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 الاُذاء

عظنأجل ّإلٔ ربٖ ُّْ أ  

.سلام العظ٘نلٔ الإإ  

.لٔ قذّتٌا رسْل الله هحوذ صلٔ الله علَ٘ ّسلنإ  

.لٔ كل الشِذاءإ.... حْا بأرّاحِن لتسعذ أرّاحٌالٔ الذٗي ضإ  

.سزٓإلٔ الأ.... لصاهذٗي ّراء قضباى الحذٗذ لٔ كل اإ  

.بٖ ّكل عائلتٖإلٔ أهٖ ّأ.... دائوالٔ العْ٘ى التٖ تزافقٌٖ إ  

.لٔ عوزإ.... خزإلٔ ًصفٖ اٙ. ٗاٍ اللهإلٔ الٌْر الذٕ أُذاًٖ إ  

.لٔ كل هي علوٌٖ حزفاإ  
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ABSTRACT 
 

Nuclear matter at low density and finite temperatures consists not only of nucleons but 

also of clusters of nucleons. In this work we study the problem of hot charged nuclei 

immersed in a clustered vapor. These nuclei are treated as hot liquid drops that exist in 

mechanical, thermal, and chemical equilibrium with the surrounding vapor. The effect of 

inclusion of clusters in the vapor on the limiting temperature and on the instability of hot 

nuclei is investigated. It was found that the existence of clusters in the vapor lowers the 

limiting temperature by several MeVs. 
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 هلخص

مه الىُىكلُىواث فقط ولكه  والمىجىدة فٍ دسجاث حشاسة مىخفضت لا تتكىن قلُلت الكثافتان المادة الىىوَت        

وقذم فٍ هزا البحث دساست جذَذة وقىم فُها بالتحقق مه مذي تأثُش هزي الأوىَت . وىَت الخفُفتتحتىٌ اَضا علً الأ

حالت اتضان حشاسٌ  وها مىجىدة فٍالساخىت والمشحىوت ارا افتشضىا أ الخفُفت علً استقشاس بعض الأوىَت الثقُلت

ن وجىد تىصلىا فٍ هزي الذساست الً أ. ُفتوكُمُائٍ ومُكاوُكٍ مع البخاس المحُط المحتىٌ علً هزي الأوىَت الخف

فتتفكك وتتلاشً علً  المشحىوت الأوىَت الخفُفت فٍ البخاس المحُط َعمل علً صَادة عذم استقشاس الأوىَت الثقُلت

 .جضءا مه الىسط المحُطدسجاث حشاسة أكثش اوخفاضا لتصبح 
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CHAPTER1. INTRODUCTION 
 

Occurrence of the liquid gas phase transition in hot nuclear matter produced in 

intermediate heavy ion collisions is still the subject of many investigations [1, 2]. A 

related concept to the liquid gas phase transition is the critical temperature above which 

only the vapor phase can exist. Below this temperature, the nuclear matter exists in two 

distinct phases; one is the liquid dense phase that exists inside the nuclei, and the other is 

the outside vapor dilute gaseous phase in which the nuclei are embedded [1]. 

  Above the critical temperature no liquid state can exist. A theoretical evidence of 

such possible liquid gas coexistence appears in the behavior of the pressure-density 

isotherms which are similar to those of the Van der Waals equation of state.        

Here we are investigating the thermodynamic stability of hot nuclei embedded in 

nuclear vapor undergoing a liquid gas phase transition. The finite size of the nuclei 

reduces their critical temperature when compared with that of infinite nuclear matter [1, 

2]. 

Levit and Bonche [3] demonstrated that uncharged nuclei decay by evaporation of 

particles while they are heated up to the critical temperature. In contrast, they also 

showed that charged nuclei are not stable and fragment into parts at a temperature much 

lower than the critical temperature. This motivated them to introduce the concept of the 

limiting temperature above which a hot nucleus will fragment into parts and cannot exist 

in equilibrium with the surrounding vapor. This phenomenon is referred to as the 

Coulomb instability of hot nuclei. These findings suggest that there is a strong 

relationship between the Coulomb instability of hot nuclei and the limiting temperature 
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on the one hand, and the liquid gas phase transition and the critical temperature on the 

other hand 

Studies on the Coulomb instability of hot nucleus [3-8] emphasized that the 

limiting temperature depends on its surface tension and on the properties of the nuclear 

matter surrounding it.  

Levit and Bonche [3] studied the Coulomb instability of hot nuclei approaching 

liquid gas phase transition using an equation of state of nuclear matter derived on the 

basis of the Hartree-Fock approximation with an effective nucleon-nucleon interaction of 

the Skyrme type. This equation of state included only the first order degeneracy 

correction. They calculated the limiting temperature and demonstrated that this 

temperature depends strongly on the properties of the nuclear matter contained in its 

equation of state, and also on the surface tension of the nuclei. 

The work of  Levit and Bonche is then extended by Jaqaman [5] who calculated 

the limiting temperature and showed that in order to have a better estimate of the limiting 

temperature the asymmetry of the nuclear matter must be taken into account. In another 

study [7], Jaqaman modified his previous model [5], by introducing a density dependent 

effective mass and including the effects of the electric charge of the vapor assuming that 

both the vapor and the drop have uniform charge density. He concluded that including 

such effects changes the limiting temperature to a value higher than the value obtained by 

assuming the vapor to be uncharged. 

Song and Su [4] studied the Coulomb instability of hot nuclei with the Skyrme 

interaction. They used the nuclear matter equation of state derived using the finite 
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temperature real time Green’s function method with the mean field approach and nucleon 

- nucleon interactions of the Skyrme type. They showed that the limiting temperature 

decreases as the mass number of the nucleus increases. This result was obtained 

previously by Jaqaman in [5] and later in [8] where the Coulomb instability was studied 

based on the relativistic mean field approach with derivative scalar coupling. 

Coulomb instability [6] was also studied using the mean field theory of Quantum 

Hadrodynamics (QHD) [6] which describes the nuclear many body problem as a 

relativistic system of baryons and mesons based on a local Lorentz – invariant 

Lagrangian density. It was shown that the nuclei described by the QHD model are more 

stable than that described by the non-relativistic theories where the limiting temperature 

calculated in the QHD study was larger. 

Several studies [9-13] showed that nuclear matter at densities much less than the 

saturation density tends to form clusters to minimize its energy and entropy. Studies [10, 

13] showed that light clusters with mass numbers A= 2, 3 and 4 are dominant at low 

density nuclear matter and so they must be included in any equation of state that 

describes the nuclear matter at this limit. 

In this study we are extending the approach of [5] to the study of Coulomb 

instability of hot nuclei by including light clusters in the vapor phase and calculating the 

limiting temperature. Including clusters in the vapor is the main difference between this 

study and all other studies that investigated the problem of instability of hot nuclei.  

  This thesis is organized as follows: in chapter (2) the equation of state of ideal 

quantum gases is discussed, in chapter (3) the Skyrme interaction which is the type of 
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interaction we assume between nucleons is discussed and the nuclear equation of state is 

derived. The Nuclear Statistical equilibrium (NSE) model which will be used to derive 

the equation of state of clustered nuclear matter at low density is the subject of chapter 

(4), while the hot liquid drop model which is adopted here to describe the hot nucleus is 

described in chapter (5). In chapter (6) the new results of our study involving the 

clustered vapor are discussed and our conclusions are presented. 
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CHAPTER2. EQUATION OF STATE OF IDEAL QUANTUM GASES 
 

The ideal quantum gas can be defined as a system of non-interacting indistinguishable 

particles which obey Fermi-Dirac or Bose-Einstein statistics. The equation of state of a 

system is a mathematical relation in which all the thermodynamic information about the 

system is encoded. The equation of state connects the main variables of the system 

(pressure, volume, and temperature) and can be written as: 

           

       In this chapter we will derive two equations of state: one describes the ideal Fermi 

gas, and the other describes the ideal Bose gas. 

