of these variables. Table (1) illustrates the mixed data scheme by the help of 

the quarterly-monthly example. In the quarterly-monthly mixed data, we have (m=3), 

that is we have three observations of the high-frequency variable between the period 

t-1 and t. For two years, we have (n=24) monthly high-frequency observations of x 

(12 in each year), and we have (T=8) quarterly low-frequency observations of y (4 in 

each year), so we have n=m*T=3*8=24 known observations of x and only 8 known 

observations of  y. If we assumed that the first observation of x represents the value of 

Figure(2): Forecast Time Line 
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CIM(Cost of Imports) in January/1999  𝑥
1−

2

3

 3 
 , then the third observation of x, which 

represents the value of CIM in March/1999 (𝑥1
 3 

), will correspond to the first 

observation of  y which represents the value of GDP in the first quarter  𝒚𝟏 , and so 

on. For monthly-daily data, we have (m=22) assuming fixed number of days per 

month, and we can generalize the same data scheme or form for monthly-daily, 

annually-quarterly or any other form. The following table shows quarterly-monthly 

data structure. 

Table (1): Quarterly-Monthly Data Structure for two years(1999-2000) 

t Year/Quarter 

First month 

𝒙
𝒕−

2
𝑚

 𝒎 
 

Second month 

𝒙
𝒕−

1
𝑚

 𝒎 
 

Third month 

𝒙𝒕
 𝒎 

 𝒚𝒕 

1 1999/(first quarter) 𝑥
1−

2
3

 3 
 𝑥

1−
1
3

 3 
 𝑥1

 3 = 𝒙𝟏 𝒚𝟏 

2 1999/(second quarter) 𝑥
2−

2
3

 3 
 𝑥

2−
1
3

 3 
 𝑥2

 3 = 𝒙𝟐 𝒚𝟐 

3 1999/(third quarter) 𝑥
3−

2
3

 3 
 𝑥

3−
1
3

 3 
 𝑥3

 3 = 𝒙𝟑 𝒚𝟑 

4 1999/(fourth quarter) 𝑥
4−

2
3

 3 
 𝑥

4−
1
3

 3 
 𝑥4

 3 = 𝒙𝟒 𝒚𝟒 

5 2000/(fifth quarter) 𝑥
5−

2
3

 3 
 𝑥

5−
1
3

 3 
 𝑥5

 3 = 𝒙𝟓 𝒚𝟓 

6 2000/(sixth quarter) 𝑥
6−

2
3

 3 
 𝑥

6−
1
3

 3 
 𝑥6

 3 = 𝒙𝟔 𝒚𝟔 

7 2000/(seventh quarter) 𝑥
7−

2
3

 3 
 𝑥

7−
1
3

 3 
 𝑥7

 3 = 𝒙𝟕 𝒚𝟕 

8 2000/(eighth quarter) 𝑥
8−

2
3

 3 
 𝑥

8−
1
3

 3 
 𝑥8

 3 = 𝒙𝟖 𝒚𝟖 

2.3 Time Aggregation 

In this section we will describe three methods of Time-Aggregation of the 

higher-frequency data that can be used in forecasting lower-frequency variables, that 

are: Time-Averaging, Unrestricted MIDAS and Restricted MIDAS. 
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2.3.1 Time-Averaging 

 The first and the simplest method of Time-Aggregation is Time-

Averaging[18]. The method of converting higher-frequency data to match the 

observations of the lower-frequency data by computing the simple average of the 

observations of the high-frequency variable x that occur between samples of the 

lower-frequency variable y such that: 

𝑥 𝑡 =
1

𝑚
 𝐿

𝑘

𝑚  𝑥𝑡
 𝑚 

𝑚−1

𝑘=0
 ; where  𝐿

𝑘

𝑚  𝑥𝑡
 𝑚 

= 𝑥
𝑡−(

𝑘

𝑚
)

 𝑚 
 

 Here, we are assign each lag of x by the same weight or coefficient in each 

quarter which is (1/m). For example by table (1) we have : 

 𝑥 8 =
1

3
 𝐿

𝑘

3  𝑥𝑡
 3 

3−1

𝑘=0
=

1

3
(𝑥8

 3 + 𝑥
8−

1

3

 3 
+ 𝑥

8−
2

3

 3 
) 

Letting  k=0 and for quarterly-monthly data(i.e. m=3), we have 𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

=

𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 
=𝑥𝑡

 3 
 , which means the last-month observation of (x) in the quarter t. For k=1 

we have 𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

= 𝑥
𝑡− 

1

3
 

 3 
 , which means the previous month of the last-month(i.e. 

the second month) observation of (x) in the quarter t, and for k=2 we have 𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

=

𝑥
𝑡− 

2

3
 

 3 
 , which means the first-month observation of (x) in the quarter t. 

The regression model of 𝑦𝑡  on its own lags with 𝑥 𝑡  and its lags(p lags for y and 

q lags of 𝑥 ) becomes clearly identified as: 

𝑦𝑡 = 𝛼 +  βi𝐿
𝑖𝑦𝑡

𝑝

𝑖=1
+  γj𝐿

𝑗𝑥 𝑡
𝑞

𝑗=0
+ 𝑢𝑡                                                   (1) 

Where γj  are the coefficients of the time-averaged x’s, and 𝑢𝑡  is the white noise 

process (independent identically distributed random variables with zero mean and 

constant variance) . The model in equation (1) called autoregressive distributed lag 

model of order p and q (ADL(p,q))(see section 2.9)[8,51]. 

The method of time-averaging is very simple and easy to conduct since it is 

depending on time series regression approaches, but it is clear that this method  make 

a lot of potentially useful information discarded because of equal-weights assigning, 

thus rendering the relation between the variables will be less accurate[2,18]. Finally, 
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it is more appropriate to take averages for stock variables, but for flow variables, 

the higher-frequency values are simply added[4]. 

2.3.2 Step Weighting(U-MIDAS) 

The other method of time aggregation is to give each lag of x different weight 

or coefficient in each quarter[18]. We call this method step-weighting or unrestricted 

mixed data sampling regression(U-MIDAS). The autoregressive distributed lag U-

MIDAS(ADL(p,m)-UMIDAS) model can be written as: 

𝑦𝑡 = 𝛼 +  βi𝐿
𝑖𝑦𝑡

𝑝

𝑖=1
+  γk  𝐿

𝑘

𝑚  𝑥𝑡
 𝑚 

𝑚

𝑘=0
+ 𝑢𝑡                                              (2) 

Where 𝑢𝑡  is the white noise process as defined before. For the purposes of 

forecasting, the previous equation can be expanded for quarterly-monthly variables 

when m=3 as: 

 𝑦𝑡+1 = 𝛼 + β1𝑦𝑡 + β2𝑦𝑡−1 + ⋯+ βp𝑦𝑡−𝑝−1 + γ1𝑥𝑡
 𝑚 

+ γ2𝑥
𝑡− 

1

3
 

 𝑚 
+ γ3𝑥

𝑡− 
2

3
 

 𝑚 
+ 𝑢𝑡   

                                                                                                                                     (3) 

Equation(3) represents forecasting equation for the period of t+1 of y. It is clear 

that this equation does not contain leads, but if it should, we can add lead terms, and 

those are: γ1
∗𝑥𝑡+1

 𝑚 
+ γ2

∗𝑥
𝑡− 

1

3
 

 𝑚 
+ γ3

∗𝑥
𝑡− 

2

3
 

 𝑚 
. This means that we have high-frequency 

observations now of the variable (𝑥𝑡) in the period (t+1). For example, in our 

research, we analyzed quarterly-monthly data from 1999 to 2012(56 quarterly 

observations of (y) and 168 monthly observations of (x)). We can forecast y at the 

first quarter in 2013 directly by equation(3) without leads. But if we now in the third 

month of the first quarter in 2013; and the observations of  x at January, February and 

March are available now; then we can insert the three lead terms in the equation to 

get benefits of leads information(see section 2.11 for more details about 

forecasting)[6,18]. 

It is clear from the equation (3) that despite step-weighting model  preserves the 

timing information(because the high-frequency observations between the periods t 

and t-1 were taken into account and not just averaged), but it violates the parsimony 

principle. In the case of quarterly-monthly variables, it seems that there is no 

violation of the parsimony principle; because we need only three coefficients to 

estimate for the variable x. But for monthly-daily variables it is different; we will 

need 22 coefficients for the variable x alone, this is called a parameter proliferation 
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problem. Also, Model (3) can be extended to multiple lags, then the number of 

parameters will become quite large[6,18]. 

2.3.3 MIDAS Regressions 

The model which could solve the problem of parameter proliferation while 

preserving some timing information is called MIDAS model or the restricted mixed 

data sampling regression(R-MIDAS)[18]. This model was constructed by Ghysels, 

Santa-Clara, and Valkanov[1]. This model can be written as: 

𝑦𝑡 = 𝛼 +  βi𝐿
𝑖𝑦𝑡

𝑝

𝑖=1
+ γ 𝐵(𝑘, 𝜽) 𝐿

𝑘

𝑚  𝑥𝑡
 𝑚 

𝑚

𝑘=0
+ 𝑢𝑡                                  (4) 

Where 𝐵(𝑘, 𝜽) is a polynomial function that determines the weights for 

temporal aggregation, and the vector 𝜽 have a specific number of parameters 𝜃𝑖 , 𝑢𝑡   

is white noise process[8,18].  

Equation(4) represents an autoregressive distributed lag model(ADL-RMIDAS) 

because 𝑦𝑡  is regressed on its own lags with 𝑥𝑡  and its lags as mentioned before. 

Returning to equation (2), we note that it is the same as equation (4). Only the 

difference between them is that the weighting terms of the higher-frequency variable 

𝑥𝑡  are {γj} in equation (2) while they are {𝐵(𝑗, 𝜽)} in equation (4). The important 

property of  the weighting polynomial function 𝐵(𝑗, 𝜽) is that it contains limited 

number of parameters(Ghysels, Santa-Clara, and Valkanov suggested 𝜽 =  𝜃1, 𝜃2  

for all j), while in equation (2), {γj} are different parameters. In equation (4), we need 

limited number of parameters to estimate regardless of the number of lags of  𝑥𝑡  or 

the value of (m), so the parsimony principle is satisfied here[8,18]. 

Now, for more explanations, it is useful to introduce a simple R-MIDAS 

regression, and some related notations.  

2.4 Simple R-MIDAS Regression 

Suppose  that the variable 𝑦t  is available once between t−1 and t (say, 

monthly), another  variable 𝑥t
(𝑚)

 is observed (m) times  in the same period (say,  daily 

or m=22), and that we are interested  in the dynamic relation between 𝑦t  and 𝑥𝑡
(𝑚)

. In  

other  words,  we want  to project the left-hand side variable 𝑦𝑡  of the model equation 

on the history of lagged observations of 𝑥𝑡−𝑗/𝑚
(𝑚)

 [2,3,4]. The latter term denotes the 

higher-frequency variable and its timing lags are expressed as fractions of the unit 

interval between (t-1) and (t). A simple R-MIDAS model is : 
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𝑦𝑡 =  𝛽0 +  𝛽1𝐵  𝐿
1

𝑚 ; 𝜽 𝑥𝑡
 𝑚 

+  𝑢𝑡                                                                         (5) 

Where :  

 𝐵  𝐿
1

𝑚 ; 𝜽 =  𝐵 𝑘; 𝜽  𝐿
𝑘

𝑚𝐾
𝑘=0 ; K should be specified properly(see section 2.6 

for lag specification criteria) and 𝐿
𝑘

𝑚   is the lag operator such that : 𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

= 𝑥
𝑡−(

𝑘

𝑚
)

 𝑚 
. 

Note that the summation started from k=0 which guarantees 𝑥𝑡
 𝑚 

 to be in the model, 

also  𝑥𝑡
 𝑚 

 values have corresponding 𝑦𝑡  values, but 𝑥
𝑡−(

𝑘

𝑚
)

 𝑚 
values have corresponding 

missing 𝑦𝑡  values for k>0, 𝑢𝑡  is white noise process[2,3,4]. 

the lag coefficients 𝐵 𝑘; 𝜽  of the corresponding lag operator 𝐿
𝑘

𝑚  are 

parameterized as function of a small-dimensional vector of parameters 𝜽, usually the 

vector 𝜽 =  𝜃1, 𝜃2 . 

To explain simple R-MIDAS regression model (5), let us return to the 

quarterly-monthly variables. We have m=3 and we assume that K=m-1=2
*
. By 

equation (5), our simple R-MIDAS regression will be:  

𝑦𝑡 =  𝛽0 +  𝛽1{ 𝐵 𝑘; 𝜽  𝐿
𝑘
𝑚

𝐾=2

𝑘=0

𝑥𝑡
 𝑚 

} + 𝑢𝑡 =  𝛽0 +  𝛽1{ 𝐵 𝑘; 𝜽  𝑥
𝑡−(

𝑘
𝑚

)

 𝑚 

𝐾=2

𝑘=0

} +  𝑢𝑡  

Then, it can be expanded as the following:  

𝑦𝑡 =  𝛽0 +  𝛽1{𝐵 0; 𝜽  𝑥𝑡
 3 + 𝐵 1; 𝜽  𝑥

𝑡− 
1

3
 

 3 
+ 𝐵 2; 𝜽  𝑥

𝑡− 
2

3
 

 3 
} + 𝑢𝑡                    (6) 

From equation (6), it is clear that the lower-frequency variable 𝑦𝑡  is regressed 

on each of the following: 1) The higher-frequency variable 𝑥𝑡(𝑥𝑡
 3 

) whose values 

represent the third month in each quarter; 2) The first lag of the higher-frequency 

variable 𝑥𝑡(𝑥
𝑡− 

1

3
 

 3 
) whose values represent the second month in each quarter, and 3) 

The second lag of the higher-frequency variable 𝑥𝑡(𝑥
𝑡− 

2

3
 

 3 
 whose values represent the 

first month in each quarter. The term 𝑦𝑡  and its lags can be added to the right hand 

side of this equation in order to forecast the future values(𝑦𝑡+1) in the left hand 

side[2,8]. 

                                                           
* usually K = m-1 such in quarterly-monthly data, in such data we have m=3 so K is taken equal 2 

since the summation starting from zero . 
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Again as we noted from equation(3), equation(6) can represent forecasting 

equation to the next period of t (t+1) and it does not contain leads. The lead terms can 

be added are: 𝐵∗ 0; 𝜽 𝑥𝑡+1
 3 + 𝐵∗ 1; 𝜽 𝑥

𝑡+1− 
1

3
 

 3 
+ 𝐵∗ 2; 𝜽 𝑥

𝑡+1− 
2

3
 

 3 
 . These terms 

will be used when monthly observations of (𝑥𝑡) in the period (t+1) are available[8]. 

Returning to our explanation example (that was shown in table (1) before), the 

following table(table (2)) shows the quarterly-monthly data structure of the simple 

MIDAS regression model (6). 

 Table (2): Two Years Quarterly-Monthly Data Structure for Eq(6) 

t 

Quarterly-low-

frequency variable 

𝒚𝒕 

Third-Months 

variable 

𝑥𝑡
 3 

=𝒙𝒕 

Second-Months 

variable 

𝑥
𝑡− 

1
3
 

 3 
 

First-Months 

variable 

𝑥
𝑡− 

2
3
 

 3 
 

1 𝒚𝟏 𝑥1
 3 = 𝒙𝟏 𝑥

1− 
1
3
 

 3 
 𝑥

1− 
2
3
 

 3 
 

2 𝒚𝟐 𝑥2
 3 = 𝒙𝟐 𝑥

2− 
1
3
 

 3 
 𝑥

2− 
2
3
 

 3 
 

3 𝒚𝟑 𝑥3
 3 = 𝒙𝟑 𝑥

3− 
1
3
 

 3 
 𝑥

3− 
2
3
 

 3 
 

4 𝒚𝟒 𝑥4
 3 

= 𝒙𝟒 𝑥
4− 

1
3
 

 3 
 𝑥

4− 
2
3
 

 3 
 

5 𝒚𝟓 𝑥5
 3 = 𝒙𝟓 𝑥

5− 
1
3
 

 3 
 𝑥

5− 
2
3
 

 3 
 

6 𝒚𝟔 𝑥6
 3 = 𝒙𝟔 𝑥

6− 
1
3
 

 3 
 𝑥

6− 
2
3
 

 3 
 

7 𝒚𝟕 𝑥7
 3 = 𝒙𝟕 𝑥

7− 
1
3
 

 3 
 𝑥

7− 
2
3
 

 3 
 

8 𝒚𝟖 𝑥8
 3 = 𝒙𝟖 𝑥

8− 
1
3
 

 3 
 𝑥

8− 
2
3
 

 3 
 

2.5 Polynomial Specifications 

 Parameterization of coefficients 𝐵 𝑘; 𝜽  in a parsimonious fashion is one of 

the features of MIDAS approach[2]. We will discuss various methods of 

specifications of lagged coefficients 𝐵 𝑘; 𝜽  of MIDAS regression models.  

