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Abstract

In the case of using classical linear regression models for time series,
researchers usually deal with equal frequencies for all the variables. They cannot
directly apply such models to a mixed-frequency dataset. The Mixed Data Sampling
(MIDAS) regression models deal with this type of data; typically the economic
indicators from those observed daily, monthly, quarterly to those yearly. In this study,
we introduce MIDAS regression approach which is relatively assumed as a new area.
We will explain its ability of dealing with mixed frequency data, and its efficiency of
improving parameters estimation and forecasting performance in the presence of
extreme observations. To the best of author’s knowledge, this is the first research that
examines the relationship between the real GDP in Palestine and other indicators
using MIDAS regressions. The classical temporal aggregation method is compared
to the two types of MIDAS regressions; the restricted and the unrestricted, to build
both long-run and short-run relationships. The study results exhibited that both U-
MIDAS and R-MIDAS were better than the classical Time-Averaging method in
reducing forecasting errors.

The results exhibited that the quarterly Palestinian GDP in the long-run affected
by its cost of imports in the second month computed in each quarter, also, the
quarterly GDP has increasing general trend and affected by its first lag and the
quarterly Employment Rate In Israel and Settlements, and all these variables have
significant positive relationship with GDP. In the short-run, the results showed that
the quarterly Palestinian GDP is affecting by the second-month and the third-month
of the cost of imports of Palestine.
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Chapter 1 : Introduction

1.1 Background

The analysis of time series data is a pivotal issue. The most of time series are
economic or financial variables that affect and are affected by each other. Studying
such variables is with a great deal of importance. Both economic and financial
variables give us information about the economic level that was reached by any
country. Studying such variables help to investigate the effects caused by some
indicators on the economic activity in general, then to assist the decision making
process.

In order to study the relationships between these variables, the most efficient
widely used method is to build regression models. Regression models of time series
variables can be univariate or multivariate models. The univariate models investigate
the relationship between the variable and itself; in other words, with its time
delays(lags) like Autoregressive Integrated Moving Averages(ARIMA) models. From
the other hand, the multivariate models investigate the relationship between
dependent (response) variable and independent variables(indicators or predictors).
Multivariate regression models may investigate the effect of response lags with other
predictors on the response, so in this case the model is called autoregressive model.

In building model stage, it is supposed that data(dependents or independents)
are frequency-unified or have fixed frequency; this means that each observation of
the dependent variable is matched with an observation of the independent variable/s;
in other words, each observation of the dependent corresponding to an observation of
the independent/s. In this case, it is simply possible to build regression models to
investigate the relationship between these variables. Let's suppose that the gross
domestic product(GDP) and the cost of imports(CIM) in Palestine are computed
monthly by the Palestinian Central Bureau of Statistics; in this case each observation
of GDP corresponds to an observation of CIM; the GDP in January is matched with
the CIM in January; also, the GDP in February is matched with the CIM in February,
and so on for the rest of months and years. So we can easily construct regression
model to investigate the relationship between the GDP as dependent (response) and
the CIM as independent(predictor).

In fact, most of research and statistics centers in the world cannot provide
monthly information about GDP, but they can for CIM. They can just provide
quarterly information about GDP, so in this case we have economic variables with
different frequencies(mixed frequencies). The GDP has quarterly frequency



observations, but the CIM has monthly frequency observations. It is clear that the
frequency of the CIM observations is larger than the frequency of the GDP
observations. We call the GDP as low-frequency variable and the CIM as high-
frequency variable. We can imagine such mixed frequency data(mixed-data-sampled)
as a mixture of observed and missing data; each monthly observation of CIM does
not have corresponding observation of GDP since the GDP is quarterly sampled. So
the form of data can be imagined by thinking of availability of CIM observations as
three times per quarter. In the first quarter of any year, the observation of CIM in
January has no corresponding observation of GDP in January; also the observation of
CIM in February has no corresponding observation of GDP in February, but the
observation of CIM in March has corresponding observation of GDP in March. So we
have two missing observations of GDP in both January and February but not in
March, whereas there are no missing observations of CIM in the three months. In the
same way we have missing observations of GDP in both April and May but not in
June, whereas there are no missing observations of CIM in the three months in the
second quarter, and so on for the rest of months and quarters of the year.

Sometimes, economic and financial data and variables are available only on an
annual basis. For example if we assume that the GDP is sampled annually in the end
of each year, and the CIM is sampled monthly; so in this case, we have eleven
missing observations of GDP from January to November; while the CIM
observations are available completely for the twelve months in that year. So the
question that arises here is how can we investigate the relationship between variables
that are sampled with mixed frequencies like the GDP as dependent and the CIM as
independent?.

The availability of data sampled at different frequencies always presents a
problem for researchers working with time series data. If one deleted all cases
containing the missing observations, then he would lose much important information,
because variables that are available at high frequency contain potentially valuable
information[1,4]. The simplest idea that comes into mind after that is to aggregate the
high-frequency observations by taking the average of them, and then, the high-
frequency variable becomes as the low-frequency variable. For instance, taking the
average of the three monthly observations of the CIM in each quarter to get one
averaged observation matched with the quarterly observation of the GDP; but it is
clear, by this way that we assign the same importance level for the partitions of the
high-frequency variable. Therefore, we lose important monthly information, and the
results of the analysis will be less accurate[18].



The previous explanations can be summarized by aggregating the high-
frequency observations like the monthly observations of the CIM series, and
converting it into a quarterly observations to be matched with the quarterly GDP data.
Instead of this method, the common solution in such cases is to estimate missing
observations of the low-frequency variable like the quarterly GDP. This can be done
by using the Kalman filter process, and these subjects are outside the framework of
this thesis[4,8,10,18]. Nowadays, Some scientists have proposed methods which can
deal with variables sampled at different frequencies such as monthly and quarterly
data. Such methods have many advantages and properties comparing with old and
common methods had known. We call these methods Mixed Data Sampling(MIDAS)
Regressions.

1.2 Literature Reviews

We Always find statisticians interested in getting good properties and
improvement on estimations that can be yielded by traditional high level methods
such as ARIMA and regression models that deal with time series data. Ghysels,
Santa-Clara and Valkanov in 2004 have recently proposed regression models that
directly accommodate variables that are sampled at different frequencies. These
regression models combining for example monthly and quarterly data together, or
quarterly with annually data. Their Mixed Data Sampling — or MIDAS — regressions
represent simple, parsimonious, and flexible class of time series models. They
showed that their MIDAS regressions will always lead to more efficient(less error-
variance) estimation than the classical approach that aggregate all series to be in the
same frequencies.

Ghysels, Santa-Clara and Valkanov[1] used many functional forms dealing
with few number of parameters in order to estimate MIDAS models. They examined
the asymptotic properties of MIDAS regression estimation, and they discussed
challenging econometric issues. Clements and Galvao[5, 22] investigated whether the
MIDAS approach of Ghysels can be successfully adapted to the short term
forecasting of output growth, given that it has been used for forecasting financial
variables with daily observations. They extended the distributed lag MIDAS
specification to include an autoregressive term (the MIDAS-AR). Sinko[2] discussed
two lag parameterizations of MIDAS regressions; the Exponential Almon and Beta.
He introduced several new MIDAS specifications that include more general mixed-
data structures of unequally spaced observations. Klaus[4] in his thesis compared the
forecasting success of two new mixed-frequency time series models: the mixed-
frequency VAR and the MIDAS approach. During his work, he outlined the data



generating processes (DGP) that have been used for model comparisons. Klaus listed
some conclusions about model specification of mixed-frequency time series models.
Due to him, forecast performance, lag length selection and restrictions of the
weighting functions in the MIDAS framework are interrelated. He concluded that
whether the weighting functions should be restricted or not, depends on the data
structure.

Andreou, Ghysels and Kourtellos[8] covered MIDAS regressions and the
relationship with the Kalman filter. They discussed DL-MIDAS(Distributed Lag
Mixed Data Sampling) models with autoregressive high-frequency predictors.
Armesto, Engemann and Owyang[18] compared between Time- Aggregation
techniques which include Time-Averaging, Step Weighting and MIDAS regressions.
They also offered some forecasting issues such as the End-Of-Period forecasting and
the Intra-Period forecasting. Miguel[20] introduced robust procedure that pre-cleans
the data by exponential smoothing before the MIDAS regression constructed. His
results showed that in the presence of outliers, utilizing the robust version of
exponential smoothing to clean the contaminated dataset prior to use MIDAS reduces
forecast errors consistently. Chen and Tsay[9] presented a generalized autoregressive
distributed lag (GADL) model in order to conduct regression estimations that involve
mixed-frequency data. They offer comparisons between the relative performance of
the OLS-based GADL specifications and the NLS-MIDAS(Nonlinear Least Squares
Mixed Data Sampling models). Foroni, Marcellino and Schumacher[6] discussed the
unrestricted MIDAS(U-MIDAS) models based on a simple linear lag polynomial.
They showed that U-MIDAS work better than MIDAS method if the differences in
sampling frequencies are small.

Goetz, Hecq and Urbain[21] proposed in their paper, mixed frequency error
correction model in order to model non-stationary variables that are possibly co-
integrated. Foroni, Marcillino & Shumacher[3] studied the performance of MIDAS
models which does not depend on the functional distributed lag polynomials. They
compared U-MIDAS models with MIDAS models, and they showed that U-MIDAS
performs better than MIDAS in the case of small differences in sampling frequencies.
Foroni & Marcillino[3] showed by simulation experiments and actual data, that the
use of mixed-frequency data, combined with a proper estimation approach, can
alleviate the temporal aggregation bias, mitigate the identification issues, and yield
more reliable policy conclusions. Foroni and Marcellino[7] clarified that MIDAS
models appear to be more robust than bridge equation models and the state-space
approaches in miss-specification, and computationally simpler.



On the empirical side, Shi[17] studied the effect of lag numbers on MIDAS
regressions. He concluded that there exists seasonal effect of the lag numbers in
different horizons. He noted that the out-of -sample and in-sample results of realized
volatility(RV) and realized absolute volatility(RAV) are quite similar, but in
sometimes, out-of sample performs better. Shi stated several findings from
predictability of daily to monthly realized volatility of Chinese market.
Asimakopoulos, Paredes and Warmedinger[19] concentrated on forecasting annual
budgetary executions and their subcomponents issues. They assessed the effect of
intra-annual fiscal data on the annual outturn of disaggregated series. They employed
MIDAS approach to analyze mixed frequency fiscal data. They concluded that timely
and good quality data are powerful tools to improve forecasts.

1.3 Problem And Methodology

In this thesis, we will study the problem of specifying the factors affect the
Palestinian Gross Domestic Product(GDP) which is sampled quarterly, where some
of these probable factors are sampled monthly and the others are sampled quarterly,
and we will forecast the future quarterly real GDP using these mixed sampled data
using MIDAS regression approach without resorting to fix data frequencies or
dealing with missing data.

The MIDAS approach may relate the observations of the low-frequency
variable to the lagged observations of the high-frequency variable by distributed lag
functions. The proper choice of the functional form, such as the exponential
distributed lag polynomial, allows assigning few number of parameters to large
number of lags in order to obtain a parsimonious model which implies to simply
interpretation of results[18]. As an alternative to such parameterization, we will
discuss an unrestricted MIDAS(U-MIDAS), based on a simple linear lag polynomial.
This specification has the advantage of a higher flexibility compared to the functional
lag polynomials in the standard MIDAS approach[18]. However, U-MIDAS has
disadvantage that it need to estimate a lot of parameters if the lag order is large, this
leads to difficulty of interpretations. On the other hand, U-MIDAS can be helpful
when differences in sampling frequencies are small[6]. For example, monthly-
quarterly data; such as if quarterly GDP should be related to monthly cost of imports,
and generally a small number of lags is necessary to capture the dynamic relations.

We will explain some models, and other methods will be discussed in the study;
such as the usage of MIDAS regressions in building Cointegrating relationships, and
the equilibrium (error) correction models, in order to study long-run and short-run



relationships between variables. We will improve the discussion of all topics by
applications and examples supported by data tables, reports and summaries that can
expand our understanding of the subject.

In next sections, we discuss simple time-averaging, step-weighting function(U-
MIDAS), and the restricted MIDAS regressions(R-MIDAS). We will compare
between these methods by modeling Palestinian GDP on some important factors
using the three methods. We will use MIDAS regressions to forecast the future value
of quarterly Palestinian GDP. The main model in this study is defined as:

m—1
LGDP = By + it + BLGDPY + B, LEII@ + g Bra LCPIM™) +
k=0 t—m

mlBis LCIMt(r_"L? +u,

m

Where:

LGDPt(Q): the log of the Quarterly Gross Domestic Product as low-frequency
Variable.

t: time as low-frequency Variable.

LGDPt(fgl) : the log of the first lag of the Quarterly Gross Domestic Product as
low-frequency Variable.

LEIIt(Q): the log of the Quarterly Employment in Israel and Settlements as low-
frequency Variable.

LCPIt(Q: the log of the Monthly Consumer Price Index as high-frequency
Variable.

LCIM:TL?: the log of the Monthly Cost of Imports as high-frequency Variable.

u,. is the white Noise Process(independent identically distributed random
variables with zero mean and constant variance).

Finally, we will use the same frequencies of the high-frequency Variables that
are monthly, we will not use weekly or daily high-frequency Variables.



Chapter 2 : MIDAS Regressions

2.1 The Forecasting Environment And Notations

The problem of mixed sampling frequencies is exemplified in Figure (1) which
shows quarterly real GDP and monthly cost of imports for the period 1999 to 2012".
From the figure, we note that monthly cost of imports observations fluctuate between
quarterly GDP observations(monthly observations are more concentrated through
quarterly observations into the same time period)[18].

Figure(1):Quarterly Real GDP & Monthly Cost Of Imports
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When comparing across modeling environments, it is important to use common
notations. In the econometric procedures that we will follow, our objective is to
forecast a lower-frequency variable (y); sampled at periods denoted by time index t.
Past realizations of the lower-frequency variable are denoted by the lag operator, L.

*
The data used in plotting figure(1) were collected from Palestinian Central Bureau of
Statistics(PCBS).



For example, if y is the quarterly GDP, then the GDP one quarter prior would be the
first lag of v, , Ly, = v, , two quarters prior would be L?y, = y,_, , and so on. In
addition, we are interested in the information contents of the higher-frequency
variable x which is sampled m times between the sample periods of y (between t—1

k
and t), so we will denote to x as xt(m) . Lm denotes the lag operator for the higher-

frequency variable. If xt(m) is the monthly cost of imports used to forecast quarterly

k
GDP denoted by y,, then Lm xt(m) = xt(:n()i ) denotes the cost of imports of the k'th

m

previous month in the same quarter[18].