2.1. IDEAL FERMI GAS EQUATION OF STATE 

The ideal Fermi gas is a quantum mechanical physical system that consists of a large 

number of non-interacting identical fermions. Fermions are particles that have half 

integer spin and obey Fermi-Dirac statistics. They are subjected to the Pauli Exclusion 

Principle which prevents two fermions with the same quantum numbers from existing at 

the same quantum state. 

Protons and neutrons both have a spin of ½ , they are fermions , their masses  940 

MeV    (          kg). The main difference between the two particles is the 

electromagnetic properties of the protons which arise from the positive charge they carry. 

So, neglecting the electromagnetic properties of protons by switching off the Coulomb 

interaction between protons enables us to treat protons and neutrons in the same way. 
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Then we say protons and neutrons are two degenerate states of the same particle called 

the nucleon. A system of nucleons at low densities can be treated as an ideal Fermi gas.  

Other fermions that we will encounter in this thesis are helions and tritons, both are 

clusters of nucleons, helion clusters are the nuclei of     and consist of 2 protons and 1 

neutron while the triton clusters are the nuclei of    and consist of 2 neutrons and 1 

proton. 

To derive the equation of state for Fermi systems we will use the Fermi-Dirac 

Statistics. Consider a system consists of A fermions with single particle energies labeled 

as:          . Begin with the Fermi-Dirac distribution function    which gives the 

probability that a certain energy level is occupied at temperature T: 

 

 
       

 

              
                                          (2.1)                                               

where: µ is the chemical potential which varies with temperature T and density   as we 

will show later in this chapter,        is a positive quantity,  β=1/  T , T is the 

temperature, and    is Boltzmann constant. The quantities   T and µ are in energy units. 

                       

We can express the temperature   T=1MeV in energy units as T= (         ) in SI 

units. 

The weight factor   arises from the internal structure of the particles such as spin.  

For nucleons,     is called the spin-isospin degeneracy factor.  
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       At high temperatures the Fermi system is said to be partially degenerate         

     and hence the occupation probability    is much smaller than unity. 

Recalling that 

 

   
         

 

   

 
where      , (2.2) 

we can write 

 

               
                       

                         (2.3)                                                                                            

Now we rewrite Eq. (2.1) as: 

 
 

              
                          

             (2.4)                 

For simplification we use: 

                                                                     (2.5)                                              

where      is a dimensionless quantity and it is called the classical canonical partition 

function. 

We use        , where z is the fugacity of the system. Fugacity is a dimensionless 

quantity that is related to the thermodynamical activity of the system which measures the 

effective concentration of a species in a mixture, the fugacity we deal with in this study 

represents the absolute activity. Using these abbreviations we rewrite Eq. (2.4) as: 

 

 
                                                           (2.6)                        
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Dividing Eq. (2.6) by      and using the abbreviation  
     

    
       

we get 

  
 

     
         

        
                                  (2.7)                           

where   is a measure of the degeneracy of the gas. 

We see in Eq. (2.7) that   is a power series in z and can be written as:     

      
 

                                                           (2.8)                                               

The series in Eq. (2.8) can be inverted to get   as a power series in   that is to write z in 

the form: 

      
 

 .                                                       (2.9)                                         

This can be done using series reversion as explained in Appendix A. 

Using this method of series reversion the coefficients of the series in Eq. (2.9) were 

calculated as follows: 

          

          

      
              

                         
                                                                  (2.10) 
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Recalling that       we get, 

                     
  

                                       (2.11)                           

                      
    

                                  (2.12)                    

Consider the second term in Eq. (2.12): 

            
    

                                          (2.13)                

where 

      
    

                                                    (2.14)                                            

We use the expansion: 

          
  

 
 

  

 
 

  

 
 

  

 
 

  

 
                           (2.15) 

We use the definition of    as defined in Eq. (2.14), and rewrite the second term of Eq. 

(2.12) as: 
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(2.16) 

We can rewrite Eq. (2.12) as: 

                  
  

                                             (2.17)                                      

The b coefficients are given in terms of the a coefficients as follows: 

       

      
  
 

 
  

      
  
 

 
       

      
  
 

 
        

    
  
 

 
                                                                         (2.18) 
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So, we finished deriving the equation of state for the ideal Fermi gas which is now given 

by Eq. (2.17). with the b coefficients given in Eqs. (2.18).  

2.2. INFINITE SYSTEM OF NON-INTERACTING FERMIONS 

The procedure above is the general case; let us now apply this procedure on an infinite 

ideal Fermi gas such as the infinite system of non-interacting nucleons which we 

mentioned previously as an example of fermions, we will consider this system later in 

this thesis. For such a system the single particle energies are specified and have the 

values: 

   
    

  
                                                           (2.19) 

where m is the mass of the particle, and   is the wave number of the particle. It is related 

to the wavelength λ through the relation    
  

 
 . 

The partition function of an ideal gas of volume V is: 

     
 

  
                                                        (2.20)                                                 

where   
   

    

    
 

 

 
 Is the thermal wavelength of the gas particle which is the mean De 

Broglie wavelength of the gas particles in an ideal gas evaluated at temperature T. 

Now we have: 

  
 

     
 

  
   

  
 

 

 
  
                                            (2.21) 

where ρ is the particle number density. Also for an ideal gas: 
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                                             (2.22)                                         

Using Eqs. (2.21) and (2.22), we rewrite the equation of state in the following form: 

              
  
  

 
     

 
    

  
  

 
 
 

                                    (2.23) 

We use MATLAB to evaluate the b coefficients and our results are listed in Table 1. 

     
 

   
    

n=1                                   

n=2                                     

n=3                                     

n=4                                   

n=5                              

n=6                             

Table 1 Numerical values of the b coefficients calculated for the ideal Fermi gas 

The second column is added to simplify the comparison with the results of [5]. In this 

reference the b coefficients are defined to be the coefficients of the pressure series as will 

be shown next in Eq. (2.26). 

In Figure 2.1 the chemical potential given by Eq. (2.23) is plotted for an infinite 

system of non-interacting nucleons at three different temperatures. In this case g=4 the 

spin-isospin degeneracy of the nucleon. 
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The pressure        is related to the chemical potential        by: 

                                                (2.24)                                      

and  

    
  

  
 
 
                                          (2.25) 

where 

  
 

 
  is the Helmholtz free energy density of the system. 

Using Eqs. (2.24) and (2.25) we rewrite the pressure of the infinite system of non-

interacting nucleons in the form: 

           
 

   
    

  
  

 
 
 

  
                                 (2.26)                                         

Figure 2.1: Shows the chemical potential of an infinite system of non-interacting nucleons as a 

function of density at three different temperatures. 
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where:  
 

   
    are the coefficients of the pressure given in the last column of Table 1. 