2.5.1 Exponential Almon Lag Polynomial 

The first method for polynomial specification is to use the Exponential Almon 

Lag method to parameterize 𝐵 𝑘; 𝜽 [2]. General Exponential Almon Lag function is 

defined as: 
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𝐵 𝑘; 𝜽 =
𝑒
𝜃1𝑘+𝜃2𝑘

2+⋯+𝜃𝑄𝑘𝑄

 𝑒
𝜃1𝑘+𝜃2𝑘

2+⋯+𝜃𝑄𝑘𝑄𝐾
𝑘=1

 

Ghysels, Santa-Clara and Valkanov[1] used this functional form with two 

parameters, i.e. 𝜽 =  𝜃1 , 𝜃2 , because this function is known to be quite flexible, and 

can take various shapes with only a few parameters, so it will be in this form: 

𝐵 𝑘; 𝜽 =
𝑒𝜃1𝑘+𝜃2𝑘

2

 𝑒𝜃1𝑘+𝜃2𝑘
2𝐾

𝑘=1

 

Figure (3) shows some shapes of the Exponential Almon Lag weighting 

function with different values of two parameters 𝜃1 and 𝜃2 . We note that different 

values of parameters obtain decreasing or hump-shaped weighting functions. It is 

clear from the figure(3) that later lags of the higher-frequency variable xt  are 

assigned to a lower weights[14]. 
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We have some notes and properties about this function: 

1. When 𝜃1 =  𝜃2 = 0, then 𝐵 𝑘; 𝜽  represents the same weights for all 

k. In the case of quarterly-monthly data, K=m=3, and 𝐵 𝑘; 𝜽 =
1

3
 for 

all k, which is the same as the Time-Averaging Aggregation. 

2. The sum of 𝐵 𝑘; 𝜽  is up to one, i.e.  𝐵 𝑘; 𝜽 𝐾
𝑘=1 = 1. 

3. Since 𝐵 𝑘; 𝜽  is a nonlinear function of parameters 𝜃1and 𝜃2, these 

parameters can be estimated by the nonlinear least squares method 

(NLS)[2,4,8,32]. 

2.5.2 Beta Lag function 

The second polynomial specification is to use the Beta function, so-called as 

Beta Lag Function which has only two parameters such that:  

𝐵 𝑘; 𝜃1 , 𝜃2 =
𝑓 

𝑘
𝐾

;𝜃1 ,𝜃2 

 𝑓 
𝑘
𝐾

;𝜃1 ,𝜃2 
𝐾
𝑘=0

 

Where: 

𝑓 𝑥; 𝜃1, 𝜃2 =
𝑥𝜃1−1 1−𝑥 𝜃2−1Γ(𝜃1+𝜃2)

Γ(𝜃1)Γ(𝜃2)
 , Γ 𝜃 =  𝑒−𝑥  𝑥𝜃−1∞

0
𝑑𝑥. 

The Beta lag Function has the same properties stated for the Exponential 

Almon Lag function except that the Time-Averaging Aggregation is obtained by the 

Beta lag Function when 𝜃1 = 𝜃2 = 1[2,4,8]. 

2.5.3 Almon Lag Polynomial of order (P) 

The almon lag polynomial is used to specify 𝛽1𝐵 𝑘; 𝜽  together or jointly in 

MIDAS regression model (6) which is defined as:  

𝛽1𝐵 𝑘; 𝜃0 , 𝜃1, … , 𝜃𝑝 = 𝜃0 +  𝜃𝑝

P

𝑝=0

𝑘𝑝  

This polynomial can be written in matrix form as: 

𝛽1

 
 
 
 
 
 
 
𝐵 0; 𝜽 

𝐵 1; 𝜽 

𝐵 2; 𝜽 
⋮

𝐵 𝑘; 𝜽 
⋮

𝐵 𝐾; 𝜽  
 
 
 
 
 
 

=

 
 
 
 
 
 
 
1 0 02 ⋯ 0P

1 1 12 ⋯ 1P

1 2 22 ⋯ 2P

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑘 𝑘2 ⋯ 𝑘P

⋮ ⋮ ⋮ ⋱ ⋮
1 𝐾 𝐾2 ⋯ 𝐾P 

 
 
 
 
 
 

 

𝜃0

𝜃1

⋮
𝜃P

  



17 
 

 
 

For example, by this polynomial, we have the following: 

 𝛽1𝐵 0; 𝜽 =𝜃0 

𝛽1𝐵 1; 𝜽 =𝜃0 + 𝜃1 + 𝜃2 + …+ 𝜃𝑃  

 𝛽1𝐵 2; 𝜽 =𝜃0 + 2𝜃1 + 4𝜃2 + 8𝜃3 + ⋯+ 2𝑃𝜃𝑃  

𝛽1𝐵 3; 𝜽 =𝜃0 + 3𝜃1 + 9𝜃2 + 27𝜃3 + ⋯+ 3𝑃𝜃𝑃   

. 

. 

. 

𝛽1𝐵 𝐾; 𝜽 =𝜃0 + 𝐾𝜃1 + 𝐾2𝜃2 + 𝐾3𝜃3 + ⋯+ 𝐾𝑃𝜃𝑃  

For more clarification, let us return to MIDAS model (6) with vector 𝜽 =

 𝜃0, 𝜃1, 𝜃2 . Using weights of Almon-Lag-Polynomial of order (2), assuming  K=m-

1=2, equation (6) becomes:  

𝑦𝑡 =  𝛽0 +  𝜃0𝑥𝑡
 3 +  𝜃0 + 𝜃1 + 𝜃2 𝑥

𝑡− 
1

3
 

 3 
+ (𝜃0 + 2𝜃1 + 4𝜃2) 𝑥

𝑡− 
2

3
 

 3 
+ 𝑢𝑡         (7) 

Where 𝛽1𝐵 0; 𝜽 =𝜃0, 𝛽1𝐵 1; 𝜽 =𝜃0 + 𝜃1 + 𝜃2, 𝛽1𝐵 2; 𝜽 =𝜃0 + 2𝜃1 + 4𝜃2. 

Arranging equation(7) will give the following equation: 

        𝑦𝑡 =  𝛽0 +  𝜃0𝑥𝑡1
′ + 𝜃1𝑥𝑡2

′ + 𝜃2𝑥𝑡3
′ + 𝑢𝑡

(3)
                                                        (8) 

Where : 𝑥𝑡1
′ = 𝑥𝑡

 3 + 𝑥
𝑡− 

1

3
 

 3 
+ 𝑥

𝑡− 
2

3
 

 3 
, 𝑥𝑡2

′ = 𝑥
𝑡− 

1

3
 

 3 
+2 𝑥

𝑡− 
2

3
 

 3 
 and 

 𝑥𝑡3
′ = 𝑥

𝑡− 
1

3
 

 3 
+4 𝑥

𝑡− 
2

3
 

 3 
 

Now, the parameters 𝜃0 , 𝜃1 𝑎𝑛𝑑 𝜃2 could be estimated by ordinary least squares 

method(OLS) such that : 

𝜽 = (𝑿𝐓𝑿)−𝟏(𝑿𝐓𝒀) 

Where The matrix 𝑿 ={1, 𝑥𝑡1
′ , 𝑥𝑡2

′ , 𝑥𝑡3
′ }, 𝜽 =  𝛽0, 𝜃0 , 𝜃1 , 𝜃2 , 𝒀 =  𝑦𝑡 , the 

symbol (
T
) here means matrix transposition[2,15,16]. 

Ghysels, Santa-Clara, and Valkanov (2004) suggest that MIDAS models can be 

estimated under general conditions via non-linear least squares (NLS), quasi-

maximum-likelihood (MLE) or general method of moments (GMM)(see section 

2.10)[4]. The other specification is to define MIDAS regression and estimating 

parameters with step-function method[2,15,16]. 
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2.6 Lag Length Selection Criteria 

As we saw in previous sections, there are number of lags selected to include in 

MIDAS model, i.e. the MIDAS regression model depends on K which is the 

maximum effective lag of the higher-frequency variable x should be taken. For 

simplicity, we have selected K=m in our explanation examples, but the determination 

of lag length for any time series is very important issue in all studies. In the literature 

of linear regression, there are various selection criteria used to determine the best 

subset of independent variables should be included in the model. Of course we 

always interested to get the model with minimum mean square error(MSE), but we 

can make the MSE smaller by adding another MA or AR terms in time series 

model(the same thing in linear regression). But this make a problem of getting 

complicated models with too many parameters(violation of parsimony principle), so 

the use of information criterion techniques would help us to construct models that fit 

the data well without having too many parameters[25]. 

The same idea is applied in time series models. We have various lag length 

selection criteria, such as: the Aikaike’s information criterion(AIC), Schwarz 

information criterion(SIC), Hannan-Quinn criterion(HQC), Final Prediction 

Error(FPE) and the Bayesian information criterion(BIC). Both AIC and BIC are the 

most popular and they have been used widely by researchers[23,24,25]. 

Ghysels, Santa-Clara, and Valkanov(2004) stated that standard selection 

procedures such as the Akaike or Schwarz criterion can be applied to select the 

optimal number of lags that should be included in MIDAS regression. Ghysels, 

Claudia, Klaus, Andreou and Kourtellos were concentrated on AIC and BIC. They 

also compared between the two criteria to get the optimal lag length and to improve 

results of MIDAS models[3,4]. In BIC which used much more, we choose the model 

that has the minimum value of: 

𝐵𝐼𝐶𝑀 = log 𝜎 2 +
𝑀

𝑇
log 𝑇                                       (9) 

Where σ 2 is the estimated error-variance after fitting the model(usually the sum 

of squared residuals divided by the number of observations(T)), M is the number of 

estimated parameters and T is the length of the time series(low-frequency variable 

length) [4,20]. 
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2.7 Testing Unit Root and Cointegration 

2.7.1 Unit Root 

Time series data consist of observations, which are considered as a realization 

of random variables that can be described by some stochastic processes. The concept 

of stationarity is related to the properties of this stochastic processes. The concept of 

weak stationarity means that the data are assumed to be stationary if the means, 

variances and covariances of the series are independent of time, rather than the entire 

distribution. Nonstationarity in a time series occurs when there is no constant mean, 

no constant variance or  both of these properties. It can originate from various sources 

but the most important one is the unit root[54,42,43]. 

Any sequence that contains one or more characteristic roots that are equal to 

one is called a unit root process. The simplest model that may contain a unit root is 

the AR(1) model. Consider the autoregressive process of order one, AR(1), below: 

𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑢𝑡  

Where 𝑢t  denotes a serially uncorrected white noise error term with a mean of 

zero and a  constant variance. If  𝜙 = 1, the above equation becomes a random walk 

without drift model, that is, a nonstationary process. When this happens, we face 

what is known as the unit root problem. This means that we are faced with a situation 

of nonstationarity in the series. If, however, 𝜙 < 1, then the series 𝑦𝑡  is stationary. 

The stationarity of the series is important because correlation could persist in 

nonstationary time series even if the sample is very large and may result in what is 

called spurious (or nonsense) regression. The unit root problem can be solved, or 

stationarity can be achieved, by differencing the data set[54,42,43]. 

We have many methods to stationarity, but the most famous one is The 

augmented Dickey-Fuller (ADF) test, The basic idea behind the ADF unit root test 

for nonstationarity is to simply regress 𝑦𝑡  on its (one period) lagged value 𝑦𝑡−1 and 

find out if the estimated  𝜙 is statistically equal to 1 or not. The above AR(1) 

equation can be manipulated by subtracting 𝑦𝑡−1from both sides to obtain 

𝑦𝑡 − 𝑦𝑡−1 = (𝜙−1)𝑦𝑡−1 + 𝑢𝑡  

Which can be written as  

Δ𝑦𝑡 = 𝛿𝑦𝑡−1 + 𝑢𝑡  

Where 𝛿 = 𝜙− 1, and Δ is the first difference operator. 
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In practice, we shall estimate the last equation and test for the null hypothesis of 

𝛿 = 0 against the alternative of 𝛿 ≠ 0. If 𝛿 = 0, then 𝜙 = 1, meaning that we have a 

unit root problem and the series under consideration is nonstationary. It should be 

noted that under the null hypothesis 𝛿 = 0, the t-value of the estimated coefficient of 

𝑦𝑡−1 does not follow the t-distribution even in large samples. This means that the t-

value does not have an asymptotic normal distribution. The decision to reject or not 

to reject the null hypothesis of  𝛿 = 0 is based on the Dickey-Fuller (DF) critical 

values of the 𝜏(tau) statistic(Dickey-Fuller t-distribution). The DF test is based on an 

assumption that the error terms 𝑢𝑡  are uncorrelated[54,42,43]. 

However, in practice, the error term in the DF test usually show evidence of 

serial correlation. To solve this problem, Dickey and Fuller have developed a test 

know as the Augmented Dickey-Fuller (ADF) test. In the ADF test, the lags of the 

first difference are included in the regression equation in order to make the error term 

𝑢𝑡  white noise and, therefore, the regression equation is presented in the following 

form: 

Δ𝑦𝑡 = 𝛿𝑦𝑡−1 +  𝛼𝑖Δ𝑦𝑡−𝑖

𝑚

𝑖=1

+ 𝑢𝑡  

To be more specific, the intercept may be included, as well as a time trend t, 

after which the model becomes 

Δ𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛿𝑦𝑡−1 +  𝛼𝑖Δ𝑦𝑡−𝑖

𝑚

𝑖=1

+ 𝑢𝑡  

where 𝛽0 is a constant, 𝛽1 the coefficient on a time trend series, 𝛿 the 

coefficient of  𝑦𝑡−1, m is the lag order of the autoregressive process, Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

are first difference of 𝑦𝑡 , 𝑦𝑡−1 are lagged values of order one of 𝑦𝑡 , Δ𝑦𝑡−𝑖  are changes 

in lagged values, and 𝑢𝑡  is the white noise. The test procedure for unit roots is similar 

to statistical tests for hypothesis, that is: (i ) Set the null and alternative hypothesis as 

H0: 𝛿 = 0  against H1: 𝛿 < 0. (ii) Determine the test statistic using Fτ =
𝛿 

SE (𝛿 )
 where 

SE(δ ) is the standard error of δ . (iii) Compare the calculated test statistic  Fτ with the 

critical value from Dickey-Fuller table to reject or not to reject the null hypothesis. 

(iv) The ADF test is a lower-tailed test, so if  Fτ is less than the critical value, then the 

null hypothesis of unit root is rejected and the conclusion is that the variable of the 

series does not contain a unit root and is stationary[54,42,43].  
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The DF and ADF tests are similar since they have the same asymptotic distribution. 

Finally, there are numerous unit root tests, such as the Phillips-Perron test and the 

Schmidt-Phillips test, but the most notable and commonly used is the ADF test, 

which will be used in our study[54,42,43]. 

2.7.2 Cointegration 

It is possible for two integrated series to move together in a nonstationary way, 

so that their difference or any other linear combination is stationary. These series are 

said to be cointegrated. Stationarity is like a rubber band pulling a series back to the 

fixed mean[51,52,54]. Cointegration is like a rubber band pulling the two series back 

to a fixed relationship with each other, even though both series are not pulled back to 

a fixed mean. If  y  and  x  are both integrated, we cannot rely on OLS standard errors 

or t statistics. By differencing, we can avoid spurious regressions: 

If 𝑦𝑡 = 𝛽0  + 𝛽1 𝑥𝑡 + 𝑢𝑡  then ∆𝑦𝑡 = ∆𝑥𝑡 + ∆𝑢𝑡  . ∆𝑢𝑡  is stationary as long as 𝑢𝑡  

is I(0) or I(1). Note that the differenced equation has no history. Now let us Suppose 

that 𝑢𝑡  is I(1), This means that the difference 𝑢𝑡 = 𝑦𝑡 − 𝛽0 − 𝛽1 𝑥𝑡  is not mean-

reverting and there is no long-run tendency for y to stay in the fixed relationship with 

x, so there is no cointegration between y and x, in this case ∆𝑢𝑡  is I(0), if 𝑦𝑡  is high 

relative to  𝑥𝑡  due to a large positive 𝑢𝑡 , then there is no tendency for y to come back 

to x after t, thus estimation of differenced equation is appropriate[51,52,54]. 

Now Suppose that 𝑢𝑡  is I(0), that means that the levels of y and x tend to stay 

close to the relationship given by the equation. Suppose that there is a large positive 

𝑢𝑡  that puts 𝑦𝑡  about its long-run equilibrium level in relation to 𝑥𝑡 . With stationary 

𝑢𝑡 , we expect the level of y to return to the long-run relationship with x over time, 

and stationarity of  𝑢𝑡  implies that corr(𝑢𝑡 , 𝑢𝑡+𝑠) → 0 as s → ∞. Thus, future values 

of ∆y should tend to be smaller than those predicted by ∆x in order to close the gap. 

