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ABSTRACT 
 

 

The addition reaction of diazoalkanes to alkyne(pentacarbonyl) 

chromium leads to the formation of 3H-pyrazole complexes. There are 

two pathways that can explain this reaction. One path is the addition 

of diazoalkane to the free alkyne forming the 3H-pyrazole which will 

react with the solvated Cr(CO)5, the other path is the addition of 

diazoalkane to the coordinated alkyne with chromium carbonyl 

followed by rearrangement step to give the 3H-pyrazole complex. 

The aim of present work is to assign which of the two pathways 

is more thermodynamically favorable. Computational calculations are 

done for all compounds in both paths, based on the hyprid density 

function theory (B3LYP), supplemented by high accuracy basis set (6-

311++g (3df,pd)). 

The obtained results show that the reaction prefers to proceed 

by the addition of the diazoalkane to the coordinated alkyne followed 

by rearrangement, since a lower energy barrier exist for the formation 

of the 3H-pyrazole. The bonding interaction type of each compound is 

also explained by these computational calculations. 

As a result, chromium carbonyls act as a catalyst, that reduces 

the activation energy for the reaction to proceed faster. 
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 يهخص

 حنىٌه إىىخماسً مشبىوٍو اىنشوً ٌؤدي -ىناٌهأ إىىىناواث أ داٌأصو إضافتحفاعو 

.   اىخفاعو ىحذودو ٌىجذ هىاك طشٌقٍه.مشمباث بٍشاصوه 

 

 مه حٍذ اسخهلاك اىطاقت أفضواىهذف مه هزي اىذساست هى ححذٌذ أي اىطشٌقٍه 

 ومٍفٍت اىخشابظ و اىطاقت ىنو الأشناهبحٍذ حمج دساست . باسخخذاً اىحىسبت اىنٍمٍائٍت

 .الاوخقاىٍتاىمشمباث فً ملا اىطشٌقٍه فً حاىخٍها اىمسخقشة و 

 

لاىناٌه اىمشحبظ مع أ إىىىنان أ اىذاٌأصو إضافت اىىخائج مشوس اىخفاعو عه طشٌق أٌذث

 و رىل لأن هزا اىطشٌق ٌحخاج طاقت  حشحٍب اىشوابظ،بئعادةخماسً مشبىوٍو اىنشوً مخبىعا 

 اىىخائج مٍفٍت اىخشابظ فً مو مشمب مه هزي أوضحجمما  . اىىىاحجإىىقو ىيىصىه أ حىشٍظ

. اىمشمباث

 

 لإحماً مشمباث مشبىوٍو اىنشوً حيعب دوسا مهما معامو مساعذ أنمه اىممنه اسخىخاج 

 .ىخفاعواىلاصمت هاىخفاعو بسشعت عه طشٌق حقيٍو طاقت اىخىشٍظ 
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CHAPTER ONE 

 

PROBLEM STATEMENT  

 

Computational chemistry is a branch of chemistry that uses computers 

to assist in solving chemical problems based on the principle of 

quantum mechanics (1). Computational chemistry can be used to 

calculate molecular geometry the shapes of molecules, bond lengths, 

bond angles, energies of molecules and transition states, chemical 

reactivity, spectroscopic data such as IR, UV, and NMR, and other 

properties (2). 

Computational chemistry opens the door for chemists to model a 

molecular system prior to the synthesis of that molecule in the 

laboratory. This is very useful information because synthesizing a 

single compound could require months of labor and raw materials, and 

generate toxic waste (3). Furthermore, chemists can study some 

properties of a molecule that can be obtained computationally more 

easily than by experimental means (3). 

Metal-carbon multiple bonds complexes play an important role in 

organometallic chemistry. They are involved in a variety of chemical 

http://en.wikipedia.org/wiki/Chemistry
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transformation, including catalytic processes such as alkenes and 

alkynes isomerization, hydrogenation, and epoxidation (4,5). 

The metal-carbon multiple bond complexes are usually discussed by 

Dewar-Chatt-Duncanson model, which considers two synergistic 

bonding interactions. One is σ donation, in which the π HOMO of 

unsaturated ligand donates electron density to the metal‟s empty 

LUMO forming a σ bond. The second one is π-back donation, in 

which a metal donates electron density from its d-orbitals HOMO into 

the ligand‟s empty π* LUMO of the same symmetry (6).  

1,3-Dipolar cycloaddition involves the reaction of the dipolarophile 

(π-component, like; alkenes, alkynes, carbonyls) with a 1,3-dipolar 

compound (three atom π-electron system with four π-electrons 

delocalized over the three atoms, like; ozone, azides, diazoalkanes) to 

produce five membered cyclic compound, as shown in Figure 1.1 

(7,8). 

 

 

 

Figure 1.1: 1, 3-dipolar cycloadditon (7). 
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1,3-Dipolar cycloaddition is a powerful kind of reaction for the 

preparation of functionalized five member heterocyclic compounds 

(7,9). Moreover, it is highly stereospecific and stereoselective (7,10). 

Transition metal-alkyne complexes have been used as dipolarophile 

(11). 1,3-Dipolar cycloaddition reaction of diazo compounds with 

alkynes represents a standard method for the preparation of pyrazoles 

(12). It is controlled for simple diazoalkanes by HOMO (dipole) 

LUMO (dipolarophile), which is enhanced by conjugation and 

electron withdrawing substituents at the dipolarophile (7,12). 

When the dipolarophile is a metal-alkyne complex, it will have low 

energy LUMO, due to the electron acceptor character of the complex, 

and hence, reacts with electron-rich diazoalkane dipole of high 

HOMO energy (7,9). The favored interaction must be of correct 

orbital match, closer in energy, and sterically feasible (7,8).    

Only very few alkyne(pentacarbonyl) complexes having terminal 

alkyne ligands have been isolated. Moreover, in solutions these 

complexes are present in a rapid equilibrium with their vinylidene 

tautomer (13). 
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The reaction of diazoalkanes with alkyne(pentacarbonyl)chromium to 

form 3H-pyrazole is proposed by Abd-Elzaher et al. (13) to proceed 

by either one of two pathways a, or b as shown in (Figure1.2) . 

 

Figure 1.2: Proposed mechanisms for the addition reaction of diazoalkanes to 

alkyne (pentacarbonyl)chromium (13). 
 

Path a involves the addition of the diazo compound to the coordinated 

alkyne (step a1) followed by rearrangement (step a2). While path b 

involves dissociation of the coordinated alkyne from 

alkyne(pentacarbonyl) chromium complex (step b1) which will lead to 

the formation of non-coordinated alkyne. The formed non-coordinated 

alkyne will react with the diazo compound (step b2) forming the 3H-

pyrazole. Finally, the 3H-pyrazole will react with Cr(CO)5(solvent) 
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forming the 3H-pyrazole chromium complexes. The authors of this 

work then concluded that path a is the preferred path (13). 

Pyrazoles and their derivatives are very important class of compounds, 

which are applicable in many areas (14,15). They are applied for the 

metal ion extraction, used in agricultural herbicides, in industry as 

catalyst for hydrogenation of alkenes and as starting materials for 

synthesis of fused ring system, pharmaceutical as anti-inflammatory, 

antibacterial, antifungal, antitumor, and antidepressants (14,15,16,17). 

Furthermore, they are widely used as pigments for the synthetic 

leather, vinyl polymers, food, cosmetic, and drugs (16,18,19). 

Although, natural products containing pyrazole derivatives are rare, 

one of them occurs in watermelon seeds (17,19). As a result they have 

to be produced synthetically (17). In this study the addition reaction of 

3-diazopentane to η2
-methyl prop-2-ynoate(pentacarbonyl)chromium 

complex to generate pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-

3H-pyrazol-N2)chromium(0) is considered by studying bonding nature 

and energy of each step in both proposed mechanisms by means of 

computational methods. As a result, determination of which of the two 

pathways is more thermodynamically favorable can be assigned.  
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CHAPTER TWO 

INTRODUCTION 

 

A) Computational background 

A.2.1) Schrödinger equation 

The Schrödinger Equation is the fundamental equation of quantum 

mechanics (20). Energy and other related properties of particles can be 

obtained by solving it; many different wave functions are the solutions 

of the equation (21). The general form of Schrödinger equation is 

formulated as eigenvalue problem (20): 

𝐻 𝜓 = 𝐸 𝜓                                                                                  (2.1) 

Where H is the Hamiltonian operator, and is equal to the sum of 

kinetic energy and potential energy operators for electron in the atom 

(21): 

𝐻 = 𝑇 + 𝑉                                                                          (2.2) 

It operates on the wavefunction ψ that describes the electron, to give E 

the energy of the electron (eigenvalue) and set of wavefunction 

(eigenfunctions) ψ (20, 21). 
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A.2.2) Schrödinger equation for hydrogen atom 

The hydrogen atom is of great interest for chemists because it is the 

smallest atom with one electron, and can give prototype for more 

complex systems (20). 

Hydrogen atom is pictured as a fixed proton at the origin and an 

electron of mass 𝑚𝑒 , the interaction between them is through a 

columbic potential (20) as shown in Figure 2.1 

 

 

 

 

 
 

 

 

 

 

 

 

 

                    Figure 2.1:   The hydrogen system. 
 

The columbic potential is giving by: 

 

𝑉 = 𝑉 𝑟 = −
𝑍𝑒2

4𝜋𝜀0𝑟
                                               (2.3) 

Where e is the charge on the proton, ε0 is the permittivity of free 

space, and r is the distance between the electron and proton (22). 
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The Hamiltonian operator for hydrogen atom is: 

𝐻 = − 
ħ2

2𝑚
∇2 − 

𝑍𝑒2

4𝜋𝜀0𝑟
                                                                    (2.4)  

 Where  𝑚 is the mass of electron, ħ =  
𝒉

𝟐𝝅
  . Because of the spherical 

symmetry of the atom, it is convenient to use spherical coordinates (r, 

θ,Φ), where ∇2 becomes (22): 

∇2=  
1

𝑟2

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 + 

1

𝑟2  
1

sin 𝜃

𝜕

𝜕𝜃
  sin 𝜃  𝜕

𝜕𝜃
 +

1

𝑠𝑖𝑛 2𝜃
  𝜕

2

𝜕∅2                 (2.5) 

 
 

 

 

 

 

 

 

 

            Figure 2.2:  Spherical polar coordinates. 

 

The advantage of using spherical coordinates lies in the fact that it 

allows to separate radial from angular coordinates (22). 

When we substitute, eqn. 2.5 and eqn. 2.4 in eqn. 2.1, then 

Schrödinger equation for the hydrogen atom becomes: 

−
ħ2

2𝑚

1

𝑟2 sin 𝜃
 sin 𝜃

𝜕

𝜕𝑟
 𝑟2 𝜕𝜓

𝜕𝑟
 +

𝜕

𝜕𝜃
 sin 𝜃

𝜕𝜓

𝜕𝜃
 +

1

sin 𝜃

𝜕2𝜓

𝜕∅2  +   𝑉 𝑟 𝜓 𝑟, 𝜃,∅ =

𝐸𝜓(𝑟,𝜃, ∅)                                                                                                (2.6) 
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Equation 2.6 can be solved exactly by using the separation of 

variables method, to give hydrogen wavefunctions in the form of (23): 

𝜓𝑛𝑙𝑚 = 𝑅𝑛𝑙  𝑟 𝑌𝑙
𝑚 (𝜃, ∅)                                                    (2.7) 

Where 𝑛 is the principal quantum number, 𝑙 is the azimuthal quantum 

number (angular momentum), and 𝑚 is the magnetic quantum 

number. 

For 𝑛=1, 𝑙 =0, 𝑚 =0,  

𝜓1𝑠 =
1

𝜋1/2  
𝑍

𝑎
 

3/2
𝑒−𝑍𝑟/𝑎                                                         (2.8) 

The quantity Z is the atomic number of the nucleus, and 𝑎0 is Bohr 

radius (20). 

𝑎0 =
4𝜋𝜀0ħ2

𝑚𝑒𝑒2                                                                               (2.9) 

The second wavefunction is for 2s is given by: 

𝜓2𝑠 =
1

4 2𝜋 
1
2

 
𝑍

𝑎
 

3

2
 2 −

𝑍𝑟

𝑎
 𝑒−𝑍𝑟/2𝑎                                  (2.10) 

 

According to the solution of Schrödinger equation, the energy 

(eigenvalues) must be quantized, which is in agreement with Bohr 

model for hydrogen atom (20). 

𝐸𝑛 =  −
𝑍𝑚𝑒𝑒

4

32𝜋2𝜀0
2ħ2𝑛2

= −
𝑍𝑒2

8𝜋𝜀0𝑎0𝑛2
        n = 1,2,…                      (2.11) 
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A.2.3) Schrödinger equation for helium atom 

 

The helium system can be pictured as a nucleus of mass m at the 

origin and two electrons of mass me interacting with the proton and 

with each other through a columbic potential. 

 

 

 

 

 

                Figure 2.3:  Helium system. 

The Hamiltonian operator of helium system is giving  by: 

𝐻 = −
ħ2

2𝑚
∇2 −

ħ2

2𝑚𝑒1
∇1

2 −
ħ2

2𝑚𝑒2
∇2

2 −
2𝑒2

4𝜋𝜀0𝑟1
−

2𝑒2

4𝜋𝜀0𝑟2
+

2𝑒2

4𝜋𝜀0𝑟12
     (2.12) 

Then the Schrödinger equation for helium is expressed as 

 −
ħ2

2𝑚
∇2 −

ħ2

2𝑚𝑒
∇1

2 −
ħ2

2𝑚𝑒
∇2

2 −
2𝑒2

4𝜋𝜀0𝑟1
−

2𝑒2

4𝜋𝜀0𝑟2
+

2𝑒2

4𝜋𝜀0𝑟12
 𝜓 𝑟1 , 𝑟2 , 𝑟12 = 𝐸𝜓 𝑟1 , 𝑟2 , 𝑟12                           (2.13) 

∇2 is the laplacian operator with respect to the position of nucleus,∇1
2 

and ∇2
2 are the laplacian operators with respect to electrons positions 

(20,24). 
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Equation 2.13 can be simplified by the use of Born-Oppenheimer 

approximation since m»me , so that the nucleus can be assumed to be 

stationary and the kinetic energy operator for the nucleus is thus taken 

as zero. Consequently, the Schrödinger equation becomes, 

 −
ħ2

2𝑚𝑒
∇1

2 −
ħ2

2𝑚𝑒
∇2

2 −
2𝑒2

4𝜋𝜀0𝑟1
−

2𝑒2

4𝜋𝜀0𝑟2
+

2𝑒2

4𝜋𝜀0𝑟12
 𝜓 𝑟1 , 𝑟2 =

𝐸𝜓 𝑟1 , 𝑟2                                                                         (2.14) 

Even with this simplification, the equation cannot be solved exactly, 

since the interelectronic repulsion given by the term 
2𝑒2

4𝜋𝜀0𝑟12
 . 

Equation (2.14) without the interelectronic term looks as the sum of 

two  hydrogenlike atoms (20,24). To solve equation (2.14) 

approximation methods should be used, and this will be covered in 

section 2.5. 

A.2.4) Schrödinger equation for molecules 

Hydrogen molecule is the simplest molecule, and for simplicity it can 

be taken as example of other molecules. 

The Hamiltonian operator for hydrogen molecule is given by  

𝐻 = −
ħ2

2𝑀
 ∇𝐴

2 + ∇𝐵
2  −

ħ2

2𝑚𝑒
 ∇1

2 + ∇2
2 −

𝑒2

4𝜋𝜀0𝑟1𝐴
−

𝑒2

4𝜋𝜀0𝑟1𝐵
−

𝑒2

4𝜋𝜀0𝑟2𝐴
−

𝑒2

4𝜋𝜀0𝑟2𝐵
+

𝑒2

4𝜋𝜀0𝑟12
+

𝑒2

4𝜋𝜀0𝑅
                                                            (2.15) 



12 

 

 

 

 

Here  M is the mass of each of hydrogen atom nucleus, 𝑚𝑒  is the 

electron mass, r is the distance, the subscripts A and B refer to the 

nuclei of the individual atoms, the subscripts 1 and 2 refer to the 

individual electrons. The distances used are given in Figure 2.4 

(20,24).   