The pressure given by Eq. (2.26) can also be used to calculate the pressure of 

infinite system of non-interacting tritons, and infinite system of non-interacting helions 

by using g=2 instead of using g=4 for nucleons.  

Figure 2.2 shows the pressure for an infinite system of non-interacting nucleons at three 

different temperatures. 

 

       

        

In order to investigate the convergence of the series in Eq. (2.26), the pressure of an 

infinite system of non-interacting nucleons is plotted in Figure 2.3 below for different 

orders of degeneracy n. 

Figure 2.2: Shows pressure versus density of an infinite system of non-interacting nucleons, 

at three different temperatures  
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Figure 2.3 shows that the pressure series is convergent at low densities up to about 0.12 

           for T=3MeV. 

To investigate the convergence at higher temperatures the pressure of an infinite 

system of non-interacting nucleons is plotted in Figure 2.4 below for T=6MeV. In Figure 

2.4 we note that the pressure series is convergent at densities up to 0.2 nucleon/   . 

Figure 2.3: Shows pressure versus density of an infinite system of non-interacting nucleons 

at different n at T=3MeV. 



16 
 

 

 

Before we leave the ideal Fermi gas, I will comment on the parameter   that was defined 

in Eq. (2.7).We mentioned that this parameter is a measure of the degeneracy of the gas. 

For the ideal Fermi gas the degeneracy represents the number of fermions that have 

energies less than the Fermi energy (defined as the chemical potential calculated at 

T=0K) at any temperature T. So, the higher value that the parameter   has at a certain 

temperature the higher is the degeneracy of the system at that temperature. For an infinite 

system of non-interacting nucleons we have: 

  
 

     
 
  
   

 
 
 

 
  
  

This degeneracy parameter is plotted in Figure 2.5 at three different temperatures. 

Figure 2.4: Shows the pressure of an infinite system of non-interacting nucleons at T=6MeV 
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Figure 2.5 shows that the degeneracy increases with lowering the temperature, at 

T=3MeV the system is highly degenerate except at low density.  

2.3. IDEAL BOSE GAS EQUATION OF STATE 

The Ideal Bose gas is a quantum mechanical physical system that consists of a large 

number of bosons. Bosons are particles that have an integer spin and obey Bose Einstein 

Statistics. Examples of bosons are alpha particles which consist of 2 protons and 2 

neutrons and have spin=0 as well as deuterons which consist of 1 proton and 1 neutron 

and have spin=1. 

In the ideal Bose gas and at low enough temperature all bosons are pushed down 

to the ground state, this is attributed to the infinite occupancy of the ground state. This 

phenomenon is called the Bose- Einstein condensation a phenomenon that does not occur 

in the Fermi systems because of the Pauli Exclusion Principle. 

 

Figure 2.5: Shows how to measure the degeneracy parameter   of an infinite system of non-

interacting nucleons at three different temperatures. 3, 6, and 10 MeV 



18 
 

The same procedure used in deriving the equation of state of the ideal Fermi gas above is 

repeated here to get the equation of state of the ideal Bose gas, starting from the Bose-

Einstein distribution function   : 

 

 
       

 

              

 
                                           (2.27) 

Following the same lines of the procedure done for the ideal Fermi gas we get for the 

ideal Bose gas in comparison with Eq. (2.6): 

 

 
                                                  (2.28) 

then  

  
 

     
         

        
                             (2.29)                 

In analogy with the Eq. (2.9) for the ideal Fermi gas we now get: 

      
 

                                                          (2.30)                                            

The r coefficients are calculated following the same way done before for the ideal Fermi 

gas. We found that these coefficients are related to the a coefficients through the relation: 

                                                               (2.31)                                 

Also in comparison with Eq. (2.17) derived for the ideal Fermi gas, we have for the ideal 

Bose gas 

                  
  

                                        (2.32)                                                  
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where the    coefficients are related to the    coefficients of the ideal Fermi gas through 

the relation: 

                                                                   (2.33)                                         

Now we obtain the equation of state of the ideal Bose gas which is given by Eq. (2.32). 

The d coefficients are given in Eq. (2.33).  

2.4. INFINITE SYSTEM OF NON-INTERACTING BOSONS 

In analogy with the equation of state derived earlier in section 2.2 for an infinite system 

of non-interacting fermions we derive in this section the equation of state for an infinite 

system of non-interacting bosons. The single particle energies for such a system are 

specified, they are given by: 

   
    

  
 

Following the same lines done in deriving Eq. (2.23) for the infinite system of non-

interacting nucleons we obtain for an infinite system of non-interacting bosons: 

                     
  
  

 
     

 
    

  
  

 
 
 

                         (2.34) 

Using Eqs. (2.24) and (2.25) we write the pressure of an infinite ideal system of non-

interacting bosons as: 

           
 

   
    

  
  

 
 
 

  
                           (2.35) 

We mentioned previously that alpha particles are bosons with zero spin. To show the 

behavior of bosons Eq. (2.35) is plotted in Figure 2.6 for an infinite system of non-
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interacting alpha particles at three different temperatures. The fact that the pressure is 

negative for almost all densities at the lower temperature reflects the approach to Bose-

Einstein condensation. 

 

 

The value of the factor   in Eq. (2.35) differs for different bosons, for alpha particles 

    and for deuterons    . We will use Eq. (2.26) and Eq. (2.35) later in chapter (4) 

when discussing the NSE model to calculate the partial pressures of clusters in clustered 

nuclear matter. 

 

 

 

 

 

Figure 2.6: shows the pressure of an infinite system of non-interacting alpha particles at three 

different temperatures 3, 6 and 10MeV. 
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CHAPTER3. THE SKYRME INTERACTION AND THE NUCLEAR 

EQUATION OF STATE 

To describe the interactions between nucleons in nuclear matter many forces were 

suggested and investigated; one of these forces is the Skyrme interaction which is a zero 

range interaction whose use simplifies calculations. This interaction is used in [5] and is 

the type of interaction that we will use in this thesis when we investigate the instability of 

hot nuclei embedded in a vapor of clustered nuclear matter. 

3.1.THE SKYRME INTERACTION 

The Skyrme interaction is just an approximation that is used to represent the effective 

nucleon force and it is only valid at low relative momenta .The original form of this 

interaction can be written as: 

                                                           (3.1)                            

where: 

    represents the two body interaction and, 

     represents the three body interaction. 

Derivations of some nuclear properties using the Skyrme interaction are contained 

in [14]. In this reference two and three body interactions are included, where it was 

shown that three body interactions are equivalent to a two body density dependent 

interaction. This is useful in describing the way in which the interaction between 

nucleons in nuclear matter is influenced by the presence of other nucleons. The Skyrme 
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interaction was proposed by Skyrme [15] and used by Vautherin and Brink [14] to 

reproduce the properties of infinite nuclear matter as well as finite nuclei.  

A general form of the Skyrme interaction that was used in [7] is: 

                          
 

 
     

                           
  

     
                 

 

 
           

  
       
 

             

(3.2) 

where    and     are the position vectors of the two nucleons relative to a reference point. 

   is the spin exchange operator. 

    
           

  
                and            

           

  
         are the relative momenta and  

                      are the Skyrme interaction parameters. These parameters can be 

determined phenomenologically by fitting the ground state properties of nuclear matter 

such as the binding energy and the saturation density. The    and    parameters are the 

finite range terms which reflect the fact that the inter-nucleon force has a finite range and 

not a zero range as assumed in the simplest Skyrme model. These parameters are velocity 

dependent, and they lead to an effective mass      given by the equation [14]: 

  

   
 
 

  

   
 
 

 
         

 

 
          

where:   is the nuclear matter total density, q=p for protons and n for neutrons. 