In terms of the error terms, a large positive 𝑢𝑡  should be followed by negative ∆𝑢𝑡  

values to return 𝑢𝑡  to zero if  𝑢𝑡  is stationary, and this is the situation where y and x 

are cointegrated. This is not reflected in the differenced equation, which says that 

future values of ∆y are only related to the future ∆x values, which means there is no 

tendency to eliminate the gap that opened up at t [51,52,54]. 

In the cointegrated case, If we estimate in differences, we are missing the 

history of  knowing how y will be pulled back into its long-run relationship with  x. If 

we estimate in the original levels, we cannot rely on our test statistics because the 

variables (though not the error term) are nonstationary[51,52,54]. 
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The appropriate model for the cointegrated case is the error-correction model of 

Hendry and Sargan, ECM consists of two equations: 

The long-run cointegrating equation: 𝑦𝑡 = 𝜃0  + 𝜃1  𝑥𝑡 + 𝑢𝑡 , where 𝑢𝑡  is I(0). 

The short-run (ECM) adjustment equation:  

∆𝑦𝑡 = 𝛽0  +  βi  𝐿
𝑖∆𝑦𝑡

𝑝

𝑖=1
+  γi  𝐿

𝑖∆𝑥𝑡
𝑝

𝑖=1
+ 𝛼 𝑦𝑡−1 − 𝜃0 − 𝜃1  𝑥𝑡−1 + 𝑣𝑡   

Note the presence of the error-correction term with coefficient 𝛼 in the ECM 

equation, this term reflects the distance that 𝑦𝑡−1 is from its long-run relationship to 

𝑥𝑡−1. If 𝛼 < 0, then 𝑦𝑡−1 above its long-run level will cause ∆𝑦𝑡  to be negative when 

other factors are held constant, then it pulling  y  back toward its long-run relationship 

with  x . Because both  y  and  x  are I(1), their differences are I(0). Because they are 

cointegrated with cointegrating vector 𝜃0  , 𝜃1 , the difference in the error correction 

term is also I(0). It would not be if they weren’t cointegrated and the ECM regression 

would be invalid. The ECM equation can be estimated by OLS without undue  

difficulty because all the variables are stationary[51,52,54].  

In multivariate cointegration, the concept of cointegration extends to multiple 

variables. With more than two variables, there can be more than one cointegrating 

relationship (vector). Vector error-correction models (VECM) allow for the 

estimation of error correction regressions with multiple cointegrating vectors. In 

order to test for cointegration, the earliest test is Engle and Granger’s extension of the 

ADF(Augmented Dickey-Fuller) test has two steps: 1) Regressing the cointegrating 

regression by OLS, 2) Testing the residuals with an ADF test. Other, more popular 

tests include the Johansen-Juselius test, which generalizes easily to multiple variables 

and multiple cointegrating relationships[51,52,53,54]. 

2.7.3 Johansen’s procedure 

Johansen's procedure builds cointegrated variables directly on maximum 

likelihood estimation instead of relying on OLS estimation. This procedure relies 

heavily on the relationship between the rank of a matrix and its characteristic roots. 

Johansen derived the maximum likelihood estimation using sequential tests for 

determining the number of cointegrating vectors[54]. His method can be seen as a 

secondary generation approach in the sense that it builds directly on maximum 

likelihood instead of partly relying on least squares. In fact, Johansen's procedure is 

nothing more than a multivariate generalization of the Dickey-Fuller test. 

Consequently, he proposes two different likelihood ratio tests namely: the trace test 

and the maximum eigenvalue test. This procedure is a vector cointegration test 
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method. It has the advantage over the Engle-Granger method in that it can estimate 

more than one cointegration relationship, if the data set contains two or more time 

series[52,53,54].  

Johansen’s  method  takes  as a starting point the vector  autoregression (VAR)  

of order p given by 

𝐗𝐭 =  𝛑𝟏𝐗𝐭−𝟏 + 𝛑𝟐𝐗𝐭−𝟐 + ⋯+ 𝛑𝐩𝐗𝐭−𝐩 + 𝐔𝐭 

where 𝐗𝐭  is an n × 1 vector  of variables that are integrated of order one, that is, 

I (1). 𝐔𝐭 is an n × 1 vector of innovations while 𝛑𝟏 through 𝛑𝐩 are m × m coefficient 

matrices. Reparameterizing the equation  above, that is, subtracting 𝐗𝐭−𝟏 on both  

sides, leads to 

𝚫𝐗𝐭 =  𝚪𝟏𝚫𝐗𝐭−𝟏 + 𝚪𝟐𝚫𝐗𝐭−𝟐 + ⋯+ 𝚪𝐩−𝟏𝚫𝐗𝐭−𝐩+𝟏 − 𝛑𝐗𝐭−𝐩 + 𝐔𝐭 

Where 𝚪𝟏 = 𝛑𝟏 − 𝐈, 𝚪𝟐 = 𝛑𝟐 − 𝚪𝟏, 𝚪𝟑 = 𝛑𝟑 − 𝚪𝟐, … , 𝚪𝐩−𝟏 = 𝛑𝐩−𝟏 − 𝚪𝐩−𝟐, and 

𝛑 = 𝐈 − 𝛑𝟏 − 𝛑𝟐 −⋯− 𝛑𝐩. The matrix 𝛑  determines the extent to which the system 

is cointegrated and is called the impact matrix[54].  

Returning to the last reparameterised equation, if we consider the first equation 

of the system as: 

ΔX1,t =  γ11
′ ΔX1,t−1 + γ12

′ ΔX1,t−2 + ⋯+ γ1p−1
′ ΔX1,t−p+1 − π1

′ X1,t−p + 𝑢1𝑡  

where γij
′  is the first row of 𝚪𝐣, j = 1, 2,…p-1, and π1

′  is the first row 𝛑. 

Here ΔX1,t  is stationary, that is, I(0), j = 1, 2,…p-1 are all I(0), 𝑢𝑡  is assumed to 

be I(0) and so for a meaningful equation, π1
′ X1,t−p  must be stationary, I(0). 

If none of the components of  𝐗𝐭 are cointegrated, they must be zero. On the 

other hand, if they are cointegrated, all the rows of 𝛑 must be cointegrated but not 

necessarily distinct. This is because the number of distinct cointegrating vectors 

depends on the row rank of 𝛑[52].  

The matrix 𝛑 is of order m × m. If it has rank m, that is, m number of linearly 

independent rows or columns, then it forms a basis for m-dimensional vector space.  

This implies that all m × 1 vectors can be generated as linear combinations of its row.  

Any of these linear combination of the rows would lead to stationarity, meaning that 

𝐗𝐭−𝐩 has stationary components if the rank of 𝛑 is r < m[52]. 

We may write 𝛑 = 𝛽𝛼′  for suitable m × r matrices, 𝛽 and 𝛼 Here 
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𝛼′ =  

𝛼1
′

𝛼2
′

⋮
𝛼𝑟
′

 , 𝛽 =   𝛽1, 𝛽2, … , 𝛽𝑟 , then 𝛑𝐗𝐭−𝐩= 𝛽𝛼′𝐗𝐭−𝐩 , and all linear 

combinations of 𝛼′𝐗𝐭−𝐩 are stationary. It should be noted that we have to perform the 

ADF test to access the order of integration of each variable before applying  

Johansen's procedure. Johansen's procedure estimates the VAR subject to 𝛑 = 𝛽𝛼′  

for various values of  r  number of cointgrating vectors, using the maximum 

likelihood estimator assuming 𝑢𝑡~𝑖𝑖𝑑𝑁(0, Σ), His estimate can thus be rewritten as 

𝚫𝐗𝐭 =  𝚪𝟏𝚫𝐗𝐭−𝟏 + 𝚪𝟐𝚫𝐗𝐭−𝟐 + ⋯+ 𝚪𝐩−𝟏𝚫𝐗𝐭−𝐩+𝟏 − 𝛽𝛼′𝐗𝐭−𝐩 + 𝐔𝐭 

To detect the number of cointegrating vectors, Johansen proposed two 

likelihood ratio tests namely: 

 The trace test 

 The maximum eigenvalue. 

The trace test tests the null hypothesis of r cointegrating vectors against 

the alternative hypothesis of n cointegrating vectors, If r = 0, it means that there 

is no relationship among the variables that is stationary. The test statistic is 

given by 

𝐽𝑡𝑟𝑎𝑐𝑒 = −𝑇  ln(1 − 𝜆 𝑖)

𝑛

𝑖=𝑟+1

 

The maximum eigenvalue test, on the other hand, tests the null hypothesis of  r 

cointegrating vectors against the alternative hypothesis of (r+1) cointegrating vectors. 

Its test statistic is given by 

𝐽𝑚𝑎𝑥 = −𝑇(1 − 𝜆 𝑟+1) 

Where T  is the sample size, and 𝜆 𝑖  is the 𝑖’th largest canonical correlation. 

For example, if the null hypothesis of no cointegration (r = 0) against the alternative 

of presence of one or more cointegrating vector is rejected at specific level of 

significance say (10%) of significance in both techniques (trace test and maximum 

eigenvalue); this implies that cointegration exists between series data set. If the null 

hypothesis (r ≤ 1) and (r ≤ 2) against the alternative of the existence of two or three 

cointegrating vectors is not rejected by both tests; This means that there is no more 

than one cointegration relationship between series data set(see for example Table A2 

in Appendix A)[52,53,54]. 
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The method of Johansen assumes that the cointegrating vector remains constant 

during the period of study. In reality, it is possible that the long-run relationships 

between the underlying variables change. The reason for this might be technological 

progress, economic crisis, changes in people's preferences and behavior accordingly, 

policy or regime alteration and institutional development. This is especially the case 

if the sample period is long[52,53,54]. 

2.8 Cointegration-MIDAS and ECM-MIDAS models 

In almost all the literature, MIDAS regressions are applied to stationary time 

series or to transformed non-stationary variables by the first differences. Goetz, Hecq 

and Urbain [21] worked with mixed frequency time series that are integrated of order 

one I(1) and possibly cointegrated. They introduced a mixed-frequency 

autoregressive distributed lag ADL(see section 2.9 about ADL) model and they 

derived the cointegrating long-run relationships, then they plugged it in the error 

correction model ECM to derive the short-run relationships. Finally, they compared 

between number of approaches by simulation methods in order to know which one 

has the best forecasting performance. We interested on the following  approaches that 

they studied: unrestricted MIDAS regressions(U-MIDAS), restricted MIDAS 

regressions(R-MIDAS) and Time-Averaging regressions. The estimated forecasting 

ECM models that they used relative to each one of these approaches can be written as 

the following: 

∆𝑦𝑡 = c +  𝛾 𝑢 𝑡−1 + 𝛼 𝑦𝑡−1 +   𝐵𝑘   ∆(𝑚)𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 𝑚−1
𝑘=0                  (U- MIDAS)       (10) 

∆𝑦𝑡 = c +  𝛾 𝑢 𝑡−1 + 𝛼 𝑦𝑡−1 +  𝛽  𝐵𝑘 𝜃 1, 𝜃 2  ∆(𝑚)𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 𝑚−1
𝑘=0   (R- MIDAS)      (11) 

∆𝑦𝑡 = c +  𝛾 𝑢 𝑡−1 + 𝛼 𝑦𝑡−1 +  𝛽  ∆{
1

𝑚
 𝑥

𝑡− 
𝑘

𝑚
 

 𝑚 
}𝑚−1

𝑘=0           (Time-Averaging)     (12) 

Where : c is the constant term, the symbol ∆ means the first difference for the 

low-frequency variable, the symbol ∆(𝑚) means the first difference for the high-

frequency variable, 𝑢𝑡−1 is the first lag of the residuals resulting from the long-run 

cointegrating relationship and 𝑢 t−1 is its estimator(under assumption that 𝑢𝑡  is white 

noise process). 

Goetz, Hecq and Urbain[21] showed that the ECM built by MIDAS regressions 

has the best forecasting performance. They employed Exponential Almon-Lag 

polynomial to estimate the weights 𝐵𝑖 𝜃 1, 𝜃 2  with initial value of 𝜃2 ≤ 0, because it 

is extremely flexible and it has various possible shapes. The Exponential Almon-Lag 
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weights make estimation to be completely data driven, and it allows to include 

variables in both short-run and long-run models more than what theoretically 

necessary, because the redundant variables will be assigned to zero weight(since the 

sum of all Exponential Almon Lag weights is 1). 

Also, they concluded that when building the short-run ECM, it is better to use 

(m) terms than more or less than (m) terms; where m is the number of the high-

frequency observations between the period (t) and (t-1) of the low-frequency variable. 

We chose to use MIDAS regression (10) or (11) to construct the short-run ECM 

with Exponential Almon Lag weights assigned  to (m) terms(or lags) of the high-

frequency variables[21]. Also it is suitable to use MIDAS regression to construct the 

long-run relationship which will produce the imposed 𝑢𝑡−1 terms by the following 

ADL-RMIDAS equation:  

  𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 +  𝛽2  𝐵𝑘 𝜃1, 𝜃2  𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 𝑚−1
𝑘=0  + 𝑢𝑡                                            (13) 

equation (5) with K=m-1
*
, and the autoregressive terms (𝑦𝑡−1) can be stay or 

dropped if or if not necessary from the above equations (10_13). So the equilibrium 

terms 𝑢 𝑡−1 can be obtained by the equation : 

𝑢 𝑡−1 = 𝑦𝑡−1 − 𝛽 0 − 𝛽 1𝑦𝑡−2 − 𝛽 2  𝐵𝑘 𝜃 1, 𝜃 2  𝑥
𝑡−1− 

𝑘

𝑚
 

 𝑚 𝑚−1
𝑘=0                                (14) 

because from equation(13), we have 

𝑢𝑡 = 𝑦𝑡 − 𝛽0 − 𝛽1𝑦𝑡−1 − 𝛽2  𝐵𝑘 𝜃1, 𝜃2  𝑥
𝑡− 

𝑘

𝑚
 

 𝑚 𝑚−1
𝑘=0 . Finally, the ADL-UMIDAS 

regression will stay in mind to use if necessary[21,28]. 

2.9 Distributed-Lag Models 

Univariate time-series models are an interesting and useful building block, but 

we are almost always interested not just in y’s behavior by itself but also in how x 

affects y. In time-series models, this effect is often dynamic(spread out over time). 

Thus we can define a distributed-lag model as a dynamic model in which the effect 

of a regressor x on y occurs over time rather than all at once[51]. 

                                                           
*
 The R-package program splits the high-frequency variable and name each  split as X0/3, X1/3, X2/3 

in quarterly-monthly data, for example X0/3 means the series consisted of the last month per 
quarter, similarly X1/3 means the series consisted of the second month per quarter, and so forth. 
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the dynamic effect of x on y involves not just 
𝜕𝑦

𝜕𝑥
 , but a more complex set of 

dynamic multipliers: 
𝜕𝑦 𝑡

𝜕𝑥 𝑡
,
𝜕𝑦 𝑡+1

𝜕𝑥 𝑡
,
𝜕𝑦 𝑡+2

𝜕𝑥 𝑡
, etc, so we estimate the dynamic effects of x on 

y with distributed-lag models[51]. 

In general, the distributed-lag model has the form  

𝑦𝑡 = 𝛼 +  𝛽𝑖  𝑥𝑡−𝑖  

∞

𝑖=0

+ 𝑢t  

 But of course, we cannot estimate an infinite number of lag coefficients 𝛽𝑖 , so 

we must either truncate or find another way to approximate an infinite lag structure. 

We can easily have additional regressors with either the same or different lag 

structures. When the distributed-lag model above is truncated, then we have the Finite 

distributed lag model 

𝑦𝑡 = 𝛼 +  𝛽𝑖  𝑥𝑡−𝑖  

r

𝑖=0

+ 𝑢t  

The finite distributed lag model can be estimated by OLS. The dynamic 

multipliers in this case are 
𝜕𝑦 𝑡

𝜕𝑥 𝑡−𝑠
= 𝛽𝑠, s=0,1,…,r and zero other wise. The cumulative 

dynamic multipliers which denotes to the effect of permanent change in x are 

 𝛽𝑖  
s
𝑖=0 [51]. 

To see the interpretation of the lag weights, we consider two special cases: a 

temporary change in x and a permanent change in x. For the temporary change, the 

change in x is zero except in period t, where it is one. Here we Suppose that x changes 

temporarily by one unit in period t, then returns to its original level for periods t + 1 

and all future periods; in period t, 𝑥𝑡  is changed by one unit but all earlier x values are 

unchanged. In this case, 𝑦𝑡  increases by 𝛽0 when 𝑥𝑡  changes by one with 

𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑟  and the disturbance term 𝑢t  unchanged. We call this immediate 

effect = 𝛽0 the impact effect of x on y [51]. 