Figure(2): Forecast Time Line
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Figure (2) represents the forecast timeline, which for simplicity shows one-
period-ahead forecasts. Assume that at time t we are interested in forecasting y.,q
(the circled observation on the timeline). Standard forecasting experiments would use
data available up to time t; this is depicted in the dashed section of the timeline. The
dotted section of the timeline depicts information that becomes available during the
t+1 period; which is called leads, these information may be relevant for forecasting
Yi41- Using MIDAS methods, we can perform intra-period forecasting experiments
using both data specified in the dashed section and that in the dotted section[18].

2.2 Data Form

Before modeling high and low frequency data, it is important to know how is
the form of these variables. Table (1) illustrates the mixed data scheme by the help of
the quarterly-monthly example. In the quarterly-monthly mixed data, we have (m=3),
that is we have three observations of the high-frequency variable between the period
t-1 and t. For two years, we have (n=24) monthly high-frequency observations of x
(12 in each year), and we have (T=8) quarterly low-frequency observations of y (4 in
each year), so we have n=m*T=3*8=24 known observations of x and only 8 known
observations of y. If we assumed that the first observation of x represents the value of



CIM(Cost of Imports) in January/1999 (x“) ) then the third observation of x, which

2
1=

represents the value of CIM in March/1999 (xf)), will correspond to the first
observation of y which represents the value of GDP in the first quarter (y,), and so
on. For monthly-daily data, we have (m=22) assuming fixed number of days per
month, and we can generalize the same data scheme or form for monthly-daily,
annually-quarterly or any other form. The following table shows quarterly-monthly

data structure.

Table (1): Quarterly-Monthly Data Structure for two years(1999-2000)

First month | Second month | Third month
t Year/Quarter xET)— xff") Ve
m
1| 1999/(fi x? ®
(first quarter) 1_% xX;7'=%xq Y1
J(second x? ®
2 1999/(second quarter) 2-2 X, =X Y2
3 | 1999/(third quarter) x%, 3
q 3_§ X3 "=X3 Y3
fourth x? 3
4 1999/(fourth quarter) 4_% X, =Xy Ya
/(fifth x. ®
5 2000/(fifth quarter) 5-2 X5 '=Xs Ys
6 |  2000/(sixth x™ ®
(sixth quarter) 6_; Xe = Xg Yo
7 2000/(seventh quarter) %, G-
q 7-3 X7 "= X7 Y7
. x(3) (3)
8 2000/(eighth quarter) g2 Xg = Xg Vs

2.3 Time Aqggregation

In this section we will describe three methods of Time-Aggregation of the
higher-frequency data that can be used in forecasting lower-frequency variables, that

are: Time-Averaging, Unrestricted MIDAS and Restricted MIDAS.
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2.3.1 Time-Averaging

The first and the simplest method of Time-Aggregation is Time-
Averaging[18]. The method of converting higher-frequency data to match the
observations of the lower-frequency data by computing the simple average of the
observations of the high-frequency variable x that occur between samples of the
lower-frequency variable y such that:

m—-1 k
X, = iz L x™ ; where Lim x™ = x™),
m k=0 t_(a)
Here, we are assign each lag of x by the same weight or coefficient in each
quarter which is (1/m). For example by table (1) we have :

3—-1
= _ 1 7.3 _1,.03) (3) (3)
Xg = 3 Zk:o L3 x; ™ = 3 (xg” + xg_% + x8_§)
k
Letting k=0 and for quarterly-monthly data(i.e. m=3), we have Lm» xt(m) =
xt(’_”()L ):xt@) , which means the last-month observation of (x) in the quarter t. For k=1

k
we have Lm xt(m) = xS)(l) , which means the previous month of the last-month(i.e.

3

k
the second month) observation of (x) in the quarter t, and for k=2 we have L» xt(m) =

xt(i)(z) , which means the first-month observation of (x) in the quarter t.
3

The regression model of y, on its own lags with X, and its lags(p lags for y and
q lags of x) becomes clearly identified as:

. q ;
]:

Where y; are the coefficients of the time-averaged x’s, and u, is the white noise
process (independent identically distributed random variables with zero mean and
constant variance) . The model in equation (1) called autoregressive distributed lag
model of order p and q (ADL(p,q))(see section 2.9)[8,51].

The method of time-averaging is very simple and easy to conduct since it is
depending on time series regression approaches, but it is clear that this method make
a lot of potentially useful information discarded because of equal-weights assigning,
thus rendering the relation between the variables will be less accurate[2,18]. Finally,
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it is more appropriate to take averages for stock variables, but for flow variables,
the higher-frequency values are simply added[4].

2.3.2 Step Weighting(U-MIDAS)

The other method of time aggregation is to give each lag of x different weight
or coefficient in each quarter[18]. We call this method step-weighting or unrestricted
mixed data sampling regression(U-MIDAS). The autoregressive distributed lag U-
MIDAS(ADL(p,m)-UMIDAS) model can be written as:

. m k
ye=at S B+ vl ™+, 2)

Where u, is the white noise process as defined before. For the purposes of
forecasting, the previous equation can be expanded for quarterly-monthly variables
when m=3 as:

YVer1 = @+ B1ye + Baye—1 + -+ BpVe—p-1 +yix™ + Yth(r—n()l) + Y3xt(T()g) + U
3

3

@)
Equation(3) represents forecasting equation for the period of t+1 of y. It is clear

that this equation does not contain leads, but if it should, we can add lead terms, and

those are: y’{xt(’fl) +y§xt(r_"() ) +y§xt(r_"()3). This means that we have high-frequency

3
observations now of the variable (x;) in the period (t+1). For example, in our

research, we analyzed quarterly-monthly data from 1999 to 2012(56 quarterly
observations of (y) and 168 monthly observations of (x)). We can forecast y at the
first quarter in 2013 directly by equation(3) without leads. But if we now in the third
month of the first quarter in 2013; and the observations of x at January, February and
March are available now; then we can insert the three lead terms in the equation to
get benefits of leads information(see section 2.11 for more details about
forecasting)[6,18].

1
3

It is clear from the equation (3) that despite step-weighting model preserves the
timing information(because the high-frequency observations between the periods t
and t-1 were taken into account and not just averaged), but it violates the parsimony
principle. In the case of quarterly-monthly variables, it seems that there is no
violation of the parsimony principle; because we need only three coefficients to
estimate for the variable x. But for monthly-daily variables it is different; we will
need 22 coefficients for the variable x alone, this is called a parameter proliferation
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problem. Also, Model (3) can be extended to multiple lags, then the number of
parameters will become quite large[6,18].

2.3.3 MIDAS Regressions

The model which could solve the problem of parameter proliferation while
preserving some timing information is called MIDAS model or the restricted mixed
data sampling regression(R-MIDAS)[18]. This model was constructed by Ghysels,
Santa-Clara, and Valkanov[1]. This model can be written as:

ye=at T BLY Y)Y B8 Lrx™ tu, (4)

Where B(k,0) is a polynomial function that determines the weights for
temporal aggregation, and the vector @ have a specific number of parameters 6;, u,
Is white noise process[8,18].

Equation(4) represents an autoregressive distributed lag model(ADL-RMIDAS)
because y, is regressed on its own lags with x, and its lags as mentioned before.
Returning to equation (2), we note that it is the same as equation (4). Only the
difference between them is that the weighting terms of the higher-frequency variable
x. are {y;} in equation (2) while they are {B(j, )} in equation (4). The important
property of the weighting polynomial function B(j, @) is that it contains limited
number of parameters(Ghysels, Santa-Clara, and Valkanov suggested @ = (64, 6,)
for all j), while in equation (2), {y;} are different parameters. In equation (4), we need
limited number of parameters to estimate regardless of the number of lags of x, or
the value of (m), so the parsimony principle is satisfied here[8,18].

Now, for more explanations, it is useful to introduce a simple R-MIDAS
regression, and some related notations.

2.4 Simple R-MIDAS Reqgression

Suppose that the variable y, is available once between t—1 and t (say,

monthly), another variable xt(m) is observed (m) times in the same period (say, daily

or m=22), and that we are interested in the dynamic relation between y, and xt(m). In
other words, we want to project the left-hand side variable y, of the model equation

on the history of lagged observations of xt(r_"j)/m [2,3,4]. The latter term denotes the
higher-frequency variable and its timing lags are expressed as fractions of the unit

interval between (t-1) and (t). A simple R-MIDAS model is :
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1
v = Bo+ BB (Lm;0) x™ + u, (5)
Where :

1 k
B (LE; 6) =YK _,B(k;8) Ln; K should be specified properly(see section 2.6

k k
for lag specification criteria) and L= is the lag operator such that : Lm xt(m) = xt(T()ﬁ).
Note that the summation started from k=0 which guarantees xt(m) to be in the model,

also xt(m) values have corresponding y, values, but x(m)k)values have corresponding
t_ —_

m

missing y, values for k>0, u, is white noise process[2,3,4].

k
the lag coefficients B(k;8) of the corresponding lag operator Lm are

parameterized as function of a small-dimensional vector of parameters 0, usually the
vector 8 = (64, 6,).

To explain simple R-MIDAS regression model (5), let us return to the
quarterly-monthly variables. We have m=3 and we assume that K=m-1=2". By
equation (5), our simple R-MIDAS regression will be:

K=2 K=2
k
ve = Bot Bi) BUGO)Lmx™}+ u = fot Fi() Bi0)x™ }+ w
k=0 k=0 m

Then, it can be expanded as the following:
ve = Po+ Hi{BO:O)x” +B(1;6)x7 0y + B2 O) ¥ (o ) + (6)
3

3

From equation (6), it is clear that the lower-frequency variable y, is regressed

on each of the following: 1) The higher-frequency variable xt(xt@)) whose values

represent the third month in each quarter; 2) The first lag of the higher-frequency

variable x, (xt(i)(l)) whose values represent the second month in each quarter, and 3)

3

The second lag of the higher-frequency variable x, (xt(i)(i) whose values represent the

3
first month in each quarter. The term y, and its lags can be added to the right hand

side of this equation in order to forecast the future values(y,,¢) in the left hand
side[2,8].

*
usually K = m-1 such in quarterly-monthly data, in such data we have m=3 so K is taken equal 2
since the summation starting from zero .
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Again as we noted from equation(3), equation(6) can represent forecasting
equation to the next period of t (t+1) and it does not contain leads. The lead terms can

be added are: B*(0;0)x

3
t+1

* . (3) * . (3)
+ B*(1; B)xt_l_l_(%) + B*(2; B)xtﬂ_(3

. These terms

will be used when monthly observations of (x;) in the period (t+1) are available[8].

Returning to our explanation example (that was shown in table (1) before), the
following table(table (2)) shows the quarterly-monthly data structure of the simple
MIDAS regression model (6).

Table (2): Two Years Quarterly-Monthly Data Structure for Eq(6)

Quarterly-low- Third-Months Second-Months First-Months
frequency variable variable Vag?ble Vagz)ible
é e @) )
" o= g0 g0
. =, gl g0
s e () %
ya X x4 5 5
s = () gy
e = ) g0
v =, 5 %0
s = xy ) e

2.5 Polynomial Specifications

Parameterization of coefficients B(k; @) in a parsimonious fashion is one of
the features of MIDAS approach[2]. We will discuss various methods of
specifications of lagged coefficients B(k; 8) of MIDAS regression models.

2.5.1 Exponential Almon Lag Polynomial

The first method for polynomial specification is to use the Exponential Almon
Lag method to parameterize B(k; 8)[2]. General Exponential Almon Lag function is

defined as:
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2. Q
Q01K +02k% +40 ok

B(k;0) =

K 01k+02k%+-+0 k9
Zk:l e 1 2 Q

Ghysels, Santa-Clara and Valkanov[1] used this functional form with two
parameters, i.e. @ = (64, 6,), because this function is known to be quite flexible, and
can take various shapes with only a few parameters, so it will be in this form:

e01k+02Kk?

B(k; 0) =Z

K ,01k+02k?
k=1¢€ 1 2

Figure (3) shows some shapes of the Exponential Almon Lag weighting
function with different values of two parameters 6; and 8,. We note that different
values of parameters obtain decreasing or hump-shaped weighting functions. It is
clear from the figure(3) that later lags of the higher-frequency variable x; are
assigned to a lower weights[14].

Figure(3): Exponential Almon Polynomial Weighting
Function

3 parameter values
o --= theta1=0.01, theta2=-0.0025

LR @@ theta1=001, theta2=-00099
o —— theta1=0.099, theta2=-0.0099

Weight on Lag

Lag
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We have some notes and properties about this function:

1. When 6, = 6, = 0, then B(k; @) represents the same weights for all
k. In the case of quarterly-monthly data, K=m=3, and B(k; 0) = % for
all k, which is the same as the Time-Averaging Aggregation.

2. Thesum of B(k; @) isuptoone, ie. YX_, B(k;0) = 1.

3. Since B(k; @) is a nonlinear function of parameters 6;and 8,, these

parameters can be estimated by the nonlinear least squares method
(NLS)[2,4,8,32].

2.5.2 Beta Lag function

The second polynomial specification is to use the Beta function, so-called as
Beta Lag Function which has only two parameters such that:

k.
B(k; 61,6,) = —f(?’ekl’ez)
K o f(y:elﬂz)

Where:

_ _ x9171(1-x)02711 (01 +65) _ (® ,—x ,.0-1
f(x, 91! 62) - T (01T (62) ! F(Q) - fO € x dx.

The Beta lag Function has the same properties stated for the Exponential
Almon Lag function except that the Time-Averaging Aggregation is obtained by the
Beta lag Function when 6; = 6, = 1[2,4,8].