It is seen that if        , then      .  
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The parameter σ is used to control the incompressibility of nuclear matter without 

changing its binding energy. The incompressibility is a measure of the relative volume 

change of a fluid or solid when pressure is changed. A general definition of the 

incompressibility is given by: 

   
 

 

  

  
 

where V is the volume and P is the pressure of the nuclear matter. The minus sign 

indicates that the incompressibility is always a positive quantity. 

For finite nuclear matter another relation for the incompressibility is derived and 

it is given by:   

     
   

   
 
  

    
 
   

   
 

where          is the nuclear ground state radius. 

  In order not to complicate the calculations and since the relative momenta are 

small we will neglect the momentum dependent terms in Eq. (3.2) that contain the finite 

range parameters (  and   ). We now get the zero range Skyrme type force: 

                          
 

 
           

  
       

 
                            (3.3) 

This is the form of the Skyrme interaction we are assuming in this thesis. For  symmetric 

nuclear matter in which protons and neutrons are treated in the same manner and no 

Coulomb force acts between protons, the interaction does not depend on    and    and is 

given by: 
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                                         (3.4)          

The Skyrme parameters we used are summarized in Table 2. The parameter      is usually 

given the value of 1. 

        (MeV)     
   (MeV) Critical 

temperature  

Incompressibility 

(MeV) 

         0.75 136 96 17.3 MeV 222 

     0.47 64 24 22.9 MeV 384 

Table 2: parameters of the Skyrme force [5]. 

The relations that connect the parameters are as follows: 

   
 

 
                                                     (3.5)                                           

   
 

  
                                                  (3.6)                                             

  
          

         
                                              (3.7)                                       

                  
 

 
                                                   (3.8) 

    
                                                (3.9)                                

   : is the nuclear matter binding energy per particle. 

   : is the nuclear matter kinetic energy per particle. 

K is the nuclear incompressibility. The incompressibility of a nucleus can be calculated 

from the energy required to excite a nucleus without changing its shape. 

   is the saturation density or the density of nuclear matter that is distributed uniformly in 

the interior of a heavy nucleus of large radius. The value of    is inferred from the 

maximum density of finite nuclei, the commonly used value is [1, 3, 5, 7]: 
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This value differs from the value of the average density of finite nuclei which is 

approximated as   
 

    
            for           .The difference between these 

two values is attributed to the absence of the surface region in nuclear matter.  

  The binding energy per particle of  infinite nuclear matter (what is simply called  

nuclear matter) is derived from the Weizsaecker mass formula for the binding energy of a 

nucleus containing N neutrons and  Z=A-N protons: 

              
      

      

    
   

      

 
                    (3.10) 

 The parameters   ,   ,   ,    and   are determined by fitting the binding energy of 

some nuclei, and so, their values depend somewhat on which nuclei are used for the fit. 

The commonly used values are [16]: 

        .            the volume energy parameter. 

                     the surface energy parameter. 

                     the Coulomb energy parameter. 

                     the symmetry energy parameter. 

   Is the pairing energy parameter and it is given by: 

   

                         
                              
                            

          Where     
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  For infinite nuclear matter the number of nucleons (A) is infinite and the only 

force that acts between nucleons is the nuclear strong force as the Coulomb force is 

assumed to be switched off for this hypothetical system. Dividing Eq. (3.10) by A we get: 

      

 
    

  

    
   

      

    
   

      

  
 

 

 
                             (3.11) 

Eq. (3.11) gives the binding energy per particle. Note that the surface energy is 

proportional to      and since the number A is infinite for infinite nuclear matter the 

surface term tends to vanish. 

  For a hypothetical ideal system such as infinite nuclear matter all contributions 

from the electromagnetic effects such as Coulomb repulsion between protons are 

assumed to be turned off so that the Coulomb term can be put to zero.  Also we assume 

that N=Z since now the protons and neutrons have the same interaction   and so the 

symmetry energy term can be put to zero. The Pairing effect can be ignored. Now Eq. 

(3.11) becomes: 

       

 
                                                     (3.12)                                        

Using the value of          , we find that the binding energy per particle of infinite 

nuclear matter is 16MeV. 

  For  finite nuclei, we use the Weizsaecker mass formula in Eq. (3.11) to show that 

the binding  energy per particle in finite nuclei is about 8MeV for most heavy nuclei 

A>20. This is shown in Figure 3.1. 
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  In plotting Figure 3.1, we derived Eq. (3.10) with respect to Z and at constant A, 

the value of Z that maximizes the binding energy is found as a function of A, it is given 

by the relation: 

  
    

      

              
                                                          (3.13)                                       

By substituting this value of Z again in Eq. (3.10) and dividing by A then this equation 

becomes a function of A only and it is plotted in Figure 3.1. It is seen in the figure that a 

sharp peak is obtained at A=4. 

 

        

 Figure 3.2 next is plotted following the same procedure done in plotting Figure 3.1 but 

now with the pairing energy is neglected. We see also in this Figure that the binding 

energy per particle is about 8MeV. 

Figure 3.1: shows the binding energy per nucleon for finite nuclei, it is seen that for nuclei with mass number 

(A) >20MeV the binding energy per nucleon is about 8MeV. 



28 
 

 

 

The experimental results of the binding energy per particle for finite nuclei are shown in 

Figure 3.3 [16].  

 

        

Figure 3.2: shows the binding energy per particle for finite nuclei when the pairing energy in equation 

(3.10) is neglected. 

Figure 3.3: Experimental results of the binding energy per particle of finite nuclei. 
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The kinetic energy per particle can also be calculated. The Fermi gas model can 

be used to get the value of the kinetic energy per particle in infinite nuclear matter. In this 

model the nucleons are treated as non-interacting fermions, with the ground state formed 

by filling up all the available low-lying single-particle states, so that a degenerate Fermi 

gas is formed, and the degenerate Fermi gas model is used to describe such a system. 

Consider the problem of a free particle in a cubical box of length L the wavefunction is of 

the form 

      
 

    
         

which is a plane wave; the     is the wave vector of the particle and    is the position 

vector. The wave vector components can be written as: 

   
  

 
                    

  

 
                        

  

 
   

where:             are 0,     … .If the particles are nucleons, the number of allowed 

plane wave states in a volume element     is: 

     
 

  
 
 

         where the number 4 represents the spin-isospin degeneracy factor. 

Since we are assuming degenerate Fermi gas, the total number of nucleons A are located 

below the Fermi level, this can be written as:      
  
 

    
 

  
 
 

   
  
 

 

  
 

  
 
   

 
  
  

In this relation we are assuming the ground state to form a sphere of radius    in 

momentum space where     represents the Fermi momentum; all nucleon momenta are 
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located inside this sphere. Infinite nuclear matter density represents the total number of 

nucleons in the volume of the cubical box: 

   
 

  
 

 

   
  
  

From which we get: 

    
   

 
   

   

 

By substituting             , we find the Fermi momentum             . Now the 

average kinetic energy of the nucleons can be found using the fact that the energy for a 

nucleon is   
     

  
, m is the mass of the nucleon         so that: 

   
 

 
 
     

  
  

 

  
 
 

   

  

 

 
 

 

     
 

  
 
 

 
   

Using this relation the kinetic energy per particle of a nucleon is calculated to be 24 

MeV. For comparison, the kinetic energy per particle for finite nuclei is 20MeV [2]. 