 

 

 

 

 

 

 

 

                     Figure 2.4:  Hydrogen molecule system. 

Equation 2.15 can be broken into the following terms; 

* [−
ħ2

2𝑀
 ∇𝐴

2 + ∇𝐵
2   ]: the kinetic energy of the two nuclei. 

* [−
ħ2

2𝑚𝑒
 ∇1

2 + ∇2
2 ]: kinetic energy of the two electrons. 

*[−
𝑒2

4𝜋𝜀0𝑟1𝐴
−

𝑒2

4𝜋𝜀0𝑟1𝐵
−

𝑒2

4𝜋𝜀0𝑟2𝐴
−

𝑒2

4𝜋𝜀0𝑟2𝐵
]: potential energy arising 

from the attraction between the nuclei and electrons. 

*[+
𝑒2

4𝜋𝜀0𝑟12
+

𝑒2

4𝜋𝜀0𝑅
]: potential energy arising from the electron-

electron, and nuclear-nuclear repulsions (20). 
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Based on the Born-Oppenheimer approximation, which neglects the 

nuclear motion , the term of nuclear kinetic energy in the Hamiltonian 

operator can be dropped out as shown in equation 2.16 (20,24). 

𝐻 −
ħ2

2𝑚𝑒
 ∇1

2 + ∇2
2 −

𝑒2

4𝜋𝜀0𝑟1𝐴
−

𝑒2

4𝜋𝜀0𝑟1𝐵
−

𝑒2

4𝜋𝜀0𝑟2𝐴
−

𝑒2

4𝜋𝜀0𝑟2𝐵
+

𝑒2

4𝜋𝜀0𝑟12
+

𝑒2

4𝜋𝜀0𝑅
                                                                                              (2.16) 

It is obvious that the increase in the number of electrons and nuclei in 

the system will increase and complicate the number of terms of 

repulsions and make it more difficult to solve the equation directly. 

Approximation methods must be used to give an approximate solution 

for each system (20,24). 

A.2.5) Approximation methods 

As we have seen in previous sections that Schrödinger equation 

cannot be solved exactly for any atom or molecule more complicated 

than the hydrogen atom (20). So approximation methods are needed to 

solve the equation for those complicated systems. The two basic 

methods of approximation are variation and perturbation theories (25). 

In variation theory, an initial guess is made for wavefunction, which is 

then optimized to approximate the true wavefunction for the problem 

(25). 
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Alternatively, in the perturbation theory Schrödinger equation is 

separated into parts, at which a solution of previously solved model 

problem is used as a starting point to approximate the true 

wavefunction for the Schrödinger equation of interest (25). 

A.2.5.1) Variation method 

The basic idea of the variational method is to guess a trial 

wavefunction, which consists of some adjustable parameters called 

“variational parameters” These parameters are adjusted until the 

energy of the trial wavefunction is minimized. The resulting trial 

wavefunction and its corresponding energy are variational method 

approximations to the exact wavefunction and energy (26). 

To illustrate variational principal a system at the ground state, with 𝜓0 

the ground state function and the energy 𝐸0 which satisfy the 

Schrödinger equation shall be considered  

𝐻 𝜓0 = 𝐸0𝜓0                                                                                 (2.17) 

Multiply equation 2.19 by 𝜓0
∗ and integrate over all space and 

rearrange it we get 

𝐸0 =
 𝜓0

∗𝐻 𝜓0𝑑𝜏

 𝜓0
∗𝜓0𝑑𝜏

                                                                              (2.18) 

Where dτ is volume element (20,24). 
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If we choose any normalized acceptable function ∅ (trail function) for 

𝜓0 (27), 

𝐸∅ =
 ∅∗ 𝐻  ∅ 𝑑𝜏

 ∅∗ ∅ 𝑑𝜏
                                                                               (2.19) 

Then 𝐸∅ calculated by equation 2.19 is greater than 𝐸0, ground state 

energy, this is a variational principal (20,24). 

𝐸∅ ≥ 𝐸0                                                                                          (2.20) 

Which means that an upper limit on 𝐸0 can be calculated by using any 

trail function with appropriate electronic and nuclear coordinates to be 

operated upon by the Hamiltonian (20,24,28). The equality occurs if 

the trail function is identical to the ground state wavefunction of the 

system (29). 

∅ can be chosen such that it depends on parameters, called variational 

parameters, so as 𝐸∅ depend on them too, 𝐸∅ 𝛼, 𝛽, 𝛾 …   (20,24). 

𝐸∅ then can be minimize with respect to each of the variational 

parameters and thus approach ground state energy 𝐸0 (20,24). 

It is possible to use a trail function as a linear combination of 

functions equation 2.21 

∅ =  𝑐𝑛𝑓𝑛
𝑁
𝑛=1                                                                                (2.21) 

𝑐𝑛  are variational parameters and 𝑓𝑛  the functions (20,23,24). 
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Taking N = 2 for simplicity, 

∅ = 𝑐1𝑓1 + 𝑐2𝑓2                                                                             (2.22) 

Then substitute in the numerator of equation 2.19, 

 ∅  𝐻  ∅ 𝑑𝜏 =   𝑐1𝑓1 + 𝑐2𝑓2 𝐻  𝑐1𝑓1 + 𝑐2𝑓2  𝑑𝜏 

              = 𝑐1
2  𝑓1𝐻 𝑓1𝑑𝜏 + 𝑐1𝑐2  𝑓1𝐻 𝑓2𝑑𝜏 + 𝑐1𝑐2  𝑓2𝐻 𝑓1𝑑𝜏 +  𝑐2

2  𝑓2𝐻 𝑓2𝑑𝜏 

                 = 𝑐1
2𝐻11 + 𝑐1𝑐2𝐻12 + 𝑐1𝑐2𝐻21 + 𝑐2

2𝐻22                         (2.23) 

Where  

𝐻𝑖𝑗 =  𝑓𝑖𝐻 𝑓𝑗  𝑑𝜏                                                                            (2.24) 

And  𝐻𝑖𝑗 = 𝐻𝑗𝑖  because Hamiltonian operator 𝐻  is Hermitian 

(20,23,24), 

Then 

 ∅𝐻 ∅ 𝑑𝜏 = 𝑐1
2𝐻11 + 2𝑐1𝑐2𝐻12 + 𝑐2

2𝐻22                                    (2.25) 

Applying the same, by substituting equation 2.22 in the denominator 

of equation 2.19 we have (20, 23, 24) 

 ∅2𝑑𝜏 = 𝑐1
2𝑆11 + 2𝑐1𝑐2𝑆12 + 𝑐2

2𝑆22                                            (2.26) 

Where  

𝑆𝑖𝑗 = 𝑆𝑗𝑖 =  ∅𝑖∅𝑗𝑑𝜏                                                                    (2.27) 

 Putting them together into equation 2.19, where 𝐻𝑖𝑗  and 𝑆𝑖𝑗  called 

matrix element, will give 
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𝐸 𝑐1, 𝑐2 =
𝑐1

2𝐻11 +2𝑐1𝑐2𝐻12 +𝑐2
2𝐻22

𝑐1
2𝑆11 +2𝑐1𝑐2𝑆12 +𝑐2

2𝑆22
                                                  (2.28) 

A necessary condition for minimum in a function 𝐸 𝑐1, 𝑐2, … .   of 

several variables is that partial derivative with respect to each of the 

variables must be zero at the minimum, so differentiating  equation 

2.28 with respect to c1 and then with respect to c2 give equation 2.29 

and 2.30 respectively (20,23,24),  

𝑐1 𝐻11 − 𝐸𝑆11 + 𝑐2 𝐻12 − 𝐸𝑆12 = 0                                        (2.29) 

𝑐1 𝐻12 − 𝐸𝑆12 + 𝑐2 𝐻22 − 𝐸𝑆22 = 0                                        (2.30)                            

These two equations formed a pair of linear algebraic equations for 

c1 and c2. From the linear algebraic theorem there is a solution for 

them other than trivial solution c1 = c2 = 0, the determinant of the 

coefficients must vanish, at N = 2, we have (20,23,24) 

 
𝐻11 − 𝐸𝑆11

𝐻12 − 𝐸𝑆12

  𝐻12 − 𝐸𝑆12

𝐻22 − 𝐸𝑆22
 = 0                                                       (2.31) 

This is called secular determinant, from it we can obtain a quadratic 

equation called secular equation which gives two values for E, the 

smaller can be taken as the approximation for the ground state energy 

(20,23,24). 

A trial function with many parameters gives almost accurate results. 

Hence using a linear combination of N functions, will give us N× N 
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determinant 2.32, with the N
th
 order polynomial in E, and so N

th
 order 

secular equation, then the smallest root of N
th

 order solution is chosen 

as the approximation to the energy, which should be more accurate 

approximation (20,23,24). However, it is difficult to solve this 

numerically or graphically, instead, computers with special software 

packaged do this (20,24) 

 

     (2.32) 

 

The variational method lies behind the Hartree-Fock theory (HF) and 

the configuration interaction method (CI) for the electronic structure 

of atoms and molecules (26). 

A.2.5.2) Perturbation method 

Perturbation theory is the second most widely used approximation 

method in quantum chemistry (30). The idea behind the perturbation 

theory is to split the Hamiltonian into a part we know how to solve 

unperturbed Hamiltonian, and a part we don't know how to solve the 

perturbation (31). 

To solve a problem of equation 2.1 for a system of interest using first 

order perturbation theory (20,24) 
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𝐻 𝜓 = 𝐸 𝜓                                                                                      (2.1) 

Hamiltonian operator should be split to give unperturbed Hamiltonian 

denoted by 𝐻 (0) and perturbation Hamiltonian  denoted by 𝐻 (1), then 

it can be written as 

𝐻 = 𝐻 (0) + 𝐻 (1)                                                                            (2.33) 

Where the Schrödinger equation with known solution is given by 

𝐻 (0)𝜓(0) = 𝐸(0)𝜓(0)                                                                      (2.34) 

And ψ and E should be in the form 

𝜓 = 𝜓(0) + ∆𝜓                                                                              (2.35) 

𝐸 = 𝐸(0) + ∆𝐸                                                                               (2.36) 

Where 𝜓(0) and 𝐸(0) are given by the solution of the unperturbed 

problem, and ∆𝜓, ∆𝐸 are small quantities (20,24). Substituting 

equations 2.33, 2.35 and 2.36 into equation 2.1 one obtains 

𝐻  0 𝜓 0 + 𝐻  1 𝜓 0 + 𝐻  0 ∆𝜓 + 𝐻  1 ∆𝜓 =  𝐸 0 𝜓 0 + ∆𝐸𝜓 0  

+𝐸(0)∆𝜓 + ∆𝐸∆𝜓                                                                         (2.37) 

Since 𝐻 (0)𝜓(0) = 𝐸(0)𝜓(0), the first term in each equation side is 

cancelled, and since (𝐻  1 ∆𝜓) and (∆𝐸∆𝜓) are small quantities they 

can be neglected in first order perturbation theory (20,24), so the 

equation with unknown  ∆𝜓 and  ∆𝐸 becomes 
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𝐻  1 𝜓 0 + 𝐻  0 ∆𝜓 =  ∆𝐸𝜓 0 + 𝐸(0)∆𝜓                                    (2.38) 

Rewriting this equation and multiplying both sides by 𝜓(0)∗ and 

integrating over all space gives  

  𝜓(0)∗ 𝐻 (0) − 𝐸(0) ∆ 𝜓 𝑑𝜏 +  𝜓(0)∗𝐻 (1)𝜓0  𝑑𝜏 = ∆𝐸  𝜓(0)∗𝜓(0)𝑑𝜏       (2.39)                                                      

 𝜓(0)∗𝜓(0)𝑑𝜏 = 1   (Normalization). 

 𝜓(0)∗ 𝐻 (0) − 𝐸(0) ∆ 𝜓 𝑑𝜏 =  { 𝐻  0 − 𝐸 0  𝜓 0 }∗∆𝜓 𝑑𝜏 = 0 𝐻 (0) − 𝐸(0) 

Hermitian, then integrand vanishes. 

Then equation 2.39 becomes (20,24),  

𝐸(1) =   𝜓(0)∗𝐻 (1)𝜓(0) 𝑑𝜏                                                           (2.40) 

Which is a first order correction to 𝐸 0 , then the energy to the first 

order is given by 

𝐸 = 𝐸(0) +  𝜓(0)∗𝐻 (1)𝜓(0) 𝑑𝜏 + 𝑕𝑖𝑔𝑕𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠         (2.41) 

If we want to calculate higher order terms for energy and wave 

functions computers, with special software packaged are needed 

(20,24). The perturbation method lies behind Møller–Plesset 

perturbation theory (MP) for the electronic structure of atoms and 

molecules (21). 

A.2.6) Basis set 

A basis set is mathematical functions (basis functions) that used in ab-

initio method, and DFT method calculations to describe the shape of 
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the orbitals within a system. Which in turn combine to approximate 

the total electronic wavefunction (3,32). They are expanded as a linear 

combination of such functions with coefficients; usually these 

functions are atomic orbitals. A mathematical description for linear 

combination of atomic orbitals (LCAO) is 

𝜓𝑖 = 𝑐1𝑖𝜒1 + 𝑐2𝑖𝜒2 + ⋯ + 𝑐𝑛𝑖𝜒𝑛                                                   (2.42) 

Or 

𝜓𝑖 =  𝑐𝜇𝑖 𝜒𝜇
𝑛
𝜇                                                                                (2.43) 

Where 𝜓𝑖  is a molecular orbital represented as the sum of n atomic 

orbitals 𝜒𝜇 , each multiplied by a corresponding coefficient 𝑐𝜇𝑖 . The 

coefficients are the weights of the contributions of the n atomic 

orbitals to the molecular orbital (28). 

Number and type of basis set influence the accuracy of approximation. 

The larger the basis set, the more accurate representation (33). 

A.2.6.1) Functional form 

The basis orbitals commonly used in electronic structure calculations 

fall into two classes: Slater Type Orbitals (STO) and Gaussian Type 

Orbitals (GTO) (33). 

http://en.wikipedia.org/wiki/Molecular_orbital
http://en.wikipedia.org/wiki/Sum
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Atomic_orbital
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Slater type orbitals are proposed by J.C.Slater in 1930, as a kind of 

modification of mathematical functions for hydrogen orbitals to fit 

many-electron system (34). 

STOs are described by the function depending on spherical 

coordinates 

𝑆𝜁,𝑛,𝑙,𝑚 𝑟, 𝜃, ∅ = 𝜒𝜁 ,𝑛,𝑙,𝑚 𝑟, 𝜃, ∅ =  𝑁𝜁 ,𝑛,𝑙,𝑚𝑟𝑛−1𝑒−𝜁𝑟𝑌𝑙
𝑚 (𝜃, ∅) (2.44) 

STO are characterized by quantum numbers 𝑛, 𝑙, 𝑎𝑛𝑑 𝑚, the symbol 

𝑁𝜁 ,𝑛,𝑙,𝑚  denotes the normalization constant, 𝑌𝑙
𝑚  are spherical 

harmonics, r is the radius in angstroms, ζ (zeta) is orbital exponent  

gives the radial orbital size which control the width of the STO, and it 

can be calculated by  

𝜁 =
𝑍−𝑠

𝑛∗                                                                                      (2.45) 

The term s is the shielding constant and n* is a parameter that varies 

with the principal quantum number n, and Z the atomic number 

(24,25,32,33,35). 