Given that 𝑥𝑡+1, 𝑥𝑡−1, and the disturbance are unchanged, the change in y in 

period t + 1 is the coefficient on the first lag of x (𝛽1). This is the dynamic marginal 

effect of x on y at one lag. By similar analysis, we can see that the effect of the 

temporary change in x at time t on 𝑦𝑡+2 is β2, and so forth. We conclude that the 

pattern of dynamic marginal effects of a temporary change in x on y is given by the 

coefficients of the lag distribution β's [51]. 



28 
 

 
 

Now let us consider the case of a permanent increase in x at time t: x increases 

by one unit in period t and remains higher in all periods after t than it was before t. 

We see from our finite distributed lag model that the effect of the change in 𝑥𝑡  on 𝑦𝑡  

is 𝛽0, because 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑟  and 𝑢𝑡  are assumed unchanged. Moving forward to 

period t + 1, the analysis of the model equation is different from the temporary 

change because now 𝑥𝑡+1 as well as 𝑥𝑡  is increased by one unit. The cumulative 

effect on 𝑦𝑡+1 is 𝛽0 + 𝛽1. We call this the cumulate effect of x on y at one lag. At 

two lags, we advance the equation one more period forward and now the effects of 

the increased levels of 𝑥𝑡+2, 𝑥𝑡+1, and 𝑥𝑡  raising 𝑦𝑡+2 by 𝛽0 + 𝛽1 + 𝛽2 units[51]. 

Moving (k>r) periods into the future, the effect on 𝑦𝑡+𝑘  will be the same as the 

effect on 𝑦𝑡+𝑟  because once again all of the x terms on the right hand side are 

increased by one unit and the cumulative effect staying at  𝛽𝑖  
r
𝑖=0 for all lags starting 

at k. The limit of the cumulative effect as the lag length goes to infinity is called the 

long-run cumulative effect of x on y. It measures how much y will eventually change 

in response to a permanent change in x [51]. 

The pattern of the dynamic marginal effects and cumulative effects tells us 

about both the magnitude and the timing of the effect of x on y. In the above, 

permanent increases in x lead to permanent increases in y that get larger over the first 

r+1 periods of the change. Temporary changes in x, by contrast, lead to temporary 

changes in y that die away after r+1 periods[51].  

Another pattern that is plausible for some economic relationships is that 

permanent changes in x may lead to only temporary changes in y. For example, 

standard macroeconomic theory tells us that changes in the rate of monetary growth 

have only temporary effects on real output growth. In such a situation, the positive 

marginal effects at short lags (β0, β1, and β2, perhaps) would be offset by negative 

marginal effects at longer lags so that the long-run cumulative effect (the sum of all 

the β coefficients) is zero[51]. 

Is it possible to have a dynamic relationship in which temporary changes in x 

lead to permanent changes in y, but this creates difficulty for an equation. For a 

temporary change in x to have a permanent effect on y, the β coefficients in the 

infinite DL model could not approach zero as i gets large. This obviously rules out 

any finite lag distribution, and indeed creates trouble for any specification because 

the dynamic relationship between the two variables is effectively non-stationary. To 

cope with this situation, it is usually best to redefine either x or y to eliminate the 

problem[51]. 
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In specifying dynamic econometric models, it is crucial to think very carefully 

about the nature of the dynamic relationship among the variables. We must decide 

how we would expect y to respond over time to a one-time change in x, then define 

the variables as levels or changes in order to represent the expected relationship with 

a stationary lag function[51]. 

The autoregressive component of the ARMA model involves using one or more 

lagged values of y as determinants of the current value 𝑦t . We can apply the same 

method in a distributed-lag context by adding 𝑦t−1 and possibly additional lags to the 

right-hand side. The simplest model is the Koyck lag, which has one lag of y on the 

right-hand side with only the current value of x [51].  

The first order autoregressive Koyck lag model with regressors is: 

𝑦𝑡 = 𝛽0  + 𝛽1 𝑦𝑡−1 + 𝛿0 𝑥𝑡 + 𝑢t  

By this model we have 
𝜕𝑦 𝑡

𝜕𝑥 𝑡
= 𝛿0, 

𝜕𝑦 𝑡+1

𝜕𝑥 𝑡
= 𝛽1𝛿0 , …, 

𝜕𝑦 𝑡+𝑠

𝜕𝑥 𝑡
= 𝛽1

𝑠𝛿0. Thus, 

dynamic multipliers start at 𝛿0 and decay exponentially to zero over infinite time. 

Thus, this is effectively a distributed lag of infinite length, but with only 2 parameters 

(plus intercept) to estimate. Cumulative multipliers are  
𝜕𝑦 𝑡+𝑠

𝜕𝑥 𝑡
 

s

𝑖=0
= 𝛿0  𝛽1

𝑖s

𝑖=0
, 

the long-run effect of a permanent change is 𝛿0  𝛽1
𝑖∞

𝑖=0
=

𝛿0

1−𝛽1
. Estimation of this 

model has the potential problem of inconsistency if 𝑢t  is serially correlated, this is a 

serious problem, especially as some of the test statistics for serial correlation of the 

error are biased when the lagged dependent variable is present. Koyck lag is 

parsimonious and fits lots of lagged relationships well, With multiple regressors, the 

Koyck lag applies the same lag structure (rate of decay) to all regressors[51]. 

We can generalize the Koyck lag model to longer lags: 

𝑦𝑡 = 𝛽0  + 𝛽1 𝑦𝑡−1 + …+ 𝛽𝑝  𝑦𝑡−𝑝 + 𝛿0 𝑥𝑡 + 𝑢t  

Dynamic multipliers for this model are determined by coefficients of infinite 

lag polynomial   𝛽𝑖  𝐿
𝑖𝑝

𝑖=1  
−1

= [𝛽(𝐿)]−1, where L denotes to the lag operator. If we 

have more than on  x, all have same lag structure. We can determine length of lag p 

by adding lags as long as 𝛽𝑝  is statistically significant, and we can choose to max the 

Akaike information criterion or the Bayesian (Schwartz) information criterion[51]. 
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We can generalize the autoregressive DL models by adding lagged values of x 

in addition to lagged y variables which leads to the rational lag model(ADL(p,q). 

The ADL(p,q) model can be written as: 

𝑦𝑡 = 𝛽0  + 𝛽1 𝑦𝑡−1 + …+ 𝛽𝑝  𝑦𝑡−𝑝 + 𝛿0 𝑥𝑡 + 𝛿1 𝑥𝑡−1 + ⋯+ 𝛿𝑞  𝑥𝑡−𝑞 + 𝑢t  or  

𝛽 𝐿 𝑦𝑡 = 𝛽0 + 𝛿(𝐿) 𝑥𝑡 + 𝑢t  , thus 𝑦𝑡 =
𝛽0

𝛽 𝐿 
+

𝛿(𝐿)

𝛽 𝐿 
 𝑥𝑡 +

𝑢t

𝛽 𝐿 
 . 

Note that, Stationarity depends only on 𝛽 𝐿 , not on 𝛿(𝐿). We can easily 

estimate this model by OLS assuming: 

 𝐸  𝑢t  | 𝑦𝑡−1, … , 𝑦𝑡−𝑝 ,  𝑥𝑡 ,  𝑥𝑡−1, … ,  𝑥𝑡−𝑞 = 0 . 

  𝑦𝑡 , 𝑥𝑡  has same mean, variance and autocorrelations for all t. 

  𝑦𝑡 , 𝑥𝑡  and  𝑦𝑡−𝑠 , 𝑥𝑡−𝑠  become independent as s→∞. 

 All variables have finite, non-zero fourth moments. 

 No perfect multicollinearity. 

These are general assumptions that apply to most time-series models. 

For the ADL(p,q) model, we can test Granger causality by testing whether a 

variable’s 𝛿(𝐿) polynomial is zero, and we need to leave 𝑥𝑡  out of regression here. 

the F-test of set of coefficients on all lags of x, given effects of lagged y and any other 

regressors is used, the rejection means  x  causes  y. The Granger causality test 

whether  x  helps to predict  y  given the path that y would follow based on its own 

lags and perhaps on other regressors. Finally, we can apply all above on MIDAS 

regressions replacing 𝑥𝑡  notations by 𝑥𝑡
 𝑚 

 for the high-frequency variable[51]. 

2.10 Estimation Methods 

In this section, we will introduce an overview of some methods of estimation 

that can be used to estimate parameters of MIDAS regressions. These methods are:  

2.10.1 The Method of Least squares 

The Least Squares (LS) estimation technique chooses the parameters which 

minimize the sum of the squared error terms Q =  𝑢𝑡
2𝑇

𝑡=1
 assuming that we have T 

observations for the low-frequency variable. This method can be used with U-

MIDAS regression model: 𝑦𝑡 = 𝛼 +  γk𝐿
𝑘

𝑚  𝑥𝑡
 𝑚 

𝑚−1

𝑘=0
+ 𝑢𝑡= 𝛄′𝒙𝒕

 𝒎 
+ 𝒖𝒕 , where : 
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𝛄 = (𝛼, γ0, γ1, … , γm−1)′, 𝒙𝒕
 𝒎 

= (𝑥𝑡
 𝑚 

, 𝑥
𝑡−

1

3

 𝑚 
, … , 𝑥

𝑡−1−
1

𝑚

 𝑚 
)′ are the explanatory 

high-frequency variable, 𝑦𝑡 = (𝑦1, 𝑦2, … , 𝑦𝑇) is the low-frequency dependent variable 

and 𝑢𝑡  are white noise terms such that 𝒖𝒕 = (𝑢1, 𝑢2 , … , 𝑢𝑇), the white noise process 

𝑢𝑡  has zero mean and constant variance 𝜎2[42,43]. 

It is easy to show that the solution to this minimization problem gives the 

following (m+1) equations:  

Q =   𝑦𝑡 − 𝛼 − γ0 𝑥𝑡
 𝑚 

− γ1 𝑥
𝑡−

1

3

 𝑚 
−⋯− γm−1 𝑥

𝑡−1−
1

𝑚

 𝑚 
 

2
𝑇

𝑡=1

=0 

Or  Q =   𝑦𝑡 − 𝛄′𝒙𝒕
 𝒎 

 
2𝑇

𝑘=0
=0 

This minimization can be accomplished by differentiating these equations with 

respect to the vector 𝛄 = (𝛼, γ0, γ1, … , γm−1)′[42,43].  

In the notation above, this procedure gives the normal equations which can be 

expressed by matrices as the following: 

  𝒙𝒕
 𝒎 

𝒙𝒕
 𝒎 ′

𝑚−1

𝑘=0

 𝛄 =  𝒙𝒕
 𝒎 

𝑚−1

𝑘=0

𝑦𝑡  

The notations can be simplified by defining Y=𝑦𝑡 , X=𝒙𝒕
 𝒎 

and 𝒖 = 𝑢𝑡  , then the 

normal equations can be written as: 

(X' X) 𝛄  = X' Y and the solution is 𝛄  =(X' X)
-1

  X' Y [42, 43]. 

To show that the least squares estimators have desirable statistical properties it 

is however necessary to make the following assumptions: 

Assumption 1: the model is linear in the parameters and is correctly specified. 

Assumption 2: E(𝑢𝑡| 𝑥𝑡
 𝑚 

, 𝑥
𝑡−

1

3

 𝑚 
, … , 𝑥

𝑡−1−
1

𝑚

 𝑚 
) = E 𝑢𝑡 =0 for all t. 

Assumption 3:  𝑢𝑡  are uncorrelated with the explanatory variables for all t. 

Assumption 4: 𝑢𝑡  have constant variance and are uncorrelated for all t. 

Assumption 5: there are no exact linear relationships among the explanatory 

variables(no multicollinearity)[41]. 
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Under these assumptions, it can be shown that the least squares estimators have 

minimum variance among all linear unbiased estimators. The least squares estimators 

are said to be best linear unbiased estimators[41]. 

 The sampling distribution of an estimator as T tends to infinity is its asymptotic 

distribution. An estimator is said to be asymptotically unbiased if the mean of its 

asymptotic distribution is equal to the true value of the parameter[41]. 

An estimator is consistent if the probability that the estimator takes on a value 

close to the true value goes to 1 as the number of observations T goes to infinity. 

Under assumptions 1-5, the least squares estimators are consistent[41]. 

If we add the assumption that 𝑢𝑡  are normally distributed then the least squares 

estimators are also normally distributed. Statistical inference on the parameters can 

then be conducted[41]. 

2.10.2 The Method of Maximum Likelihood 

Maximum Likelihood Estimation (MLE) approach involves forming an 

assumption about the underlying probability distribution function (pdf) that generates 

the observed data set, and then estimating parameters of the assumed distribution. 

Although there are many cases, especially in financial applications, where it may 

seem inappropriate to assume knowledge of the underlying pdf, White (1982) has 

been shown that for correctly specified moment equations, the maximum likelihood 

estimator, now interpreted as Quasi Maximum Likelihood Estimator (QMLE), is 

consistent. In other words, as long as conditional moments (e.g. mean and/or variance 

equations) are correctly specified, QMLE will produce estimates that converge to 

their true parameter values as the sample size increases, although less efficiently than 

if the correct likelihood function had been used[41]. 

To illustrate the maximum likelihood approach we consider the previously 

specified U-MIDAS model now written in the vector notation: 

𝑦𝑡 = 𝒙𝒕
′𝛄 + 𝑢𝑡  

Where 𝛄 is an [(m+1)×1] vector of unknown parameters, X=𝒙𝒕
 𝒎 

 is an 

[(m+1)×1] vector of explanatory variables and 𝑢𝑡  is a white noise process with zero 

mean and variance 𝜎2. The parameters of interest can then be grouped into a 

[(m+2)×1] vector 𝜽 =  𝛄

𝜎2 [41]. 

The maximum likelihood estimation approach typically involves two steps: 

 Specification of a probability distribution for 𝑢𝑡  . 
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 Computation and maximization of the likelihood function. 

The joint pdf of the observed sample takes the following form: 

𝑓(𝑦1, 𝑦2, … , 𝑦𝑇|𝐗, 𝛄, 𝜎2)= 𝑓 𝑦1 𝐗, 𝛄, 𝜎2 …𝑓 𝑦𝑇 𝐗, 𝛄, 𝜎2 =

  𝑓(𝑦𝑡|𝐗, 𝛄, 𝜎2)𝑇
𝑡=1  [41]. 

In practice, 𝑢𝑡  is generally assumed to be Gaussian white noise. Assuming 

normality(𝑢𝑡~i. i. d. N(0, 𝜎2), the conditional likelihood function of 𝑦𝑡  can be written 

as 

𝑓(𝑦1, 𝑦2, … , 𝑦𝑇|𝐗, 𝛄, 𝜎2)=    2𝜋𝜎2 −1/2. 𝑒𝑥𝑝  −
 𝑦𝑡−𝒙𝒕

′ 𝛄 
2

2𝜎2  𝑇
𝑡=1  

 The maximum likelihood estimate of 𝜽 is found by maximizing the above 

function, which is often interpreted as the probability of observing the realized data 

sample. In practice we often take logs of the likelihood function in order to simplify 

algebraic manipulations: 

𝐿(𝜽)=− 
𝑇

2
ln 2𝜋𝜎2 −   

 𝑦𝑡−𝒙𝒕
′ 𝛄 

2

2𝜎2  𝑇
𝑡=1  

Where 𝐿(𝜽) is now known as the log-likelihood function[41]. 

Maximization of the log-likelihood function involves differentiating 𝐿(𝜽) with 

respect to the parameters of interest 𝜽 and setting each of the resulting equations to 

zero. Although, in some instances, it may be possible to find a closed form solution to 

the resultant system of equations, e.g. in the case of a linear regression model, in 

more complicated situations there are no closed form solutions and 𝐿(𝜽) must be 

maximized numerically. In either case, the outcome of maximizing the log-likelihood 

function results in a maximum likelihood estimate vector 𝜽 based on a Gaussian 

likelihood function[41]. 

In time series analysis, a distinction is made between conditional and exact 

likelihood functions. The difference is based on the treatment of the first p 

observations, where p is the number of dependent variable lags specified in the model 

(e.g. in an autoregressive model of order two, AR(2), p = 2). The conditional 

likelihood function assumes that the first  p lags are fixed, that is the likelihood 

function of the remaining sample is specified conditional on the first p observations, 

which are in turn set to either their realized or expected values. The exact likelihood 

function, on the other hand, is a product of probability densities of all observations, 

including the first p lags. Since it is impossible to model the first p observations using 

a conditional model (i.e. there is no data to condition the first p observations in an 
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AR(p) model),  an unconditional pdf  is specified for the initial p observations. When 

the sample size T is large, the difference between the two approaches is small[41, 42, 

43]. 