3.2. EQUATION OF STATE OF A SYSTEM IN THE NUCLEONIC MODEL 

In chapter (2) we have derived the equation of state of an ideal Fermi gas. This equation 

can be applied to a system of non-interacting nucleons at low density. It can be extended 

to a system in the nucleonic model in which the nucleons interact only via the Skyrme 

force. The only change that occurs is in the single particle energy. 
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The single particle energy we are using in this thesis is investigated in [14] and 

used in [1, 5]. It has the general form: 

   
    

   
       

  
 
       

 

 
    

 
 

 
    

           
                         

(3.14) 

 For symmetric nuclear matter the densities of protons and neutron are equal    

   
 

 
 , and the Coulomb term is zero. Then for symmetric nuclear matter in which 

protons and neutrons are treated in the same manner and called nucleons Eq. (3.14) is 

reduced to: 

  
    

  
 

 

 
    

  

 
   

 

 
      

    

  
                                (3.15)                              

where 

    
 

 
    

  
 
   

 

 
      

The chemical potential for symmetric nuclear matter with the Skyrme interaction 

is obtained by replacing equation (2.19) with (3.15) and repeating the same steps we 

followed in chapter (2). In this case we have: 

     
 

  
  

     

and  
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Substituting these relations in the equation of state given by Eq. (2.17), the chemical 

potential becomes: 

           
  
  

 
     

 
    

  
  

 
 
 

                                       (3.16) 

       Using Eqs. (2.24) and (2.25) the pressure is found from the chemical potential; then 

the equation of state for symmetric nuclear matter in the nucleonic model can be 

rewritten as: 

            
                      

 

   
   

  
  

 
 

  

   

  

 

(3.17) 

                                 
  
  

 
      

  
  

 
 

  

   

  

 

(3.18) 

where g=4 is the spin- isospin degeneracy factor.  

Eq. (3.17) is plotted in Figure 3.4 at four different temperatures using the force with 

σ=0.25. 
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The isotherms first rise to a maximum then drop to a minimum then rise again. 

The shape they form is similar to the shape of the isotherms obtained from the van der 

Waals equation of state. The region where the pressure has a negative slope is unphysical 

as the system is mechanically unstable. Each isotherm consists of three parts 

corresponding to the low-density vapor region, the unstable unphysical region and the 

high-density liquid region of the equation of state. At a certain temperature (the critical 

temperature) the maximum and minimum will merge and we have the critical point above 

which there is one fluid phase and no liquid-gas phase transition. In particular the shape 

of the T=20 MeV isotherm indicates that it is above the critical temperature. 

Eq. (3.18) is plotted in Figure 3.5 for σ=0.25. 

Figure 3.4: The isotherms of a system of nucleons in the nucleonic model at four different 

temperatures 
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The chemical potential isotherms come from minus infinity rising to a maximum 

then they drop to a minimum, after that they rise again. At the critical temperature the 

maximum and minimum will merge. Above the critical temperature the chemical 

potential is always increasing with density.  

  The critical point is defined by three values (critical temperature, critical pressure, 

and critical density) and can be obtained from the isotherms. The critical point is the 

point at which the isotherm has an inflection point, and at this point we have: 

  

  
 

   

   
       if we obtained it from a plot of pressure isotherms 

or  

  

  
 

   

   
      if we obtained it from a plot of chemical potential isotherms. 

Figure 3.5: The chemical potential isotherms in the nucleonic model at four different temperatures 
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In the following two Figures we show how to get the critical values for the σ=0.25 force 

from the pressure and chemical potential isotherms: 

 

 

Figure 3.6 shows that the inflection point occurs at temperature T=17.3 MeV. In Figure 

3.7 we are trying to find the critical temperature from the pressure isotherms. 

 

Figure 3.6: shows how to find the critical point for σ = 0.25 using a plot of chemical potential 

isotherms. 

Figure 3.7: shows how to get the critical point from the pressure isotherms for σ=0.25 
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Figure 3.7 also shows that the critical temperature for the σ=0.25 force is 17.3 

MeV. It can be seen in Figures 3.4 and 3.5 that at T=20MeV which is higher than the 

critical temperature that the equation of state represents only one fluid phase. 

In Table 3 the critical values are summarized for different values of σ. Small 

differences were found between our results and those obtained in [2, 5].  These 

differences may be attributed to the reason that in those two references the pressure series 

was only summed up to n=5, while here we are calculating the pressure series up to n=6.  

 σ=0.25 

This work 

σ=1 

This work 

σ=0.25 

 [5] 

σ=1 

[2] 

Critical 

temperature 

17.3 MeV 22.9 MeV 17.22 MeV 22.9MeV 

Critical 

pressure 

0.2745 

MeV.     

0.5155 

MeV.     

0.2698 

MeV.     

0.5151 

MeV.     

Critical 

density 

0.0535 

Nucleon.      

0.064 

Nucleon.  

     

 

0.0602 

Nucleon.  

     

 

0.068 

 Nucleon.  

     

 

 Table 3 summarizes the critical values at different σ values. 

To study the effect of different parameterizations of the Skyrme interactions 

brought about by changing the parameter σ, Figure 3.8 below shows the pressure 

isotherms for T=6 MeV at different values of σ: σ=0.25 and σ=1. We can see that: at 

densities up to about 0.04              the effect of changing from σ=0.25 to σ=1 is 

negligible. In this region the results are independent of the parametrization of the 

interaction. At high densities the σ=1 parameterization produces a stiffer equation of 

state. 
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3.3. NUCLEAR EQUATION OF STATE FOR ASYMMETRIC NUCLEAR 

MATTER 

 In asymmetric nuclear matter the protons and neutrons are treated separately and the 

Coulomb interaction between protons is included. To get the chemical potential for each 

type of nucleons the single particle energy given by Eq. (2.19) is replaced by Eq. (3.14). 

Also the value of A in Eq. (2.21) is replaced by Z for protons and N for neutrons. The 

isospin symmetry is broken for asymmetric nuclear matter because of the inclusion of the 

Coulomb force. The value of g now is 2 for each type and it represents the spin 

degeneracy factor. Finding the chemical potential for each type can be done in the same 

way as in obtaining Eq. (3.16). The chemical potential has the form: 

           
  
   

 
     

 
    

  
   

 
 
 

                                         (3.19) 

Figure 3.8: shows the effect of different Skyrme parameterizations on the equation of state. 
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Where q=p for protons and q=n for neutrons. The single particle energy for each of the 

protons and neutrons is given by Eq. (3.14) which is also given in [1]: 

          
  
 
       

 

 
     

 

 
    

           
            

             

(3.20) 

For this type of matter we define the asymmetry parameter α where: 

      

and  

  
  

 
 

 

 
            and             

  

 
 

 

 
 

Then: 

   
 

 
                 and          

 

 
      

A larger value of α means a larger fraction of the neutrons is in the nuclear matter. 

Substituting    
 

 
      in Eq. (3.19) and expanding up to the second order in the 

asymmetry parameter α we get the neutron chemical potential: 

                                                                  (3.21) 

where: 

                                 
  
  

  
      

  
  

  
 

  

   

  

 

(3.22) 
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and               is the term that comes from the asymmetry of the nuclear matter. It 

has the value [5]: 

                                                              (3.23) 

where: 

           
 

 
    

 

 
         

              
  
  

  
 

  

   

    
(3.24) 

                
       

 

 
  

      

 

 

   

   
  
  

  
 

 

     

 

(3.25) 

The chemical potential of the protons is obtained by substituting    
 

 
     in Eq. 