2.5.3 Almon Lag Polynomial of order (P)

The almon lag polynomial is used to specify 8, B(k; @) together or jointly in
MIDAS regression model (6) which is defined as:

P

B:B(k; 60,61, ..., 0,) = 0, + Z 6, k?
p=0

This polynomial can be written in matrix form as:

B(0;0)1 1 0 0% - 0P
B(1;6) 11 12 - 1P
B2;0| |1 2 22 .. 2P 90
. 1
p1 : ol N
B(k; 0) 1 k k% - kP 0
. . H . P
B(K;0)l 11 Kk K? .. KPI



17

For example, by this polynomial, we have the following:
B1B(0; 0)=6,

B1B(1;0)=60y + 6, + 6, + ...+ 6p

B1B(2;0)=6, + 26, + 46, + 865 + - + 276,
B1B(3;0)=6, + 36, + 96, + 2765 + ---+ 376,

P1B(K;0)=0, + K6, + K?0, + K365 + -+ K" 0,
For more clarification, let us return to MIDAS model (6) with vector @ =
(69, 81, 6). Using weights of Almon-Lag-Polynomial of order (2), assuming K=m-
1=2, equation (6) becomes:

Ve = Bo+ Oox> + (6, + 6, + ez)xt(f)(l) + (6 + 26, + 46,) xt(f)(g) +u (7
3

3
Where 'BlB(O, 0):90, 'BlB(l, 0):90 + 6, + 6,, ﬁlB(Z, 0):90 + 20, + 40,.

Arranging equation(7) will give the following equation:

T ’ ! 3
Ve = Bo+ Ooxp + 01x, + Ox5 + ut( ) (8)

Where -y = ;™ 42710+, 32 = %0 422 and
3 3 3 3
=y

3

Now, the parameters 6,, 6; and 6, could be estimated by ordinary least squares
method(OLS) such that :

0 =X"X)"'(x"y)

Where The matrix X ={1,x,1, %2, X3}, 0 = (Bo,60,61,602), Y = {y,}, the
symbol (") here means matrix transposition[2,15,16].

Ghysels, Santa-Clara, and Valkanov (2004) suggest that MIDAS models can be
estimated under general conditions via non-linear least squares (NLS), quasi-
maximum-likelihood (MLE) or general method of moments (GMM)(see section
2.10)[4]. The other specification is to define MIDAS regression and estimating
parameters with step-function method[2,15,16].
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2.6 Lag Length Selection Criteria

As we saw in previous sections, there are number of lags selected to include in
MIDAS model, i.e. the MIDAS regression model depends on K which is the
maximum effective lag of the higher-frequency variable x should be taken. For
simplicity, we have selected K=m in our explanation examples, but the determination
of lag length for any time series is very important issue in all studies. In the literature
of linear regression, there are various selection criteria used to determine the best
subset of independent variables should be included in the model. Of course we
always interested to get the model with minimum mean square error(MSE), but we
can make the MSE smaller by adding another MA or AR terms in time series
model(the same thing in linear regression). But this make a problem of getting
complicated models with too many parameters(violation of parsimony principle), so
the use of information criterion techniques would help us to construct models that fit
the data well without having too many parameters[25].

The same idea is applied in time series models. We have various lag length
selection criteria, such as: the Aikaike’s information criterion(AIC), Schwarz
information  criterion(SIC), Hannan-Quinn criterion(HQC), Final Prediction
Error(FPE) and the Bayesian information criterion(BIC). Both AIC and BIC are the
most popular and they have been used widely by researchers[23,24,25].

Ghysels, Santa-Clara, and Valkanov(2004) stated that standard selection
procedures such as the Akaike or Schwarz criterion can be applied to select the
optimal number of lags that should be included in MIDAS regression. Ghysels,
Claudia, Klaus, Andreou and Kourtellos were concentrated on AIC and BIC. They
also compared between the two criteria to get the optimal lag length and to improve
results of MIDAS models[3,4]. In BIC which used much more, we choose the model
that has the minimum value of:

BICy = log(6%) + %log(T) (9)

Where G2 is the estimated error-variance after fitting the model(usually the sum
of squared residuals divided by the number of observations(T)), M is the number of
estimated parameters and T is the length of the time series(low-frequency variable
length) [4,20].
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2.7 Testing Unit Root and Cointegration
2.7.1 Unit Root

Time series data consist of observations, which are considered as a realization
of random variables that can be described by some stochastic processes. The concept
of stationarity is related to the properties of this stochastic processes. The concept of
weak stationarity means that the data are assumed to be stationary if the means,
variances and covariances of the series are independent of time, rather than the entire
distribution. Nonstationarity in a time series occurs when there is no constant mean,
no constant variance or both of these properties. It can originate from various sources
but the most important one is the unit root[54,42,43].

Any sequence that contains one or more characteristic roots that are equal to
one is called a unit root process. The simplest model that may contain a unit root is
the AR(1) model. Consider the autoregressive process of order one, AR(1), below:

Ve = QYeo1 t U

Where u, denotes a serially uncorrected white noise error term with a mean of
zero and a constant variance. If ¢ = 1, the above equation becomes a random walk
without drift model, that is, a nonstationary process. When this happens, we face
what is known as the unit root problem. This means that we are faced with a situation
of nonstationarity in the series. If, however, ¢ < 1, then the series y, is stationary.
The stationarity of the series is important because correlation could persist in
nonstationary time series even if the sample is very large and may result in what is
called spurious (or nonsense) regression. The unit root problem can be solved, or
stationarity can be achieved, by differencing the data set[54,42,43].

We have many methods to stationarity, but the most famous one is The
augmented Dickey-Fuller (ADF) test, The basic idea behind the ADF unit root test
for nonstationarity is to simply regress y, on its (one period) lagged value y,_; and
find out if the estimated ¢ is statistically equal to 1 or not. The above AR(1)
equation can be manipulated by subtracting y,_,from both sides to obtain

Ve = Vi1 = (@—Dy1 +u,

Which can be written as

Ay, =6y + U
Where § = ¢ — 1, and A is the first difference operator.
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In practice, we shall estimate the last equation and test for the null hypothesis of
6 = 0 against the alternative of § # 0. If § = 0, then ¢ = 1, meaning that we have a
unit root problem and the series under consideration is nonstationary. It should be
noted that under the null hypothesis § = 0, the t-value of the estimated coefficient of
v:—1 does not follow the t-distribution even in large samples. This means that the t-
value does not have an asymptotic normal distribution. The decision to reject or not
to reject the null hypothesis of & = 0 is based on the Dickey-Fuller (DF) critical
values of the t(tau) statistic(Dickey-Fuller t-distribution). The DF test is based on an
assumption that the error terms u, are uncorrelated[54,42,43].

However, in practice, the error term in the DF test usually show evidence of
serial correlation. To solve this problem, Dickey and Fuller have developed a test
know as the Augmented Dickey-Fuller (ADF) test. In the ADF test, the lags of the
first difference are included in the regression equation in order to make the error term
u, white noise and, therefore, the regression equation is presented in the following
form:

m
Ay, =6y, 1 + z a; Ay, + U
i=1
To be more specific, the intercept may be included, as well as a time trend ft,
after which the model becomes
m
Ay, = Bo + Pit + 8y, + aiAy,; +u,
i=1
where B, is a constant, 5; the coefficient on a time trend series, § the
coefficient of y,_;, mis the lag order of the autoregressive process, Ay, =y, — y:—1
are first difference of y,, y,_; are lagged values of order one of y,, Ay,_; are changes
in lagged values, and u; is the white noise. The test procedure for unit roots is similar

to statistical tests for hypothesis, that is: (i ) Set the null and alternative hypothesis as

Hy: 6§ = 0 against Hy: § < 0. (ii) Determine the test statistic using F, = %@ where

SE(8) is the standard error of &. (iii) Compare the calculated test statistic F, with the
critical value from Dickey-Fuller table to reject or not to reject the null hypothesis.
(iv) The ADF test is a lower-tailed test, so if F. is less than the critical value, then the
null hypothesis of unit root is rejected and the conclusion is that the variable of the
series does not contain a unit root and is stationary[54,42,43].
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The DF and ADF tests are similar since they have the same asymptotic distribution.
Finally, there are numerous unit root tests, such as the Phillips-Perron test and the
Schmidt-Phillips test, but the most notable and commonly used is the ADF test,
which will be used in our study[54,42,43].

2.7.2 Cointegration

It is possible for two integrated series to move together in a nonstationary way,
so that their difference or any other linear combination is stationary. These series are
said to be cointegrated. Stationarity is like a rubber band pulling a series back to the
fixed mean[51,52,54]. Cointegration is like a rubber band pulling the two series back
to a fixed relationship with each other, even though both series are not pulled back to
a fixed mean. If y and x are both integrated, we cannot rely on OLS standard errors
or t statistics. By differencing, we can avoid spurious regressions:

If y. = Bo + B1 x; + u, then Ay, = Ax, + Au, . Au, is stationary as long as u;
is 1(0) or I(1). Note that the differenced equation has no history. Now let us Suppose
that u, is I(1), This means that the difference u, = y, — By — B1 x; IS not mean-
reverting and there is no long-run tendency for y to stay in the fixed relationship with
X, SO there is no cointegration between y and X, in this case Au, is 1(0), if y, is high
relative to x, due to a large positive u,, then there is no tendency for y to come back
to x after t, thus estimation of differenced equation is appropriate[51,52,54].

Now Suppose that u, is 1(0), that means that the levels of y and x tend to stay
close to the relationship given by the equation. Suppose that there is a large positive
u, that puts y, about its long-run equilibrium level in relation to x,. With stationary
u,, we expect the level of y to return to the long-run relationship with x over time,
and stationarity of w, implies that corr(u;, u;,s) — 0 as s — o. Thus, future values
of Ay should tend to be smaller than those predicted by Ax in order to close the gap.
In terms of the error terms, a large positive u, should be followed by negative Au,
values to return u, to zero if u, is stationary, and this is the situation where y and x
are cointegrated. This is not reflected in the differenced equation, which says that
future values of Ay are only related to the future Ax values, which means there is no
tendency to eliminate the gap that opened up at t [51,52,54].

In the cointegrated case, If we estimate in differences, we are missing the
history of knowing how y will be pulled back into its long-run relationship with x. If
we estimate in the original levels, we cannot rely on our test statistics because the
variables (though not the error term) are nonstationary[51,52,54].
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The appropriate model for the cointegrated case is the error-correction model of
Hendry and Sargan, ECM consists of two equations:

The long-run cointegrating equation: y, = 8, + 6; x; + u;, where u, is 1(0).

The short-run (ECM) adjustment equation:

Ay, = Bo + Zf:l B; L'Ay, + Zil Yi LAx, + a(y,1 — 0 — 01 x, 1) + v,

Note the presence of the error-correction term with coefficient a in the ECM
equation, this term reflects the distance that y,_; is from its long-run relationship to
X;_1. If @ <0, then y,_; above its long-run level will cause Ay, to be negative when
other factors are held constant, then it pulling y back toward its long-run relationship
with x . Because both y and x are I(1), their differences are 1(0). Because they are
cointegrated with cointegrating vector 6, ,6; , the difference in the error correction
term is also 1(0). It would not be if they weren’t cointegrated and the ECM regression
would be invalid. The ECM equation can be estimated by OLS without undue
difficulty because all the variables are stationary[51,52,54].

In multivariate cointegration, the concept of cointegration extends to multiple
variables. With more than two variables, there can be more than one cointegrating
relationship (vector). Vector error-correction models (VECM) allow for the
estimation of error correction regressions with multiple cointegrating vectors. In
order to test for cointegration, the earliest test is Engle and Granger’s extension of the
ADF(Augmented Dickey-Fuller) test has two steps: 1) Regressing the cointegrating
regression by OLS, 2) Testing the residuals with an ADF test. Other, more popular
tests include the Johansen-Juselius test, which generalizes easily to multiple variables
and multiple cointegrating relationships[51,52,53,54].

2.7.3 Johansen’s procedure

Johansen's procedure builds cointegrated variables directly on maximum
likelihood estimation instead of relying on OLS estimation. This procedure relies
heavily on the relationship between the rank of a matrix and its characteristic roots.
Johansen derived the maximum likelihood estimation using sequential tests for
determining the number of cointegrating vectors[54]. His method can be seen as a
secondary generation approach in the sense that it builds directly on maximum
likelihood instead of partly relying on least squares. In fact, Johansen's procedure is
nothing more than a multivariate generalization of the Dickey-Fuller test.
Consequently, he proposes two different likelihood ratio tests namely: the trace test
and the maximum eigenvalue test. This procedure is a vector cointegration test
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method. It has the advantage over the Engle-Granger method in that it can estimate
more than one cointegration relationship, if the data set contains two or more time
series[52,53,54].

Johansen’s method takes as a starting point the vector autoregression (VAR)
of order p given by

Xt = T[lXt_l + T[ZXt_Z + -+ T[pXt_p + Ut

where X, isan n x 1 vector of variables that are integrated of order one, that is,
I (1). Uy is an n x 1 vector of innovations while 1t4 through m, are m x m coefficient
matrices. Reparameterizing the equation above, that is, subtracting X,_; on both
sides, leads to

AXt = FlAXt—l + FZAXt—Z + b + rp_lAXt_p+1 - T[Xt_p + Ut

Where Fl =M — I, FZ =Ty — Fl' F3 = M3 — rz, ,Fp_l = T[p—l — rp_z, and
n=1-my —m, — - — m,. The matrix 7t determines the extent to which the system
is cointegrated and is called the impact matrix[54].

Returning to the last reparameterised equation, if we consider the first equation
of the system as:

AXyp = Ylllel,t—l + ylleXLt—Z + yllp—lel,t—p+1 - Tt,lxl,t—p + Uy,
where y;j is the firstrow of I, j = 1, 2,...p-1, and m, is the first row .

Here AX,  is stationary, that is, 1(0), j = 1, 2,...p-1 are all 1(0), u, is assumed to
be 1(0) and so for a meaningful equation, n;xllt_p must be stationary, 1(0).

If none of the components of X, are cointegrated, they must be zero. On the
other hand, if they are cointegrated, all the rows of ™ must be cointegrated but not
necessarily distinct. This is because the number of distinct cointegrating vectors
depends on the row rank of wt[52].

The matrix m is of order m x m. If it has rank m, that is, m number of linearly
independent rows or columns, then it forms a basis for m-dimensional vector space.
This implies that all m x 1 vectors can be generated as linear combinations of its row.
Any of these linear combination of the rows would lead to stationarity, meaning that
X_p has stationary components if the rank of m is r <m[52].