2.10.3 Generalized Method Of Moments Estimation 

Generalized Method of Moments (GMM) refers to a class of estimators which 

are constructed from exploiting the sample moment counterparts of population 

moment conditions (sometimes known as orthogonality conditions) of the data 

generating model. GMM estimators have become widely used, for the following 

reasons: 

 GMM estimators have large sample properties that are easy to characterize in 

ways that facilitate comparison. A family of such estimators can be studied a 

priori in ways that make asymptotic efficiency comparisons easy. The method 

also provides a natural way to construct tests which take account of both 

sampling and estimation error. 

 In practice, researchers find it useful that GMM estimators can be constructed 

without specifying the full data generating process (which would be required 

to write down the maximum likelihood estimator). This characteristic has 

been exploited in analyzing partially specified economic models, in studying 

potentially misspecified dynamic models designed to match target moments, 

and in constructing stochastic discount factor models that link asset pricing to 

sources of macroeconomic risk[45]. 

As we will see, formally there are two alternative ways to specify GMM 

estimators, but they have a common starting point. Data are a finite number of 

realizations of the process {𝑥𝑡 ∶ 𝑡 = 1,2, … }. The model is specified as a vector of 

moment conditions: 

𝒈 𝜸𝟎 = 𝑬[𝒇(𝒙𝒕 , 𝜸𝟎)] = 𝟎 

Where  𝛾0 is a K × 1 vector of parameters; 𝑓 is an R dimensional vector of 

functions. If we knew the expectation then we could solve the equations 𝑔 𝛾0 = 0 to 

find 𝛾0. If there is a unique solution, so that  𝑔 𝛾0 = 𝐸[𝑓(𝑥𝑡  , 𝛾0)] = 0 if and only if 

𝛾 = 𝛾0. The parameter 𝛾0 is typically not sufficient to write down a likelihood 

function. Other parameters are needed to specify fully the probability model that 

underlies the data generation. In other words, the model is only partially 

specified[44]. 



35 
 

 
 

For given sample 𝑥𝑡 ∶ 𝑡 = 1,2, … , 𝑇, we cannot calculate the expectation, we 

replace with sample averages to obtain the analogous sample moments: 

𝑔𝑇 𝛾 =
1

𝑇
 𝑓(𝑥𝑡  , 𝛾)

𝑇

𝑡=1

 

We can derive an estimator 𝜸 𝑀𝑀  as the solution to 𝑔𝑇 𝜸 𝑀𝑀 = 0. To find an 

estimator, we need at least as many equations as we have parameters. For example, in 

OLS as a MM estimator, we Consider the linear regression model 𝑦𝑡  of on 𝑥𝑡  (K × 1) 

with white noise error term 𝜀𝑡 : 

𝑦𝑡  = 𝑥𝑡
′  𝜸𝟎 +  𝑢𝑡  

The conditional expectation 𝐸[𝑦𝑡 𝑥𝑡 = 𝑥𝑡
′  𝜸𝟎 , so that 𝐸[𝑢𝑡  𝑥𝑡 = 0. That 

implies the K unconditional moment conditions 𝒈 𝜸𝟎 = 𝐸[𝑥𝑡𝑢𝑡] = 𝐸[𝑥𝑡(𝑦𝑡  - 

𝑥𝑡
′  𝜸𝟎)] = 0, which we recognize as the minimal assumption for consistency of the 

OLS estimator. We define the corresponding sample moment conditions as: 

𝑔𝑇 𝜸  =
1

𝑇
 𝑥𝑡 𝑦𝑡  – 𝑥𝑡

′  𝛾   
𝑇

𝑡=1
=  

1

𝑇
 𝑥𝑡𝑦𝑡

𝑇

𝑡=1

– 
1

𝑇
 𝑥𝑡𝑥𝑡

′  𝛾 

𝑇

𝑡=1

= 0 

 

And the MM estimator is derived as the unique solution: 

𝜸 𝑀𝑀 =   𝑥𝑡𝑥𝑡
′

𝑇

𝑡=1

 

−1

  𝑥𝑡

𝑇

𝑡=1

𝑦𝑡  

Provided that  𝑥𝑡𝑥𝑡
′𝑇

𝑡=1  is non-singular. Method of moments is one way to 

motivate the OLS estimator, it highlights the minimal (or identifying) assumptions for 

OLS[44,45,46]. 

2.10.4 The Method of Nonlinear Least squares(Gauss-Newton method) 

A straightforward extension of linear specifications is to consider specifications 

that are nonlinear in parameters. Many empirical evidences show that many economic 

relationships are in fact nonlinear[49]. 

Formally, we consider the nonlinear specification: 



36 
 

 
 

𝑦 = 𝑓 𝒙;𝜷 +  𝑒(𝜷)  

Where  f  is a given function with x an m × 1 vector of explanatory variables 

and  β  is a k×1 vector of parameters, and e(β) denotes the error of the specification. 

Note that for a nonlinear specification, the number of explanatory variables m need 

not be the same as the number of parameters k. Given T observations of y and x, let  

𝒚 =  

𝑦1

𝑦2

⋮
𝑦𝑇

 , 𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷 =   

𝑓 𝒙𝟏; 𝜷 

𝑓 𝒙𝟐; 𝜷 
⋮

𝑓 𝒙𝑻; 𝜷 

     

The nonlinear specification now can be expressed as  

𝒚 = 𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷 +  𝑒(𝜷), where 𝑒(𝜷) is the vector of errors. 

Our objective is to find a k-dimensional surface that “best” fits the data (𝑦𝑡 , 𝒙𝒕), 

t = 1,... ,T. Analogous to the OLS method, the method of nonlinear least squares 

(NLS) suggests to minimize the following NLS criterion function with respect to β: 

𝑄𝑻 𝜷 =
1

𝑇
 𝒚 − 𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷  ′  𝒚 − 𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷  =

1

𝑇
  𝑦𝑡 − 𝑓 𝒙𝒕; 𝜷  

2

𝑇

𝑡

 

The first order condition of the NLS minimization problem is a system of k 

nonlinear equations with k unknowns: 

∇β𝑄𝑻 𝜷 = −
2

𝑇
∇β𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷  𝒚 − 𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷  = 0  

Where 

∇β𝒇 𝒙𝟏, … , 𝒙𝑻; 𝜷 =  ∇β𝑓 𝒙𝟏; 𝜷   ∇β𝑓 𝒙𝟐; 𝜷  …  ∇β𝑓 𝒙𝑻; 𝜷    

Is a k×T matrix. When a solution to the NLS minimization problem cannot be 

obtained analytically, the NLS estimates must be computed using numerical methods. 

To optimizing a nonlinear function, an iterative algorithm starts from some initial 

value of the argument in that function and then repeatedly calculates next available 

value according to a particular rule until an optimum is reached approximately. It 

should be noted that when there are multiple optima, an iterative algorithm may not 

be able to locate the global optimum. In fact, it is more common that an algorithm 

gets stuck at a local optimum, except in some special cases, e.g., when optimizing a 

globally concave (convex) function. In the literature, several new methods, such as 

the simulated annealing algorithm, have been proposed to find the global solution. 

These methods have not yet been standard because they are typically difficult to 



37 
 

 
 

implement and computationally very intensive. We will therefore confine ourselves 

to those commonly used methods[49]. 

To minimize 𝑄𝑻 𝜷 , a generic algorithm can be expressed as 

𝜷(𝑖+1) = 𝜷(𝑖) + 𝑠(𝑖)𝒅(𝑖)  

so that the ( i +1)
th

 iterated value 𝜷(𝑖+1) is obtained from 𝜷(𝑖), the value from 

the previous iteration, by adjusting the amount 𝑠(𝑖)𝒅(𝑖),where 𝒅(𝑖) characterizes the 

direction of change in the parameter space and 𝑠(𝑖) controls the amount of change. 

Different algorithms are resulted from different choices of (s) and (d). As maximizing 

𝑄𝑻 is equivalent to minimizing −𝑄𝑻, the method discussed here is readily modified to 

the algorithm for maximization problems[49]. 

Consider the first-order Taylor expansion of 𝑄 𝜷  about 𝜷†: 

𝑄𝑻 𝜷 ≈ 𝑄𝑻 𝜷
† +  ∇𝜷𝑄𝑻(𝜷†) 

′
 𝜷−𝜷†   

Replacing 𝜷 with 𝜷(𝑖+1) and 𝜷†  with 𝜷(𝑖) we have 

𝑄𝑻 𝜷
(𝑖+1) ≈ 𝑄𝑻 𝜷

(𝑖) +  ∇𝜷𝑄𝑻(𝜷(𝑖)) 
′
𝑠(𝑖)𝒅(𝑖)  

Note that this approximation is valid when 𝜷(𝑖+1) is in the neighborhood of  

𝜷(𝑖). Let 𝒈 𝜷  denote the gradient vector of 𝑄𝑻: ∇𝜷𝑄𝑻(𝜷), and  𝒈(𝑖) denote 𝒈 𝜷  

evaluated at 𝜷(𝑖). If 𝒅(𝑖) = −𝒈(𝑖),  

𝑄𝑻 𝜷
(𝑖+1) ≈ 𝑄𝑻 𝜷

(𝑖) − 𝑠(𝑖) 𝒈(𝑖)′𝒈(𝑖)   

As 𝒈(𝑖)′𝒈(𝑖) is non-negative, we can find a positive and small enough (s) such 

that 𝑄𝑻 is decreasing. Clearly, when 𝜷(𝑖) is already a minimum of 𝑄𝑻, 𝒈(𝑖) is zero so 

that no further adjustment is possible. This suggests the following algorithm: 

𝜷(𝑖+1) = 𝜷(𝑖) − 𝑠(𝑖)𝒈(𝑖) . 

Choosing 𝒅(𝑖) = 𝑠(𝑖) leads to : 

𝜷(𝑖+1) = 𝜷(𝑖) + 𝑠(𝑖)𝒈(𝑖)  

which can be used to search for a maximum of 𝑄𝑻. The Gauss-Newton method 

implies to choose the term 𝑠(𝑖)𝒈(𝑖) =  𝑫(𝜷 𝑖 )′  𝑫(𝜷 𝑖 ) 
−1
𝑫(𝜷 𝑖 ) 𝒚 − 𝒇(𝜷 𝑖 ) , 

where 𝑫 𝜷 = ∇𝜷𝒇(𝜷), so The resulting algorithm is 

𝜷(𝑖+1) = 𝜷(𝑖) +  𝑫(𝜷 𝑖 )′  𝑫(𝜷 𝑖 ) 
−1
𝑫(𝜷 𝑖 ) 𝒚 − 𝒇(𝜷 𝑖 )   
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Observe that the adjustment term can be obtained as the OLS estimator of 

regressing 𝒚 − 𝒇(𝜷 𝑖 ) on (𝜷 𝑖 ); this regression is thus known as the Gauss-Newton 

regression. The iterated β values can be easily computed by performing the Gauss-

Newton regression repeatedly[49].  

2.11 Forecasting 

One of the primary objectives of building a model for a time series is to be able 

to forecast the values for that series at future times. Of equal importance is the 

assessment of the precision of those forecasts. In this section, we shall consider the 

calculation of forecasts for MIDAS models. For the most part, we shall assume that 

the model is known exactly, including specific values for all the parameters. 

Although this is never true in practice, the use of estimated parameters for large 

sample sizes does not seriously affect the results[43]. 

In univariate time series models, the purpose is to forecast the value of  𝑦𝑡+𝑙  

that will occur  l  time units into the future based on the available history of the series 

up to time t, namely 𝑦1, 𝑦2, … , 𝑦𝑡 . In our work with MIDAS regressions, we have the 

same purpose with some differences. We want to forecast the future value (𝑦𝑡+𝑙) of 

the low-frequency variable (𝑦𝑡) based on its past values with the existence of the 

high-frequency variables of other time series related to it. We call time t the forecast 

origin and l the lead time for the forecast, and denote the forecast itself as 𝑦 𝑡(𝑙)[43]. 

Consider the deterministic trend model  

𝑦𝑡 = 𝜇𝑡 + 𝑢𝑡  , where 𝜇𝑡 = β0 + β1𝑡 or 𝜇𝑡 = β0 + β1 𝑥𝑡 , the stochastic 

component, 𝑢𝑡 , assumed as white noise with zero mean and constant variance. For 

this model, we have 

𝑦 𝑡 𝑙 = 𝑦 𝑡+𝑙 = 𝐸 𝜇 𝑡+𝑙 + 𝑢𝑡+𝑙|𝑦1, 𝑦2, … , 𝑦𝑡   

= 𝐸 𝜇 𝑡+𝑙|𝑦1, 𝑦2, … , 𝑦𝑡 + 𝐸 𝑢𝑡+𝑙|𝑦1, 𝑦2, … , 𝑦𝑡  =𝜇 𝑡+𝑙 + 𝐸(𝑢𝑡+𝑙)= 𝜇 𝑡+𝑙  

Since for l ≥ 1, 𝑢𝑡+𝑙  is independent of 𝑦1, 𝑦2, … , 𝑦𝑡  and has expected value zero. 

Thus, in this simple case, forecasting amounts to extrapolating the deterministic time 

trend into the future[43]. 

Now, Consider the following ADL(p,m)-MIDAS model: 

𝑦𝑡 = β0 +  βi  𝐿
𝑖𝑦𝑡

𝑝

𝑖=1
+  γk𝐿

𝑘

𝑚  𝑥𝑡
 𝑚 

𝑚−1

𝑘=0
+ 𝑢𝑡= 𝛃′  𝒚 + 𝛄′𝒙 𝒎 + 𝒖 

where : 
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𝛃 = (β1, β2, … , βp)′, 𝛄 = (γ0, γ1, … , γm−1)′, 𝒙 𝒎 = (𝑥𝑡
 𝑚 

, 𝑥
𝑡−

1

3

 𝑚 
, … , 𝑥

𝑡−1−
1

𝑚

 𝑚 
)′ is 

the vector of explanatory high-frequency variables, 𝒚 = (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) is the 

vector of 𝑦𝑡  lags (𝑦𝑡  is the low-frequency dependent variable with T sample size) and 

𝒖 = 𝑢𝑡 = (𝑢1, 𝑢2, … , 𝑢𝑇) is the white noise process with zero mean and constant 

variance 𝜎2[50].  

For this model, we have: 

𝑦 𝑡 𝑙 = 𝑦 𝑡+𝑙 = 𝐸 𝑦𝑡+𝑙|𝒚, 𝒙 𝒎    

= 𝐸  β 0 +  β 𝑖  𝐿
𝑖𝑦𝑡+𝑙

𝑝

𝑖=1
+  γ k𝐿

𝑘

𝑚  𝑥𝑡+𝑙
 𝑚 

𝑚−1

𝑘=0
|𝒚, 𝒙 𝒎  + 𝐸 𝑢𝑡+𝑙|𝒚, 𝒙 𝒎    

= β 0 +  β 𝑖  𝐿
𝑖𝑦𝑡+𝑙

𝑝

𝑖=1
+  γ k𝐿

𝑘

𝑚  𝑥𝑡+𝑙
 𝑚 

𝑚−1

𝑘=0
  

Since for l ≥ 1, 𝑢𝑡+𝑙  is independent of 𝒚 and 𝒙 𝒎 , and has expected value zero. 

One measurement of forecast accuracy is the Mean Square Forecast Error(MSFE). 

Fore simplicity, we consider the following simple MIDAS model: 

𝑦𝑡 = 𝒙𝒕
 𝒎 ′  𝛄 + 𝒖𝒕 

Where 𝒖𝒕 is white noise process with zero mean and constant variance 𝜎2[50]. 

Consider an out of-sample observation (𝑦𝑡+1, 𝑥𝑡+1
 𝑚 

) where 𝑥𝑡+1
 𝑚 

 will be observed but 

not 𝑦𝑡+1. Given the coefficient estimate 𝛄 , the standard point estimate of 

E(𝑦𝑡+1|𝑥𝑡+1
 𝑚 

) = 𝑥𝑡+1
 𝑚 ′

 𝛄 is 𝑦 𝑡+1 = 𝑥𝑡+1
 𝑚 ′

 𝛄 . The forecast error is the difference between 

the actual value 𝑦𝑡+1 and the point forecast, e𝑡+1=𝑦𝑡+1 − 𝑦 𝑡+1. The mean-squared 

forecast error (MSFE) is: MSFE=𝐸e𝑡+1
2 . A simple estimator for the MSFE is obtained 

by averaging the squared prediction errors(e𝑡= 𝑦𝑡 − 𝑦 𝑡): 

𝜎 2 =
1

𝑇
 e𝑡

2

𝑇

𝑡=1

 

The other important forecast accuracy measurement is the Mean Absolute 

Percentage Error (MAPE) which is defined as: 

𝑀𝐴𝑃𝐸 =
1

𝑇
 

|e𝑡|

y𝑡
× 100%

𝑇

𝑡=1
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Chapter 3 : Application Case Study 

3.1 Modeling The Palestinian GDP  

In Palestine Monetary Authority(PMA) studies, there are many working papers 

that concentrate on building models to analyze the effect of all kinds of shocks on the 

economy. On policy analysis, they always need to provide forecasts for many 

macroeconomic variables in a way that is consistent with the real GDP forecasts. 