(3.19) and expanding up to the second order in the asymmetry parameter: 

                                                           (3.26) 

where [5]: 

                                                           (3.27) 

         is the Coulomb potential energy, this term is only included if the nuclear matter 

is finite and this will be discussed in chapter (5) where we introduce the hot liquid drop 

model of the nucleus.  

After determining the chemical potential of protons and neutrons it is easy now to obtain 

the pressure of the system using the Gibbs-Duhem relation: 

  

  
   

   

  
   

   

  
                                            (3.28)                                  
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Now the pressure of the system is given by the following equation [5]:  

                                                                     (3.29) 

where: 

            
                      

 

   
   

  
  

  
 
 

 
                    (3.30) 

is the bulk pressure of symmetric infinite nuclear matter with Skyrme interactions derived 

in Eq. (3.17). 

             
 

 
    

 

 
    

          
         

  

 
   

  
  

  
 
 

 
         (3.31) 

and          again is defined for finite nuclear matter.  

Eq. (3.29) is the equation of state of asymmetric nuclear matter. This equation and Eqs. 

(3.21) and (3.26) will be used in chapter (5) to describe the nuclear matter inside and 

outside the hot nucleus. In chapter (6) the model will be modified to include clusters in 

the surrounding vapor. 
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 CHAPTER4. NUCLEAR STATISTICAL EQUILIBRIUM (NSE) 

MODEL 

 Nuclear matter at densities much less than the saturation density tends to form clusters 

[9-13] to minimize its energy and entropy. As a result two-   three- and many-body 

correlations are formed. This creates new bound states (clusters) which appear as new 

particle species in the system, change its composition and modify its thermodynamical 

behavior. Studies [10, 13] showed that clusters with A= 2, 3 and 4 are dominant at low 

density and so they must be included in any equation of state that describes the nuclear 

matter at this limit. 

  It was also shown in [10] that the light clusters formed in the nuclear matter get 

dissolved as the density of the nuclear matter increases due to the medium effects and 

Pauli blocking. This effect is called the Mott transition and it depends on the change of 

the binding energy of the clusters when placed in a medium. The density at which the 

cluster binding energy vanishes and the cluster dissolves is called the Mott density.  Its 

value depends on the cluster type. 

4.1. REVIEW OF THE EQUATION OF STATE OF CLUSTERED NUCLEAR 

MATTER IN VARIOUS MODELS 

The equation of state of clustered nuclear matter has been the subject of many theoretical 

investigations; many approaches were used to get it: 

i. The virial expansion [9, 17] takes into account both bound states and scattering 

states but neglects medium modifications. In [9] this method was used to get the 
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equation of state of a nuclear matter composed of protons, neutrons and alpha 

particles at low density. It has the form: 

 

 
 

 

  
          

    
              

 
 

  
       

                   

(4.1) 

where:   
  and    are the thermal wave lengths of alpha particles and nucleons 

respectively,     
  
  and     

  

  are the fugacities of neutrons and protons 

respectively and     
     

  is the fugacity of alpha,    is the binding energy of 

alpha particles. 

The coefficient    is the second nucleon virial coefficient and    is the 

second alpha virial coefficient. The coefficients     and     are the virial 

coefficients that describe the strong interactions between the particles. All the four 

virial coefficients are calculated in [9] using nn, pp, np, nα, pα and αα elastic 

scattering phase shifts. 

ii. The Microscopic quantum statistical approach used in [10, 11]. 

The Microscopic calculations arise from a model that describes the interactions 

between nucleons in a system, such interaction is the formation of the bound 

states at low density nuclear matter. The quantum statistical approach is a non-

relativistic approach that is based on the many body theory. It makes an explicit 

use of the effective nucleon-nucleon interactions and takes into account the 

medium effects of the cluster properties such as the Mott density at which the 

clusters dissolve. 
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  In this approach the nucleons and clusters are treated as quasi-particles, 

the quasi-particle energy of a cluster with Z protons and N neutrons in the ground 

state is given in [10, 11]:   

    
          

   
 

  

   
      

           
              

                (4.2) 

where m is the mass of the nucleon, and P is the momentum of the cluster. The 

five terms of Eq. (4.2) are explained as follows: 

    
   
   is the cluster binding energy in vacuum. 

  

   
 is the kinetic energy of the cluster. 

     
      is the shift that occurs in the self energy due to the medium effects 

where the self energy is the potential felt by the cluster. This potential represents 

all interactions between the cluster and all other clusters and nucleons in the 

system. The value of this shift is evaluated from the change in the effective mass 

of the cluster quasi-particle. 

     
        is the Coulomb term, this term is small and negligible for symmetric 

nuclear matter. 

     
         is the Pauli blocking term. It is given in [10] at zero center of mass 

momentum: 

       
                 

  

  
              

                        (4.3) 

where: 

   
           

    

    
 

 
 
   

 

                
  when applied on tritons, helions, and 

alphas, and it has the value: 
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when applied on deuterons. 

where:      
    

 
  the parameters      ,      and      are determined by the low 

density perturbation theory, and the parameters      and      represent the density 

corrections. We can see that the Pauli blocking is inversely proportional to the  

     . As a result, this term becomes smaller at higher temperatures. 

A great attention is devoted in [10, 11] to the Pauli blocking term because 

it is the main medium effect that enters in the calculations of the abundance of 

light clusters at low density nuclear matter. Pauli blocking is restricted only to 

bound states, it acts on the clusters, decreases their binding energies as the density 

of the medium increases.  At the Mott density the binding energy of the cluster 

goes to zero and the cluster becomes unbound. For every type of cluster there is a 

characteristic Mott density which is affected by the center of mass momentum of 

the cluster and depends on the temperature. The most weakly bound cluster 

dissolves first.  

iii. The NSE model used in [13, 18, 19] which takes into account only bound states 

and it is the model we are using in this thesis with some modifications involving a 

density-dependent binding energy. 

4.2. THE NUCLEAR STATISTICAL EQUILIBRIUM (NSE) MODEL 

The NSE [13, 18, 19] treats the nuclear matter from a statistical view; it describes the 

nuclear matter at low density as a system of non-interacting or minimally interacting 

particles at statistical equilibrium.  This model takes into account only the bound states; it 



45 
 

ignores other scattering and excited states. It gives the correct low density limit to which 

all other equations of state must terminate [10, 13, 18, 19]. 

In this work we will derive the equation of state for an infinite uniform distribution of 

symmetric clustered nuclear matter at low density. This matter is composed of fermions 

(nucleons, tritons and helions) and bosons (deuterons and alpha particles). These 

components are treated using Fermi or Bose statistics as applicable. Such a system is best 

described in the NSE. The original NSE takes into account only the bound states 

neglecting all other effects of scattering states and medium effects which are attributed 

mainly to the Pauli Blocking of states that changes the binding energy and causes the 

dissolution of clusters at the Mott density.  As the density increases toward the Mott 

density, the binding energy decreases until it reaches zero and then the clusters dissolve. 