Unfortunately, Slater orbitals are not suitable for fast calculations, 

because it is difficult to evaluate necessary integrals over these STOs, 

especially integrals involving more than one nuclear center because of 

its dependence of rapid exponential function (20,32,33).   
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Frank Boys, in 1950s suggested a modification to the wavefunction by 

introducing Gaussian type functions, which contain the exponential 

𝑒−𝜁𝑟2
, rather than the 𝑒−𝜁𝑟  of the STOs, such functions are very easy 

to evaluate (32). Gaussian type orbitals can be written in terms of 

polar or Cartesian coordinates as shown in equation 2.46, 

𝐺𝜁 ,𝑛,𝑙,𝑚 𝑟, 𝜃, ∅ = 𝜒𝜁 ,𝑛,𝑙,𝑚  𝑟, 𝜃, ∅ =  𝑁𝜁,𝑛,𝑙,𝑚𝑟𝑛−1𝑒−𝜁𝑟2
𝑌𝑙

𝑚 (𝜃, ∅)               (2.46a) 

𝐺𝜁 ,𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧
 𝑋, 𝑌, 𝑍 = 𝜒𝜁 ,𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧

 𝑋, 𝑌, 𝑍 = 𝑁𝜁 ,𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧𝑋
𝑙𝑥𝑌𝑙𝑦 𝑍𝑙𝑧  𝑒−𝜁𝑟2

               (2.46b) 

 Where lx, ly and lz the angular shape and direction of the orbital, the 

sum of lx, ly and lz determines the type of orbital (for example lx+ ly+ lz 

= 1 is a p-type orbital, lx+ ly+ lz= 2 is d-type orbital) (28,30,32,33). 

Although GTOs are used conveniently, they have many deficiencies. 

GTOs have a problem representing a proper behavior near nucleus, 

since they have a zero slope at r = 0, in contrast with STOs which has 

a cusp at r = 0 (discontinuous derivative), which is a characteristic of 

hydrogenlike solutions (28,33,35). In addition, GTOs depend on 𝑒−𝑟2
, 

while STOs depend on 𝑒−𝑟  which results in reduction in amplitude 

with distance for GTOs (28,33). 

A.2.6.2)Contracted Gaussian Functions  and minimal basis set 

To overcome this weakness of GTOs, It is common to combine the 

best feature of GTOs (computational efficiency) with that of STOs 
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(proper radial shape) (28,32,35). The resultant functions are the sum 

of GTOs fitting STO (28), the fit improving with N, the number of 

GTOs used in combination. 

𝜑(𝑥,𝑦,𝑧,𝜁 ,𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧)
𝐶𝐺𝑇𝑂 =  𝑑𝑎

𝑁
𝑎=1 ∅(𝑥,𝑦,𝑧,𝜁𝑎 ,𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧)

𝐺𝑇𝑂                       (2.47) 

𝑑𝑎chosen to optimize the shape of the basis function sum and ensure 

normalization. This linear combination of GTOs is called 

“Contraction basis functions”, while the individual Gaussian is called 

“primitive” (28). In a basis set of contracted GTOs, each basis 

function is defined by the contraction coefficients d and exponents ζ 

of each of its primitives (28). 

Since N GTOs are used to represent one Slater orbital it is commonly 

called STO-NG basis set (20). It was discovered that the optimum fit 

when N = 3, Figure 2.5 illustrate different combination of GTOs that 

fit STO for 1s orbital (20,28). 
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Figure 2.5:   Comparison of the quality of the least-squares fit of a 1s Slater   

function (ζ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G levels (20).   

 

The smallest basis sets used, which called minimal basis set is the 

STO-NG (N = 1, 2, 3,….), at which only one basis function defined 

for the  atomic orbital, the number of STO-NG or the CGTO is equal 

to the number of core and valence atomic orbitals in the atom 

(3,28,35), for example carbon atom has five atomic orbital (1s, 2s, 2px, 

2py, 2pz) which can be described by five STO-3G, while the number 

of primitive GTOs is fifteen. 

A.2.6.3) Multiple Zeta(ζ), and split valence 

Minimal basis set has some problems, the atomic orbitals use fixed 

exponent ζ, so all orbitals of given type are identical in size (20). 

Furthermore, it is unable to reproduce the anisotropic charge 
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distribution (20). To solve these problems computational chemists 

introduced Multiple Zeta basis sets (20). 

Multiple Zeta basis set includes double zeta (DZ), triple zeta (TZ), 

Quadruple Zeta (QZ) and Pentuple Zeta (PZ) (33). The term zeta 

stems from the fact that the exponent of STO basis functions is often 

denoted by the Greek letter ζ (28). Double Zeta basis set is made of 

two functions for each AO, Triple Zeta basis set is formed of three 

functions for each AO, and so on .. 

In Double Zeta an atomic orbital is expressed as sum of two STOs  

that differ only in the value of their exponent ζ. For example, 2s is 

written as  

∅2𝑠 𝑟 = ∅2𝑠
𝑆𝑇𝑂 𝑟, 𝜁1 + 𝑑∅2𝑠

𝑆𝑇𝑂(𝑟, 𝜁2)                                        (2.48) 

This means that an atomic orbital whose size can range between that 

specified by ∅2𝑠
𝑆𝑇𝑂 𝑟, 𝜁1  and ∅2𝑠

𝑆𝑇𝑂(𝑟, 𝜁2) by varying the constant d 

(20,28). 

In Triple Zeta an atomic orbital is expressed as sum of three STOs that 

differ only in ζ. 

Since the chemical bonding occurs between valence orbitals, then the 

core orbitals are weakly affected by chemical bonding. Valence 

orbitals, on the other hand, can vary widely as a function of chemical 
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bonding (28,33). So that, only the valence orbitals are expressed by 

multiple zeta (20). 

Split valence basis sets describe the core electrons by a single Slater 

orbital and the valence electrons by the sum of Slater orbitals, each 

STO could be expressed as linear combination of GTOs (20). 

Amongst the most widely used split-valence basis sets are those of 

Pople et al. .These basis sets include 3-21G, 6-21G, 4-31G, 6-31G, 

and 6-311G. The first number indicates the number of primitive 

Gaussian functions used to describe contracted core functions, the 

hyphen indicates that we have split valence basis set, the numbers 

after the hyphen indicate the numbers of primitives used to describe 

the valence functions; if there are two such numbers, it is a valence-

double-ζ basis, if there are three, valence-triple-ζ (20,28). 

For example, carbon atom described by a 6-31G,where 6 tells that 1s 

orbital on the core orbital is giving by a sum of 6 primitive Gaussian 

functions. The hyphen indicates a split valence basis set, telling that 2s 

and 2p orbitals are each represented by a pair of Slater orbitals. One of 

these Slater orbitals is represented by a sum of three Gaussian 

functions, and the other is represented by a single Gaussian function. 

i.e. nine atomic orbitals with twenty two GTOs (20). 



28 

 

 

 

 

A.2.6.4) Polarization functions 

Polarization functions can be added to basis sets to try to model the 

polarization effect (atomic orbitals distortion) as two atoms are 

brought close together. The electron cloud on one atom introduces a 

distortion in the shape of the electron cloud in the neighboring atom. 

Polarization functions basically consist of adding functions of a higher 

𝑙 quantum number than are usually present for the atom (20,28,36). 

Thus, for a second-row atom, the most useful polarization functions 

are d GTOs, and for hydrogen, p GTOs. Figure 2.6 illustrates how 

a d function on oxygen can polarize a p function to improve the 

description of the O–H bonds in the water molecule (20,28). 

Pople and co-workers introduced a simple notation to indicate the 

presence of these functions, addition of d orbitals to the second row 

elements in the periodic table denoted by an asterisk *. A double 

asterisk to denote for addition of p orbital to hydrogen and helium 

(20,28). (d, p) and ** are synonymous, .i.e. 6-31G** is equivalent to 

6-31G (d,p) (33). 
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Figure 2.6: The MO formed by interaction between the antisymmetric 

combination of  H 1s orbitals and the oxygen px orbital. Bonding interactions are 

enhanced by mixing a small amount of O dxz character into the MO (28).  

 

A.2.6.5) Diffused functions 

Diffuse functions are basis functions with a larger spatial extent 

than the normal ones. These functions are particularly important in the 

modeling of anions, or excited states, lone pairs, loose supermolecular 

complexes, and other systems where electrons are relatively far from 

the nucleus (21,28,36). Errors in energies and other molecular 

properties can occur, when a basis set does not have the flexibility 

necessary to allow a weakly bound electron to localize far from the 

remaining density (28), so diffused functions are added to the basis 

set. In the Pople notation, a single set of diffuse functions are added to 

heavy atoms by adding a “+” after the digits representing the number 

of valence functions. Thus for example, 6-31+G (3df,2p) designates 
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the 6-31G basis set supplemented by diffuse functions, 3 sets of d 

functions and one set of f functions on heavy atoms, and 

supplemented by 2 sets of p functions on hydrogen‟s. A second “+” 

represents a single set of diffuse functions added to H and He atoms. 

Thus, 6-31++G basis set has a single set of diffuse functions added to 

heavy atoms and H and He atoms (21,28,33,37). 

A.2.6.6) Effective core potential (ECP) 

For very heavy elements (4th period and up) calculations using atomic 

orbital based basis sets become very time consuming due to the 

number of electrons (and hence number of basis functions) involved in 

the calculation (36). To overcome this problem, the core electrons and 

their basis functions are replaced in the wave function by a potential 

term in the Hamiltonian. This is called core potentials, effective core 

potentials (ECP) (3). A key issue in the construction of ECPs is just 

how many electrons to include in the core, „large-core‟ ECPs include 

everything other than the outermost (valence) shell, while „small-core‟ 

ECPs scale back to the next lower shell (28). For example, silver with 

an atomic number of 47, one may consider two different choices of 

core size, where the electrons replaced by an ECP are indicated in 

italic and the remaining electrons in bold: 
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• “Large-core” ECP: 11 electrons considered explicitly: 

(1s)
2
 (2s)

2
 (2p)

6
 (3s)

2
 (3p)

6
 (4s)

2
 (3d)

10
 (4p)

6
(4d)

10
 (5s)

1
 

• “Small-core” ECP: 19 electrons considered explicitly: 

(1s)
2
 (2s)

2
 (2p)

6 
(3s)

2
 (3p)

6
(4s)

2
(3d)

10
(4p)

6
 (4d)

10
 (5s)

1
 

• All-electron ECP: 47 electrons considered explicitly: 

(1s)
2
 (2s)

2
 (2p)

6
 (3s)

2
 (3p)

6
 (4s)

2 
(3d)

10
 (4p)

6
 (4d)

10
 (5s)

1 
(33). 

 

A.2.7) Electronic Structure calculation Methods 

Solving Schrödinger equation and determining the electronic structure 

of atoms and molecules are primary goals in molecular quantum 

mechanics (29). In polyatomic molecules, the presence of several 

nuclei makes quantum mechanical calculations harder. Because the 

electronic wavefunction depends on several parameters, bond 

distances, bond angles, and dihedral angles of rotation about single 

bond. Thus the full theoretical treatment of a polyatomic molecule 

involves calculation of the electronic wavefunction for range of each 

of these parameters (23). 

There are three main approaches to calculate molecular properties via 

solving Schrödinger equation, ab-initio methods, density functional 

method, semiempirical methods (23,29). 
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A.2.7.1) Ab-initio methods 

The term “ab initio” comes from Latin meaning from the beginning. 

 This name is given to computations that are derived directly from 

theoretical principles using as input only the values of fundamental 

constants and atomic numbers of the nuclei, with no inclusion of 

experimental data. This is an approximate quantum mechanical 

calculation (3,25,29). The accuracy of this approach is determined by 

the model chosen for the wavefunction (basis set) (29). The first 

assumption in ab-initio methods is the Born-Oppenheimer 

approximation which reduces the Hamiltonian for molecular system to 

only the electronic motion as shown before in helium atom and 

hydrogen molecule (25). 

A.2.7.1.1) Hartree-Fock self-consistent field method(HF-SCF) 

The most common type of ab-initio calculation is called a Hartree-

Fock method, it is the starting point of many other ab-initio methods 

(3,29). It was first introduced by D.R. Hartree as self-consistent field 

(SCF). It was further improved by including electron exchange by V. 

Fock and J.C. Slater. The orbitals obtained by a combination of these 

procedures are called Hartree-Fock self consistent field orbitals (25). 
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The primary approximation is that the Columbic electron-electron 

repulsion is taken into account, the second approximation in HF 

calculations is due to the fact that the wavefunction must be described 

by some mathematical function (basis set) (3). An advantage of this 

method is that it breaks the many-electron Schrödinger equation into 

many simpler one-electron equations. Each one electron equation is 

solved to yield a single-electron wave function, called an orbital, and 

an energy, called an orbital energy. The orbital describes the behavior 

of an electron in the net field of all the other electrons (3). 

It was assumed that electrons don‟t interact with each other, then the 

two electron wavefunction is written as a product of orbitals, for 

example helium atom, 

𝜓 𝑟1, 𝑟2 = ∅ 𝑟1 ∅(𝑟2)                                                                  (2.49) 

Which is known as Hartree product, but this product fails to satisfy 

Pauli exclusion principal, which states that the total wavefunction 

must be antisymmetric with respect to the interchange of any pair of 

electrons. To do so, spin function must include with the spatial 

function. 

𝜓 𝑥, 𝑦, 𝑧, 𝜍 = 𝜓 𝑥, 𝑦, 𝑧 𝛼 𝜍           𝑜𝑟        𝜓(𝑥, 𝑦, 𝑧)𝛽(𝜍)          (2.50) 
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Where the complete one electron wavefunction ψ is called (spin 

orbital), 𝛼 𝜍  and 𝛽(𝜍) are spin functions, 𝜍 is called spin variable 

and has no classical analog (20,24). 

Again for helium, 

𝜓 1,2 = 𝜓1𝑠𝛼 1 𝜓1𝑠𝛽(2)                                                          (2.51) 

1 and 2 denote all four coordinates (𝑥, 𝑦, 𝑧, 𝜍) of electrons 1 and 2. 

But the electrons are indistinguishable from each other, then the 

wavefunction 

𝜓 2,1 = 𝜓1𝑠𝛼 2 𝜓1𝑠𝛽(1)                                                          (2.52)      

Is equivalent to equation (2.51). The linear combinations of equation 

(2.51) and equation (2.52) are 

𝝍𝟏 = 𝝍 𝟏, 𝟐 + 𝝍 𝟐, 𝟏 = 𝝍𝟏𝒔𝜶 𝟏 𝝍𝟏𝒔𝜷 𝟐 + 𝝍𝟏𝒔𝜶 𝟐 𝝍𝟏𝒔𝜷(𝟏)           (2.53)    

𝝍𝟏 = 𝝍 𝟏, 𝟐 − 𝝍 𝟐, 𝟏 = 𝝍𝟏𝒔𝜶 𝟏 𝝍𝟏𝒔𝜷 𝟐 − 𝝍𝟏𝒔𝜶 𝟐 𝝍𝟏𝒔𝜷(𝟏)           (2.54) 

Both 𝜓1and 𝜓2describe states in which there are two indistinguishable 

electrons, and both appear to be acceptable wavefunction for the 

ground state of helium, but experimentally only 𝜓2 describes the 

ground state of helium atom since it has a property that it changes sign 

when two electron are interchanged, so 𝜓2(1,2) is antisymmetric 

wavefunction (20,24,29). 
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Antisymmetric wavefunctions can be represented by Slater 

determinants, 

𝜓 1,2 =
1

 2
 
𝜓1𝑠𝛼(1) 𝜓1𝑠𝛽(1)
𝜓1𝑠𝛼(2) 𝜓1𝑠𝛽(2)

                                                 (2.55) 

1

 2
 is normalization constant for two electrons (20,24). 