Such models are useful to recite forecasts, to provide a coherent framework, to 

explain recent developments, to explain the economic outlook on medium term and to 

explain the main transmission mechanisms of external and internal 

shocks[35,36,37,38].  

The main problem facing these models is that the PMA’s structural and 

financial models are built on annual frequency, because most of the data used in those 

models are not available on quarterly frequency or it is available in mixed 

frequencies. Concerning real GDP growth, forecasting the annual models may miss at 

least part of the influence of the short term economic dynamics, and their short term 

forecasts may therefore be sub-reliable[35]. Sometimes the data used in PMA studies 

are available quarterly like the real GDP but its expected factors like the cost of 

imports (CIM) or the consumer price index(CPI) are available monthly. This makes 

researchers forced to aggregate monthly data in order to match them with the 

quarterly GDP, and this may miss part of the influence as mentioned before[36,37].  

We will use the idea of MIDAS regressions to present a solution of the 

mentioned problem, in order to enable building economic and financial models 

regardless of the availability of data and variables in mixed frequencies. 

Due to PMA studies, the Palestinian real GDP can be modeled as a function of 

exogenous variables(Endogenous variables: the variables that the model seeks to 

explain or predict from the solution of the model. Exogenous variables: the variables 

that are determined outside the model). Some of these variables that we are interested 

in our case study are: The cost of imports(CIM), Employment rate in Israel and 

settlements(EIS) and Consumer Price Index(CPI) [35,36,37,38]. In their studies, 

PMA researchers have followed two approaches to  build  a real Palestinian GDP 

models based on some indicators. These indicators are expected to have significant 

impact on economic growth in Palestine. Real GDP models for Palestine can be used 

to generate essential forecasts. PMA researchers usually use Time-Averaging 

approach to build  a quarterly Palestinian real GDP models based on the main 

exogenous indicators mentioned above. Only monthly and quarterly variables are 
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used here, therefore, the monthly indicators are aggregated to be quarterly. Due to 

PMA, the Palestinian GDP assumed as a small open economy; which means that the 

external environment is the natural supplier of such exogenous variables on which the 

local policy makers or economic agents have no control. On the other hand, the 

external environment in Palestine is very much conditioned by political issues, as 

well as, economic developments and conditions in Israel. Because that, PMA 

researchers followed the second approach of building reduced form model that 

represents a long-run equation for real GDP in Palestine as function of real GDP in 

Israel and the number of Palestinian residents working in Israel and settlements. The 

ARDL(Auto Regressive Distributed Lag) technique is used by researchers to build 

the long-run relationship and to estimate the equilibrium correction model(ECM ) by 

OLS[35,36].  

The inflation model presented in the PMA’s 2013 inflation report shows 

significant long-run relationship between CPI in Palestine and the cost of imports in 

Palestine(CIM). This result was confirmed by other PMA working paper by Khalil & 

Dombrecht[36,38]. 

Based on all the above, we choose to build a quarterly real GDP model in 

Palestine based on the monthly consumer price index in Palestine(CPI), the monthly 

cost of imports in Palestine(CIM) and quarterly employment rate in Israel and 

settlements(EII). In addition, we may include the first lag of GDP(GDPt-1) and the 

trend term in the model(t). We obtained data from the Palestinian Central Bureau of 

Statistics(PCBS) for a period from 1999 to 2012. The long-run relationship and the 

estimated short-run ECM regression model can be expressed by the three types of 

regressions being studied (R-MIDAS regression model, U-MIDAD regression model 

and Time-Averaging regression model), as the following:  

The long-run relationship based on R-MIDAS approach: 

  𝐿𝐺𝐷𝑃𝑡
(𝑄)

= 𝛽0 + 𝛽1𝑡 + 𝛽2𝐿𝐺𝐷𝑃𝑡−1
(𝑄)

+ 𝛽3𝐿𝐸𝐼𝐼𝑡
(𝑄)

+ 𝛽4  𝐵𝑘,1 𝜃1, 𝜃2  𝐿𝐶𝑃𝐼
𝑡−

𝑘

𝑚

(𝑚)𝑚−1
𝑘=0 +

                           𝛽5  𝐵𝑖,2 𝜃3, 𝜃4  𝐿𝐶𝐼𝑀
𝑡 −

𝑖

𝑚

(𝑚)𝑚−1
𝑖=0 + 𝑢𝑡                       (R-MIDAS)   (15) 

Where 𝑢𝑡  is the white noise process(independent identically distributed random 

variables with zero mean and variance 𝜎2), t is the trend variable, 𝐵𝑘,1 𝜃1, 𝜃2  and 

𝐵𝑖,2 𝜃3 , 𝜃4  are lag polynomials that determines the weights for the monthly 

variables. We take the log for monthly and quarterly variables in the model to 

https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
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simplify the interpretations of coefficients as percentage change. The estimated short-

run ECM regression model based on R-MIDAS approach: 

∆𝐿𝐺𝐷𝑃𝑡
 𝑄  

= c +  𝛾 𝑢 𝑡−1 + 𝛼1 𝐿𝐺𝐷𝑃𝑡−1
 𝑄 +  𝛼2  ∆ 𝑄 𝐿𝐸𝐼𝐼𝑡

 𝑄 + 

                     𝐵 1  𝐵𝑘,3 𝜃 5 , 𝜃 6  ∆ 𝑚 𝐿𝐶𝑃𝐼
𝑡−

𝑘

𝑚

 𝑚 𝑚−1
𝑘=0 + 

                     𝐵 2  𝐵𝑖,4 𝜃 7, 𝜃 8  ∆(𝑚)𝐿𝐶𝐼𝑀
𝑡−

𝑖

𝑚

(𝑚)𝑚−1
𝑖=0                                                  (16) 

Where 𝑢 𝑡−1 is the first lag of the estimated residuals of the long-run model and 

its coefficient 𝛾  denotes to the equilibrium or adjustment rate(see sections 2.7 and 2.8 

of cointegration). The symbol ∆ 𝑚  means that we are taking the first difference of 

the monthly variable or the high-frequency variable, and the symbol ∆ 𝑄  means that 

we are taking the first difference of the quarterly variable or the low-frequency 

variable. 

The long-run relationship based on U-MIDAS approach: 

 𝐿𝐺𝐷𝑃𝑡
 𝑄 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝐿𝐺𝐷𝑃𝑡−1

 𝑄 + 𝛽3𝐿𝐸𝐼𝐼𝑡
 𝑄 +  𝛽𝑘,4 𝐿𝐶𝑃𝐼

𝑡−
𝑘

𝑚

 𝑚 𝑚−1
𝑘=0 + 

                 𝛽𝑖,5 𝐿𝐶𝐼𝑀
𝑡−

𝑖

𝑚

(𝑚)𝑚−1
𝑖=0 + 𝑢𝑡                                             (U-MIDAS)   (17) 

Note that 𝛽𝑘,4 and 𝛽𝑖,5 here are different coefficients for all k and i, and they are 

not lag polynomials as in R-MIDAS model. The estimated short-run ECM regression 

model based on U-MIDAS approach: 

∆𝐿𝐺𝐷𝑃𝑡
 𝑄  

= c +  𝛾 𝑢 𝑡−1 + 𝛼1 𝐿𝐺𝐷𝑃𝑡−1
 𝑄 +  𝛼2  ∆ 𝑄 𝐿𝐸𝐼𝐼𝑡

 𝑄 + 

                        𝐵 𝑘,1 ∆ 𝑚 𝐿𝐶𝑃𝐼
𝑡 −

𝑘

𝑚

 𝑚 𝑚−1
𝑘=0 +   𝐵 𝑖,2 ∆(𝑚)𝐿𝐶𝐼𝑀

𝑡−
𝑖

𝑚

(𝑚)𝑚−1
𝑖=0                    (18) 

Also here 𝐵 𝑘,1 and 𝐵 𝑖,2 are different for all k and i, and they are not estimated as 

lag polynomials. 

The long-run relationship based on Time-Averaging approach: 

𝐿𝐺𝐷𝑃𝑡
 𝑄 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝐿𝐺𝐷𝑃𝑡−1

 𝑄 + 𝛽3𝐿𝐸𝐼𝐼𝑡
 𝑄 + 𝛽4 𝐿𝐶𝑃𝐼𝑡

 𝑄  + 

                   𝛽5 𝐿𝐶𝐼𝑀𝑡
(𝑄)

+ 𝑢𝑡                                                 (Time-Averaging)   (19) 

    Where: 
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 𝐿𝐶𝑃𝐼𝑡
(𝑄)

= 𝑙𝑜𝑔{
1

𝑚
  𝐶𝑃𝐼

𝑡 −
𝑘

𝑚

 𝑚 𝑚−1
𝑘=0 } and 𝐿𝐶𝐼𝑀𝑡

(𝑄)
= 𝑙𝑜𝑔{

1

𝑚
  𝐶𝐼𝑀

𝑡−
𝑖

𝑚

(𝑚)𝑚−1
𝑖=0 } . 

And the estimated short-run ECM regression model based on Time-Averaging 

approach: 

∆𝐿𝐺𝐷𝑃𝑡
(𝑄) 

= c +  𝛾 𝑢 𝑡−1 + 𝛼1 𝐿𝐺𝐷𝑃𝑡−1
(𝑄)

+  𝛼2  ∆(𝑄)𝐿𝐸𝐼𝐼𝑡
(𝑄)

+ 𝐵 1∆
 𝑄 𝐿𝐶𝑃𝐼𝑡

(𝑄)
+

                        𝐵 2∆
 𝑄 𝐿𝐶𝐼𝑀𝑡

(𝑄)
                                                                                  (20) 

     Where: 

∆ 𝑄 𝐿𝐶𝑃𝐼𝑡
(𝑄)

= ∆ 𝑄 𝑙𝑜𝑔{
1

𝑚
  𝐶𝑃𝐼

𝑡 −
𝑘

𝑚

 𝑚 𝑚−1
𝑘=0 } and   

∆ 𝑄 𝐿𝐶𝐼𝑀𝑡
(𝑄)

= ∆ 𝑄 𝑙𝑜𝑔{
1

𝑚
  𝐶𝐼𝑀

𝑡−
𝑖

𝑚

(𝑚)𝑚−1
𝑖=0 }  

Our results of time series analysis are shown in appendix A. The AGK test of 

all θ's are zeros(see Table A6 in Appendix A) were accepted, the null hypothesis is 

H0 : θ = 0, (θ=(𝜃1, 𝜃2))[32]. In other words, accepting  the null hypothesis implies 

that the estimated R-MIDAS regression does not differ from time-averaging 

aggregation(see appendix C for more details about the AGK test)[32]. This implies to 

use time-averaging since all weights will be equal and we conclude that each 

Exponential Almon Lag polynomial weight equals to 1/m(because m=3 in our 

analysis, 𝐵𝑖,𝑗  𝑘; 𝜽 =
1

3
 , for all i=1,2,3 and j=1,2). Thus, the results show that both 

the long-run relationship based on R-MIDAS regression and that based on Time-

Averaging regression model do the same work here. The results of estimation of the 

long-run model based on the Time-Averaging method(see Table A7) exhibited that: 

the Employment rate in Israel and settlements(EII), the first lag of GDP and the cost 

of imports in Palestine(CIM) all affect the real Palestinian GDP.  

The results of U-MIDAS regression were better(see Table A3). The results 

exhibited that the effect of the cost of imports (CIM) on the real GDP comes from the 

second-month based series of the imports(𝐿𝐶𝐼𝑀
𝑡−

1

3

(3)
) or (LCIM1) because the 

others(𝐿𝐶𝐼𝑀𝑡
(3)

 , 𝐿𝐶𝐼𝑀
𝑡−

2

3

(3)
) or (LCIM0, LCIM2) are not significant. We found that in 

both Time-Averaging and U-MIDAS methods, the monthly CPI (the first, the second 

and the third month based-series) have no effect on GDP(see Table A3 and Table 

A7), so we decided to eliminate the monthly CPI from the long-run regression, and 

we decided to eliminate both the first-month based series of imports and the third-
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month based series of imports(𝐿𝐶𝐼𝑀𝑡
(3)

 and 𝐿𝐶𝐼𝑀
𝑡−

2

3

(3)
) from the model. The test of 

stationarity of all variables performed by Augmented Dickey-Fuller test(see Table 

A1). The results demonstrated that variables are integrated of order one, and the 

residuals were stationary due to U-MIDAS and Time-Averaging reduced 

models(after eliminating CPI)(see Table A9), so the test of cointegration by Engle-

Granger procedures was satisfied(see section 2.7 for cointegration tests). The test of 

Johansen suggests that there exist at least one cointegration relationship and at most 

two(see table A2). So we concluded that there exist long-run relationship between the 

GDP and all of the other variables except the CPI. 

Based on the above results, we estimated the equilibrium correction model 

(ECM) in order to construct the short-run relationship using the three methods: U-

MIDAS, R-MIDAS and Time-Averaging. As expected, both R-MIDAS and Time-

Averaging will do the same work in estimation of the ECM model because the null 

hypothesis of the AGK test was accepted(see Table A10). Also we found that each 

ECM based on each method exhibited significant dependency between the 

differenced GDP and the differenced cost of imports only(see Tables A10, A11 and 

A13). We noted from the table A11 in Appendix A that the estimated ECM based on 

U-MIDAS approach outperformed the estimated ECM based on Time-Averaging 

approach; the U-MIDAS approach showed significant dependency between the first 

differenced GDP and the second differenced monthly cost of imports(∆(3)LCIM
t−

1

3

(3)
),  

but we expect that there is also significant dependency between the first differenced 

GDP and the first differenced monthly cost of imports(∆(3)LCIM
t−

2

3

(3)
), so we will 

include this term in the final ECM. Finally, we estimated the reduced ECM after 

eliminating all non-significant terms(except ∆(3)LCIM
t−

1

3

(3)
 and ∆(3)LCIM

t−
2

3

(3)
) based on 

U-MIDAS approach as the following(see Table A12):  

∆𝐿𝐺𝐷𝑃𝑡
(𝑄) 

=  0.0022 + (−0.399) 𝑢𝑡−1 + (0.194) ∆(3)𝐿𝐶𝐼𝑀
𝑡 −

1

3

(3)
 + 

                      (0.104) ∆(3)𝐿𝐶𝐼𝑀
𝑡 −

2

3

(3)
                                                                          (21)  

Note that we eliminated the differenced third-month based series of the cost of 

imports(∆(3)LCIMt 
(3)

) from the estimated ECM, because it has no impact on the 

differenced GDP(not significant). Also the following variables were eliminated 

because the same reason: The first lag of quarterly GDP (LGDPt−1
(Q)

), the quarterly 
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differenced employment rate in Israel and settlements( ∆(Q)LEIIt
(Q)

), and the 

differenced monthly consumer price index with all its parts(B i,1 ∆(m)LCPI
t −

k

3

(m)
 , 

k=0,1,2). 

From the estimated ECM equation (21) and by the results of Table A12, it is 

clear that the coefficient of error correction term(𝑢𝑡−1) has negative sign and it is 

statistically significant(p-value<0.05). Based on our results, we conclude that there is  

movement back of the real Palestinian GDP to the equilibrium relationship. This 

means that if the real Palestinian GDP exceeds the long-run equilibrium relationship, 

then the error-correction term will help to move the real GDP back to the original 

equilibrium. Also if real GDP is lower than the long-run equilibrium level, then the 

error-correction term will help to shift the real GDP toward the long-run equilibrium 

relationship.  

The estimated value of 𝑢𝑡−1 coefficient(𝛾 =-0.399158) implies that about 39.9% 

of the deviation between real GDP and the long-run equilibrium value is reduced 

every quarter, and the adjustment will take about two quarters and half 

(100/39.9=2.51). With respect to the impact on short-run, coefficient values of the 

differenced second-month based series and the differenced first-month based series of 

the cost of imports(∆(3)LCIM
t−

1

3

(3)
 and ∆(3)LCIM

t−
2

3

(3)
) provide the evidence that there is 

short-run effect of these monthly-based series on real Palestinian GDP. 

On the other hand, the differenced first-month based series has not effect on the 

short-run, because its coefficient is not significant based on the results on Table A11, 

and so it was eliminated from the ECM equation(21). From equation(21), it is 

concluded that on the short-run, we expect that the real GDP in each quarter will 

increase by 1.94% on the average when the cost of imports at the second month in 

that quarter increases by 10% with other factors are held constant. Also, we expect 

that the real GDP in each quarter will increase by 1.04% on the average when the cost 

of imports at the first month in that quarter increases by 10% with other factors are 

held constant. 