We may write Tt = ﬁg' for suitable m x r matrices,  and « Here
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a
g’:l"fzzl, B = [P1 B2 . Br], then X, = Eg'xt_p , and all linear
a,

combinations of g’Xt_p are stationary. It should be noted that we have to perform the
ADF test to access the order of integration of each variable before applying
Johansen's procedure. Johansen's procedure estimates the VAR subject to t = fa’

for various values of r number of cointgrating vectors, using the maximum
likelihood estimator assuming u, ~iidN (0, Z), His estimate can thus be rewritten as

AXt = FlAXt—l + FZAXt—Z + b + Fp—lAXt—p+1 - Eglxt_p + Ut

To detect the number of cointegrating vectors, Johansen proposed two
likelihood ratio tests namely:

e The trace test
e The maximum eigenvalue.

The trace test tests the null hypothesis of r cointegrating vectors against
the alternative hypothesis of n cointegrating vectors, If r = 0, it means that there
is no relationship among the variables that is stationary. The test statistic is
given by

n
]trace =-T z 11’1(1 _ii)
i=r+1

The maximum eigenvalue test, on the other hand, tests the null hypothesis of r
cointegrating vectors against the alternative hypothesis of (r+1) cointegrating vectors.
Its test statistic is given by

]max = _T(l - /ir+1)

Where T is the sample size, and /; is the i’th largest canonical correlation.
For example, if the null hypothesis of no cointegration (r = 0) against the alternative
of presence of one or more cointegrating vector is rejected at specific level of
significance say (10%) of significance in both techniques (trace test and maximum
eigenvalue); this implies that cointegration exists between series data set. If the null
hypothesis (r < 1) and (r < 2) against the alternative of the existence of two or three
cointegrating vectors is not rejected by both tests; This means that there is no more
than one cointegration relationship between series data set(see for example Table A2
in Appendix A)[52,53,54].
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The method of Johansen assumes that the cointegrating vector remains constant
during the period of study. In reality, it is possible that the long-run relationships
between the underlying variables change. The reason for this might be technological
progress, economic crisis, changes in people's preferences and behavior accordingly,
policy or regime alteration and institutional development. This is especially the case
if the sample period is long[52,53,54].

2.8 Cointegration-MIDAS and ECM-MIDAS models

In almost all the literature, MIDAS regressions are applied to stationary time
series or to transformed non-stationary variables by the first differences. Goetz, Hecq
and Urbain [21] worked with mixed frequency time series that are integrated of order
one 1(1) and possibly cointegrated. They introduced a mixed-frequency
autoregressive distributed lag ADL(see section 2.9 about ADL) model and they
derived the cointegrating long-run relationships, then they plugged it in the error
correction model ECM to derive the short-run relationships. Finally, they compared
between number of approaches by simulation methods in order to know which one
has the best forecasting performance. We interested on the following approaches that
they studied: unrestricted MIDAS regressions(U-MIDAS), restricted MIDAS
regressions(R-MIDAS) and Time-Averaging regressions. The estimated forecasting
ECM models that they used relative to each one of these approaches can be written as
the following:

Ay, =+ Pl + @y, + zz“;olE;Nm)xf’_"@) (U- MIDAS)  (10)
By, =€+ i1 +ay,1 + BIPS Bi(81,0,) Ax ™), (R-MIDAS) (1)

()
By, = ¢+ Pile—y + @Yoy + B AL-Z7S xt(’_"()ﬁ)} (Time-Averaging)  (12)
Where : c is the constant term, the symbol A means the first difference for the
low-frequency variable, the symbol A means the first difference for the high-
frequency variable, u,_, is the first lag of the residuals resulting from the long-run
cointegrating relationship and i._; is its estimator(under assumption that u, is white
noise process).

Goetz, Hecq and Urbain[21] showed that the ECM built by MIDAS regressions
has the best forecasting performance. They employed Exponential Almon-Lag

polynomial to estimate the weights B;(8y, 8,) with initial value of 8, < 0, because it
is extremely flexible and it has various possible shapes. The Exponential Almon-Lag
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weights make estimation to be completely data driven, and it allows to include
variables in both short-run and long-run models more than what theoretically
necessary, because the redundant variables will be assigned to zero weight(since the
sum of all Exponential Almon Lag weights is 1).

Also, they concluded that when building the short-run ECM, it is better to use
(m) terms than more or less than (m) terms; where m is the number of the high-
frequency observations between the period (t) and (t-1) of the low-frequency variable.

We chose to use MIDAS regression (10) or (11) to construct the short-run ECM
with Exponential Almon Lag weights assigned to (m) terms(or lags) of the high-
frequency variables[21]. Also it is suitable to use MIDAS regression to construct the
long-run relationship which will produce the imposed u,_; terms by the following
ADL-RMIDAS equation:

Ve = Bo+ Buye-s + Bo ZiS Bi(61,62) %"y + s (13)

equation (5) with K=m-1", and the autoregressive terms (y,_;) can be stay or
dropped if or if not necessary from the above equations (10_13). So the equilibrium
terms 1i,_; can be obtained by the equation :
Uy = Y1 — Bo = Pryi—z — B Yo Br (§1' éz) xt(r_nl)_(i) (14)

because from equation(13), we have
U =V, — Bo — Pryi1 — B2 S B (64, 65) xt(’_")L . Finally, the ADL-UMIDAS

()

regression will stay in mind to use if necessary[21,28].
2.9 Distributed-Lag Models

Univariate time-series models are an interesting and useful building block, but
we are almost always interested not just in y’s behavior by itself but also in how x
affects y. In time-series models, this effect is often dynamic(spread out over time).
Thus we can define a distributed-lag model as a dynamic model in which the effect
of a regressor x on y occurs over time rather than all at once[51].

*

The R-package program splits the high-frequency variable and name each split as X0/3, X1/3, X2/3
in quarterly-monthly data, for example X0/3 means the series consisted of the last month per
quarter, similarly X1/3 means the series consisted of the second month per quarter, and so forth.
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the dynamic effect of x on y involves not just Z—z but a more complex set of

9ye 0ye41 0Yiy2
6xt' 6xt ’ 6xt
y with distributed-lag models[51].

dynamic multipliers: , etc, so we estimate the dynamic effects of x on

In general, the distributed-lag model has the form

[e'e]
Ve :“+Zﬁixt—i + U
i=0

But of course, we cannot estimate an infinite number of lag coefficients ;, so
we must either truncate or find another way to approximate an infinite lag structure.
We can easily have additional regressors with either the same or different lag
structures. When the distributed-lag model above is truncated, then we have the Finite
distributed lag model

r
Ve :“+Zﬁixt—i + U
i=0

The finite distributed lag model can be estimated by OLS. The dynamic

o a . .
multipliers in this case are ai = f,, s=0,1,...,r and zero other wise. The cumulative

Xt—s

dynamic multipliers which denotes to the effect of permanent change in x are
i=o Bi [51].

To see the interpretation of the lag weights, we consider two special cases: a
temporary change in x and a permanent change in x. For the temporary change, the
change in x is zero except in period t, where it is one. Here we Suppose that x changes
temporarily by one unit in period t, then returns to its original level for periods t + 1
and all future periods; in period t, x; is changed by one unit but all earlier x values are
unchanged. In this case, y, increases by B, when x, changes by one with
X¢_1,X¢—p, -, Xs—r and the disturbance term u, unchanged. We call this immediate
effect = B, the impact effect of x on y [51].

Given that x,,¢, x;_1, and the disturbance are unchanged, the change in y in
period t + 1 is the coefficient on the first lag of x (8;). This is the dynamic marginal
effect of x on y at one lag. By similar analysis, we can see that the effect of the
temporary change in x at time t on y,,, is ;, and so forth. We conclude that the
pattern of dynamic marginal effects of a temporary change in x on y is given by the
coefficients of the lag distribution f's [51].
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Now let us consider the case of a permanent increase in x at time t: x increases
by one unit in period t and remains higher in all periods after t than it was before t.
We see from our finite distributed lag model that the effect of the change in x;, on y,
IS By, because x;_1, x;_z, ..., X and u, are assumed unchanged. Moving forward to
period t + 1, the analysis of the model equation is different from the temporary
change because now x,,; as well as x; is increased by one unit. The cumulative
effect on y,,1 is By + B1. We call this the cumulate effect of x on y at one lag. At
two lags, we advance the equation one more period forward and now the effects of
the increased levels of x;,,, x; 1, and x; raising y;., by o + B1 + B, units[51].

Moving (k>r) periods into the future, the effect on y,,, will be the same as the
effect on y,,, because once again all of the x terms on the right hand side are
increased by one unit and the cumulative effect staying at }.;_, 5; for all lags starting
at k. The limit of the cumulative effect as the lag length goes to infinity is called the
long-run cumulative effect of x on y. It measures how much y will eventually change
in response to a permanent change in x [51].

The pattern of the dynamic marginal effects and cumulative effects tells us
about both the magnitude and the timing of the effect of x on y. In the above,
permanent increases in x lead to permanent increases in y that get larger over the first
r+1 periods of the change. Temporary changes in X, by contrast, lead to temporary
changes in y that die away after r+1 periods[51].

Another pattern that is plausible for some economic relationships is that
permanent changes in x may lead to only temporary changes in y. For example,
standard macroeconomic theory tells us that changes in the rate of monetary growth
have only temporary effects on real output growth. In such a situation, the positive
marginal effects at short lags (fo, f1, and S,, perhaps) would be offset by negative
marginal effects at longer lags so that the long-run cumulative effect (the sum of all
the S coefficients) is zero[51].

Is it possible to have a dynamic relationship in which temporary changes in x
lead to permanent changes in y, but this creates difficulty for an equation. For a
temporary change in x to have a permanent effect on y, the g coefficients in the
infinite DL model could not approach zero as i gets large. This obviously rules out
any finite lag distribution, and indeed creates trouble for any specification because
the dynamic relationship between the two variables is effectively non-stationary. To
cope with this situation, it is usually best to redefine either x or y to eliminate the
problem[51].
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In specifying dynamic econometric models, it is crucial to think very carefully
about the nature of the dynamic relationship among the variables. We must decide
how we would expect y to respond over time to a one-time change in X, then define
the variables as levels or changes in order to represent the expected relationship with
a stationary lag function[51].

The autoregressive component of the ARMA model involves using one or more
lagged values of y as determinants of the current value y.. We can apply the same
method in a distributed-lag context by adding y,_; and possibly additional lags to the
right-hand side. The simplest model is the Koyck lag, which has one lag of y on the
right-hand side with only the current value of x [51].

The first order autoregressive Koyck lag model with regressors is:

Ye = Bo + B1Ye-1+ 8 x¢ + uy

By this model we have 2t =g, 2t=1p15, , .., 2= gss,. Thus,
6xt 0xt axt
dynamic multipliers start at §, and decay exponentially to zero over infinite time.

Thus, this is effectively a distributed lag of infinite length, but with only 2 parameters

S
(plus intercept) to estimate. Cumulative multipliers are z agf = d Z;O B,
l—é)o
1-p1
model has the potential problem of inconsistency if u, is serially correlated, this is a
serious problem, especially as some of the test statistics for serial correlation of the
error are biased when the lagged dependent variable is present. Koyck lag is
parsimonious and fits lots of lagged relationships well, With multiple regressors, the

Koyck lag applies the same lag structure (rate of decay) to all regressors[51].

Estimation of this

the long-run effect of a permanent change is 9§, ZZO B =

We can generalize the Koyck lag model to longer lags:

Ye=PBo +B1 Y1+ ..t ﬁp Ye—p T+ 8o x¢ + U,
Dynamic multipliers for this model are determined by coefficients of infinite
lag polynomial [X7_, B; Li]_1 = [B(L)]™*, where L denotes to the lag operator. If we
have more than on x, all have same lag structure. We can determine length of lag p

by adding lags as long as 3, is statistically significant, and we can choose to max the
Akaike information criterion or the Bayesian (Schwartz) information criterion[51].
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We can generalize the autoregressive DL models by adding lagged values of x
in addition to lagged y variables which leads to the rational lag model(ADL(p,q).
The ADL(p,q) model can be written as:

Ye=PBo +P1 Y1+ ..t ﬁp Ve—p + 69X + 01 xXpq + -+ 6q Xt—q + u, or

B(LYy: = o+ 8(L) X +ue , thus y, = 205+ 205 X + 575 -

Note that, Stationarity depends only on (L), not on §(L). We can easily
estimate this model by OLS assuming:

e F (u.t | Ye—1s evor Yemps Xtr Xp—1s wee) xt_q) =0.
e (y., x,) has same mean, variance and autocorrelations for all t.
o (y;,x)and (y._s, x;_s) become independent as s—oo.
e All variables have finite, non-zero fourth moments.
¢ No perfect multicollinearity.
These are general assumptions that apply to most time-series models.

For the ADL(p,q) model, we can test Granger causality by testing whether a
variable’s §(L) polynomial is zero, and we need to leave x, out of regression here.
the F-test of set of coefficients on all lags of x, given effects of lagged y and any other
regressors is used, the rejection means x causes Y. The Granger causality test
whether x helps to predict y given the path that y would follow based on its own
lags and perhaps on other regressors. Finally, we can apply all above on MIDAS

regressions replacing x;, notations by xt(m) for the high-frequency variable[51].

2.10 Estimation Methods

In this section, we will introduce an overview of some methods of estimation
that can be used to estimate parameters of MIDAS regressions. These methods are:

2.10.1 The Method of Least squares

The Least Squares (LS) estimation technique chooses the parameters which
minimize the sum of the squared error terms Q = Z:zlutz assuming that we have T
observations for the low-frequency variable. This method can be used with U-

m—1 k ,
MIDAS regression model: y, = a + Z YiLm xt(m) +u=y xgm)+ u, , where :
k=0
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Y= (Y0, Y1) ) Ym-1) s x,(:'") = (xgm),xt(’_"f, ...,xt(’_”l)_i)’ are the explanatory
3 m

high-frequency variable, y, = (y4,y>, ..., yr) is the low-frequency dependent variable
and u, are white noise terms such that u, = (uy, u,, ..., ur), the white noise process
u, has zero mean and constant variance o2[42,43].

It is easy to show that the solution to this minimization problem gives the
following (m+1) equations:

T
2
0= ) (e vont o nx -y a )
3 m

t=1
T , 2
orQ=>" (5 -vxm)'=0
k=0
This minimization can be accomplished by differentiating these equations with
respect to the vector y = (@, Yo, Y1, --» Ym—1) '[42,43].

In the notation above, this procedure gives the normal equations which can be
expressed by matrices as the following:

m—1 , m—1
(Y smae Yy =3 s
k=0 k=0

The notations can be simplified by defining Y=y, X=x,(:m)and u = u, , then the
normal equations can be written as:

(X' X) ¥ = X" Y and the solution is § =(X* X)™ X' Y [42, 43].