The NSE model in its original form predicts that [10] most nucleons in symmetric 

nuclear matter at high density would be bound into clusters, this case is unphysical 

because medium modifications are not included in this model. To substitute for this 

deficiency in the model we will assume the binding energy to have an exponential 

dependence on the total density, the binding energy will be of the form: 

                                                        (4.4)                              

where: 

     is the binding energy of the cluster at zero density and       is the Mott density at 

zero center of mass momentum. 
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The binding energies at zero density for the clusters that are used in this work are found 

in [20] and summarized in Table 4. 

 Alpha Deuteron Helion Triton 

   (MeV) 28.295660 2.224560 7.718043 8.481798 

  1 3 2 2 

Mass        3728.40 1876.12 2809.41 2809.43 

Table 4 summarizes the binding energy, masses and the spin degeneracy factors of some light clusters. 

       In [10] the shift in the binding energy due to medium modifications is studied. A 

linear fit of the results obtained in this reference enables us to get the       for different 

clusters, at different temperatures. The results are summarized in Table 5 at typical 

temperatures.  

Table 5shows the Mott densities       for various clusters at typical temperatures. 

In Table 5 the dependence of    on the temperature is obvious, it increases with 

increasing temperature, this means that at high temperatures the clusters will live even at 

high densities. This result is expected because Pauli blocking is less effective at higher 

temperatures as concluded from Eq. (4.3). 

 T=2MeV T=4MeV T=5MeV T=6MeV 

Alpha 0.0059      0.0073      0.0080      0.0088      

Deuteron 0.00148      0.00216      0.0025      0.0029      

Helion 0.0023      0.0031      0.0035      0.0040      

Triton 0.0028      0.0036      0.0036      0.0046      
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  Clusters in nuclear matter are at chemical equilibrium with nucleons such that: 

                                                         (4.5)                                

Because of the symmetry of the nuclear matter assumed, the chemical potentials of 

protons and neutrons are equal          so that: 

             

where: A=N+Z. 

As a result the chemical potentials of the light clusters are written as: 

          

             

           

           

The chemical potential µ of free nucleons is calculated using the equation of state derived 

earlier in chapter (2) for an infinite system of non-interacting nucleons at low density: 

                  
  
      

 
     

 

   

 
  
      

 
 

 

  

where     gives the temperature in energy units, and        represents the density of free 

nucleons. 
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The total density of such clustered nuclear matter contains all contributions from 

nucleons and clusters; it is given by:  

                                                                 (4.6) 

The density of each type of cluster is calculated using the relation: 

   
 

 
 

 

     
                                                  (4.7)                                

where g is the spin degeneracy factor of the cluster. The values that g takes for each type 

of cluster of interest are summarized in Table 4. Also in Eq. (4.7)    is the probability of 

finding cluster C with the kinetic energy   
  .  

            
                                         (4.8)                           

where the (+) sign is used for fermionic clusters (helions and tritons) while the (-) sign is 

used for bosons (alphas and deuterons).    is the density-dependent binding energy of the 

cluster when embedded in the vapor as given by Eq. (4.4). 

As shown in Eq. (4.4) the binding energy is a function of the total density which 

is the final result of the calculation. In order to calculate the binding energy many 

iterative operations are performed to achieve self consistency. The value of the total 

density that achieves self consistency is then used to get the binding energy of the 

clusters and to find the density of each type of clusters in the nuclear matter. The masses 

of some light clusters in energy units are summarized in table 4 they are the same values 

used in [12]. 
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  Now the composition of nuclear matter at low density can be determined. After 

calculating the density of each type of clusters and the total density which forms the final 

output, the fraction of nucleons existing in each type of clusters can be evaluated: 

        
      

      
 

           
         

      
                                               (4.9) 

         
       
      

 

         
       
      

 

Figures 4.1 and 4.2 show the fractions of nucleons existing in clusters versus total density 

at two different temperatures. 

 

 
Figure 4.1: shows the abundances of nucleons existing in clusters at T=4MeV using the (NSE) 

model. 



50 
 

 

        

The deuterons are dominant at T=4MeV while the alpha particles are dominant at 

T=2MeV and lower. Also, in Figure 4.2 the abundance of the lighter clusters decreases as 

the density increases. This occurs as a result of the change in the binding energy assumed 

in Eq. (4.4). The most tightly bound alpha particles live to higher values of density. We 

can say that at low temperatures and low densities the nuclear matter is composed mainly 

of deuterons and alpha particles. 

4.3. EQUATION OF STATE OF CLUSTERED NUCLEAR MATTER IN THE NSE 

MODEL 

 The pressure of clustered nuclear matter contains contributions from all its contents. 

After calculating the density of each type of clusters the partial pressure is calculated for 

each type of clusters and nucleons using the ideal Femi and Bose equations of state 

Figure 4.2: shows the abundances of nucleons existing in clusters at T=2MeV in the (NSE) model. 
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derived in chapter (2). The total pressure of clustered nuclear matter in the NSE model 

has the form: 

                                                                (4.10)                                    

Figure 4.3 shows the isotherms of clustered nuclear matter at low density in the NSE 

model at two different temperatures. It shows that the pressure increases as the 

temperature increases. For comparison we also show in Figure 4.3 the isotherms obtained 

assuming that low density nuclear matter consists only of nucleons interacting via the 

Skyrme force (the nucleonic vapor model). These isotherms are plotted using the 

equation of state Eq. (3.17).  

 

   

  We see that at a certain temperature T=8 MeV for example, and densities much 

less than the saturation density           the vapor pressure when clusters are included 

(NSE) is much less than when only nucleons are included (nucleonic vapor) . Also 

Figure 4.3: the equation of state of nuclear matter in three different models. 



52 
 

plotted in Figure 4.3 is the pressure of the ideal gas of nucleons at T=8MeV. We also 

note that the pressure of the system consisting of only nucleons approaches the ideal gas 

limit at extremely low-densities, but that the pressure of clustered nuclear matter does not 

because of the presence of the clusters and the implied interactions between them and the 

nucleons. 
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CHAPTER5. LIQUID DROP MODEL FOR A HOT NUCLEUS AND 

THE LIMITING TEMPERATURE 

Nuclear models are different ways of looking at the nucleus to describe its physical 

behavior and give physical explanation of a wide range of its properties. The two nuclear 

models that are widely used and that have proved useful are the independent particle 

model and the liquid drop model [16]. 

In the independent particle model each nucleon moves independently of the other 

nucleons. Each nucleon has its own wavefunction, has a definite set of quantum numbers, 

obeys the Pauli Exclusion Principle, and hardly makes any collision with other nucleons. 

This is not the case in the liquid drop model where nucleons are assumed to move 

randomly inside the nucleus and make frequent collisions with each others. The 

Weizsaecker mass formula that was used in chapter (3) to find the binding energy of a 

nucleus is a consequence of the liquid drop model at zero temperature. 

5.1. THE HOT LIQUID DROP MODEL 

In the liquid drop model the nucleus is described as a drop of liquid with uniform density, 

a sharp edge, and a surface tension. The volume of this drop is proportional to A (the 

number of nucleons in the nucleus). The forces acting on the nucleons located in the 

interior of the nucleus differ from those that acting on the nucleons that are near the 

surface .This produces the surface tension which tends to pull the surface nucleons to the 

interior of the nucleus and minimizes its surface area. 
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In this thesis we are assuming that the hot nucleus is a uniformly charged drop 

with uniform density, a sharp edge, and a surface tension surrounded by a vapor. The 

liquid drop is in thermal, mechanical, and chemical equilibrium with the surrounding 

vapor. The bulk matter inside the nucleus is asymmetric with the coulomb repulsion 

acting between the protons. The equation of state derived earlier in chapter (3) for 

asymmetric nuclear matter is used here to describe the bulk matter inside the nucleus.           