In summary, we have identified that there exists long-run equilibrium 

relationship between both Employment rate in Israel and settlements(EII) and the first 

lag of GDP and the real Palestinian GDP. Also, the real Palestinian GDP is affected 

by the second-month based series of the cost of imports in Palestine(𝐿𝐶𝐼𝑀
𝑡−

1

3

(3)
). The 

estimated cointegrating equation using U-MIDAS regression is(see TableA4): 
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  𝐿𝐺𝐷𝑃𝑡
(𝑄)

=  5.639 +  0.004 𝑡 +  0.368 𝐿𝐺𝐷𝑃𝑡−1
 𝑄 +  0.144 𝐿𝐸𝐼𝐼𝑡

(𝑄)
+

                         (0.219)𝐿𝐶𝐼𝑀
𝑡−

1

3

(3)
                                                                                 (22) 

We note that each variable in the long-run equation (22) causes the real GDP to 

increase. On the long-run, we expect that each ten  percentage increase in the cost of 

imports at the second month in each quarter will increase the quarterly real GDP by 

2.19% on the average with other variables are held constant. Also we expect that each 

ten percentage increase in the quarterly employment rate in Israel and settlements will 

increase the quarterly real GDP by 1.44% on the average with other variables are held 

constant. Similarly, we expect that the real GDP will increase by 3.68% on the 

average  for each 10% increasing of its first lag with other variables are held constant. 

Finally, it is concluded that the real GDP in Palestine is increasing by only 0.04% on 

the average through the time with other variables are held constant .
* 

Table (3) state out-of-sample (that is, part of  model estimation sample) 

forecasts of GDP for the quarters of the year 2012. The table compares these 

forecasts with the true observed values. The table shows smaller forecast errors when 

using MIDAS models(restricted and unrestricted) than when using Time-Averaging 

model. The absolute percentage errors in the forecasts of real GDP for these out of 

sample part when using U-MIDAS model is about 4.2% on the average, and it is 

lower than that by the other methods(for more details about MAPE see section 2.11).
 

Table (3): Quarterly out-of-sample forecasts of GDPt* 

Year : Quarter Observed 

U-MIDAS R-MIDAS Time-Averaging 

Forecast Error Forecast Error Forecast Error 

2012:Q1 1.602 1.564 0.038 1.556 0.045 1.548 0.054 

2012:Q2 1.755 1.605 0.150 1.603 0.151 1.584 0.171 

2012:Q3 1.708 1.707 0.001 1.690 0.018 1.669 0.039 

2012:Q4 1.733 1.630 0.103 1.643 0.090 1.623 0.110 

MAPE(out-of-sample) 4.2% 4.4% 5.4% 

*  values in $1000000. 

We used the estimated long-run relationship (22) to forecast the value of  the  

Palestinian real GDP at the first quarter in the year 2013(2013:Q1). The forecasted 

                                                           
*
 The data used in analysis were collected from Palestinian Central Bureau of Statistics(PCBS). 

   



47 
 

 
 

value was 1425043, comparing with the true value(1644800), we have 13% forecast 

error for the Palestinian real GDP at the first quarter in the year 2013. 

3.2 Discussion of Results and Conclusions 

The assumption of equal frequencies for all the variables is not always available 

or satisfied for the classical regression models. For example, in order to explore the 

impact of some factors on the Gross Domestic Product-the most important measure of  

a nation’s economic health- or for forecasting issues, we need all variables to be in 

the same frequencies. Economic variables are usually available with various or mixed 

frequencies(annually, quarterly, monthly…etc ); thus it is difficult to deal with these 

variables directly. The classical method is to take the simple average to convert high-

frequency variables(more frequently observed than the response) into fixed frequency 

variables, and to make them identical in frequencies with the low-frequency 

variable(less frequently observed than factors), which is assumed to be dependent or 

response. We introduced in this thesis a relatively recent method established by 

Ghysels, Santa-Clara and Valkanov(2004) that is Mixed Data Sampling (MIDAS) 

regression model. This method coincides the frequency of the response and the 

regressors, and also makes the application of common statistical procedures possible. 

We explained the features of MIDAS regressions which often outperform the typical 

approach of time aggregation in terms of estimation efficiency(less error 

variance)[32]. We saw that MIDAS regressions have two main types, unrestricted 

and restricted. The later characterized by diversity of parameterization methods in 

order to estimate the model coefficients, and it supports the parsimony principle 

which is important to simplify interpretations. 

The performance of the three approaches(Unrestricted MIDAS regression, 

Restricted MIDAS regression and the classical Time-Averaging regression) was 

assessed through modeling  the Palestinian GDP with some suggested factors that 

may affect it significantly. We compared between these approaches by constructing 

long-run relationships using the three methods. The aim was to know which one is 

the best for reducing forecasting errors. Our results showed that both U-MIDAS and 

R-MIDAS were better than the classical Time-Averaging method in reducing 

forecasting errors measured by the mean absolute percent error(MAPE) as shown 

from the Table(3), this result was compatible with many previous studies. Also, our 

results showed that U-MIDAS was better than R-MIDAS narrowly in reducing 

forecasting errors; because the difference between frequencies is not large(one 

quarter = three months)[6]. Moreover, we have seen that both U-MIDAS and R-

MIDAS approaches separate the high-frequency variable into several variables; Each 
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variable has the same frequency as the low-frequency response variable, then it 

assigns group of parameters or weights to them, we estimated the weights of the R-

MIDAS models in our case study using Exponential Almon Lag Polynomial by NLS 

method, also we estimated the coefficients of the U-MIDAS models in our case study 

using by OLS method. These approaches guarantees reserving the high-frequency 

information and gives clearer results than the classical Time-Averaging method. 

We have noticed all the benefits that mentioned previously by the results of the 

data analysis. The results showed that the monthly Consumer Price Index(CPI) has no 

significant impact on GDP, since each monthly series of CPI has no significant 

impact on GDP, but concerning the monthly Cost of Imports(CIM), the results were 

different. The CIM has significant impact on GDP; specifically the second-month-

based series of CIM, which means that the quarterly GDP in the long-run affected by 

its cost of imports in the second month computed in each quarter. Also, the results 

turned out that in the long-run, the quarterly GDP has increasing general trend and it 

is affecting by its first lag and the quarterly Employment Rate In Israel and 

Settlements, also, all these variables have positive impact on GDP. In the short-run, 

after estimating the equilibrium correction model; the results showed that the GDP in 

the short-run is affecting by the CIM; specifically by the second-month-based series 

and the first-month-based series of CIM. The speed of adjustment is about 40%; 

which means that we need about 7 months(2.5 quarter) to shift the real GDP toward 

the long-run equilibrium relationship with the CIM. All these results about the long-

run relationship and the short-run relationship  were consistent with the PMA 

studies[35,36,37,38]. 

Possibilities for future study include the application of  MIDAS approach in 

forecasting the real GDP of  Palestine for the period 1996 to 2000, because the GDP 

at that period is not available neither quarterly nor annually. Finally, other important 

topics related to time series analysis such as causality and disaggregation can be 

further introduced with MIDAS approach; specifically Granger causality and 

disaggregation using MIDAS regressions[26,39]. 
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Appendix A : Output Tables 

Table A1: Unit root test 

variable Frequency type ADF test p-value 
ADF test p-value 

for first difference 

GDP Quarterly 0.05469 0.01667 

EII Quarterly 0.2279 <0.01 

CPI0 Monthly 0.2336 0.04454 

CPI1 Monthly 0.3104 0.02248 

CPI2 Monthly 0.3837 0.0191 

CIM0 Monthly 0.482 <0.01 

CIM1 Monthly 0.02025 <0.01 

CIM2 Monthly 0.5246 <0.01 

Table A2: Results of Johansen's Cointegration Test* 

Trace test Test statistic 10% 5% 1% Results 

H0: r <= 4 , H1: r > 4 4.80 7.52 9.24 12.97 Fail to reject H0 

H0: r <= 3 , H1: r > 3 14.06 17.85 19.96 24.60 Fail to reject H0 

H0: r <= 2 , H1: r > 2 25.03 32.00 34.91 41.07 Fail to reject H0 

H0: r <= 1 , H1: r > 1 57.72 49.65 53.12 60.16 reject H0 

H0: r = 0 , H1: r > 0 108.46 71.86 76.07 84.45 reject H0 

Max-eigenvalue test Test statistic 10% 5% 1% Results 

H0: r <=4 , H1: r = 5 4.80 7.52 9.24 12.97 Fail to reject H0 

H0: r <= 3 , H1: r = 4 9.26 13.75 15.67 20.20 Fail to reject H0 

H0: r <= 2, H1: r = 3 10.97 19.77 22.00 26.81 Fail to reject H0 

H0: r <= 1 , H1: r = 2 32.69 25.56 28.14 33.24 reject H0 

H0: r = 0 , H1: r = 1 50.74 31.66 34.40 39.79 reject H0 

*  r is the number of cointegrating relationships. 

*variables: (gdp,eii,cim0,cim1,cim2). 
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Table A3: Estimation Results for Long-Run U-MIDAS Regression Equation (17) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 8.159787 2.885871 2.827 <0.01* 

Trend 𝛽𝑇  0.010546 0.006514 1.619 0.112433 

LGDPt-1 𝛽1 0.362917 0.089189 4.069 <0.01* 

LEII 𝛽2 0.141811 0.060549 2.342 0.023661* 

LCPI0 𝛽0,3 0.454766 1.429812 0.318 0.751911 

LCPI1 𝛽1,3 -2.59173 2.239979 -1.15 0.253363 

LCPI2 𝛽2,3 1.378244 1.429546 0.964 0.340142 

LCIM0 𝛽0,4 0.092053 0.068231 1.349 0.184046 

LCIM1 𝛽1,4 0.148495 0.061672 2.408 0.02021* 

LCIM2 𝛽2,4 0.0543 0.075718 0.717 0.477 

Residual 

standard 

error 

Multiple 

R-

squared 

Adjusted R-

squared 
F-statistic p-value 

0.05888 

0.9356 0.9227 

72.61 

2.2e-16 df df1 df2 

45 9 45 
Note: This table contains estimation results of the U-MIDAS regression equation (17) with 

trend variable with coefficient 𝛽𝑇 . The dependent variable is LGDP. 

Table A4: Estimation Results for Long-Run U-MIDAS Regression Equation (22) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 5.639495 1.017943 5.540 <0.001* 

Trend 𝛽𝑇  0.004340 0.001421 3.053 <0.001* 

LGDPt-1 𝛽1 0.368372 0.084775 4.345 <0.001* 

LEII 𝛽2 0.143993 0.051167 2.814 <0.01* 

LCIM1 𝛽1,4 0.219608 0.046672 4.705 <0.001* 

Residual 

standard 

error 

Multiple 

R-

squared 

Adjusted R-

squared 
F-statistic p-value 

0.05971 

0.9264 0.9205 

157.3 

2.2e-16 df df1 df2 

50 4 50 
Note: This table contains estimation results of the reduced form of the U-MIDAS regression 

equation (17) with trend variable with coefficient 𝛽𝑇 . The dependent variable is LGDP. 
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Table A5: Estimation Results for Long-Run R-MIDAS Regression Equation (15) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 8.486 2.933 2.893 <0.01* 

Trend 𝛽𝑇  1.073e-02 6.621e-03 1.620 0.112262 

LGDPt-1 𝛽1 3.346e-01 9.065e-02 3.691 <0.001* 

LEII 𝛽2 1.541e-01 6.154e-02 2.505 0.015949* 

LCPI0 𝛽3 -7.681e-01 5.935e-01 -1.294 0.202163 

LCPI1 𝜃1 -5.146e-01 2.044e+09 0.000 1.00000     

LCPI2 𝜃2 -2.421 6.814e+08 0.000 1.00000     

LCIM0 𝛽4 3.015e-01 7.273e-02 4.146 <0.001* 

LCIM1 𝜃3 1.734 3.676 0.472 0.639378 

LCIM2 𝜃4 -4.773e-01 9.755e-01 -0.489 0.627044 

Residual standard error df 

0.05984 45 
Note: This table contains estimation results of the R-MIDAS regression equation (15) with 

trend variable with coefficient 𝛽𝑇 . Started values used in NLS estimation method : 

(𝛽3 ,𝜃1 , 𝜃2) = (𝛽4 ,𝜃3 , 𝜃4) = (0, 0, 0). The dependent variable is LGDP. 

Table A6: Estimation Results for Long-Run R-MIDAS Regression Equation (15) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 8.279 3.589 2.307 0.0257* 

Trend 𝛽𝑇  1.027e-02 7.859e-03 1.307 0.1979 

LGDPt-1 𝛽1 3.383e-01 7.762e-02 4.359 <0.001* 

LEII 𝛽2 1.509e-01 5.671e-02 2.661 0.0108* 

LCPI0 𝛽3 -7.154e-01 7.574e-01 -0.945 0.3499 

LCPI1 𝜃1 -2.376e-01 1.835e+05 0.000 1.000000     

LCPI2 𝜃2 -1.309 6.112e+04 0.000 1.000000     

LCIM0 𝛽4 2.958e-01 6.848e-02 4.319 <0.001* 

LCIM1 𝜃3 2.802 3.095 0.906 0.3700 

LCIM2 𝜃4 -7.518e-01 8.830e-01 -0.851 0.3990 

Residual 

standard error 
df 

AGK test 

statistic/df 
p-value conclusion 

0.05975 45 0.3307/6 0.9993 Accept H0 : θ = 0 

Note: This table contains estimation results of the R-MIDAS regression equation (15) with 

trend variable with coefficient 𝛽𝑇 . Started values used in NLS estimation method were taken 

from the first estimated values: (𝛽3 , 𝜃1 , 𝜃2) = (-5.995e-01, -3.161e-01, -1.544), (𝛽4 , 𝜃3, 𝜃4) = 

(3.095e-01, 2.217, -5.910e-01). The dependent variable is LGDP. 
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Table A7: Estimation Results for Long-Run Time-Averaging Regression 

Equation (19) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 8.120633 2.630812 3.087 <0.01* 

Trend 𝛽𝑇  0.009919 0.005930 1.673 0.100748 

LGDPt-1 𝛽1 0.333306 0.083688 3.983 <0.001* 

LEII 𝛽2 0.147799 0.055264 2.674 0.010145* 

LCPI 𝛽3 -0.711832 0.539911 -1.318 0.193491 

LCIM 𝛽4 0.314057 0.064613 4.861 <0.001* 

Residual 

standard 

error 

Multiple 

R-squared 

Adjusted R-

squared 
F-statistic p-value 

0.05749 

0.9331 0.9263 

136.7 

2.2e-16 df df1 df2 

49 5 49 
Note: This table contains estimation results of the Time-Averaging regression equation (19) 

with trend variable with coefficient 𝛽𝑇 . The dependent variable is LGDP. 

Table A8: Estimation Results for Long-Run Time-Averaging Regression 

(reduced form of Equation (19)) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝛽0 4.913330 1.008993 4.870 <0.001* 

Trend 𝛽𝑇  0.002378 0.001576 1.509 0.137661 

LGDPt-1 𝛽1 0.330878 0.084283 3.926 <0.001* 

LEII 𝛽2 0.119393 0.051266 2.329 0.023946* 

LCIM 𝛽4 0.330163 0.063914 5.166 <0.001* 

Residual 

standard 

error 

Multiple 

R-

squared 

Adjusted R-

squared 
F-statistic p-value 

0.05791 

0.9307 0.9252 

168 

2.2e-16 df df1 df2 

50 4 50 
Note: This table contains estimation results of the reduced form of the U-MIDAS regression 

equation (19) with trend variable with coefficient 𝛽𝑇 . The dependent variable is LGDP. 
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Table A9: Unit root test for Error Correction Term 𝒖𝒕 

Method ADF test p-value PP test p-value 

U-MIDAS 0.03943 <0.01 

Time-Averaging 0.07439 <0.01 

R-MIDAS 0.04703 <0.01 
Note: This table contains Augmented Dickey–Fuller(ADF) test and Phillips-Perron(PP) 

test results of the estimated residuals term 𝒖 𝒕 resulted by the reduced forms of the U-MIDAS 

and Time-Averaging regressions. 

Table A10: Estimation Results for Short-Run ECM-RMIDAS Equation (16) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝑐 -0.14864 0.25114 -0.592 0.556968 

𝒖𝒕−𝟏 𝛾 -0.35123 0.12667 -2.773 <0.01* 

LGDPt-1 𝛼1 0.01187 0.01774 0.669 0.506955 

 ∆(𝑄)LEII 𝛼2 0.04109 0.05712 0.719 0.475792 

∆(𝑚)LCPI 

𝐵1 -1.53490 0.66262 -2.316 0.025255* 

𝜃5 0.15474 30.86770 0.005 0.996023 

𝜃6 0.18553 6.87614 0.027 0.978596 

∆(𝑚)LCIM 

𝐵2 0.31570 0.08905 3.545 <0.001* 

𝜃7 4.66255 3.92171 1.189 0.240853 

𝜃8 -1.12753 0.90617 -1.244 0.219983 

Residual 

standard 

error 

df 
AGK test 

statistic/df 
p-value conclusion 

0.05558 44 0.4917/6 0.9979 Accept H0 : θ = 0 

Note: This table contains estimation results of the ECM-RMIDAS-based equation (16). 