To show that the least squares estimators have desirable statistical properties it
IS however necessary to make the following assumptions:

Assumption 1: the model is linear in the parameters and is correctly specified.

Assumption 2: E(u;| xt(m),xt(ﬁ), '"'xt(7—n1)_i) = E(u,)=0 for all t.
3 m

Assumption 3: u, are uncorrelated with the explanatory variables for all t.
Assumption 4: u, have constant variance and are uncorrelated for all t.

Assumption 5: there are no exact linear relationships among the explanatory
variables(no multicollinearity)[41].
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Under these assumptions, it can be shown that the least squares estimators have
minimum variance among all linear unbiased estimators. The least squares estimators
are said to be best linear unbiased estimators[41].

The sampling distribution of an estimator as T tends to infinity is its asymptotic
distribution. An estimator is said to be asymptotically unbiased if the mean of its
asymptotic distribution is equal to the true value of the parameter[41].

An estimator is consistent if the probability that the estimator takes on a value
close to the true value goes to 1 as the number of observations T goes to infinity.
Under assumptions 1-5, the least squares estimators are consistent[41].

If we add the assumption that u, are normally distributed then the least squares
estimators are also normally distributed. Statistical inference on the parameters can
then be conducted[41].

2.10.2 The Method of Maximum Likelihood

Maximum Likelihood Estimation (MLE) approach involves forming an
assumption about the underlying probability distribution function (pdf) that generates
the observed data set, and then estimating parameters of the assumed distribution.
Although there are many cases, especially in financial applications, where it may
seem inappropriate to assume knowledge of the underlying pdf, White (1982) has
been shown that for correctly specified moment equations, the maximum likelihood
estimator, now interpreted as Quasi Maximum Likelihood Estimator (QMLE), is
consistent. In other words, as long as conditional moments (e.g. mean and/or variance
equations) are correctly specified, QMLE will produce estimates that converge to
their true parameter values as the sample size increases, although less efficiently than
if the correct likelihood function had been used[41].

To illustrate the maximum likelihood approach we consider the previously
specified U-MIDAS model now written in the vector notation:

Ve =X YT U

Wherey is an [(m+1)x1] vector of unknown parameters, X:xgm) IS an

[(m+1)x1] vector of explanatory variables and u, is a white noise process with zero
mean and variance ¢?. The parameters of interest can then be grouped into a
[(m+2)x1] vector 6 = ( %,)[41].

The maximum likelihood estimation approach typically involves two steps:

e Specification of a probability distribution for wu; .
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e Computation and maximization of the likelihood function.

The joint pdf of the observed sample takes the following form:

fLY2 - yr1X Y, 02)=fn1Xy,0%) .. f(yrIX y,0%) =
o felX v, 02) [41].

In practice, u, is generally assumed to be Gaussian white noise. Assuming
normality(u,~i.i.d. N(0, o2), the conditional likelihood function of y, can be written
as

rN2
fOL Y2 - yrIXy,0%)= [Tio12na?) "2 exp (‘ %)

The maximum likelihood estimate of @ is found by maximizing the above
function, which is often interpreted as the probability of observing the realized data
sample. In practice we often take logs of the likelihood function in order to simplify
algebraic manipulations:

202

L(8)=— 3In(2mo?) - X1, ((yt—xt’y) )

Where L(0) is now known as the log-likelihood function[41].

Maximization of the log-likelihood function involves differentiating L(@) with
respect to the parameters of interest @ and setting each of the resulting equations to
zero. Although, in some instances, it may be possible to find a closed form solution to
the resultant system of equations, e.g. in the case of a linear regression model, in
more complicated situations there are no closed form solutions and L(@) must be
maximized numerically. In either case, the outcome of maximizing the log-likelihood
function results in a maximum likelihood estimate vector @ based on a Gaussian
likelihood function[41].

In time series analysis, a distinction is made between conditional and exact
likelihood functions. The difference is based on the treatment of the first p
observations, where p is the number of dependent variable lags specified in the model
(e.g. in an autoregressive model of order two, AR(2), p = 2). The conditional
likelihood function assumes that the first p lags are fixed, that is the likelihood
function of the remaining sample is specified conditional on the first p observations,
which are in turn set to either their realized or expected values. The exact likelihood
function, on the other hand, is a product of probability densities of all observations,
including the first p lags. Since it is impossible to model the first p observations using
a conditional model (i.e. there is no data to condition the first p observations in an
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AR(p) model), an unconditional pdf is specified for the initial p observations. When
the sample size T is large, the difference between the two approaches is small[41, 42,
43].

2.10.3 Generalized Method Of Moments Estimation

Generalized Method of Moments (GMM) refers to a class of estimators which
are constructed from exploiting the sample moment counterparts of population
moment conditions (sometimes known as orthogonality conditions) of the data
generating model. GMM estimators have become widely used, for the following
reasons:

e GMM estimators have large sample properties that are easy to characterize in
ways that facilitate comparison. A family of such estimators can be studied a
priori in ways that make asymptotic efficiency comparisons easy. The method
also provides a natural way to construct tests which take account of both
sampling and estimation error.

e In practice, researchers find it useful that GMM estimators can be constructed
without specifying the full data generating process (which would be required
to write down the maximum likelihood estimator). This characteristic has
been exploited in analyzing partially specified economic models, in studying
potentially misspecified dynamic models designed to match target moments,
and in constructing stochastic discount factor models that link asset pricing to
sources of macroeconomic risk[45].

As we will see, formally there are two alternative ways to specify GMM
estimators, but they have a common starting point. Data are a finite number of
realizations of the process {x; : t = 1,2, ...}. The model is specified as a vector of
moment conditions:

9¥o) = E[f(x¢,70)] =0

Where 7y, is a K x 1 vector of parameters; f is an R dimensional vector of
functions. If we knew the expectation then we could solve the equations g(y,) = 0 to
find y,. If there is a unique solution, so that g(yy) = E[f(x;,Yo)] = 0 if and only if
y =y,. The parameter y, is typically not sufficient to write down a likelihood
function. Other parameters are needed to specify fully the probability model that
underlies the data generation. In other words, the model is only partially
specified[44].
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For given sample x, : t = 1,2,...,T, we cannot calculate the expectation, we
replace with sample averages to obtain the analogous sample moments:

T
1
gr(y) =7;f(xt,y)

We can derive an estimator ¥, as the solution to g7 (¥uy) = 0. To find an
estimator, we need at least as many equations as we have parameters. For example, in
OLS as a MM estimator, we Consider the linear regression model y, of on x;, (K x 1)
with white noise error term &, :

Yt:xé)’0+ Ug

The conditional expectation E[y,|x.] = x, ¥o , SO that E[u.|x,] = 0. That
implies the K unconditional moment conditions g(y,) = E[x;u.] = E[x:(y; -
x; ¥o)] = 0, which we recognize as the minimal assumption for consistency of the
OLS estimator. We define the corresponding sample moment conditions as:

T
~ 1 [N
gr¥) = th—lxt (Yt - Xt V) =
T T
1 1 .
72 XtYVe — TZ xx, V=0
t=1 t=1

And the MM estimator is derived as the unigue solution:

T -1 7
Yum = <Z xtxt> th Vi

t=1 t=1

Provided that Y.I_; x,x, is non-singular. Method of moments is one way to
motivate the OLS estimator, it highlights the minimal (or identifying) assumptions for
OLS[44,45,46].

2.10.4 The Method of Nonlinear Least squares(Gauss-Newton method)

A straightforward extension of linear specifications is to consider specifications
that are nonlinear in parameters. Many empirical evidences show that many economic
relationships are in fact nonlinear[49].

Formally, we consider the nonlinear specification:
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y=fxB)+ elB)

Where f is a given function with x an m x 1 vector of explanatory variables
and g is a kx1 vector of parameters, and e(f) denotes the error of the specification.
Note that for a nonlinear specification, the number of explanatory variables m need
not be the same as the number of parameters k. Given T observations of y and x, let

Y1 f(x1;B)
y= ny‘,f(xl, v X3 B) = f(x?;ﬁ)
yr fCxri B)
The nonlinear specification now can be expressed as
y = f(xq, ..., x:; B) + e(B), where e(B) is the vector of errors.

Our objective is to find a k-dimensional surface that “best” fits the data (y;, x;),
t = 1,.. ,T. Analogous to the OLS method, the method of nonlinear least squares
(NLS) suggests to minimize the following NLS criterion function with respect to f:

T
1 . 1
Qr(B) =5y = fGr, o %53 O [y = FGoa, o X )] = ) e = f (kB

The first order condition of the NLS minimization problem is a system of k
nonlinear equations with k unknowns:

VsQr(B) = — 2V f(xy, ., X1 By — f (g, ., X7 )] = 0
Where
Vef(x1, ... xp; B) = [V f(x1; B) Vpf(x2; B) ... Vpf(xr; B)]

Is a kxT matrix. When a solution to the NLS minimization problem cannot be
obtained analytically, the NLS estimates must be computed using numerical methods.
To optimizing a nonlinear function, an iterative algorithm starts from some initial
value of the argument in that function and then repeatedly calculates next available
value according to a particular rule until an optimum is reached approximately. It
should be noted that when there are multiple optima, an iterative algorithm may not
be able to locate the global optimum. In fact, it is more common that an algorithm
gets stuck at a local optimum, except in some special cases, e.g., when optimizing a
globally concave (convex) function. In the literature, several new methods, such as
the simulated annealing algorithm, have been proposed to find the global solution.
These methods have not yet been standard because they are typically difficult to
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implement and computationally very intensive. We will therefore confine ourselves
to those commonly used methods[49].

To minimize Q(B), a generic algorithm can be expressed as

BUHD = g 4 5D

so that the (i +1)" iterated value B¢+ is obtained from B®, the value from
the previous iteration, by adjusting the amount s®d® where d® characterizes the
direction of change in the parameter space and s controls the amount of change.
Different algorithms are resulted from different choices of (s) and (d). As maximizing

Qr is equivalent to minimizing —Qr, the method discussed here is readily modified to
the algorithm for maximization problems[49].

Consider the first-order Taylor expansion of Q () about B:

0r(B) ~ Qr (BN + [V4Qr (BN] (B-B)
Replacing B with B¢+1D and g with B we have

0r(B4*D) ~ Qr(BD) + [V40r(B)] sVd®

Note that this approximation is valid when B¢+D is in the neighborhood of
BO. Let g(B) denote the gradient vector of Qr: VgQr(B), and g® denote g(B)
evaluated at 8O, If d = —g®,

QT(ﬁ(iH)) ~ QT(ﬁ(i)) — S(i)[g(i)'g(i)]

As g® g® is non-negative, we can find a positive and small enough (s) such

that Qy is decreasing. Clearly, when B® is already a minimum of Qr, g is zero so
that no further adjustment is possible. This suggests the following algorithm:

l;(i+1) = ﬁ(i) — S(i)g(i) )

Choosing d® = s® leads to :

l;(i+1) = ﬁ(i) + S(i)g(i)

which can be used to search for a maximum of Qr. The Gauss-Newton method

implies to choose the term s@g® = [D(BW®) D(ﬁ(”)]_lD(ﬂ(”)[y—f([i(”)],
where D(B) = Vgf(B), so The resulting algorithm is

BEHD = B 4 [D(BDY D(BD)] DBD)[y — F(BD)]
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Observe that the adjustment term can be obtained as the OLS estimator of

regressing y — f(B®) on (B®); this regression is thus known as the Gauss-Newton
regression. The iterated £ values can be easily computed by performing the Gauss-
Newton regression repeatedly[49].

2.11 Forecasting

One of the primary objectives of building a model for a time series is to be able
to forecast the values for that series at future times. Of equal importance is the
assessment of the precision of those forecasts. In this section, we shall consider the
calculation of forecasts for MIDAS models. For the most part, we shall assume that
the model is known exactly, including specific values for all the parameters.
Although this is never true in practice, the use of estimated parameters for large
sample sizes does not seriously affect the results[43].

In univariate time series models, the purpose is to forecast the value of y,.,
that will occur | time units into the future based on the available history of the series
up to time t, namely yy, y,, ..., y;. In our work with MIDAS regressions, we have the
same purpose with some differences. We want to forecast the future value (y,,,;) of
the low-frequency variable (y;) based on its past values with the existence of the
high-frequency variables of other time series related to it. We call time t the forecast
origin and | the lead time for the forecast, and denote the forecast itself as y, (1)[43].

Consider the deterministic trend model

Ye = U +u , where p, =B+ Bt or u, =B+ P1x;,, the stochastic
component, u,, assumed as white noise with zero mean and constant variance. For
this model, we have

(D) = Ve = E(er + uenlyy, ya, 0 Ve)
= E(ferilyr, ¥z, -0 ¥e) + EQeptlyn, Y2, w0 ¥e) =fepr + EUeg)= e

Since for | > 1, u,; is independent of y;, y,, ..., y; and has expected value zero.
Thus, in this simple case, forecasting amounts to extrapolating the deterministic time
trend into the future[43].

Now, Consider the following ADL(p,m)-MIDAS model:

m-—1 k
p i —_— ’ ’
Ve =Bo+ Zi:l Bi L'y, + g o YiLm xtm) +u=B y+y x4y

where ;
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B = (BuBor Bp) ¥ = (oY1 Ymen)s 2™ = G ) 1)
3

the vector of explanatory high-frequency variables, y = (y¢—1, -2, -, Yt—p) is the
vector of y, lags (y; is the low-frequency dependent variable with T sample size) and
u = u; = (uq, Uy, ..., ur) Is the white noise process with zero mean and constant
variance a2[50].