To generalize this development for an N-electron system, N × N 

determinant is used with normalization constant (
1

 𝑁!
 ), 

𝜓 1,2, … , 𝑁 =
1

 𝑁!  
 

𝑢1(1) 𝑢2( 1)            … 𝑢𝑁 1 

𝑢1(2)
.
.
.

𝑢2(2)         …
.
.
.

𝑢𝑁 2 
.
.
.

𝑢1(𝑁) 𝑢2(𝑁)      … 𝑢𝑁(𝑁)

 
 
              (2.56) 

Where the u‟s are spin orbitals (20,24). 

For simplicity, a closed shell system of 2N electron is used to show 

how HF method proceeds, the Hamiltonian operator for 2N electron 

atom in atomic units is 

𝐻 = −
1

2
 ∇𝑗

2 −  
𝑍

𝑟𝑗

2𝑁
𝑗

2𝑁
𝑗=1 +   

1

𝑟𝑖𝑗
𝑗>𝑖

2𝑁
𝑖=1                                     (2.57) 

And the wavefunction is 

𝜓 1,2, … 2𝑁 =  
1

 𝑁!  

 

∅1𝛼(1) ∅1𝛽(1)  …
∅1𝛼(2) ∅1𝛽(2)  … 

∅𝑁𝛼(1) ∅𝑁𝛽(1)
∅𝑁𝛼(2) ∅𝑁𝛽(2)

.

.
.
.

. .
∅1𝛼(2𝑁) ∅1𝛽(2𝑁) … 

.

.
.
.

. .
∅𝑁𝛼(2𝑁) ∅𝑁𝛽(2𝑁

 

 
      (2.58) 
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And energy is given by 

𝐸 =  𝑑𝑟1𝑑𝜍1 …𝑑𝑟2𝑁𝑑𝜍2𝑁𝜓∗ 1,2, … ,2𝑁 𝐻   𝜓(1,2, … ,2𝑁)        (2.59) 

And can be written as 

𝐸 = 2  𝐼𝐽
𝑁
𝑗 =1  +    (2𝐽𝑖𝑗 − 𝐾𝑖𝑗 )𝑁

𝑗 =1
𝑁
𝑖=1                                        (2.60) 

Where  

𝐼𝑗 =   𝑑𝑟𝑗∅𝑗
∗ 𝑟𝑗   −

1

2
∇𝑗

2 −
𝑍

𝑟𝑗
 ∅𝑗 (𝑟𝑗 )                                           (2.61) 

𝐽𝑖𝑗 =  𝑑𝑟1𝑑𝑟2∅𝑖
∗ 𝑟1 ∅𝑗

∗ 𝑟2 
1

𝑟12
∅𝑖 𝑟1 ∅𝑗 (𝑟2)                              (2.62) 

And  

𝐾𝑖𝑗 =  𝑑𝑟1𝑑𝑟2∅𝑖
∗ 𝑟1 ∅𝑗

∗ 𝑟2 
1

𝑟12
∅𝑖 𝑟2 ∅𝑗 (𝑟1)                            (2.63) 

Where  𝐼𝑗  are the overall orbitals energies of the occupied molecular 

orbitals, the factor 2 is needed because there are two electrons in each 

molecular orbital, N electron with 𝛼 spin function, and N with 𝛽 spin 

function. The  𝐽𝑖𝑗  integrals are called coulomb integrals is the energy 

of the Columbic interaction between an electron in orbital i with an 

electron in orbital j. And  𝐾𝑖𝑗  integrals are called exchange integrals, it 

has no physical interpretation but it account for the fact that the two 

electrons exchange their positions from the left to the right of the 

integrand (20,24,25). 
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The spatial orbitals ∅𝑖 𝑟𝑖  are determined by applying variational 

principal to equation 2.59. The following equations are obtained as a 

result for applying the variational principal 

𝐹𝑖
 ∅𝑖 = 𝜀𝑖∅𝑖                               𝑖 = 1,2, … , 𝑁                                     (2.64)    

Where 𝐹𝑖
   is Fock operator and is given by 

𝐹𝑖
 =  𝑓𝑖 +  (2𝐽𝑗 𝑗 − 𝐾𝑗 )                                                                   (2.65) 

Where  

𝑓𝑖 = −
1

2
∇𝑖

2 −
𝑍

𝑟𝑖
                                                                              (2.66) 

𝐽𝑗  𝑟1 ∅𝑖 𝑟1 = ∅𝑖 𝑟1  𝑑𝑟2∅𝑗
∗(𝑟2)

1

𝑟12
∅𝑗 (𝑟2)                                (2.67) 

And 

𝐾𝑗
  𝑟1 ∅𝑖 𝑟1 =  ∅𝑗  𝑟1  𝑑𝑟2 ∅𝑗

∗(𝑟2)
1

𝑟12
∅𝑖(𝑟2)                              (2.68) 

Fock operator depends on all the orbitals and cannot be evaluated 

through equation 2.65 to 2.68 until all the orbitals are known 

(20,24,25). 

The Hartree-Fock  orbitals are a set of N coupled equations, which can 

be solved by iterative procedure called a self-consistent field 

procedure (SCF) in  which an initial guess of set of orbitals ∅𝑖 𝑟𝑖 ,  

are assumed, the one-electron wave functions are approximated by 

Various basis sets, most of which are composed of Gaussian 
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functions, then initial set of Fock operators are calculated, then 

equation 2.64 can be solved using the calculated Fock operators to 

find a new set of orbitals. These new orbitals are used to calculate a 

new set of Fock operator, which in turn are used to calculate a new set 

of orbitals. This cyclic procedure is continued until the orbitals of one 

cycle are essentially the same as those of next cycle or, in other words, 

until they are self-consistent, the self-consistent orbitals are called 

Hartree-Fock orbitals, the eigenvalues 𝜀𝑖  are called orbital energies 

(3,20,24). 

A variation on the HF procedure is the way that orbitals are 

constructed to reflect paired or unpaired electrons. If the molecule has 

a single spin, then the same orbital spatial function can be used for 

both the 𝛼 and 𝛽 spin electrons in each pair. This is called the 

restricted Hartree-Fock method (RHF) (3,29). 

There are two techniques for constructing HF wave functions of 

molecules with unpaired electrons (open shell). One technique is to 

use two completely separate sets of orbitals for the 𝛼 and 𝛽 electrons. 

This is called an unrestricted Hartree-Fockwave function (UHF). This 

means that paired electrons will not have the same spatial distribution. 
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This introduces an error into the calculation, called spin 

Contamination (3,29). 

Another way of constructing wave functions for open-shell molecules 

is the restricted open shell Hartree-Fock method (ROHF). In this 

method, the paired electrons share the same spatial orbital; thus, there 

is no spin contamination (3,29). 

One of the limitations of HF calculations is that they do not include 

electron correlation. This means that HF takes into account the 

average affect of electron repulsion, but does not consider the 

instantaneous columbic interaction between electrons. Within HF 

theory the probability of finding an electron at some location around 

an atom is determined by the distance from the nucleus but not the 

distance to the other electrons as shown in Figure 2.7. 

Figure 2.7:  Two arrangements of electrons around the nucleus of an atom having 

the same probability within HF theory, but not in correlated calculations (3). 
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Correlation is important for many different reasons. Including 

correlation generally improves the accuracy of computed energies and 

molecular geometries (3). 

A number of types of calculations begin with a HF calculation and 

then correct for correlation. Some of these methods are Moller-Plesset 

perturbation theory (MPn, where n is the order of correction), 

configuration nteraction (CI), etc…(3,25). 

 

A.2.7.1.2)  Configuration Interaction (CI) 

 

Configuration Interaction a method assumes that the exact 

wavefunction ψ cannot be expressed as single determinant, as HF 

theory assume. Instead it proceeds by construction multiple-

determinant wavefunction by promoting electrons from the occupied 

to unoccupied orbitals (3,21). 

Then the electron correlation is considered by taking a linear 

combination of the HF ground-state wavefunction with a large number 

of excited configurations. The expansion coefficients are then varied 

using a Variational approach until a minimum energy is achieved (25). 

Some of the common ones include the following: Configuration 

Interaction Single excitations (CIS) only, Configuration Interaction 
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Double excitations (CID) only, and Configuration Interaction Single 

and Double excitations (CISD) only, the configuration interaction 

calculation with all possible excitations is called a full CI (3,21,25). 

A.2.7.1.3)  Moller-Plesset Perturbation Theory 

 

Correlation can be added as a perturbation from the Hartree-Fock 

wave function, at which higher excitations to HF theory as non 

iterative correction. A Moller-Plesset computation to a second-order 

energy correction is called an MP2 computation, and higher-order 

energy corrections are called MP3, MP4, and so on (3,21,25). 

The most significant advantages of using correlated models is to 

obtain reliable thermodynamic information, and is fast calculation 

however, it has a disadvantage that it is not variational, a non-

Variational result is not, in general, an upper bound of the true 

ground-state energy (3,25). 

A.2.7.2) Semiempirical method  

Because of the difficulties of applying the ab-initio methods to large 

molecules, semiempirical methods were developed. The earliest 

semiempirical methods proposed by E. Huckel, in 1930, treated only 

the π electrons in conjugated systems. Semiempirical methods are 

based on HF calculations, but use a simpler Hamiltonian than the 
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correct one which is used in HF, and use parameters whose values are 

adjusted to fit experimental data. Even though semiempirical methods 

are fast and widely popular, they have limitation to the accuracy 

because of the approximations inherent in their formulations, and the 

accuracy of the experimental data used to obtain the parameters 

(3,23,29). 

 

A.2.7.3) Density Functional Theory (DFT) 

 

The Ab-initio and semiempirical approaches are to use the electrons 

wavefunctions. However, a wavefunction is not a measurable feature 

of a molecule or atoms (2). 

In 1964, an alternative approach is introduced, density functional 

methods, the origins for density functional theory (DFT) is the proof 

of P. Hohenberg and W. Kohn (23,33), that for molecules with 

nondegenerate ground state, the ground state molecular energy, 

wavefunction, and all other molecular electronic properties are 

uniquely determined by the ground state electron probability density 

𝜌(𝑟) (23). 

Since ab-initio methods based on HF-SCF approximation have 

difficulty for performing accurate calculations with large basis set on 
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many atoms and many electros systems (29). DFT are attractive 

because it begins with the concept of the electron probability density, 

and it include the effects of electron correlation (21,29), using electron 

density makes the integrals for coulomb repulsion needed to be done 

only over three-dimensional function which results in faster and more 

accurate calculations than HF calculation (3). 

A functional is a function of a function (3), it takes a function and 

provides a number, and it is usually written with the function in square 

brackets (32). In DFT the electronic energy E is written in terms of 

electron probability density and E is said to be functional of the 

electron density and is denoted E[(𝜌(𝑟)], which means that for a given 

density functional 𝜌(𝑟) there is one and just one energy value (29). 

Unfortunately, Hohenberg-Kohn theorem proves only that there is 

functional dependence of energy on the density, but does not tell the 

form of this dependence (29). 

The DFT methods developed by Kohn and Sham, they suggested that 

a variational approach might yield a way to calculate the energy and 

electron density which in turn could be used to calculate other 

properties, at which variational approach led to Kohn-Sham (KS) 

equations (2,29,38), which have the form 
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 −
ħ2

2𝑚𝑒
∇1

2 − 𝑗0  
𝑍𝐼

𝑟𝐼1

𝑁
𝐼=1 + 𝑗0  

𝜌(𝑟2)

𝑟12
𝑑𝑟2 + 𝑉𝑋𝐶 𝑟1  𝜓𝑖 𝑟1 = 𝜀𝑖𝜓𝑖(𝑟1)          (2.69) 

Where 𝜀𝑖  are the KS orbital energies and the exchange-correlation 

potential, 𝑉𝑋𝐶  , is the functional derivative of the exchange-correlation 

energy, and given by 

𝑉𝑋𝐶  𝜌 =
𝛿𝐸𝑋𝐶 [𝜌]

𝛿𝜌
                                                                            (2.70) 

And 

𝜌 𝑟 =   𝜓𝑖(𝑟) 2𝑛
𝑖=1                                                                     (2.71) 

Is the exact ground-state electronic density, the sum is over all the 

occupied Kohn-Sham (KS) orbitals (23,29), which are obtained when 

the KS equations are solved in a self-consistent fashion (29). Initially, 

the electron density is guessed, and by using some approximation for 

the functional 𝐸𝑋𝐶 𝜌 , 𝑉𝑋𝐶  𝜌  computed as a function of r (29,38). 

Then a set of KS equation is solved to obtain an initial set of KS 

orbitals, this initial guess is then used to refine these orbitals, in a 

manner similar to that used in the HF SCF method. The final KS 

orbitals are used to calculate an electron density that in turn is used to 

calculate the energy, which is written as 

𝐸 𝜌 = −
ħ2

2𝑚𝑒
  𝜓𝑖

∗ 𝑟1 ∇1
2𝜓𝑖 𝑟1 𝑑𝑟1 − 𝑗0  

𝑍𝐼

𝑟𝐼1

𝑁
𝐼=1

𝑛
𝑖=1 𝜌 𝑟1 𝑑𝑟1 +

1

2
𝑗0  

𝜌 𝑟1 𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 + 𝐸𝑋𝐶[𝜌]                                                    (2.72) 
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Where the one electron spatial orbitals 𝜓𝑖  (𝑖 = 1,2, … , 𝑛) are the 

Kohn-Sham orbitals, the first term represents the kinetic energy of 

electrons, the second represents the electron-nucleus attraction and the 

sum is overall N nuclei with index I and atomic number 𝑍𝐼, the third 

represents the coulomb interaction between the total charge 

distribution summed over all KS orbitals at 𝑟1 𝑎𝑛𝑑 𝑟2, the last 

represents the exchange-correlation energy of the system, which is 

also a functional of the density and takes into accounts the remaining 

part of electron-electron interactions (21,29). 

The KS orbitals are expressed in terms of basis functions (different 

basis sets), which are exactly the same basis functions used as in 

wavefunction theory (ab-initio and semiempirical methods) (2,29). 

There are different DFT methods which differ in the choice of 

functional form for the exchange–correlation energy (33). And these 

Density functionals can be broken down into several classes (3). The 

simplest is 𝑋𝛼method, which was introduced by J. C. Slater, in this 

method electron exchange is included and correlation is not included 

(3). The simplest approximation to 𝐸𝑋𝐶 𝜌  is within the local density 

approximation (LDA), which assumes that the density locally can 
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be treated as a uniform electron gas, or equivalently that the density is 

a slowly varying function (2,3,33). And when 𝛼 and 𝛽 densities are 

not equal (open shell system) then LDA replaced by the Local Spin 

Density Approximation (LSDA), which gives Better results than with 

the LDA, but for closed shell systems, LSDA is equal to LDA (2,33). 

Improvements over the LSDA approach must consider a non-uniform 

electron gas (33). At which the exchange and correlation energies 

dependent not only on the electron density but also on its gradient, 

these functionals are called gradient-corrected, or generalized-gradient 

approximation (GGA) (2,33). Most popular GGA functionals are 

Proposed by A. D. Becke,  Lee, Yang and Parr, and J. P. Perdew and 

coworkers (33). 

There are also hybrid methods that combine density functionals 

correlation and exchange with Hartree-Fock corrections, usually the 

exchange integrals (3,29). Becke 3 parameter functional (B3) methods 

is example of such hybrid models, with the popular B3LYP method 

which is a combination of Becke 3 (B3) with the Lee, Yang and Parr 

method (LYP), which is defined by equation 2.73 shown 

below(3,23,29,33). 