Started values used in NLS estimation method: (𝐵1 , 𝜃5 , 𝜃6) =  (𝐵2 , 𝜃7, 𝜃8) = (0, 0, 0). The 

dependent variable is ∆(𝑄)LGDP. 

  

  



54 
 

 
 

Table A11: Estimation Results for Short-Run ECM-UMIDAS Equation (18) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝑐 -0.16068 0.53923 -0.298 0.7671 

𝒖𝒕−𝟏 𝛾 -0.35056 0.14740 -2.378 0.0218* 

LGDPt-1 𝛼1 0.01271 0.03857  0.329 0.7434     

 ∆(𝑄)LEII 𝛼2 0.04145 0.05256 0.789 0.4346     

∆(𝑚)LCPI0 𝐵0,1 0.10126 0.97738 0.104 0.9180     

∆(𝑚)LCPI1 𝐵1,1 -0.82621 1.46904 -0.562 0.5767     

∆(𝑚)LCPI2 𝐵2,1 -0.76059 1.05557 -0.721 0.4750     

∆(𝑚)LCIM0 𝐵0,2 0.04761 0.06563 0.725 0.4720  

∆(𝑚)LCIM1 𝐵1,2 0.19154 0.04155 4.610 <0.001* 

∆(𝑚)LCIM2 𝐵2,2 0.06785 0.05395 1.258 0.2151  

Residual 

standard 

error 

Multiple 

R-squared 

Adjusted R-

squared 
F-statistic p-value 

0.0555 

0.6146 0.5357 

7.795 

9.396e-07 df df1 df2 

44 9 44 
Note: This table contains estimation results of the ECM-UMIDAS-based equation (18). The 

dependent variable is ∆(𝑄)LGDP.    

Table A12: Estimation Results for Short-Run ECM-UMIDAS Equation (21) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝑐 0.002212 0.007489 0.295 0.76895 

𝒖𝒕−𝟏 𝛾 -0.399158 0.132621 -3.010 <0.01* 

∆(𝑚)LCIM1 𝐵1,2 0.193961 0.040016 4.847 <0.001* 

∆(𝑚)LCIM2 𝐵2,2 0.104397 0.042225 2.472 0.01687* 

Residual 

standard 

error 

Multiple 

R-squared 

Adjusted R-

squared 
F-statistic p-value 

0.0549 

0.5715 0.5458 

22.23 

2.76e-09 df df1 df2 

50 3 50 
Note: This table contains estimation results of the reduced form of the ECM-UMIDAS-

based equation (18). The dependent variable is ∆(𝑄)LGDP.   
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Table A13: Estimation Results for Short-Run ECM-Time-Averaging Equation 

(20) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝑐 -0.070002 0.533555 -0.131 0.8962 

𝒖𝒕−𝟏 𝛾 -0.284815 0.140779 -2.023 0.0486* 

LGDPt-1 𝛼1 0.006112 0.038163 0.160 0.8734 

 ∆(𝑄)LEII 𝛼2 0.044597 0.042387 1.052 0.2980 

∆(𝑄)LCPI 𝐵1 -1.423650 0.806855 -1.764 0.0840 

∆(𝑄)LCIM 𝐵2 0.373267 0.058953 6.332 <0.001* 

Residual 

standard 

error 

Multiple 

R-squared 

Adjusted R-

squared 
F-statistic p-value 

0.05511 

0.5855 0.5423 

13.56 

2.952e-08 df df1 df2 

48 5 48 
Note: This table contains estimation results of the ECM-Time-Averaging -based equation 

(20). The dependent variable is ∆(𝑄)LGDP. 

Table A14: Estimation Results for Short-Run ECM-Time-Averaging (reduced 

form of Equation (20)) 

variable parameter Estimate Std. Error t value Pr(>|t|) 

Intercept 𝑐 0.0009689 0.0076079 0.127 0.899 

𝒖𝒕−𝟏 𝛾 -0.3348287 0.1329698 -2.518 0.015 *   

∆(𝑄)LCIM 𝐵2 0.4125951 0.0539719 7.645 <0.001* 

Residual 

standard 

error 

Multiple 

R-squared 

Adjusted R-

squared 
F-statistic p-value 

0.05569 

0.5502 0.5325 

31.19 

1.421e-09 df df1 df2 

51 2 51 
Note: This table contains estimation results of the reduced form  of the ECM-Time-

Averaging -based equation (20). The dependent variable is ∆(𝑄)LGDP.    
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Appendix B : Time Series Plots 
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Appendix C : Testing The Flat Aggregation Scheme(AGK test) 

When researchers follow a MIDAS regression approach, It is interested  to 

examine whether estimating MIDAS regression does not differ from time-averaging 

aggregation. For example in Exponential Almon Lag weights, when all parameters 

(θ′s) equal zero, this implies to use time-averaging since all weights will be equal. 

Andreou, Ghysels and Kourtellos(2007) suggested to use simple Lagrange multiplier 

chi square test to examine the H0 : θ = 0. The test statistic LM could be written as the 

following: 

𝑳𝑴 = 𝒏
𝑺𝑺𝑬𝑻𝑨−𝑺𝑺𝑬𝑴

𝑺𝑺𝑬𝑻𝑨

𝒅
 𝝌𝟐(𝒓) 

Where SSETA  is the sum of squared errors from the linear regression based on 

Time-Averaging method, and SSEM  is the sum of squared errors based on MIDAS 

regression, r is the number of aggregated high-frequency variables and n is the 

number of low-frequency observations, this test also called Andreou, Ghysels, 

Kourtellos(AGK) LM test[32]. 
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Appendix D : The R-Codes Used In Analysis 

#***********************plotting figure(1) in section 3.1****************** 

data("USunempr") 

data("USrealgdp") 

USunempr 

USrealgdp 

plot(USrealgdp, main="Figure(1): Yearly GDP and Monthly Unemployment Rates") 

plot(USunempr) 

#***********************plotting figure(3) in section 3.5****************** 

library(ggplot2) 

library(reshape2) 

library(midasr) 

y1=nealmon(c(1,0.01,-0.0025), 20, m) 

y2=nealmon(c(1,0.01,-0.0099), 20, m) 

y3=nealmon(c(1,0.099,-0.0099), 20, m) 

t=1:20 

df <- data.frame(t,y1,y2,y3) 

ggplot(df, aes(t)) +                   # basic graphical object 

  geom_line(aes(y=y1), colour="red", size=(1)) +  # first layer 

  geom_line(aes(y=y2), colour="green", size=(1))+ 

  geom_line(aes(y=y3), colour="black", size=(1))+ 

  ylab("Weight on Lag")+ xlab("Lag")+ 

  ggtitle("Figure(3): Exponential Almon Polynomial Weighting 

Function") 

#plot(y1) #may need to execute before the next lines 

legend("topright", title = "parameter values", 

legend=c("theta1=0.01, theta2=-0.0025", 

"theta1=0.01, theta2=-0.0099", 

"theta1=0.099, theta2=-0.0099"), # puts text in the legend  

lwd=c(2,2,2),col=c("red","green","black")) 

#***********************Calling Libraries***************** 

library(TSA) 

library(tseries) 

library(zoo) 

library(lmtest) 

library(MASS) 

library(numDeriv) 

library(sandwich) 

library(strucchange) 

library(urca) 

library(vars) 

library(midasr) 
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#***********************Calling Data and Checks***************** 

th1 = read.csv("qd.csv", header=T, sep=";" ) 

attach(th1) 

th2 = read.csv("md.csv", header=T, sep=";" ) 

attach(th2) 

gdp=th1$gdp 

eii=th1$eii 

cpi=th2$cpi 

cim=th2$cim 

b1=BoxCox.ar(gdp) 

b1$ci# 1 

b1=BoxCox.ar(eii) 

b1$ci # -0.5 close to 0 

b1=BoxCox.ar(cpi) 

b1$ci# 0 i.e. log 

b1=BoxCox.ar(cim) 

b1$ci# 0.3 close to zero 

lgdp=log(gdp) 

leii=log(eii) 

lcpi=log(cpi) 

lcim=log(cim) 

adf.test(lgdp, k=4)# not stationary 

adf.test(leii)# not stationary 

adf.test(lcpi)# not stationary 

adf.test(lcim)# not stationary 

adf.test(diff(lgdp))# stationary 

adf.test(diff(leii))# stationary 

adf.test(diff(lcpi))# stationary 

adf.test(diff(lcim))# stationary 

lgdpfl=zlag(lgdp) 

set.seed(1001) 

## Number of low-frequency observations 

n <- 56 

## Linear trend and higher-frequency explanatory variables 

## (quarterly and monthly) 

trend <- c(1:n) 

## ********Fitting RMIDAS******************** 

eq.r <- midas_r(lgdp ~ trend + lgdpfl + leii + 

mls(lcpi, 0:2, 3, nealmon) + 

mls(lcim, 0:2, 3, nealmon), 

start = list(lcpi = c(0, 0, 0),lcim = c(0, 0, 0))) 

summary(eq.r) 

r=resid(eq.r) 
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adf.test(r, k=2)# stationary 

pp.test(r) 

midas_coef(eq.r) 

agk.test(eq.r)# the test accept H0 i.e. all thetas are zero 

hAh.test(eq.r)#the test rject H0 i.e. the restriction not hold 

# i.e. wi(weights) not equal b(k;theta)(nealmon) 

#starting values taken from the preveous summary 

eq.r <- midas_r(lgdp ~ trend + lgdpfl + leii + 

mls(lcpi, 0:2, 3, nealmon) + 

mls(lcim, 0:2, 3, nealmon), 

start = list(lcpi = c(-5.995e-01, -3.161e-01, -1.544e+00), 

lcim = c(3.095e-01, 2.217e+00, -5.910e-01))) 

summary(eq.r) 

r=resid(eq.r) 

adf.test(r, k=2)# stationary 

pp.test(r) 

midas_coef(eq.r) 

agk.test(eq.r)# the test accept H0 i.e. all thetas are zero 

hAh.test(eq.r)#the test rject H0 i.e. the restriction not hold 

# i.e. wi(weights) not equal b(k;theta)(nealmon) 

eq.r$opt 

## ********Fitting UMIDAS******************** 

eq.u <- lm(lgdp ~ trend + lgdpfl + leii +  

mls(lcpi, k = 0:2, m = 3) + 

mls(lcim, k = 0:2, m = 3)) 

summary(eq.u) 

r=resid(eq.u) 

adf.test(r, k=2) 

pp.test(r) 

# the same as lm 

eq.u3 <- midas_u(lgdp ~ trend + lgdpfl + leii +  

mls(lcpi, k = 0:2, m = 3) + 

mls(lcim, k = 0:2, m = 3)) 

summary(eq.u3) 

#reduced form cpi eleminated 

eq.u <- lm(lgdp ~ trend + lgdpfl + leii +  

mls(lcim, k = 1:1, m = 3)) 

summary(eq.u) 

r=resid(eq.u) 

adf.test(r, k=2) 

pp.test(r) 

 

## ********Fitting Time-Averaging Model******************** 
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th= read.csv("ffd.csv", header=T, sep=";" ) 

attach(th) 

gdp=th$gdp 

eii=th$eii 

cpi=th$cpi 

cim=th$cim 

lgdp=log(gdp) 

leii=log(eii) 

lcpi=log(cpi) 

lcim=log(cim) 

# all these variables were tested and are I(1) 

set.seed(1001) 

## Number of low-frequency observations 

n <- 56 

## Linear trend and higher-frequency explanatory variables 

## (quarterly and monthly) 

trend <- c(1:n) 

lgdpfl=zlag(lgdp) 

eq.u <- lm(lgdp ~ trend + lgdpfl + leii + lcpi + lcim) 

summary(eq.u) 

# reduced form cpi eliminated 

eq.u <- lm(lgdp ~ trend + lgdpfl + leii + lcim) 

summary(eq.u) 

r=resid(eq.u) 

adf.test(r, k=2) 

pp.test(r) 

## ********Cointegration Tests******************** 

cim2=th$cim2 

adf.test(gdp) 

adf.test(eii) 

adf.test(cpi0) 

adf.test(cpi1) 

adf.test(cpi2) 

adf.test(cim0) 

adf.test(cim1) 

adf.test(cim2) 

adf.test(diff(gdp)) 

adf.test(diff(eii)) 

adf.test(diff(cpi0)) 

adf.test(diff(cpi1)) 

adf.test(diff(cpi2)) 

adf.test(diff(cim0)) 

adf.test(diff(cim1)) 
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adf.test(diff(cim2)) 

data2=cbind(gdp,eii,cpi0,cpi1,cpi2,cim0,cim1,cim2) 

summary(ca.jo(data2,type="trace",ecdet="const")) 

summary(ca.jo(data2,type="eigen",ecdet="const")) 

#results at most 3 cointegration equations 

# results after eliminating cpi0, cpi1, cpi2 

data2=cbind(gdp,eii,cim0,cim1,cim2) 

summary(ca.jo(data2,type="trace",ecdet="const")) 

summary(ca.jo(data2,type="eigen",ecdet="const")) 

## ********Fitting ECM Models******************** 

th3 = read.csv("diffqd.csv", header=T, sep=";" ) 

attach(th3) 

th4 = read.csv("diffmd.csv", header=T, sep=";" ) 

attach(th4) 

dlgdp=th3$dlgdp 

flut=th3$flut 

lgdpfl=th3$lgdpfl 

dleii=th3$dleii 

dlcpi=th4$dlcpi 

dlcim=th4$dlcim 

#rmidas ECM 

eq.r <- midas_r(dlgdp ~ flut + lgdpfl + dleii + 

mls(dlcpi, 0:2, 3, nealmon) + 

mls(dlcim, 0:2, 3, nealmon), 

start = list(dlcpi = c(0, 0, 0), 

dlcim = c(0, 0, 0))) 

summary(eq.r) 

midas_coef(eq.r) 

agk.test(eq.r)# the test accept H0 i.e. all thetas are zero 

hAh.test(eq.r)#the test rject H0 i.e. the restriction not hold 

# i.e. wi(weights) not equal b(k;theta)(nealmon) 

eq.r$opt 

# full ECM by U-MIDAS 

eq.u <- midas_u(dlgdp ~ flut + lgdpfl + dleii + 

mls(dlcpi, 0:2, 3, nealmon) + 

mls(dlcim, 0:2, 3, nealmon)) 

summary(eq.u) 

# reduced ECM by U-MIDAS 

eq.u <- midas_u(dlgdp ~ flut +  

mls(dlcim, 1:2, 3, nealmon)) 

summary(eq.u) 

 

# full ECM by time-averaging 
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th5 = read.csv("ffd_ecm.csv", header=T, sep=";" ) 

attach(th5) 

dlgdp=th5$dlgdp 

flut=th5$flut 

lgdpfl=th5$lgdpfl 

dleii=th5$dleii 

dlcpi=th5$dlcpi 

dlcim=th5$dlcim 

eq.a <- lm(dlgdp ~ flut + lgdpfl + dleii + 

dlcpi + dlcim) 

summary(eq.a) 

# reduced ECM by time-averaging 

eq.a <- lm(dlgdp ~ flut +  

dlcim) 

summary(eq.a) 

## ********Forecasting******************** 

th1 = read.csv("qd.csv", header=T, sep=";" ) 

attach(th1) 

th2 = read.csv("md.csv", header=T, sep=";" ) 

attach(th2) 

gdp=th1$gdp 

eii=th1$eii 

cpi=th2$cpi 

cim=th2$cim 

lgdp=log(gdp) 

leii=log(eii) 

lcpi=log(cpi) 

lcim=log(cim) 

lgdpfl=zlag(lgdp) 

fulldata <- list(lgdp=lgdp, leii=leii, lcpi=lcpi, lcim=lcim, 

cim=cim, lgdpfl=lgdpfl, trend=1:56) 

avgf <- average_forecast(list(eq.u, eq.r, eq.ta), 

data=fulldata, 

insample=1:52,outsample=53:56, 

type="fixed", 

measures=c("MSE","MAPE","MASE"), 

fweights=c("EW","BICW","MSFE","DMSFE")) 

avgf 

newdata <- list(leii=leii[56], lcim=c(lcim[54],lcim[55],lcim[56]), 

lgdpfl=lgdp[56], trend=57) 

nf=forecast(eq.u, newdata = newdata) 

exp(nf) 
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