For this model, we have:

YeD) =Py = E(Yt+l|y’ x(m))

m—1 k
. b A ok
=E (Bo + 2 Bi Ly + Z Vil x 1y, x('")) + E(ug 4]y, x™)

m—1
=By + Z Bz L'y + Z YkL’” xt(+l)

Since for | > 1, u,,, is independent of y and x™, and has expected value zero.
One measurement of forecast accuracy is the Mean Square Forecast Error(MSFE).
Fore simplicity, we consider the following simple MIDAS model:

ye=x" v+

Where u, is white noise process with zero mean and constant variance ¢2[50].
Consider an out of-sample observation (y; .1, t(Tl)) where xt(Tl) will be observed but

not y..q. Given the coefficient estimate ¥y, the standard point estimate of
E(yt+1|xt(m)) Xt(Tl) YisPpyq = xt(’fl) . The forecast error is the difference between
the actual value y,,; and the point forecast, e;,1=Y:+1 — V:+1. The mean-squared
forecast error (MSFE) is: MSFE=Ee?, ;. A simple estimator for the MSFE is obtained
by averaging the squared prediction errors(e,= y, — ¥,):

[uN

t=

The other important forecast accuracy measurement is the Mean Absolute
Percentage Error (MAPE) which is defined as:

T
MAPE = = e x 100%
T Ve

t=1
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Chapter 3 : Application Case Study
3.1 Modeling The Palestinian GDP

In Palestine Monetary Authority(PMA) studies, there are many working papers
that concentrate on building models to analyze the effect of all kinds of shocks on the
economy. On policy analysis, they always need to provide forecasts for many
macroeconomic variables in a way that is consistent with the real GDP forecasts.
Such models are useful to recite forecasts, to provide a coherent framework, to
explain recent developments, to explain the economic outlook on medium term and to
explain the main transmission mechanisms of external and internal
shocks[35,36,37,38].

The main problem facing these models is that the PMA’s structural and
financial models are built on annual frequency, because most of the data used in those
models are not available on quarterly frequency or it is available in mixed
frequencies. Concerning real GDP growth, forecasting the annual models may miss at
least part of the influence of the short term economic dynamics, and their short term
forecasts may therefore be sub-reliable[35]. Sometimes the data used in PMA studies
are available quarterly like the real GDP but its expected factors like the cost of
imports (CIM) or the consumer price index(CPI) are available monthly. This makes
researchers forced to aggregate monthly data in order to match them with the
quarterly GDP, and this may miss part of the influence as mentioned before[36,37].

We will use the idea of MIDAS regressions to present a solution of the
mentioned problem, in order to enable building economic and financial models
regardless of the availability of data and variables in mixed frequencies.

Due to PMA studies, the Palestinian real GDP can be modeled as a function of
exogenous variables(Endogenous variables: the variables that the model seeks to
explain or predict from the solution of the model. Exogenous variables: the variables
that are determined outside the model). Some of these variables that we are interested
in our case study are: The cost of imports(CIM), Employment rate in Israel and
settlements(EIS) and Consumer Price Index(CPIl) [35,36,37,38]. In their studies,
PMA researchers have followed two approaches to build a real Palestinian GDP
models based on some indicators. These indicators are expected to have significant
impact on economic growth in Palestine. Real GDP models for Palestine can be used
to generate essential forecasts. PMA researchers usually use Time-Averaging
approach to build a quarterly Palestinian real GDP models based on the main
exogenous indicators mentioned above. Only monthly and quarterly variables are
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used here, therefore, the monthly indicators are aggregated to be quarterly. Due to
PMA, the Palestinian GDP assumed as a small open economy; which means that the
external environment is the natural supplier of such exogenous variables on which the
local policy makers or economic agents have no control. On the other hand, the
external environment in Palestine is very much conditioned by political issues, as
well as, economic developments and conditions in Israel. Because that, PMA
researchers followed the second approach of building reduced form model that
represents a long-run equation for real GDP in Palestine as function of real GDP in
Israel and the number of Palestinian residents working in Israel and settlements. The
ARDL(Auto Regressive Distributed Lag) technique is used by researchers to build
the long-run relationship and to estimate the equilibrium correction model(ECM ) by
OLS]35,36].

The inflation model presented in the PMA’s 2013 inflation report shows
significant long-run relationship between CPI in Palestine and the cost of imports in
Palestine(CIM). This result was confirmed by other PMA working paper by Khalil &
Dombrecht[36,38].

Based on all the above, we choose to build a quarterly real GDP model in
Palestine based on the monthly consumer price index in Palestine(CPI), the monthly
cost of imports in Palestine(CIM) and quarterly employment rate in Israel and
settlements(EIIl). In addition, we may include the first lag of GDP(GDPy,) and the
trend term in the model(t). We obtained data from the Palestinian Central Bureau of
Statistics(PCBS) for a period from 1999 to 2012. The long-run relationship and the
estimated short-run ECM regression model can be expressed by the three types of
regressions being studied (R-MIDAS regression model, U-MIDAD regression model
and Time-Averaging regression model), as the following:

The long-run relationship based on R-MIDAS approach:
LGDP® = By + it + BLGDPY + B LEII® + B, Y7 By, 1(61,65) LCPIt(fz +

Bs X5l B, 2 (63,64) LCIMt(’f)L +u, (R-MIDAS) (15)
Where u; is the white noise process(independent identically distributed random
variables with zero mean and variance ¢2), t is the trend variable, By ; (61, 6,) and
B;,(65,6,) are lag polynomials that determines the weights for the monthly
variables. We take the log for monthly and quarterly variables in the model to


https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.pcbs.gov.ps%2F&ei=Ob03U5ubAoGVhQfKgoHIDQ&usg=AFQjCNFFCqDZT6SdwK1NM5eE3EcYceKgFA&bvm=bv.63808443,d.bGQ
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simplify the interpretations of coefficients as percentage change. The estimated short-
run ECM regression model based on R-MIDAS approach:

ALGDP® = ¢+ iy + GLGDPD + @ A@LEN@ +

By X120 Bie3(6s,65) A(m)LCPIt(T_né +
B, Y751 B, 4(65,65) A(m)LCIMfT_"L) (16)

Where i, _4 is the first lag of the estimated residuals of the long-run model and
its coefficient  denotes to the equilibrium or adjustment rate(see sections 2.7 and 2.8
of cointegration). The symbol A®™ means that we are taking the first difference of
the monthly variable or the high-frequency variable, and the symbol A(@ means that
we are taking the first difference of the quarterly variable or the low-frequency
variable.

The long-run relationship based on U-MIDAS approach:

LGDPY = By + Bit + BLGDPY) + B LENI® + Y71 s LCPI(m)
o' Bis LCIM™) +u, (U-MIDAS) (17)

Note that S, 4 and S; s here are different coefficients for all k and i, and they are
not lag polynomials as in R-MIDAS model. The estimated short-run ECM regression
model based on U-MIDAS approach:

ALGDPY = ¢ + 90,y + GLGDPY) + @ AQLEI +
Yl By A(m)LCPI(m) + Yot By, A<m>LCIMt(’”3 (18)

Also here By, ; and B; , are different for all k and i, and they are not estimated as
lag polynomials.

The long-run relationship based on Time-Averaging approach:
LGDPY = By + it + B,LGDPY + B LENI® + B, LCPI? +
Bs LCIMt(Q) + u; (Time-Averaging) (19)
Where:
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LCPI? = log(= 37 cpzf’f)i} and LCIM® = log{= 315! CIMt(r_nL)} .

And the estimated short-run ECM regression model based on Time-Averaging
approach:

ALGDPYY =&+ p0,_y + GLGDPY) + @ AQLEN® + B A@LcPI? +
B,A@LcIM® (20)
Where:

A(Q)LCPIt(Q) = A(Q)ZOQ{%ZZL_(} CPI:T)E} and
AOLCIM® = A@log (35! CIM™)

Our results of time series analysis are shown in appendix A. The AGK test of
all d's are zeros(see Table A6 in Appendix A) were accepted, the null hypothesis is
Ho : @ = 0, (0=(64,6,))[32]. In other words, accepting the null hypothesis implies
that the estimated R-MIDAS regression does not differ from time-averaging
aggregation(see appendix C for more details about the AGK test)[32]. This implies to
use time-averaging since all weights will be equal and we conclude that each
Exponential Almon Lag polynomial weight equals to 1/m(because m=3 in our

analysis, B;; (k; 0) = % for all i=1,2,3 and j=1,2). Thus, the results show that both

the long-run relationship based on R-MIDAS regression and that based on Time-
Averaging regression model do the same work here. The results of estimation of the
long-run model based on the Time-Averaging method(see Table A7) exhibited that:
the Employment rate in Israel and settlements(Ell), the first lag of GDP and the cost
of imports in Palestine(CIM) all affect the real Palestinian GDP.

The results of U-MIDAS regression were better(see Table A3). The results
exhibited that the effect of the cost of imports (CIM) on the real GDP comes from the

second-month based series of the imports(LCIMt(i)l) or (LCIM1) because the
3

others(LCIMtB) , LCIMS)E) or (LCIMO, LCIM2) are not significant. We found that in
3

both Time-Averaging and U-MIDAS methods, the monthly CPI (the first, the second

and the third month based-series) have no effect on GDP(see Table A3 and Table

AT), so we decided to eliminate the monthly CPI from the long-run regression, and

we decided to eliminate both the first-month based series of imports and the third-
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month based series of imports(LCIMt(g) and LCIMS)E) from the model. The test of
3

stationarity of all variables performed by Augmented Dickey-Fuller test(see Table
Al). The results demonstrated that variables are integrated of order one, and the
residuals were stationary due to U-MIDAS and Time-Averaging reduced
models(after eliminating CPI)(see Table A9), so the test of cointegration by Engle-
Granger procedures was satisfied(see section 2.7 for cointegration tests). The test of
Johansen suggests that there exist at least one cointegration relationship and at most
two(see table A2). So we concluded that there exist long-run relationship between the
GDP and all of the other variables except the CPI.

Based on the above results, we estimated the equilibrium correction model
(ECM) in order to construct the short-run relationship using the three methods: U-
MIDAS, R-MIDAS and Time-Averaging. As expected, both R-MIDAS and Time-
Averaging will do the same work in estimation of the ECM model because the null
hypothesis of the AGK test was accepted(see Table A10). Also we found that each
ECM based on each method exhibited significant dependency between the
differenced GDP and the differenced cost of imports only(see Tables A10, A1l and
A13). We noted from the table A1l in Appendix A that the estimated ECM based on
U-MIDAS approach outperformed the estimated ECM based on Time-Averaging
approach; the U-MIDAS approach showed significant dependency between the first

differenced GDP and the second differenced monthly cost of imports(A(3)LCIMt(i)l),
3

but we expect that there is also significant dependency between the first differenced
GDP and the first differenced monthly cost of imports(A(3)LCIMS)g), so we will
3

include this term in the final ECM. Finally, we estimated the reduced ECM after

eliminating all non-significant terms(except A(3)LCIMS)l and A(3)LCIMS)3) based on
3 3
U-MIDAS approach as the following(see Table A12):
ALGDPYY = (0.0022) + (—0.399) u,_; + (0.194) A<~°’>LCI1\/1t(3_)l +
3
(0.104) A(?’)LCIMt(?’_)Z (21)

3
Note that we eliminated the differenced third-month based series of the cost of

imports(A®LCIM®) from the estimated ECM, because it has no impact on the

differenced GDP(not significant). Also the following variables were eliminated

because the same reason: The first lag of quarterly GDP (LGDPt(Sl)), the quarterly
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differenced employment rate in Israel and settlements(A(Q)LEIIEQ)), and the
m)
k

3

differenced monthly consumer price index with all its parts(B;; A(m)LCPIt(
k=0,1,2).

From the estimated ECM equation (21) and by the results of Table Al2, it is
clear that the coefficient of error correction term(u,_;) has negative sign and it is
statistically significant(p-value<0.05). Based on our results, we conclude that there is
movement back of the real Palestinian GDP to the equilibrium relationship. This
means that if the real Palestinian GDP exceeds the long-run equilibrium relationship,
then the error-correction term will help to move the real GDP back to the original
equilibrium. Also if real GDP is lower than the long-run equilibrium level, then the
error-correction term will help to shift the real GDP toward the long-run equilibrium
relationship.

The estimated value of u,_; coefficient(y=-0.399158) implies that about 39.9%
of the deviation between real GDP and the long-run equilibrium value is reduced
every quarter, and the adjustment will take about two quarters and half
(100/39.9=2.51). With respect to the impact on short-run, coefficient values of the
differenced second-month based series and the differenced first-month based series of

the cost of imports(A(3)LCIMS) and A(3)LCIMS)E) provide the evidence that there is
3

1
3
short-run effect of these monthly-based series on real Palestinian GDP.

On the other hand, the differenced first-month based series has not effect on the
short-run, because its coefficient is not significant based on the results on Table Al1,
and so it was eliminated from the ECM equation(21). From equation(21), it is
concluded that on the short-run, we expect that the real GDP in each quarter will
increase by 1.94% on the average when the cost of imports at the second month in
that quarter increases by 10% with other factors are held constant. Also, we expect
that the real GDP in each quarter will increase by 1.04% on the average when the cost
of imports at the first month in that quarter increases by 10% with other factors are
held constant.

In summary, we have identified that there exists long-run equilibrium
relationship between both Employment rate in Israel and settlements(EIl) and the first
lag of GDP and the real Palestinian GDP. Also, the real Palestinian GDP is affected

by the second-month based series of the cost of imports in Palestine(LCIMS)l). The
3

estimated cointegrating equation using U-MIDAS regression is(see TableA4):
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LGDP? = (5.639) + (0.004)t + (0.368)LGDPY) + (0.144)LEII®Y +
(0.219)LCIMS, (22)

3

We note that each variable in the long-run equation (22) causes the real GDP to
increase. On the long-run, we expect that each ten percentage increase in the cost of
imports at the second month in each quarter will increase the quarterly real GDP by
2.19% on the average with other variables are held constant. Also we expect that each
ten percentage increase in the quarterly employment rate in Israel and settlements will
increase the quarterly real GDP by 1.44% on the average with other variables are held
constant. Similarly, we expect that the real GDP will increase by 3.68% on the
average for each 10% increasing of its first lag with other variables are held constant.
Finally, it is concluded that the real GDP in Palestine is increasing by only 0.04% on
the average through the time with other variables are held constant .”

Table (3) state out-of-sample (that is, part of model estimation sample)
forecasts of GDP for the quarters of the year 2012. The table compares these
forecasts with the true observed values. The table shows smaller forecast errors when
using MIDAS models(restricted and unrestricted) than when using Time-Averaging
model. The absolute percentage errors in the forecasts of real GDP for these out of
sample part when using U-MIDAS model is about 4.2% on the average, and it is
lower than that by the other methods(for more details about MAPE see section 2.11).

Table (3): Quarterly out-of-sample forecasts of GDP*

U-MIDAS R-MIDAS Time-Averaging
Year : Quarter | Observed

Forecast | Error | Forecast | Error | Forecast | Error

2012:Q1 1.602 1.564 0.038 1.556 0.045 1.548 0.054
2012:Q2 1.755 1.605 0.150 1.603 0.151 1.584 0.171
2012:Q3 1.708 1.707 0.001 1.690 0.018 1.669 0.039
2012:Q4 1.733 1.630 0.103 1.643 0.090 1.623 0.110

MAPE (out-of-sample) 4.2% 4.4% 5.4%

* values in $1000000.