47 

 

 

 

 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 =  1 − 𝑎 𝐸𝑋

𝐿𝑆𝐷𝐴 + 𝑎𝐸𝑋
𝑒𝑥𝑎𝑐𝑡 + 𝑏∆𝐸𝑋

𝐵88 + (1 − 𝑐)𝐸𝐶
𝐿𝑆𝐷𝐴 +

𝑐𝐸𝐶
𝐿𝑌𝑃                                                                                              (2.73) 

At which the exchange energy is defined as a combination of LSDA, 

B88 (Becke), and exact change comes from the use of HF definition. 

a, b and c parameters were chosen to give good fit to experimental 

data, with typical values  𝑎~ 0.2, 𝑏~ 0.7, 𝑎𝑛𝑑 𝑐~ 0.8 (23,33,38). 

Due to the newness of DFT, its performance is not completely known 

and continues to change with the development of new functionals. 

However, a number of commonly used functionals are listed in Table 

2.1 (3). 

     Table 2.1:  Density functionals (3). 
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B) Chemical background 

Coordination compounds are formed by coordination covalent bond 

between metal atom or ion; as an electron pair acceptor, with the 

surrounding atoms or groups each donating its electron density to an 

empty orbital on the metal atom or ion. These electron donors groups 

are called ligands (39,40). When these ligands are organic compounds, 

coordination covalent bond is between metal and carbon, or metal and 

hydrogen, while the compound formed is called organometallic 

compound. Typical organic ligands that usually bind to metals are 

carbonyls, alkenes, alkynes, etc..(5). 

Alfred Werner was the first who interpreting bonding and reaction of 

coordination compounds in 1893 (5,40). The organometallic 

compounds are of great interest since they are useful catalyst for 

industrial processes and for organic synthesis (5). 

B.2.1) Metal carbonyl complexes 

Metal carbonyl complexes are coordination compounds that contain 

carbon monoxide as a ligand bonded to transition metals (41). Even 

carbon monoxide has lower basicity; it forms thousands of complexes 

with strong interactions with the transition metals (40,41). This is due 

to the type of interaction between the metal and carbon monoxide 
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orbitals, molecular orbital of both carbon monoxide and octahedral 

metal-ligand complex are shown in Figure 2.8.  

Figure 2.8: Molecular orbital diagram for (a) carbon monoxide (40) and (b) 

octahedral ML6 complex (39). 

 

The interaction of the CO group orbitals, with the transition metal 

orbitals can be described as a combination of two components: 

1) The HOMO of CO (σ orbital) which possesses a lone pair, 

interacts with an appropriate metal orbital (such as an unfilled d 
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or hybrid orbital) in a bonding M-L σ and antibonding M-L σ* 

(40,41). 

2) The LUMO of CO are two degenerate empty π
* 

orbitals, the 

overlap of the higher energy LUMO of CO with the lower 

energy metal t2g orbitals (dxy, dyz, dxz), results in one filled 

bonding orbital lower in energy than initial metal t2g orbitals, 

and one empty antibonding orbital that is higher in energy than 

the σ antibonding orbital as shown in Figure 2.9 (4,39-42). 

 Figure 2.9: Approximate partial MO diagram for metal-ligand π-bonding in an    

octahedral complex, with a π-acceptor ligand (42).         
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As a result, the value of ∆0 is larger and hence bonding strength is 

increased, the d electrons donated back to the CO π*
 orbitals, in a 

phenomena called ML π bonding (also called back bonding) as 

shown in Figure 2.10 (4,39-42). 

 

 

 

 

Figure 2.10:  Metal- to – ligand π back-bonding (4).  

The occupation of the π*
 orbital of the CO leads to a decrease in C-O 

bond order, which causes lengthening of the C-O bond compared with 

free CO, therefore carbonyl stretching frequency is lower than in free 

CO (4,39). Free CO absorbs at ~2143 cm
-1

, while coordinated CO  

absorbs  in the range 1840-2120 cm
-1

 (39). 

B.2.2) Trans effect 

Trans effect is “the effect of a coordinated group L on the rate of 

substitution reactions of ligands trans to itself  X (43) as shown below:  

L-M-X   L-M   +  X 

Where X is the leaving group and M is the metal center. The concept 

of trans effect was first introduced by Chernyaev, in 1926 (40). Trans 
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effect has a particular importance in ligand-replacement reaction of 

square planner complexes, and octahedral complexes reactions also 

show trans effect (44). To explain the trans effect, the effects of L on 

the activation energy of the reaction should be considered (45). The 

Lowering of activation energy for the substitution reaction occurs by 

destabilizing the ground state of the complex or by stabilizing the 

transition state or both (40,44). 

The trans effect term is used to cover two types of effects; 

*Structural trans–effect (STE): STE is also termed Trans influence, 

STE is a ground state effect used to describe the tendency of a bonded 

ligand (L) to selectively weaken the bond of the ligand trans to it (X) 

(45,46). STE is a thermodynamic effect that contributes to the overall 

kinetic result by changing the reactant ground state energy (40). The 

STE is caused by π-acceptor ability of the ligand, since the ligand (L) 

withdraws metal electrons into its own empty π*
 orbitals, which 

causes weakening of the trans M-X
 
bond (44,46). As a result, the 

energy of complex ground state become higher and leads to smaller 

activation energy (40,45,46). 

* Kinetic trans-effect (KTE): Kinetic phenomenon depends on both 

ground state and transition state factors, and describes the effect on the 
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liability of a trans ligand (45,46). In octahedral complexes, σ-donor 

ligands are able to stabilize the 5-coordinate transition state 

intermediate and hence favor dissociation of a trans ligand X (46,47). 

Since octahedral complexes are generally undergoing dissociative 

activated ligand substitution, there is often a close correlation between 

STEs and KTEs (46). 

According to the combination of the two effects it was found that the 

overall trans effect decrease in the order: 

𝐶𝑂 ~ 𝐶𝑁− ~ 𝐶2𝐻4 > 𝑃𝑅3 ~ 𝐻− > 𝐶𝐻3
− ~ 𝑆𝐶(𝑁𝐻2)2 > 𝐶6𝐻5

− >

𝑁𝑂2
− ~ 𝑆𝐶𝑁− ~ 𝐼− > 𝐵𝑟− > 𝐶𝑙− > 𝑝𝑦 , 𝑁𝐻3 ~ 𝑂𝐻− ~ 𝐻2𝑂 (41,46). 

B.2.3) Metal-alkene complexes 

Bonding between alkene and transition metal is described by Dewar-

Chatt-Duncanson model (model that explains bonding between an 

unsaturated ligand and a metal forming a π complex) (6,41). Bonding 

takes place with transition metal as η2 
–alkenyl, i.e. bonding to the 

face of alkene, at which bonding is assumed to consist of two 

components as shown in Figure 2.11. 
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  Figure 2.11:  Bonding in alkene complexes. (a) Donation from filled π orbital to 

vacant metal orbital. (b) Back-bonding from filled metal orbital to π
*
orbitals (44). 

 

 Donation of π- electron density of the HOMO filled alkene 

orbital to sp
3
d

2
 hybrid orbital (or 𝑑𝑧2) of σ-type acceptors on 

the metal atom (6,41,44). 

 Back donation of electron density from the filled t2g d orbital of 

suitable symmetry to the LUMO π- antibonding orbital on the 

carbon atom (6,40,41,44). 

Alkenes are considered to be stronger σ-donors but weaker π-

acceptors than CO (46). Alkene complexes tend to be more stable if a 

withdrawing group or heteroatom is attached to alkenes. This is due to 

the energy lowering of the π-antibonding orbital, so increasing of both 

back-bonding and C-C interaction bond (40,41).  
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B.2.4) Metal-alkyne complexes 

Metal-alkyne complexes are of great interest because of their 

important role in organometallic chemistry. They are involved in 

many transformations, including catalytic processes such as alkyne 

polymerization, metathesization, hydrogenation, epoxidation, 

cyclization, and synthesis of a variety of organic compound (4-

6,13,48, 49). 

Since these transformations may include formation or cleavage of the 

metal-alkyne bond, it is necessary to understand the metal-alkyne 

interaction (6). 

The bonding in metal-alkyne complexes can be described by Dewar- 

Chatt-Duncanson model (4,6,50). Alkynes have two bonding and two 

antibonding π orbitals that can interact with metal d orbitals. These 

molecular orbital interactions are assumed to consist of four 

components as shown in Figure 2.12 (49). 
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  Figure 2.12:  Molecular orbital interactions between metal and alkyne (49). 

 

A) σ-type donation from the alkyne occupied in plane π-orbital into 

empty d orbital of σ-type acceptor (s, pz, 𝑑𝑧
2, dx

2
-y

2
) in a metal as 

shown in Figure 2.13 (4,49). 

    Figure 2.13: Participation of various orbitals in σ-type donation of alkyne   

    complexes (49). 

 



57 

 

 

 

 

B) π- Back donation from the filled px or dxz orbitals in the metal 

into the empty antibonding π*
 in alkyne, as seen in Figure 2.14 

(4,49). 

 

Figure 2.14:   π- Back donation in alkyne complexes (49).  

Alkynes also have another orthogonal C-C π bond, and hence can 

make  

C) π–type donation from the filled alkyne π-orbital into the empty 

d-orbital in the metal. 

D) δ-type back donation from filled d-orbitals in the metal into the 

empty antibonding π* 
(4,49,51). 

The perpendicular π donor bond has a good overlap and must be 

considered. However, δ-type back donation can be ignored since the 

perpendicular empty antibonding can only overlap with metal d- 

orbital in the xy-plane (49). 
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Bonding in alkyne complexes may vary according to the attached 

metal, and the alkyne substituent. Thus, affecting the contribution of 

each type of donation mentioned above (A-D) (50). 

When sufficient π-back donation into the parallel π-acceptor orbital, 

it creates a structure described as a “Metallacyclopropene” as shown 

in Figure 2.15 This would strengthen the metal–alkyne bond, weaken 

the  C-C bond, and the substituent groups are bent away from the 

metal (4). 

 

 

 

 

                          Figure 2.15:   Metallacyclopropene structure (49).   

One of applicable alkyne complexes is alkyne (pentacarbonyl) 

complexes, which can be prepared through photochemical reaction 

between metal hexa-carbonyl with alkyne (13,48). But there are only 

very few of these alkyne(pentacarbonyl) complexes that have been 

isolated and fully characterized having terminal alkyne ligand (13, 

52). Whenever these terminal alkyne complexes are generated, they 

are exist in equilibrium with their vinylidene tautomer by 1,2-

hydrogen shift, as shown in Figure 2.16 (13,48, 53). 
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  Figure 2.16:   Tautomerization of alkyne complexes (13). 

The reaction of the equilibrium (alkyne/vinylidene)pentacarbonyl 

complex depends on the substrate type, as some of them prefer to 

react with the vinylidene complex tautomer; others prefer to react with 

alkyne complex tautomer (13). Diazoalkanes tend to react with the 

terminal alkyne complex tautomer (13). 
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CHAPTER THREE 

METHODS, RESULTS, AND DISCUSSION 
 

3.1) Methods 

  Structure and energy calculations were carried on DELL 

PRECISION 490 workstation with quad processors, and memory of 

4GB, however the Gaussian uses just 1GB. The model of the 

molecules is drawn by Gaussian view Version 3.07, at which Gaussian 

03 software (54) can read these files format and perform the required 

calculations. 

The job type option used is the combination of optimization and 

frequency; it first optimizes the structure to a minimum at ground state 

calculations then, calculates the frequency. DFT method with hybrid 

type B3LYP method is used. The split valence triple zeta 6-311 basis 

set is used, supplemented by diffuse functions 3sets of “d” functions 

and one set of “f” functions on heavy atoms, and supplemented by one 

set of “p” functions and one set of “d” functions on hydrogen atoms. 

So the full statement in the input file becomes: “opt freq b3lyp/6-

311++g (3df, pd)”. 
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3.2) Results and discussion: 

3.2.1) Molecular Geometry Analysis: 

3.2.1.1) Pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-   

pyrazol-N2)chromium(0) 

The optimized structure of the pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0) is shown in Figure 

3.1a, which is in a good agreement with the X-ray  molecular structure 

determinations shown in Figure 3.1b (13). The data listed in Table 3.1 

and Table 3.2. 

Figure 3.1: (a) Optimized structure of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0), (b) X-ray structure (13). (Red 

balls: oxygen atoms, gray balls: carbon atoms, dark blue balls: nitrogen atoms, 

light blue ball: chromium atom, hydrogen atoms are omitted for simplicity). 
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 Table 3.1: Selected bond lengths (Å) compared to X-ray analysis data of 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-N2)chromium(0). 

 

 

Table 3.2: Selected bond angles (
0
) compared to X-ray analysis data of 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-N2)chromium(0). 

 

B3LYP BOND LENGTH   

Calculated ( Å ) Experimental ( Å )   (13) BOND 

2.17213 2.138 Cr1-N1 

1.25929 1.272 N1-N2 

1.50673 1.509 N1-C6 

1.41574 1.438 N2-C8 

1.48567 1.485 C6-C7 

1.33744 1.334 C7-C8 

1.48223 1.489 C8-C9 

1.20088 1.204 O6-C9 

1.34626 1.342 O7-C9 

1.43785 1.45 O7-C10 

1.94276  Cr-C1 

1.13760  C1-O1 

1.92143  Cr-C2 

1.14247  C2-O2 

1.90173  Cr-C3 

1.14706  C3-O3 

1.92143  Cr-C4 

1.14247  C4-O4 

1.87247  Cr-C5 (trans) 

1.14713  C5-O5 (trans) 

B3LYP BOND ANGLES  

Calculated Experimental   (13) ANGLE 

110.381 110.81 N2-N1-C6 

118.64 119.13 N2-N1-Cr1 

130.979 130.05 C6-N1-Cr1 

110.394 109.26 N1-N2-C8 

101.497 101.57 C7-C6-N1 

119.267 119.08 N2-C8-C9 

110.185 110.26 C7-C8-N2 

130.547 130.63 C7-C8-C9 

124.813 125.18 O6-C9-C8 

107.542 108.1 C8-C7-C6 
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The bond distances and bond angles calculated for the complex are 

similar to those of X-ray data. The Cr-N1 bond length calculated is 

2.17213Å, which is similar to the bond length from X-ray data 2.1384 

Å (13), and it indicates bonding between nitrogen atom adjacent to the 

sp
3
 carbon and chromium (13). The calculated N1-N2 bond distance is 

1.259Å which is also similar to that obtained from X-ray data 1.272 

Å, indicating sp
2
  N=N double bond (13). A bond angle data are also 

similar to those obtained by X-ray analysis as shown in Table 3.2.   

Comparison of the CΞO bond distances in cis and trans to the 

pyarzole ligand shows that the cis CΞO bond length is (1.1424Å) 

(average of  the four cis carbonyls) is shorter than the trans CΞO bond 

length (1.1471Å). On the other hand, the Cr-C bond length for the cis 

carbonyl is 1.9218 Å (average of the four cis carbonyls), while the 

trans Cr-C bond length is (1.8725Å). This is shorter than the cis 

arrangement. These facts can be explained by electron-back donation 

from the metal center to the trans carbonyl which is caused by a donor 

ligand from the trans position of the CO. Hence, the trans CΞO bond 

is elongated, and the Cr-C bond length is shortened. The experimental 

and calculated IR frequencies of the Pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium (0) are listed in Table 
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3.3. The IR spectrum of the optimized structure is also shown in 

Figure 3.2. 

Table 3.3: Comparison of experimental IR frequencies and calculated of 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-N2)chromium(0) (13). 

Experimental CO frequencies cm
-1

   Calculated  Scaled (0.9646) 

2069  carbonyls (m) 2138.38 2062.68 

1997 carbonyls (m) 2072.49 1999.12 

1950 carbonyls (vs) 2031.58 1959.66 

1942 carbonyls (s) 2027.11 1955.35 

1922 carbonyls (s) 2009.11 1937.99 

1745  (C=O) methoxy group (m) 1801.45 1737.68 

 

 

 

Figure 3.2: Infra red spectrum of  pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-

3H-pyrazol-N2)chromium(0). 