We used the estimated long-run relationship (22) to forecast the value of the
Palestinian real GDP at the first quarter in the year 2013(2013:Q1). The forecasted

*
The data used in analysis were collected from Palestinian Central Bureau of Statistics(PCBS).
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value was 1425043, comparing with the true value(1644800), we have 13% forecast
error for the Palestinian real GDP at the first quarter in the year 2013.

3.2 Discussion of Results and Conclusions

The assumption of equal frequencies for all the variables is not always available
or satisfied for the classical regression models. For example, in order to explore the
impact of some factors on the Gross Domestic Product-the most important measure of
a nation’s economic health- or for forecasting issues, we need all variables to be in
the same frequencies. Economic variables are usually available with various or mixed
frequencies(annually, quarterly, monthly...etc ); thus it is difficult to deal with these
variables directly. The classical method is to take the simple average to convert high-
frequency variables(more frequently observed than the response) into fixed frequency
variables, and to make them identical in frequencies with the low-frequency
variable(less frequently observed than factors), which is assumed to be dependent or
response. We introduced in this thesis a relatively recent method established by
Ghysels, Santa-Clara and Valkanov(2004) that is Mixed Data Sampling (MIDAS)
regression model. This method coincides the frequency of the response and the
regressors, and also makes the application of common statistical procedures possible.
We explained the features of MIDAS regressions which often outperform the typical
approach of time aggregation in terms of estimation efficiency(less error
variance)[32]. We saw that MIDAS regressions have two main types, unrestricted
and restricted. The later characterized by diversity of parameterization methods in
order to estimate the model coefficients, and it supports the parsimony principle
which is important to simplify interpretations.

The performance of the three approaches(Unrestricted MIDAS regression,
Restricted MIDAS regression and the classical Time-Averaging regression) was
assessed through modeling the Palestinian GDP with some suggested factors that
may affect it significantly. We compared between these approaches by constructing
long-run relationships using the three methods. The aim was to know which one is
the best for reducing forecasting errors. Our results showed that both U-MIDAS and
R-MIDAS were better than the classical Time-Averaging method in reducing
forecasting errors measured by the mean absolute percent error(MAPE) as shown
from the Table(3), this result was compatible with many previous studies. Also, our
results showed that U-MIDAS was better than R-MIDAS narrowly in reducing
forecasting errors; because the difference between frequencies is not large(one
quarter = three months)[6]. Moreover, we have seen that both U-MIDAS and R-
MIDAS approaches separate the high-frequency variable into several variables; Each
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variable has the same frequency as the low-frequency response variable, then it
assigns group of parameters or weights to them, we estimated the weights of the R-
MIDAS models in our case study using Exponential Almon Lag Polynomial by NLS
method, also we estimated the coefficients of the U-MIDAS models in our case study
using by OLS method. These approaches guarantees reserving the high-frequency
information and gives clearer results than the classical Time-Averaging method.

We have noticed all the benefits that mentioned previously by the results of the
data analysis. The results showed that the monthly Consumer Price Index(CPI) has no
significant impact on GDP, since each monthly series of CPI has no significant
impact on GDP, but concerning the monthly Cost of Imports(CIM), the results were
different. The CIM has significant impact on GDP; specifically the second-month-
based series of CIM, which means that the quarterly GDP in the long-run affected by
its cost of imports in the second month computed in each quarter. Also, the results
turned out that in the long-run, the quarterly GDP has increasing general trend and it
is affecting by its first lag and the quarterly Employment Rate In Israel and
Settlements, also, all these variables have positive impact on GDP. In the short-run,
after estimating the equilibrium correction model; the results showed that the GDP in
the short-run is affecting by the CIM; specifically by the second-month-based series
and the first-month-based series of CIM. The speed of adjustment is about 40%;
which means that we need about 7 months(2.5 quarter) to shift the real GDP toward
the long-run equilibrium relationship with the CIM. All these results about the long-
run relationship and the short-run relationship  were consistent with the PMA
studies[35,36,37,38].

Possibilities for future study include the application of MIDAS approach in
forecasting the real GDP of Palestine for the period 1996 to 2000, because the GDP
at that period is not available neither quarterly nor annually. Finally, other important
topics related to time series analysis such as causality and disaggregation can be
further introduced with MIDAS approach; specifically Granger causality and
disaggregation using MIDAS regressions[26,39].
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Table Al: Unit root test
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. ADF test p-value
variable | Frequency type | ADF test p-value for first di ?ference
GDP Quarterly 0.05469 0.01667
Ell Quarterly 0.2279 <0.01
CPIO Monthly 0.2336 0.04454
CPI1 Monthly 0.3104 0.02248
CPI2 Monthly 0.3837 0.0191
CIMO Monthly 0.482 <0.01
CiM1 Monthly 0.02025 <0.01
CIM2 Monthly 0.5246 <0.01
Table A2: Results of Johansen's Cointegration Test*

Trace test Test statistic | 10% 5% 1% Results
HO:r<=4 ,H1l:r>4 4.80 752 | 9.24 | 12,97 | Fail to reject HO
HO:r<=3,H1:r>3 14.06 17.85 | 19.96 | 24.60 | Fail to reject HO
HO:r<=2,H1l:r>2 25.03 32.00 | 34.91 | 41.07 | Fail to reject HO
HO:r<=1,Hl:r>1 57.72 49.65 | 53.12 | 60.16 reject HO
HO:r=0,H1:r>0 108.46 71.86 | 76.07 | 84.45 reject HO
Max-eigenvalue test | Test statistic | 10% 5% 1% Results
HO:r<=4 ,Hl:r=5 4.80 752 | 9.24 | 12,97 | Fail to reject HO
HO:r<=3,Hl:r=4 9.26 13.75 | 15.67 | 20.20 | Fail to reject HO
HO:r<=2,H1:r=3 10.97 19.77 | 22.00 | 26.81 | Fail to reject HO
HO:r<=1,H1l:r=2 32.69 25.56 | 28.14 | 33.24 reject HO

HO:r=0,H1l:r=1 50.74 31.66 | 34.40 | 39.79 reject HO

* ris the number of cointegrating relationships.
*variables: (gdp,eii,cim0,cim1,cim2).
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Table A3: Estimation Results for Long-Run U-MIDAS Regression Equation (17)

variable | parameter Estimate Std. Error t value Pr(>|t])
Intercept Bo 8.159787 2.885871 2.827 <0.01*
Trend Br 0.010546 0.006514 1.619 0.112433
LGDP, By 0.362917 0.089189 4.069 <0.01*
LEII B, 0.141811 0.060549 2.342 0.023661*
LCPIO Bo 3 0.454766 1.429812 0.318 0.751911
LCPI1 P13 -2.59173 2.239979 -1.15 0.253363
LCPI2 B3 1.378244 1.429546 0.964 0.340142
LCIMO Bo 4 0.092053 0.068231 1.349 0.184046
LCIM1 P14 0.148495 0.061672 2.408 0.02021*
LCIM2 B24 0.0543 0.075718 0.717 0.477
Residual | Multiple .
standard R- RIS R F-statistic p-value
squared
error squared
0.05888 72.61
df 0.9356 0.9227 df1 df2 2.2e-16
45 9 45

Note: This table contains estimation results of the U-MIDAS regression equation (17) with
trend variable with coefficient 7. The dependent variable is LGDP.

Table A4: Estimation Results for Long-Run U-MIDAS Regression Equation (22)

variable | parameter Estimate Std. Error t value Pr(>t|)
Intercept Bo 5.639495 1.017943 5.540 <0.001*
Trend Br 0.004340 0.001421 3.053 <0.001*
LGDPy, b1 0.368372 0.084775 4.345 <0.001*
LEII B, 0.143993 0.051167 2.814 <0.01*
LCIM1 B4 0.219608 0.046672 4.705 <0.001*
Residual | Multiple .
standard R-p AEIEED 3 F-statistic p-value
squared
error squared

0.05971 157.3

df 0.9264 0.9205 dfl df2 2.2e-16

50 4 50

Note: This table contains estimation results of the reduced form of the U-MIDAS regression
equation (17) with trend variable with coefficient 5. The dependent variable is LGDP.
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Table A5: Estimation Results for Long-Run R-MIDAS Regression Equation (15)

variable | parameter Estimate Std. Error | tvalue Pr(>[t])
Intercept Bo 8.486 2.933 2.893 <0.01*
Trend Br 1.073e-02 6.621e-03 1.620 | 0.112262
LGDP, B1 3.346e-01 9.065e-02 3.691 <0.001*
LEI B 1.541e-01 6.154e-02 2.505 | 0.015949*
LCPIO B3 -7.681e-01 5.935e-01 | -1.294 | 0.202163
LCPIL1 01 -5.146e-01 2.044e+09 0.000 1.00000
LCPI2 0, -2.421 6.814e+08 | 0.000 1.00000
LCIMO Ba 3.015e-01 7.273e-02 | 4.146 <0.001*
LCIM1 05 1.734 3.676 0.472 | 0.639378
LCIM2 0, -4.773e-01 9.755e-01 | -0.489 | 0.627044
Residual standard error df
0.05984 45

Note: This table contains estimation results of the R-MIDAS regression equation (15) with
trend variable with coefficient Sr. Started values used in NLS estimation method :
(B3,61,02) = (B4, 63,64) = (0, 0, 0). The dependent variable is LGDP.

Table A6: Estimation Results for Long-Run R-MIDAS Regression Equation (15)

variable parameter Estimate Std. Error tvalue | Pr(>t|)
Intercept Bo 8.279 3.589 2.307 | 0.0257*
Trend Br 1.027e-02 7.859¢-03 1.307 0.1979
LGDP;, By 3.383e-01 7.762e-02 4.359 | <0.001*
LEII B, 1.509e-01 5.671e-02 2.661 | 0.0108*
LCPIO B3 -7.154e-01 7.574e-01 -0.945 | 0.3499
LCPI1 0, -2.376e-01 1.835e+05 0.000 | 1.000000
LCPI2 0, -1.309 6.112e+04 0.000 | 1.000000
LCIMO i 2.958e-01 6.848e-02 4319 | <0.001*
LCIM1 03 2.802 3.095 0.906 0.3700
LCIM2 0, -7.518e-01 8.830e-01 -0.851 | 0.3990
staﬁgzlr?jue?rlror af stA;(ti;(tlE:e/Z; gl conclusion
0.05975 45 0.3307/6 0.9993 Accept Hp: =0

Note: This table contains estimation results of the R-MIDAS regression equation (15) with
trend variable with coefficient Sy. Started values used in NLS estimation method were taken
from the first estimated values: (83,61, 6,) = (-5.995e-01, -3.161e-01, -1.544), (B4, 05,60,) =
(3.095e-01, 2.217, -5.910e-01). The dependent variable is LGDP.
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Table A7: Estimation Results for Long-Run Time-Averaging Regression
Equation (19)

variable | parameter Estimate Std. Error t value Pr(>t|)
Intercept Bo 8.120633 2.630812 3.087 <0.01*
Trend Br 0.009919 0.005930 1.673 0.100748
LGDPy, b1 0.333306 0.083688 3.983 <0.001*
LEII B> 0.147799 0.055264 2.674 0.010145*
LCPI B3 -0.711832 0.539911 -1.318 0.193491
LCIM Ba 0.314057 0.064613 4.861 <0.001*
Residual . .
standard RMuItlpIe ARG Istet R F-statistic p-value
-squared squared
error
0.05749 136.7
df 0.9331 0.9263 dfl df2 2.2e-16
49 5 49

Note: This table contains estimation results of the Time-Averaging regression equation (19)

with trend variable with coefficient . The dependent variable is LGDP.

Table A8: Estimation Results for Long-Run Time-Averaging Regression
(reduced form of Equation (19))

variable | parameter Estimate Std. Error t value Pr(>|t))
Intercept Bo 4913330 1.008993 4.870 <0.001*
Trend Br 0.002378 0.001576 1.509 0.137661
LGDP;, B 0.330878 0.084283 3.926 <0.001*
LEII B, 0.119393 0.051266 2.329 0.023946*
LCIM P 0.330163 0.063914 5.166 <0.001*
Residual | Multiple .
standard R-p AR I F-statistic p-value
squared
error squared
0.05791 168
df 0.9307 0.9252 dfl df2 2.2e-16
50 4 50

Note: This table contains estimation results of the reduced form of the U-MIDAS regression
equation (19) with trend variable with coefficient ;. The dependent variable is LGDP.




Table A9: Unit root test for Error Correction Term u,

Method ADF test p-value PP test p-value
U-MIDAS 0.03943 <0.01
Time-Averaging 0.07439 <0.01
R-MIDAS 0.04703 <0.01

Note: This table contains Augmented Dickey—Fuller(ADF) test and Phillips-Perron(PP)

test results of the estimated residuals term u, resulted by the reduced forms of the U-MIDAS
and Time-Averaging regressions.

Table A10: Estimation Results for Short-Run ECM-RMIDAS Equation (16)

variable parameter Estimate Std. Error | tvalue Pr(>[t])
Intercept c -0.14864 0.25114 -0.592 | 0.556968
U q y -0.35123 0.12667 -2.773 <0.01*
LGDP;., ay 0.01187 0.01774 0.669 | 0.506955
AQLE] a; 0.04109 0.05712 0.719 | 0.475792
By -1.53490 0.66262 -2.316 | 0.025255*
AM_CPI s 0.15474 30.86770 | 0.005 | 0.996023
O 0.18553 6.87614 0.027 | 0.978596
B, 0.31570 0.08905 3.545 <0.001*
AMLCIM 6, 4.66255 3.92171 | 1.189 | 0.240853
05 -1.12753 0.90617 -1.244 | 0.219983
Residual AGK test _
Stirr]rdoarrd df statistic/df p-value conclusion
0.05558 44 0.4917/6 0.9979 AcceptHp:0=0

Note: This table contains estimation results of the ECM-RMIDAS-based equation (16).
Started values used in NLS estimation method: (By,05,0¢) = (B,,07,65) = (0, 0, 0). The
dependent variable is AAQLGDP.
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Table Al1l: Estimation Results for Short-Run ECM-UMIDAS Equation (18)

variable parameter Estimate Std. Error | tvalue Pr(>|t])
Intercept c -0.16068 0.53923 -0.298 0.7671
Uiq y -0.35056 0.14740 -2.378 | 0.0218*
LGDP, ay 0.01271 0.03857 0.329 0.7434
AQLEI a, 0.04145 0.05256 0.789 0.4346
ACLCPIO By 1 0.10126 0.97738 0.104 0.9180
AMLCPI1 By, -0.82621 1.46904 | -0.562 | 0.5767
AMLCPI2 By -0.76059 1.05557 -0.721 0.4750
AMLCIMO By 0.04761 0.06563 0.725 0.4720
AMLCIM1 B, 0.19154 0.04155 4.610 <0.001*
AMLCIM2 B,, 0.06785 0.05395 1.258 0.2151
Residual . .
standard Mgl PETVSIE - F-statistic p-value
R-squared squared
error
0.0555 7.795
df 0.6146 0.5357 dfl df2 9.396e-07
44 9 44

Note: This table contains estimation results of the ECM-UMIDAS-based equation (18). The
dependent variable is AAQLGDP.