 

 

 It has been known that the calculated IR frequencies are always 

higher than the experimental, so that a scale factor (0.9646) (21) is 



65 

 

 

 

 

multiplied by the calculated frequencies for comparison purposes as 

shown in Table 3.3.  

Optimization of the transition state of the complex is also carried out, 

the structure is shown in Figure 3.3, and selected bond lengths and 

bond angles compared to the ground state structure are also shown in 

Tables 3.4, and Table 3.5 respectively. IR frequencies of both ground 

state and transition state are supplemented in Table 3.6.  

Figure 3.3: Optimized transition state of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0). (Hydrogen atoms are omitted for 

simplicity). 
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Table 3.4: Comparison between bond lengths (Å) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0) in transition state and ground 

state. 

 

 

Table 3.5: Comparison of bond angles (
0
) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0) in ground state and transition 

state. 

 

B3LYP BOND LENGTH  

Transition  state Ground state BOND 

2.93150 2.17213 Cr1-N1 

1.25132 1.25929 N1-N2 

1.48101 1.50673 N1-C6 

1.43435 1.41574 N2-C8 

1.48857 1.48567 C6-C7 

1.33755 1.33744 C7-C8 

1.47999 1.48223 C8-C9 

1.20173 1.20088 O6-C9 

1.34561 1.34626 O7-C9 

1.43829 1.43785 O7-C10 

1.93500 1.94276 Cr-C1 

1.13862 1.13760 C1-O1 

1.92144 1.92143 Cr-C2 

1.14186 1.4247 C2-O2 

1.191266 1.90173 Cr-C3 

1.14386 1.14706 C3-O3 

1.92137 1.92143 Cr-C4 

1.14201 1.14247 C4-O4 

1.84626 1.87247 Cr-C5 (trans) 

1.14955 1.14713 C5-O5 (trans) 

B3LYP   BOND ANGLES  

Transition  state Ground state ANGLE 

111.063 110.381 N2-N1-C6 

78.283 118.64 N2-N1-Cr1 

161.523 130.979 C6-N1-Cr1 

110.171 110.394 N1-N2-C8 

102.120 101.497 C7-C6-N1 

119.563 119.267 N2-C8-C9 

109.307 110.185 C7-C8-N2 

131.129 130.547 C7-C8-C9 

124.507 124.813 O6-C9-C8 

107.336 107.542 C8-C7-C6 
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Table 3.6: Comparison of  IR frequencies (cm
-1

) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0) in ground state and  transition 

state. 

B3LYP Ground  state Transition  state  

Bond IR 

Calculated 

IR Scaled 

(0.9646) 

IR Calculated IR scaled 

(0.9646) 

C=O 1801.45 1737.68 1796.75 1733.15 

Carbonyl 2009.11 1937.99 2005.59 1934.60 

Carbonyl 2027.11 1955.35 2032.74 1960.78 

Carbonyl 2031.58 1959.66 2034.57 1962.55 

Carbonyl 2072.49 1999.12 2070.4 1997.11 

Carbonyl 2138.38 2062.68 2149.34 2073.25 

C=C 1641.43 1583.32 1643.47 1585.29 

N=N 1478.37 1426.04 1533.52 1479.23 

 

The Cr-N1 bond distance in the transition state becomes longer than in 

the ground state, while N1-N2 bond distance in the transition state is 

shorter than the ground state. As expected, the bond distance in the 

transition state has weaker interaction between the Cr-N1, which 

results in stronger interaction between the two nitrogen atoms (N1-

N2). The N2-N1-Cr1 bond angle in the ground state is (118.64
0
), 

while it is (78.28
0
) in the transition state. So there is a distortion in the 

structure of the complex in the transition state in addition to Cr-N1 

bond breakage. The trans C≡O bond distance in the transition state 

becomes longer than in the ground state and trans Cr-C bond distance 

in the transition state becomes shorter than in ground state. These 

observations can suggest that the pyrazole ligand  is able to donate 

more electrons in the transition state than in the ground state, which  
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can be explained by assuming that the pyrazole ligand has back 

bonding ability with the metal complex  in the ground state structure, 

this back bonding is lost in the transition state. Moreover, the electron 

withdrawing methoxy carbonyl group stabilizes the Cr-N1 in the 

ground state by enhancing the pyrazole back bonding. In the transition 

state and the pyrozole becomes a σ-donor ligand only. In the ground 

state, both pyrazole and trans carbonyl occupy the same orbital of the 

metal that is involved in carbonyl and pyrazole back bonding (55), 

while this does not occur in the transition state. The bond angle of N2-

N1-Cr1 is changed from 118.64
0
 in the ground state to 78.28

0
 in the 

transition state, which could be the reason for the loss of back bonding 

in the transition state 

3.2.1.2) Methyl prop-2-ynoate 

The optimized structure of methylprop-2-ynoate is shown in Figure 

3.4, and selected bond distances and bond angles are listed in Table 

3.7, and Table 3.8 respectively. 

 

 

 

 

 
                       Figure 3.4: Optimized structure of methyl prop-2-ynoate. 
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 Table 3.7:  Selected bond lengths of methyl prop-2-ynoate. 

Bond Bond length (Å) 

C1-C3 triple bond 1.19821 

C2-O6 1.20407 

C2-O5 1.34083 

C2-C3 1.44695 

 
Table 3.8:  Selected bond angles of methyl prop-2-ynoate. 

Bond Bond angle (
0
) 

C1-C3-C2 177.072 

O6-C2-05 124.808 

 

It is clear that the optimized structure is in agreement with the basic 

knowledge , that the ( sp CΞC) bond length  is 1.19821Å which is 

slightly shorter than for typical alkyne (1.204 Å) (56). Since it is 

attached to the withdrawing methoxy carbonyl group which in turn 

stabilized the triple bond. Furthermore, the C2-C3 bond (1.44695 Å) 

is shortened compared to a typical single bond (1.53 Å) (56), 

indicating partially double bond, due to resonance. The C1-C3-C2 

angle is 177
0
 with small deviation from linearity, and the O6-C2-O5 

angle is (124.8
0
) indicating plane geometry accompanied with the 

C=O sp
2
 hybridization. IR stretching frequencies are listed in Table 

3.9.  

Table 3.9: Selected  IR frequencies (cm
-1

) for methylprop-2-ynoate. 

Bond calculated IR frequency 
IR frequency 

scaled (0.9646) 

O5 –C8 1016.81 980.81 

C1- C3 (triple) 2220.5 2141.90 

C2=O6 1769.97 1707.31 

C2-O5(partially double bond) 1251.62 1207.31 
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3.2.1.3) η
2
-Methyl prop-2-ynoate(pentacarbonyl)chromium 

The optimized structure of η
2
-methyl prop-2-ynoate(pentacarbonyl)-

chromium is shown in Figure 3.5. Furthermore, selected bond lengths 

and bond angles are listed in Tables 3.10, and Table 3.11. 

Figure 3.5: η
2
-Methyl prop-2-ynoate(pentacarbonyl)chromium. (Hydrogen atoms 

are omitted for simplicity). 

 

Table 3.10: Selected bond length (Å) for the ground state η
2
-methyl prop-2-

ynoate(pentacarbonyl)chromium and comparison with the transition state. 
Bonds Bond length (GS)* Bond length (TS)* 

C12-Cr (triple bond) 2.30330 2.35949 

C14-Cr(triple bond) 2.31619 2.37840 

C12-C14 triple bond 1.22773 1.22060 

C3-Cr (trans) 1.88253 1.87765 

C3-O8 (trans carbonyl) 1.14335 1.14395 

C2-Cr 1.91393 1.91836 

C2-O11 1.14126 1.14091 

C6-Cr 1.93611 1.92196 

C6-O10 1.13769 1.14031 

C4-Cr 1.93214 1.92854 

C4-O7 1.13843 1.13945 

C5-Cr 1.92330 1.93350 

C5-O9 1.13952 1.13802 

*GS: Ground state. 

*TS : Transition state. 
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Table 3.11 Selected calculated bond angles for the ground state η
2
- methyl prop-2-

ynoate(pentacarbonyl)chromium and comparison with the transition state. 
Bond BOND ANGLE (

0
) (GS) BOND ANGLE (

0
) 

(TS) 

C2 Cr C3 85.780 88.254 

C5 Cr C3 85.815 88.080 

C12 C14 C13 157.373 161.066 

O17 C13 O16 125.249 125.448 

 

The C12ΞC14 bond length is (1.2277Å) longer than the CΞC in 

methyl prop-2-ynoate (1.1982Å). C12-Cr bond length is (2.3033 Å), 

and C14-Cr bond length is (2.31619Å) which agree with experimental 

bond distance in C-Cr triple bond system (2.327Å) (6), (2.277-

2.331Å) (50). 

The trans C3-Cr bond length is (1.8825Å) compared to the average cis 

C-Cr bond length (1.9264 Å), this is accompanied by lengthening of 

the trans C3-O8 bond (1.4335 Å) compared to the average cis CΞO 

bonds (1.13922 Å). These data are also in agreement with the 

experimental data (6,50,51). These observations suggest that alkyne 

forms π-back bonding with the metal center, which decreases the 

interaction between C12-C14, accompanied by a decrease in vibration 

stretching as shown in Table 3.12 compared to the vibration stretching 

frequency C12-C14 in methyl prop-2-ynoate. 
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Table 3.12: Selected IR frequency (cm
-1

) for the ground state η
2
- methyl prop-2-

ynoate(pentacarbonyl)chromium and the transition state. 

 

The transition state differ slightly from the ground state in geometry 

as shown in Figure 3.6, and Tables above, in the transition state the 

C12ΞC14 bond length is lowered; which indicates that the bond 

become stronger than in the ground state. A distortion to the ground 

state structure took place by the change in the dihedral angle 

C12C14Cr1C2 which is equal to 0.635
o
 in the ground state to about 

45
o
 in the transitions state. This change might result in the loss of -

back bonding in the transition state which is supported by the fact that 

the trans C3-Cr  bond distance in the transition state is decreased, 

Bond 

 

IR 

frequency 

calculated 

(GS) 

IR 

frequency 

scaled 

(0.9646) 

(GS) 

IR 

frequency 

calculated 

(TS) 

IR 

frequency 

scaled 

(0.9646) (TS) 

O16- C19 1009.46 973.73 1008.58 972.88 

O16 –C13 

(partially double 

bond) 

1238.78 1194.93 1241.38 1197.44 

C13=O17 1771.64 1708.92 1771.94 1709.21 

C12-C14 

(triple bond) 
2021.35 1949.79 2042.42 1970.12 

Carbonyl 2049.68 1977.12 2052.81 1980.14 

Carbonyl 2054.56 1981.83 2055.14 1982.39 

Carbonyl 2066.23 1993.09 2066.6 1993.44 

Carbonyl 2082.03 2008.33 2080.91 2007.25 

Carbonyl 2155.55 2079.24 2153.8 2077.56 
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while the C3-O8 bond distance is increased compared to the ground 

state, which only means a loss of the alkyne -back bonding. 

Figure 3.6: Optimized structure of methyl prop-2-

ynoate(pentacarbonyl)chromium (a) ground state, (b) transition state. 

 

The CΞO stretching frequency in the cis position remains almost the 

same with slight difference, while the trans carbonyl vibration is 

decreased. 

3.2.1.4) 3-Diazopentane 

The  optimized  structure of  3-diazopentane is shown in Figure 3.7, 

followed by selected bond length in Table 3.13 , and selected bond 

angles in Table 3.14. 

 
 

 

 

 

 

 

                           Figure 3.7:  Optimized structure of  3-diazopentane 
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Table 3.13: Selected bond lengths of 3-diazopentane  

Bond Bond length  (Å) 

N1-N2 1.14327 

N2-C3 1.28625 

C3-C4 1.51013 

C3-C7 1.51013 

 

Table 3.14 Selected bond angles of 3-diazopentane 

Bond Bond angle (
0
) 

N2 C3 C7 119.872 

N2 C3 C4 119.872 

C4 C3 C7 120.256 

N1 N2 C3 180.00 

 

The 3-diazopentane optimized structure supposed to be planer 

structure  since the carbon has sp
2 

hybridization, the angles are around 

120
0
, while nitrogen  hybridization ranges between sp and sp

2
 so it 

forms linear N-N-C system. The calculated bond lengths are almost in 

agreement with experimental values. The calculated C=N bond 

distance is (1.2863Å) compared to the experimental for a typical C=N 

is (~1.279Å) (56). The calculated N=N bond distance (1.1433 Å) is 

slightly shorter than the typical experimental N=N bond distance 

(~1.19 Å), this may be due to the resonance structure of diazoalkanes 

(7), 
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 As shown in Table 3.15  the N-N stretching vibration  to be (2051.4 

cm
-1

), is in the triple bond range,  while the N-C bond is (1462.1 cm
-1

) 

in the lower limit of double bond range. 

Table 3.15: Selected IR frequencies of 3-diazopentane (cm
-1

)  

Bond IR frequency calculated 
IR frequency scaled 

(0.9646) 

N1=N2 2126.68 2051.4 

N2=C3 1515.76 1462.1 

 

3.2.1.5) 3,3-Diethyl-5-methoxycarbonyl-3H-pyrazole 

3,3-Diethyl-5-methoxycarbonyl-3H-pyrazole was optimized at its 

ground state, and its transition state, the optimized structures, and 

bond lengths, bond angles, and IR stretching frequency are listed in 

Figure 3.8, Tables 3.16, 3.17, 3.18 respectively. 

     Figure 3.8: Optimized structure of 3,3-diethyl-5-methoxycarbonyl-3H- 

     pyrazole (a) ground state (b) transition state.(Hydrogen atoms are omitted for 

     simplicity). 
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Table 3.16: Bond length of 3,3-diethyl-5-methoxycarbonyl-3H-pyrazole in ground 

state and transition state. 

Bond Bond length (Å) (GS) Bond length (Å) (TS) 

N12 –N14 1.24848 1.14060 

N14-C10 1.43954 2.57639 

C1-C10 1.33649 1.23029 

N12-C11 1.48396 1.33347 

C1-C11 1.48804 2.19081 

C2-C10 1.47971 1.42842 

C2-O5 1.20791 1.21128 

C2-O4 1.33743 1.35153 

C7-O4 1.43547 1.42942 

C11-C15 1.55254 1.51642 

C15-C24 1.52642 1.52340 

C11-C13 1.55255 1.51599 

C13-C20 1.52641 1.52336 

 

 

Table 3.17: Selected bond angles (
0
) of 3,3-diethyl-5-methoxycarbonyl-3H-

pyrazole in ground state and transition state. 

Bond Bond angle (GS) Bond angle (TS) 

O5 C2 O4 124.318 123.655 

C2 O4 C7 115.898 115.009 

O4 C2 C10 112.363 111.508 

C10 C2 O5 123.319 124.835 

C2 C10 N14 123.255 92.215 

C10 N14 N12 109.846 85.941 

N14 N12 C11 111.018 153.140 

N12 C11 C1 102.504 92.089 

C10 C1 C11 106.819 113.746 

C2 C10 C1 126.932 171.913 

 

 

Table 3.18: Selected IR frequencies of 3,3-diethyl-5-methoxycarbonyl-3H-

pyrazole in ground state and transition state (cm
-1

). 