Table A12: Estimation Results for Short-Run ECM-UMIDAS Equation (21)

variable parameter Estimate Std. Error | tvalue Pr(>t|)
Intercept c 0.002212 0.007489 0.295 0.76895
U;_q 4 -0.399158 0.132621 -3.010 <0.01*
AMLCIM1 B, 0.193961 0.040016 | 4.847 <0.001*
AMLCIM2 B, 0.104397 0.042225 2.472 0.01687*
Residual . .
standard Mgl PETURIER 13- F-statistic p-value
R-squared squared
error
0.0549 22.23
df 0.5715 0.5458 dfl df2 2.76e-09
50 3 50

Note: This table contains estimation results of the reduced form of the ECM-UMIDAS-
based equation (18). The dependent variable is A(Q)LGDP.
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Table A13: Estimation Results for Short-Run ECM-Time-Averaging Equation

(20)
variable parameter Estimate Std. Error | tvalue Pr(>t|)
Intercept c -0.070002 0.533555 | -0.131 0.8962
Ui q y -0.284815 0.140779 | -2.023 0.0486*
LGDPy ay 0.006112 0.038163 0.160 0.8734
AQLE| a; 0.044597 0.042387 1.052 0.2980
A@LCPI B, -1.423650 0.806855 | -1.764 0.0840
A@LCIM B, 0.373267 0.058953 | 6.332 | <0.001*
Residual i .
standard Mgl 4 AR dR' F-statistic p-value
error R-square square
0.05511 13.56
df 0.5855 0.5423 dfl df2 2.952e-08
48 5 48

Note: This table contains estimation results of the ECM-Time-Averaging -based equation
(20). The dependent variable is A(YLGDP.

Table Al4: Estimation Results for Short-Run ECM-Time-Averaging (reduced
form of Equation (20))

variable parameter Estimate Std. Error | tvalue Pr(>|t))
Intercept c 0.0009689 0.0076079 | 0.127 0.899
U q 14 -0.3348287 0.1329698 | -2.518 0.015*
ADLCIM B, 0.4125951 0.0539719 | 7.645 | <0.001*
Residual . .
standard Mgl PETURIER 13- F-statistic p-value
R-squared squared
error
0.05569 31.19
df 0.5502 0.5325 dfl df2 1.421e-09
51 2 51

Note: This table contains estimation results of the reduced form of the ECM-Time-
Averaging -based equation (20). The dependent variable is A(QLGDP.
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Appendix C : Testing The Flat Aggregation Scheme(AGK test)

When researchers follow a MIDAS regression approach, It is interested to
examine whether estimating MIDAS regression does not differ from time-averaging
aggregation. For example in Exponential Almon Lag weights, when all parameters
(6's) equal zero, this implies to use time-averaging since all weights will be equal.
Andreou, Ghysels and Kourtellos(2007) suggested to use simple Lagrange multiplier
chi square test to examine the Ho : @ = 0. The test statistic LM could be written as the
following:

SSE74—SSEy

_ d 5
LM = SSErg - x“(r)

Where SSEt, is the sum of squared errors from the linear regression based on
Time-Averaging method, and SSEy is the sum of squared errors based on MIDAS
regression, r is the number of aggregated high-frequency variables and n is the
number of low-frequency observations, this test also called Andreou, Ghysels,
Kourtellos(AGK) LM test[32].
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Appendix D : The R-Codes Used In Analysis

#***********************pIotting flgU re(l) In SECtIOI’] 3.1******************

data("USunempr")

data("USrealgdp™)

USunempr

USrealgdp

plot(USrealgdp, main="Figure(1): Yearly GDP and Monthly Unemployment Rates")

plot(USunempr)

#***********************pIotting fIgU re(3) |n SECtIOn 3.5******************

library(ggplot2)

library(reshape?2)

library(midasr)

yl=nealmon(c(1,0.01,-0.0025), 20, m)

y2=nealmon(c(1,0.01,-0.0099), 20, m)

y3=nealmon(c(1,0.099,-0.0099), 20, m)

t=1:20

df <- data.frame(t,y1,y2,y3)

ggplot(df, aes(t)) + # basic graphical object
geom_line(aes(y=y1), colour="red", size=(1)) + # first layer
geom_line(aes(y=y2), colour="green", size=(1))+
geom_line(aes(y=y3), colour="black", size=(1))+
ylab("Weight on Lag")+ xlab("Lag")+
gatitle("Figure(3): Exponential Almon Polynomial Weighting

Function™)

#plot(yl) #may need to execute before the next lines

legend("topright", title = "parameter values",

legend=c("thetal=0.01, theta2=-0.0025",

"thetal=0.01, theta2=-0.0099",

"thetal=0.099, theta2=-0.0099"), # puts text in the legend

Iwd=c(2,2,2),col=c("red","green","black"))

#***********************Cal I | ng le raries*****************

library(TSA)

library(tseries)

library(zoo)

library(Imtest)

library(MASS)

library(numDeriv)

library(sandwich)

library(strucchange)

library(urca)

library(vars)

library(midasr)




#***********************CalIing Data and Checks*****************

thl = read.csv("qd.csv", header=T, sep=";")
attach(thl)

th2 = read.csv("md.csv", header=T, sep=";")
attach(th2)

gdp=th1$gdp

eii=th1%eii

cpi=th2$cpi

cim=th2%cim

b1=BoxCox.ar(gdp)

bl$ci# 1

b1=BoxCox.ar(eii)

b1$ci # -0.5 close to 0

b1=BoxCox.ar(cpi)

b1$ci# 0 i.e. log

b1=BoxCox.ar(cim)

b1$ci# 0.3 close to zero

lgdp=log(gdp)

leii=log(eii)
Icpi=log(cpi)
Icim=log(cim)

adf.test(lgdp, k=4)# not stationary
adf.test(leii)# not stationary

adf.test(lcpi)# not stationary

adf.test(Icim)# not stationary
adf.test(diff(lgdp))# stationary
adf.test(diff(leii))# stationary
adf.test(diff(lcpi))# stationary
adf.test(diff(lcim))# stationary
Igdpfl=zlag(lgdp)

set.seed(1001)

## Number of low-frequency observations

n <- 56

## Linear trend and higher-frequency explanatory variables
## (quarterly and monthly)

trend <- c(1:n)

## ********Fitti ng R M I DAS********************
eq.r <- midas_r(lgdp ~ trend + Igdpfl + leii +
mls(lcpi, 0:2, 3, nealmon) +

mls(lcim, 0:2, 3, nealmon),

start = list(lcpi = ¢(0, 0, 0),Icim =¢(0, 0, 0)))
summary(eq.r)

r=resid(eq.r)



adf.test(r, k=2)# stationary

pp.test(r)

midas_coef(eq.r)

agk.test(eq.r)# the test accept HO i.e. all thetas are zero
hAh.test(eq.r)#the test rject HO i.e. the restriction not hold
# i.e. wi(weights) not equal b(k;theta)(nealmon)
#starting values taken from the preveous summary
eq.r <- midas_r(lgdp ~ trend + Igdpfl + leii +

mls(lcpi, 0:2, 3, nealmon) +

mls(Icim, 0:2, 3, nealmon),

start = list(Icpi = ¢(-5.995e-01, -3.161e-01, -1.544e+00),
Icim = ¢(3.095e-01, 2.217e+00, -5.910e-01)))
summary(eq.r)

r=resid(eq.r)

adf.test(r, k=2)# stationary

pp.test(r)

midas_coef(eq.r)

agk.test(eq.r)# the test accept HO i.e. all thetas are zero
hAh.test(eq.r)#the test rject HO i.e. the restriction not hold
# i.e. wi(weights) not equal b(k;theta)(nealmon)
eq.r$opt

## ********Fitting U M I DAS********************
eq.u <- Im(lgdp ~ trend + Igdpfl + leii +

mlis(lcpi, k =0:2, m = 3) +

mls(lcim, k =0:2, m = 3))

summary(eq.u)

r=resid(eq.u)

adf.test(r, k=2)

pp.test(r)

# the same as Im

eq.u3 <- midas_u(lgdp ~ trend + Igdpfl + leii +
mlis(lcpi, k =0:2, m = 3) +

mls(lcim, k =0:2, m = 3))

summary(eq.u3)

#reduced form cpi eleminated

eq.u <- Im(lgdp ~ trend + Igdpfl + leii +

mlis(lcim, k =1:1, m = 3))

summary(eq.u)

r=resid(eq.u)

adf.test(r, k=2)

pp.test(r)
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th= read.csv("ffd.csv", header=T, sep=";")
attach(th)

gdp=th$gdp

eii=th$eii

cpi=th$cpi

cim=th$cim

lgdp=log(gdp)

leii=log(eii)

Icpi=log(cpi)

Icim=log(cim)

# all these variables were tested and are 1(1)
set.seed(1001)

## Number of low-frequency observations
n <- 56

## Linear trend and higher-frequency explanatory variables
## (quarterly and monthly)

trend <- c¢(1:n)

lgdpfl=zlag(lgdp)

eq.u <- Im(lgdp ~ trend + Igdpfl + leii + Icpi + Icim)
summary(eq.u)

# reduced form cpi eliminated

eq.u <- Im(lgdp ~ trend + Igdpfl + leii + Icim)
summary(eq.u)

r=resid(eq.u)

adf.test(r, k=2)

pp.test(r)

## ********Cointeg ra.tlon Tests********************
cim2=th$cim2

adf.test(gdp)

adf.test(eii)

adf.test(cpi0)

adf.test(cpil)

adf.test(cpi2)

adf.test(cimO)

adf.test(ciml)

adf.test(cim2)

adf.test(diff(gdp))

adf.test(diff(eii))

adf.test(diff(cpi0))

adf.test(diff(cpil))

adf.test(diff(cpi2))

adf.test(diff(cim0))

adf.test(diff(ciml))

62



63

adf.test(diff(cim2))
data2=chind(gdp,eii,cpiO,cpil,cpi2,cim0,ciml,cim2)
summary(ca.jo(data2,type="trace",ecdet="const"))
summary(ca.jo(data2,type="eigen",ecdet="const"))
#results at most 3 cointegration equations

# results after eliminating cpi0, cpil, cpi2
data2=cbind(gdp,eii,cim0,cim1,cim2)
summary(ca.jo(data2,type="trace",ecdet="const"))
summary(ca.jo(data2,type="eigen",ecdet="const"))
## ********Fitting ECM ModeIS********************
th3 = read.csv("diffqd.csv"”, header=T, sep=";")
attach(th3)

th4 = read.csv("diffmd.csv", header=T, sep=";")
attach(th4)

dlgdp=th3%digdp

flut=th3$flut

Igdpfl=th3$lgdpfl

dleii=th3%dleii

dlcpi=th4$dlcpi

dicim=th4$dlcim

#rmidas ECM

eq.r <- midas_r(dlgdp ~ flut + Igdpfl + dleii +
mls(dlcpi, 0:2, 3, nealmon) +

mls(dlcim, 0:2, 3, nealmon),

start = list(dlcpi = ¢(0, 0, 0),

dicim =¢(0, 0, 0)))

summary(eq.r)

midas_coef(eq.r)

agk.test(eq.r)# the test accept HO i.e. all thetas are zero
hAh.test(eq.r)#the test rject HO i.e. the restriction not hold
# i.e. wi(weights) not equal b(k;theta)(nealmon)
eq.r$opt

# full ECM by U-MIDAS

eq.u <- midas_u(dlgdp ~ flut + Igdpfl + dleii +
mls(dlcpi, 0:2, 3, nealmon) +

mls(dicim, 0:2, 3, nealmon))

summary(eq.u)

# reduced ECM by U-MIDAS

eg.u <- midas_u(dlgdp ~ flut +

mls(dicim, 1:2, 3, nealmon))

summary(eq.u)

# full ECM by time-averaging



th5 = read.csv(*'ffd_ecm.csv", header=T, sep=";")
attach(th5)

dlgdp=th5%dlgdp

flut=th5$flut

Igdpfl=th5$Igdpfl

dleii=th5$dleii

dlcpi=th5%dIcpi

dicim=th5%dlcim

eq.a <- Im(dlgdp ~ flut + Igdpfl + dleii +

dlcpi + dlcim)

summary(eq.a)

# reduced ECM by time-averaging

eq.a <- Im(dlgdp ~ flut +

dlcim)

summary(eq.a)

## ********Fo reCaStI ng********************
thl = read.csv("qd.csv", header=T, sep=";")
attach(th1)

th2 = read.csv("md.csv"”, header=T, sep=";")
attach(th2)

gdp=th1$gdp

eii=th1$eii

cpi=th2$cpi

cim=th2$cim

lgdp=log(gdp)

leii=log(eii)

Icpi=log(cpi)

Icim=log(cim)

lgdpfl=zlag(lgdp)

fulldata <- list(lgdp=Igdp, leii=leii, Icpi=Icpi, Icim=Icim,
cim=cim, lgdpfl=lgdpfl, trend=1:56)

avgf <- average_forecast(list(eq.u, eq.r, eq.ta),
data=fulldata,

insample=1:52,outsample=53:56,

type="fixed",
measures=c("MSE","MAPE","MASE"),
fweights=c("EW","BICW","MSFE","DMSFE"))
avgf

newdata <- list(leii=leii[56], Icim=c(lcim[54],lcim[55],lcim[56]),

Igdpfl=lgdp[56], trend=57)
nf=forecast(eq.u, newdata = newdata)
exp(nf)
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