Bond IR 

frequency 

calculated 

(GS) 

IR frequency 

scaled (0.9646) 

(GS) 

IR frequency 

calculated 

(TS) 

IR frequency 

scaled (0.9646) 

(TS) 

O4 –C2 1287.19 1241.62 1242.7 1198.71 

N12-N14 1535.94 1481.57 2138.13 2062.44 

C2=O5 1767.09 1704.54 1752.4 1690.37 

C1-C10 1656.15 1597.52 2055.64 1980.87 
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Pyrazole optimized geometry is analogous to the expected geometry 

in literature as in (17,19). The N12-N14 bond length is decreased from 

the ground state to the transition state as it may go from double bond 

to nearly triple bond. The N12-C11 bond distance is shorter in the 

transition state than the ground state which may be due to the fact that 

in the ground state it is singly bonded, while in the transition state it is 

doubly bonded. The C1-C10 bond is also decreased as it is returned 

back to triple bond in the transition state, while it is doubly bonded in 

the ground state. The transition state takes place by the breaking of the 

N14-C10, and C-C11 bonds. All of these changes are reflected in the 

calculated IR frequency. The stretching frequency of N12-N14 is 

increased from the double bond range (1481.57 cm
-1

) in the ground 

state to the triple bond range (2062.44 cm
-1

) in the transition state, the 

same thing happens for C-C10 stretching frequency, i.e. increased.  

3.2.1.6)Pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

C2)chromium(0) 

 

To analyze the structure of the pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) Figure 3.9a, it has to 

be divided into three parts according to the supposed transition state at 

which they are shown in Figure 3.9b (TS1), and Figure 3.9c (TS2). 
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Tables 3.18, 3.19, and 3.20 illustrate the differences in bond lengths, 

bond angles, and IR frequencies between the ground state and each of 

the transition states. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: The optimized structure of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0): (a) ground state, (b) first 

transition state (TS1), (c) second transition state (TS2). (Hydrogen atoms are 

omitted for simplicity). 
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Table 3.19: Selected bond lengths (Å) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) in the ground state and both 

transition states.  

Bond 
Bond length (Å) 

(GS) 

Bond length (Å)  

(TS1) 

Bond length (Å) 

(TS2) 

Cr-C21 2.41905 3.09375 2.35604 

Cr-C12 2.49382 3.13298 2.87465 

C12-C21 1.37635 1.34778 1.25342 

C21-N25 1.45812 1.44645 3.46781 

N23-N25 1.24453 1.24746 1.12407 

N23-C22 1.48213 1.47855 1.32533 

C22-C12 1.50848 1.49545 2.18737 

C13-C21 1.49001 1.48848 1.46416 

C13-O16 1.20807 1.20782 1.20692 

C13-O15 1.33424 1.33218 1.34023 

O15-C18 1.43784 1.43941 1.43845 

C22-C26 1.58239 1.57640 1.52497 

C26-C35 1.52430 1.52479 1.52534 

C22-C24 1.54748 1.54991 1.52346 

C24-C31 1.52705 1.52580 1.52562 

Cr-C3 (trans) 1.87493 1.85278 1.86254 

C3-O8 (trans) 1.14356 1.14659 1.14814 

Cr-C2 1.91302 1.91840 1.90788 

C2-O11 1.14252 1.14247 1.14653 

Cr-C4 1.93090 1.92562 1.91935 

C4-O7 1.13810 1.13972 1.14187 

Cr-C5 1.92866 1.92098 1.91969 

C5-O9 1.13874 1.14090 1.14217 

Cr-C6 1.93345 1.93082 1.92089 

C6-O10 1.13766 1.13847 1.14150 
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Table 3.20: Selected bond angles (
0
) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) in the ground state and both 

transition states.  

 
 

Table 3.21: IR frequency (cm
-1

) of pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-

3H-pyrazol-C2)chromium(0) in the ground state and both transition states.  

 

Bond 

IR 

frequency 

calculated 

(GS) 

IR 

frequency 

scaled 

(0.9646) 

(GS) 

IR 

frequency 

calculated 

(TS1) 

IR 

frequency 

scaled 

(0.9646) 

(TS1) 

IR 

frequency 

calculated 

(TS2) 

IR 

frequency 

scaled 

(0.9646) 

(TS2) 

Carbonyl 2149.91 2073.80 2151.35 2075.19 2127.76 2052.437 

Carbonyl 2082.74 2009.01 2073.07 1999.68 2056.79 1983.98 

Carbonyl 2067.43 1994.24 2056.26 1983.47 2038.79 1966.617 

Carbonyl 2049.4 1976.85 2035.48 1963.42 2019.57 1948.077 

Carbonyl 2041.87 1969.59 2025.2 1953.51 2009.98 1938.827 

C=O 1756.5 1694.32 1760.72 1698.39 1747.47 1685.61 

C=C 1501.42 1448.27 1613.66 1556.54 1872.57 1806.281 

N=N 1564.28 1508.90 1535.9 1481.53 2187.37 2109.937 

 

 B3LYP   BOND ANGLES 

Transition  state 2 Transition  state 1 Ground state ANGLE 

53.527 75.867 70.764 C21-C12-Cr 

25.328 24.991 32.493 C21-Cr-C12 

101.145 79.133 76.743 C12-C21-Cr 

78.264 109.298 108.396 C12-C21-N25 

64.138 109.869 110.313 C21-N25-N23 

171.534 111.434 111.761 N25-N23-C22 

99.668 102.495 102.475 N23-C22-C12 

123.904 106.474 105.702 C22-C12-C21 

123.560 123.164 123.532 C21-C13-O16 

86.809 87.319 84.960 C2-Cr-C3 

92.660 90.183 88.706 C6-Cr-C3 

92.604 89.779 87.976 C3-Cr-C4 

85.846 87.517 85.180 C3-Cr-C5 

90.259 88.400 87.018 C5-Cr-C4 

172.655 174.613 169.797 C5-Cr-C2 

174.735 177.916 175.368 C4-Cr-C6 

161.746 163.118 159.448 C12-Cr-C3 

172.922 171.743 168.035 C21-Cr-C3 
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a) The first transition state (TS1): This transition state occurs 

when lengthening the bond between the carbon double bond of 

the 3H-pyrazole and chromium of the chromium pentacarbonyl. 

While the distance in C12-Cr bond and C21-Cr bond become 

longer, the distance in C12=C21 bond is decreased as shown in 

Table 3.18. and the N-N bond becomes slightly longer. 

Furthermore, the trans CO bond is increased from 1.1436Å in 

the ground state to 1.1466 Å in this transition state, and trans 

Cr-C bond is decreased from 1.8749 Å in the ground state to 

 the 1.5278 Å. This can only be explained by the fact that there  

is some back-bonding between the 3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2 and the metal center in the 

ground state complex. The back-bonding is lost in the transition 

state were the ligand becomes a donor ligand only, hence 

increasing the trans CO bond distance. This explanation is 

confirmed by the IR frequency shown in Table 3.20. There are 

slight differences in the cis Cr-C and the CΞO bond distances. 

Because the transition state may be less steric than the ground 

state, as also can be seen in the bond angles shown in Table 

3.19. In this transition state, the structure of 3H-pyrazole 
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fragment is almost the same structure as the free 3H-pyrazole as 

discussed in section (5.2.1.5). 

b) The second transition state (TS2): This transition state takes 

place by the cleavage of the C21-N25 bond, and the C12-N23 

bond, and maintains the interaction between methyl-prop-2-

ynoate and pentacarbonyl, but in a different way compared to 

η
2
- Methyl prop-2-ynoate(pentacarbonyl)chromium. Since the 

C21-Cr bond become shorter than in the ground state structure, 

and the Cr-C12 bond becomes longer than in the ground state, 

the C12-C21 bond distance (1.2534 Å)  still longer than the  

free alkyne triple bond.  The trans Cr-C3 bond in the transition 

state is shorter than the ground state structure, while the CΞO 

bond is longer. The N23-N25 bond distance is decreased since 

it adopts the sp hybridization; also the N23-C22 bond becomes 

shorter since it goes from single bond in the ground state to 

partially double bond in transition state. 

c) The third transition state (TS3): This transition state should 

involve the rearrangement in the ground state structure, which 

may occurs by ring rearrangement as earlier studies proposed 

for chromium(0) complexes with ring system like 
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Tricarbonyl(cyclooctatetraene)chromuim(0),  the possible 

rearrangements for transition state are 1,2-, 1,3-, 1,4-, 1,5- ring 

shifts (57). But in this study the work on this rearrangement is 

ongoing and requires more time. 

3.2.2) Thermochemical analysis: 

The two reaction mechanisms which are shown in Figure 3.10 can be 

followed in terms of changes in enthalpy, entropy, and Gibbs free 

energy. These thermochemistry parameters are obtained from the 

thermochemical analysis which is done by the frequency calculations 

at 298.15 K and 1 atmosphere (21).  

Figure 3.10: The two proposed mechanisms of the addition reaction of  η
2
-methyl 

prop-2-ynoate(pentacarbonyl)chromium to 3-diazopentane. 
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3.2.2.1) Path (a) analysis: 

3.2.2.1.1) The addition of 3-diazopentane to η
2
-methyl prop-2-

ynoate(pentacarbonyl)chromium to form Pentacarbonyl(3,3-

diethyl-5-methoxycarbonyl-3H-pyrazol-C2)chromium(0) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Cycloaddition 3-diazopentane to η
2
-methyl prop-2-

ynoate(pentacarbonyl)chromium to form pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) 

 

 

Dissociation of pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-

pyrazol-C2)chromium(0) to η
2
-methyl prop-2-ynoate(pentacarbonyl)-

chromium(0), and 3-diazopentane has a G
#
 of activation equals to 

34.51 kcal/mol, S
#
 of activation equals 18.97 cal/mol.K, and H

#
 of 

activation equals to 40.16 kcal/mol. While the forward step which 

involves the cycloaddition of 3-diazopentane to η
2
-methyl prop-2-

ynoate(pentacarbonyl)chromium to form pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) 
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 has a G
#
 of activation equals to 24.59 kcal/mol, S

#
 of activation 

equals -45.08 cal/mol.K, and H
#
 of activation equals to 11.16 

kcal/mol. Since this is the bulkiest transition state it was verified by 

intrinsic reaction path (IRC) calculations. Energy of each optimized 

geometry for the six steps (forward and backward) in Hartree 

(1Hartree = 627.51kcal/mol) is plotted versus the IRC reaction 

coordinate as shown in Figure 3.12. The maximum is the calculated 

geometry of the transition state, which confirms that this is true 

transition state.  

 Figure 3.12: Results of IRC calculation 
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3.2.2.1.2) Rearrangement of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) to give 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

N2)chromium (0) 

Figure 3.13: Rearrangement of pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-

pyrazol-C2)chromium(0) to give pentacarbonyl(3,3-diethyl-methoxycarbonyl-3H-

pyrazol-N2)chromium (0) 

 

This step may occur either by rearrangement of ground state or by 

breakage of the (Cr- C double bond) of pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0). Rearrangement 

transition state is not clear since it could not be obtained till now. But 

analogy to the rearrangement activation energies of 

Tricarbonyl(cyclooctatetraene)chromuim(0) which has these values 

(6.3,0.6, 10.0, and 11.6 kcal/mol) for the 1,2-, 1,3-,1,4-, and 1,5- ring 

shifts  respectively (57), the preferred shift is 1,3-shift since it is the 
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lowest activation energy, which is in agreement with their experiment 

(57). 

The other possible path that could lead to the formation of 

Pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-N2) 

chromium (0) is by the dissociation of the 3H-pyrazol from the 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

C2)chromium (0) as shown in Figure 3.14, which has a small 

activation energy G
# 
= 0.32 kcal/mol, then recombination to form  

 

 

 

 

 

 

 

Figure 3.14: Dissociation of the 3H-pyrazol from pentacarbonyl(3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-C2)chromium(0) 

 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

N2)chromium(0). The transition state is not clearly identified, but the 

certain thing is that pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-

3H-pyrazol-C2)chromium(0) will go to pentacarbonyl(3,3-diethyl-5-
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methoxycarbonyl-3H-pyrazol-N2)chromium(0),  since 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

N2)chromium (0) is more stable. 

 

3.2.2.2) Path (b) analysis: 

3.2.2.2.1): The disociation of the η
2
-Methyl prop-2-

ynoate(pentacarbonyl)chromium  

 

 

 

 

 

 

Figure 3.15: The disociation of the η
2
-Methyl prop-2-

ynoate(pentacarbonyl)chromium  

 

The activation energy for the dissociation of the η2- Methyl prop-2-

ynoate(pentacarbonyl)chromium is small (2.56kcal since the 

interaction is weak as the enthalpy shows 0.9187 kcal/mol. ∆S
#
 is 

negative while it is expected to be positive, and there is no obvious 

explanation for this! 
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5.2.2.2.2)  The cycloadditon of the alkyne to the 3-diazopentane 

Figure 3.16: The cycloadditon of the alkyne to the 3-Diazopentane. 

 

The activation energy for both sides of the reaction is very high which 

means that it is very difficult to pass this energy barrier.  The bonds in 

3,3-Diethyl-5-methoxycarbonyl-3H-pyrazole are strong, it is a stable 

compound; the bond dissociation enthalpy is high (237.49 kcal/mol). 

Hence, higher energy is needed for the dissociation to occur, while the 

association reaction of methyl prop-2-ynoate and 3-diazopentane is 

also has higher activation energy but it is still lower than the 

dissociation process. Association reaction is associated with negative 

entropy of activation which is in this case is very high (∆S
#

 = -45.305 

cal/mol.k), and with H
#
 = 192.67 kcal/mol. 

 



90 

 

 

 

 

3.2.2.2.3) The Cr-N bond brakeage in pentacarbonyl (3,3-diethyl-

5-methoxycarbonyl-3H-pyrazol-N2)chromium(0). 

 

 

 

 

 

 

 

Figure 3.17: The Cr-N bond brakeage in pentacarbonyl (3,3-diethyl-5-

methoxycarbonyl-3H-pyrazol-N2)chromium(0). 

 

The bond strength between the chromium carbonyl and pyrazole (Cr-

N bond) is determined by bond dissociation enthalpy which is (14.39 

kcal/mol), breaking this bond needs energy of (12.164 kcal/mol), the 

positive ∆S
#
 confirms a dissociation process.  

According to the above information about bonds strength and 

activation energies, it can be concluded that since the energy of 

activation of the pyrazole formation step is high, one can reject path b 

compared to path a which has an overall low activation barrier 

 



91 

 

 

 

 

CHAPTER FOUR 

CONCLUSION AND RECOMENDATIONS 

 

In this study, the structural and electronic properties were 

analyzed for all the compounds that may be obtained by the two 

mechanisms proposed by Abd-Elzaher et al. of the cycloaddition 

reaction of 3-Diazopentane to η
2
-Methylprop-2-

ynoate(pentacarbonyl)chromium(0)  to form 3H-pyrazole complex. 

There is a good agreement between the experimental and the 

calculated bond length, bond angles and IR data. 

On the basis of the obtained results, it was concluded that  

preparation of  3H-pyrazol complexes  occurs via the addition of the 

diazoalkane to the coordinated alkyne followed by either ring 

rearrangement or by breaking of the Cr-C double bond, followed by 

formation of Cr-N bond in 3H-pyrazole complex, So path a is 

preferred thermodynamically. On the other hand, Path b is rejected 

since the cycloaddition step of diazoalkane to the non-coordinated 

alkyne is higher in energy than the addition of diazoalkanes to the 

coordinated-alkyne by a factor of 8. Hence, this result agrees with the 

proposed path by Abd-Elzaher et al., but disagrees with the 
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explanation. The author suggested that the displacement step of the 

coordinated alkyne by the solvent is the slower step, while it seems 

according to the obtained results that the displacement of alkyne 

requires low energy. Moreover,  the same author suggested that the 

addition step of the diazoalkane to the non-coordinated alkyne is a fast 

step, which  again disagrees with the obtained results since this step 

needs sufficient energy to proceed; G
#
 = 206.17 kcal/mol. As a 

result, the chromium carbonyl can play a catalyst role in this reaction, 

since it lowers the energy barrier by its coordination with the alkyne 

that will undergo the cycloaddition reaction. 

Through studying the two mechanisms, it was noticed that three 

types of  ligands (L) are attached to the chromium carbonyl, methyl 

prop-2-ynoate via carbon-carbon triple bond (C≡C), and 

pentacarbonyl(3,3-diethyl-5-methoxycarbonyl-3H-pyrazol-

N2)chromium(0) via nitrogen atom (N), and pentacarbonyl(3,3-

diethyl-5-methoxycarbonyl-3H-pyrazol-C2)chromium(0) via carbon-

carbon double bond (C=C). Bonding of these ligands with chromium 

are expected to consist of both ligand to metal σ-donation, and metal 

to ligand π-back donation. This conclusion is based on the results 

obtained for the bond distances of the trans C≡O bond and the trans 
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Cr-C bond. Comparison of the bond length of the trans CO and the 

trans C-Cr to the attached ligand (L) in the transition state compared 

to the ground state complexes. The CO bond is longer and the C-Cr is 

shorter in the transition state than in the ground state. This means that 

the Cr is back bonding with L in the ground state this back bonding is 

lost in the transition state and L becomes more electron donor. 

It is recommended to do further studies using different computational 

methods to compare with the method used in this study (B3LYP). 

It is also recommended to look at the bonding nature of orbitals by 

computing the natural bond orbital (NBO) and the electron density for 

each complex. And to look deeply at the rearrangement step.  
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APPENDIX 

SOFTWARE PACKAGES FOR ELECTRONIC STRUCTURE 

CALCULATIONS  

Gaussian 03w  

Gaussian software was first established by John Pople  in 1970 (1),  it 

has been continuously updated,  and has various versions labeled by 

year of release (Gaussian 70,…, Gaussian 92, Gaussian 94,  Gaussian 

98,…, Gaussian 09) (1,2,3). It includes all common ab-initio methods, 

some semiemperical methods, and molecular mechanics (2,4). 

Gaussian can optimize geometries, predict the energy, calculate 

vibrational frequencies, IR spectra, thermodynamic properties, search 

for transition states, and a wide range of molecular properties that can 

be computed (2,4,5).  

Computation can be carried out on systems in the gas phase or in 

solution, and in their ground state or in excited state (5). Each 

Gaussian job requires an input file, specifying the type of calculation, 

basis set, and molecular specification of the input data. Input files 

contain ASCII text only and are prepared using a text editor. Gaussian 

input files require a filename with a .gjf extension (5). And after 

running, it gives an output file with a filename extension .out which 

http://en.wikipedia.org/wiki/John_Pople
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contains the result of calculations (5). Gaussian can be used 

separately, or in conjunction with Gaussian View. 

 

Gaussian view 3.07 

Gaussian View is a graphic interface for use with the Gaussian 

program. It can be used to build molecules, set up the options in the 

input file, run a calculation, and display results. 

Instead of typing the coordinates, method, basis set, etc., Gaussian 

View is used by opening the program icon. Then the calculation is 

specified by pointing and clicking to build the molecule, and using 

pull-down menus to select the calculation type, level of theory and 

basis set, then Gaussian input file is generated, and can be run, after 

Gaussian finish the job, Gaussian View reads Gaussian output files 

and visualize the results (4). 

The next section will illustrate how these two programs work, and 

shows the steps for running them is the best way. 

Running Gaussian 03 and Gaussian view 

Before the facility of Gaussian view, Gaussian was used by itself. 

So we will show an example of running Gaussian with, and without 

Gaussian view.   
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1) Running Gaussian without the use of Gaussian view 

The following steps are necessary to run Gaussian in windows: 

1) The program is started by choosing its icon; the main window of 

Gaussian is opened. 

 

 

 

 

 

 

                                   Figure 1:   Main program window. 

2) To create a new input file the job entry window is opened. This 

window is divided into sections; each one holds a different part of the 

Gaussian input (5). The sections are, 

 

 

 

 

  

                                Figure 2:    Job entry window.   
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2.a) % Section:  used to specify the memory and number of processors 

used, and to locate and name scratch files. Checkpoint file is one of 

Gaussian scratch files that contains results in a machine readable file 

(5,6). The % Chk command specifies the name for the checkpoint file, 

and tells the program to save the file after the job finishes (5). Saved 

checkpoint files can be used to retrieve calculation results to use it in 

subsequent calculation, and to restart a failed job (5).  

2.b)  Route section: is used to specify the kind of job calculations, 

theoretical method, basis set, and may contain additional keywords to 

describe additional options. It is started by # sign, # alone  requests 

normal output, #T request terse output, #P requests the maximum 

details in output (5). 

2.c) Title section: is used to give a brief description of  the job. 

2.d) Charge & multiple : this section holds the charge on the 

molecule, and its spin multiplicity which is given by 2𝑆 + 1, where S 

is total spin for the molecule, paired electrons have no contribution, 

while unpaired electrons contribute. In the case of a single unpaired 

electron (±
1

2
 ) it has a spin multiplicity of 2, and so on (5). 

2.e) Molecule specification: the structure of the molecular system is 

obtained either by construction (Z- matrix or Cartesian coordinates or 
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mix of them) or by coordinates generated by or converted from a 

drawing program (such Gaussian view in the following section) (5). 

2.e.1) Cartesian coordinate input: consists of series of lines of the 

form 

Atomic-symbol     X-coordinate      Y-coordinate     Z-coordinate 

For example, water input file is given (5). 

Atomic-symbol     X-coordinate      Y-coordinate     Z-coordinate 

O        -0.464       0.177       0.0 

H        -0.464       0.137       0.0 

H        0.441       -0.143       0.0 

2.e.2) Z-matrix: specifies the location and bonds between atoms using 

bond length (in angstroms), bond angles (in degrees), and dihedral 

(torsion) angles, construction Z-matrix (7), it is in the form 

Atom 

Number  

Atom 

Name  

Atom 

Connect 

Bond  

Distance  

Angle 

Connect 

Bond  

Angle  

Dihedral 

Connect  

Dihedral 

Angle  

There are steps to Construct Z-matrix, it will be shown as example of 

Hydrogen peroxide H2O2 (5,8): 

 An atom in the molecule is chosen as starting atom, and placed 

at the origin in 3-d space. The left oxygen is assigned as O1. 

http://www.shodor.org/chemviz/zmatrices/guide.html#name
http://www.shodor.org/chemviz/zmatrices/guide.html#name
http://www.shodor.org/chemviz/zmatrices/guide.html#connect
http://www.shodor.org/chemviz/zmatrices/guide.html#connect
http://www.shodor.org/chemviz/zmatrices/guide.html#distance
http://www.shodor.org/chemviz/zmatrices/guide.html#distance
http://www.shodor.org/chemviz/zmatrices/guide.html#angconn
http://www.shodor.org/chemviz/zmatrices/guide.html#angconn
http://www.shodor.org/chemviz/zmatrices/guide.html#bondang
http://www.shodor.org/chemviz/zmatrices/guide.html#bondang
http://www.shodor.org/chemviz/zmatrices/guide.html#diconn
http://www.shodor.org/chemviz/zmatrices/guide.html#diconn
http://www.shodor.org/chemviz/zmatrices/guide.html#dihedra
http://www.shodor.org/chemviz/zmatrices/guide.html#dihedra
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Figure 3: Hydrogen peroxide structure (5). 

 

 Another atom bonded to the first is chosen and placed along z-

axis, length of the bond connecting them is specified. 

O1 

H1     O1    0.9 

 A third atom bonded to either one of the previous two atoms, 

bond angle formed by the two bonds, and bond length are 

specified 

O1 

H1     O1     0.9 

O2     O1     1.4     H1     105.0 

 A fourth atom is chosen, bond length, bond angle, and a 

dihedral angle are specified.  

 



108 

 

 

 

 

 O1 

H1     O1     0.9 

O2     O1     1.4     H1     105.0 

H2     O2     0.9     O1     105.0     H1     120 

Dihedral angle describes the angle that the fourth atom makes with 

respect to the plane formed by the other three (0-360
0
), it is visualized 

by Newman projection. 

 

 

 

 

Figure 4: Newman projection for hydrogen peroxide (5).   

3) After all required informations are filled in the job entry 

window, run bottom is pressed, and the file is saved. 

 

 

 

 

 

 

 Figure 5: Program in process. 



109 

 

 

 

 

 

4) When the job is finished, it will display an argument. The output 

file is saved as text file, and the results should be examined (5). 

2) Running Gaussian by using the Gaussian view 

In running Gaussian via Gaussian view, one mainly wroks with 

Gaussian view, which in turn will order Gaussian to do the 

calculation. The following steps are used. 

1) When Gaussian view program is opened, two windows are opened; 

one contains the toolbars and builder while the second displays the 

structure being built. 

Figure 6:    The two windows of Gaussian view 3.07. 
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2) Building Molecule 

By using the construction windows one can choose any element, any 

hybridization, any group, and build the molecule, by clicking on the 

second window (9). After the structure is built, then calculation 

options should be chosen (9). 

Figure 7: The windows that help construct molecules.  

Figure 8: A constructed structure.  
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3) Gaussian calculation setup window is now opened, it has many tabs 

corresponding to different element of the calculation, and the first is 

job type, at which the type of calculations is selected. The types of 

calculations are energy, optimization, frequency, NMR, IRC, and 

others (9). 

4) A method and the basis sets are selected from the method tab; this 

is the most important tab, since the basic options are chosen from it 

(9). 

Figure 9: Method options. 

 

5) The Title Panel holds a field used for the Gaussian title section 

designed to contain a brief description of the job. The Link 0 Panel is 

used for entering Link 0 commands for the job, this panel specifies a 
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name for the checkpoint file and also the amount of memory to use for 

this job (9). 

6)  The Guess, NBO, and Solvation are:  

* General panel allows selecting some commonly used general 

calculation options (9). 

* Guess panel contains settings related to the initial guess (9). 

* NBO panel is used to select NBO analysis at the conclusion of the 

Gaussian job (Natural Bond Orbital) (9). 

* Solvation panel allows specifying that the calculation is to be 

performed in solution rather than in the gas phase (9). 

7) Gaussian View promotes to view the output file (.out). The output 

file contain the resulst that one request the program to calculate. In 

performing optimization and frequency calculation, Gaussian will first 

optimize the structure then it will compute vibrational frequencies 

using the optimized structure (9). 

8) Results can be viewed from the result tab. Summary, vibrations, 

surfaces, charges, NMR, optimized structure, NBO, and all output file 

as text file. 
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8.a) Summary of results, show file type, calculation type, method, and 

basis set, the calculated energy, the point group,  the dipole moment, 

and the time needed to finish the job. 

 

 

 

 

 

 

 

 

                    Figure 10: Summary of calculation parameters. 

 

8.b)  Display vibrations and vibrational spectrum 

Figure 11: Vibrations and vibrational spectra. 
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8.c) View detailed output file as text file. Output files differ from each 

other according to the calculation type.  However, all types are similar 

in many parts: 

 Copyright for Gaussian 03. 

 Official citation for the Gaussian 03.  

 The version of Gaussian 03.  

 The route section, title section, and molecular specification 

from the input file. 

 CPU time and others. 

 Job types of computational calculations 

There are several job types that can be carried out in computational. 

Such as: 

a) Single point energy calculations. 

b) Geometry optimization. 

c) Frequency calculations 

d) Intrinsic Reaction Coordinate (IRC) calculations (5). 

a) Single point energy calculations 

A single point energy (SPE) calculation is a prediction of the 

wavefunction and   energy, and  related properties for a molecule of a 

particular  geometric structure (5,10). It is performed at a single and 
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fixed point. This calculation is performed for a new molecule to obtain 

basic information which could be used as starting point for an 

optimization, or for an optimized molecule to get accurate results, or if 

it is the only way to analyze a system of interest (5). Single point 

calculation can be done with any level of theory and with any level of 

basis set (5).  

b) Geometry optimization 

One  of the job types of Gaussian is geometry optimization at which 

the best geometry of the molecule with minimum energy (11). Since 

the energy variation of molecular structure is in small change, at 

which called potential energy surface (PES), then the geometry 

optimization of the structure seeks to minimize this (PES) at stationary 

point (5). PES displays the energy of a molecule as a function of its 

geometry. PES is represented as 3-D plot like in Figure12. 

 

 

 

 

 

     Figure 12:   Model of potential energy surfaces (PES) (5). 
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There are many points at which it is low energy  (local minimum), but 

there is one point at which it is the lowest energy (global minimum), 

which is assigned to has the optimized structure. If the structure to be 

optimized is a transition structure, then it would be the highest point 

on the lowest energy path (5,12). 

The general procedure for optimizing a structure of a molecule, is to 

start with guess of a structure in the input file at which it is believed to 

resemble the optimized structure, then submitting it to Gaussian 

algorithm that systematically (iteratively) changes the geometry in 

such a way that the energy decrease until minimum energy is achieved 

, and this occurs when the convergence tests are attained (5,11,12). 

The input file for optimization structure job contains the keyword 

(opt), the optimization is done by using the chosen level of theory and 

basis set (5). After the structure reaches its stationary point, the 

final optimized structure appears as in Figure 13 (5). 

 

 

 

 

            Figure 13:    Convergence test. 
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c) Frequency calculations 

Frequency calculations predict the IR spectra of molecules in their 

ground and excited states, compute force constants, and compute the 

zero-point vibration and thermal energy corrections and 

thermodynamic quantities such as enthalpy and entropy (5). 

Frequency calculations are valid only at stationary points on potential 

energy surface. Thus, it must be done just for optimized structure (5). 

So it is convenient in an output file to choose the job type (opt+ freq), 

first optimization occur then frequency calculation (5). 

Frequency calculations output include thermochemical analysis 

carried out at 298.15K and 1 atmosphere of pressure (5). 

Thermochemical analysis consists of two parts, one lists the predicted 

thermodynamic quantities including the thermal energy correction, 

heat capacity and entropy as shown in Figure 14, the second part gives 

the zero-point energy for the system (5,13). The zero-point energy is a 

correction to the electronic energy of the molecule to account for the 

effects of the molecular vibrations (5,13). Figure 15 shows the zero-

point and thermal energy-corrected properties.  
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Figure 14:   Thermodynamic quantities presented in output file   of frequency 

calculations.   

 

 

 

 

Figure 15:  Zero-point and thermal energy-corrected proporties in output file. 

 

Where,  

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑎𝑛𝑑 𝑍𝑃𝐸(𝐸0) = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟 + 𝑍𝑃𝐸                     (1) 
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𝑆𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑠 𝐸 = 𝐸0+𝐸𝑣𝑖𝑏 +

𝐸𝑟𝑜𝑡 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑙                                                                                 (2) 

  

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠 𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑡𝑕𝑎𝑙𝑝𝑖𝑒𝑠 𝐻 = 𝐸 + 𝑅𝑇 

                                                                                                      (3) 

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑓𝑟𝑒𝑒 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑠 𝐺 = 𝐻 − 𝑇𝑆 

                                                                                                      (4) 

(5,13). 

Computed raw frequency values contain systematic errors resulting in 

data overestimate. Therefore, an empirical factor is used to scale 

frequencies predicted by computational methods (5). This factor 

depends on the method and size of basis sets used in calculations, it is 

about 0.8929 for HF method and it ranges between 0.9613 for 

B3LYP/6-31G(d) and 0.9679 for B3LYP/6-311++G(3df,3pd) (5,14), 

assuming that B3LYP/6-311++G(3df,pd) lies in this range, then the 

factor can be taken at 0.9646. 

 

d) Intrinsic Reaction Coordinate (IRC) calculations 

Completing a transition structure optimization does not mean that a 

right transition structure is obtained (5). The way to determine it is 
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using Intrinsic Reaction Coordinate (IRC) procedure, at which the 

calculation starts from the saddle point and follows the path in both 

directions from the transition state, optimizing the geometry of the 

molecular system at each point along the path, so the two minima on 

potential energy surface are connected by a path that passes the 

transition state (5). IRC calculations require both an optimized 

transition structure and the corresponding force constants (5). The 

used keyword which is written in route section to request the reaction 

path is IRC (5).  
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