 In asymmetric nuclear matter the protons and neutrons are treated differently. 

The inclusion of the Coulomb force in this matter breaks the isospin symmetry so that the 

factor g in this case is called the spin degeneracy factor and has a value of 2. For this 

matter Eqs. (3.21), (3.26) and (3.29) derived earlier in chapter (3) will be used: 

The chemical potential of neutrons is given by: 

                                                                (5.1) 

And the chemical potential of protons is given by: 

                                                      (5.2) 

Where:                        and               all were defined in chapter (3) in 

Eqs. (3.22), (3.23) and (3.26) respectively. 

         is the Coulomb potential energy, for a uniformly charged spherical drop of 

radius R this potential is given by: 

                  
 

 
   

 

 
 

 

 
    

   

  
 
   

                    (5.3) 

The pressure of the system is given by: 
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Where :         and             are given by Eqs. (3.30) and (3.31) respectively. The 

         term results from the coulomb interaction, for a uniformly charged spherical 

drop of radius R this pressure is given by: 

          
   

  
 
       

  
                                         (5.4)                              

For the pressure inside the liquid drop there is still another contribution that is due 

to the surface tension of the nucleus. The expression that is used to describe the surface 

tension must depend on the temperature and must vanish at the critical temperature which 

is determined by the equation of state. The critical temperature gives the main 

relationship between the surface tension and the equation of state which is affected by the 

effective interaction. The most widely used expression for the surface tension which is 

suggested in [21] and is used in [5] is given by: 

                    
 

 

 

  
    

 

  
 
   

                             (5.5) 

The surface tension represents the work required to increase the surface area of the liquid 

drop by a certain amount. It has the unit of (energy unit) / (area unit). 

The number 1.14 MeV.     gives the surface tension at zero temperature. This number 

is obtained from the semi-empirical mass formula (Weizsaecker mass formula) which is 

given in chapter (3). This formula gives the binding energy of nuclei at zero temperature. 

Other studies [3] used another expression for the surface tension: 
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                               (5.6)                   

Both representations of the surface tension are temperature dependent and they 

vanish as T     . However Eq. (5.5) has the correct quadratic dependence on T at low 

temperatures. It gives a lower value of the surface tension at low temperatures than that 

given by Eq. (5.6) which has a linear dependence on T.  It was also shown in [7] that the 

limiting temperature depends on the temperature dependence of the surface tension, and 

that the limiting temperature calculated with Eq. (5.5) has better agreement with the 

results of Hartree-Fock calculations. In this work we are using Eq. (5.5) also to simplify 

comparison between our results and that of [5]. 

       The pressure inside the liquid drop that is related to the surface tension is given by: 

                 
 

 
        

   

  
 
   

                        (5.7)                 

Now the pressure inside the liquid drop is given by: 

                                                         (5.8) 

In Figure 5.1         as given by Eq. (3.30) and Eq. (5.8) is plotted with and 

without the symmetry terms. In this plot we must differentiate between two types of 

pressure isotherms: the bulk pressure         which is given by Eq. (3.30) and the 

pressure inside the drop which is obtained from the corresponding bulk pressure by 

adding the Coulomb and surface terms, and is given by Eq. (5.8). For the surrounding 

vapor phase Eq. (5.8) can be used as in [5] but without the surface term and without the 



57 
 

Coulomb term. The Coulomb term diverges if the vapor is assumed to be infinite. This 

can be remedied by assuming the vapor to be contained within a certain radius [7].  

 

 

 

  The bulk curve in Figure 5.1 consists of three parts corresponding to the vapor 

phase at low densities, the liquid phase which starts at densities slightly above 0.1     

and the unstable region with negative         (and hence negative compressibility) of 

the equation of state. The first part extends to a density about 0.015       and represents 

the vapor phase in the nucleonic vapor model. This model describes the case where the 

interactions assumed are of the Skyrme type and the clusters are not included. The thick 

solid line represents the vapor pressure in the NSE model where the clusters are included 

and the only interaction between nucleons is by forming clusters. The case with clusters 

will be treated in chapter 6. 

Figure 5.1: The vapor, bulk and drop isotherms at T=5MeV and σ=0.25 for     
    nucleus. The thin 

continuous line represents the bulk isotherm. The dashed line represents the drop isotherm without 

symmetry terms. The dotted line represents the drop isotherms with symmetry terms. The thick 

continuous line represents the vapor phase with clusters.  
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Figure 5.2 shows the same plots of Figure 5.1 but for the nucleus      
   . 

 

 

5.2. THE COEXISTENCE EQUATIONS   

In this thesis we are dealing with the problem of the Coulomb instability of hot nuclei 

embedded in a vapor of nuclear matter. The nuclei that are immersed in the vapor are 

treated as hot liquid drops. They are assumed to exist in thermal, mechanical, and 

chemical equilibrium with the surrounding vapor. The mechanical equilibrium requires 

the equality of the pressure inside and outside the hot nucleus, and the chemical 

equilibrium requires the equality of the individual chemical potential of protons and 

neutrons inside and outside the hot nucleus. These equilibrium conditions are described 

in the following coexistence equations: 

                                                                  (5.9.a)                     

Figure 5.2: The vapor, bulk and drop isotherms for the nucleus     
    at T=5MeV. The labels of the curves 

are the same as in Figure 5.1.  
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                                                                 (5.9.b)                   

                                                                (5.9.c)                        

Where:     and    are the densities and     and     are the asymmetry parameters of the 

liquid and vapor respectively. The coulomb term is included when describing the 

pressure and chemical potential of protons inside the liquid drop and is neglected when 

describing the protons in the vapor. 

In [5] the author discussed the Coulomb instability of hot nuclei embedded in a 

vapor. The liquid drop model was used to describe the hot nuclei. The vapor at which the 

hot nuclei are immersed was assumed to be uncharged asymmetric nuclear matter 

composed only of protons and neutrons where the interaction assumed between nucleons 

is of the Skyrme type. The coexistence Eqs. (5.9) for this case are written as: 

                                            

                        

(5.10.a) 

                                                  (5.10.b) 

                                                            (5.10.c) 

We see that the coexistence equations in (5.10) contain the symmetry terms that 

are added to both the drop and vapor equations. In the coming discussion we will show 

that the symmetry corrections added to the vapor equations have a negligible effect on the 

value of the limiting temperature. This is expected because of the small values that the 

vapor asymmetry parameter has. This means that we can neglect these symmetry 

corrections and include only the symmetry terms added to the drop equations. This result 

does not contradict with that reported previously in [5] where the asymmetry parameter 
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had values near 1. These large values of the asymmetry parameter are attributed to some 

numerical errors that are corrected here in the following discussion. 

       Returning to the set of equations (5.10) we write        and        in terms of    

and     as given in Eqs. (3.23) and (3.27)., adding and subtracting the second and third 

equations then we can write these coexistence equations in the form: 

                                            

                        

(5.11.a) 

                     
 

 
                               

(5.11.b) 

            
 

 
                      

(5.11.c) 

5.3.THE LIMITING TEMPERATURE 

To find the limiting temperature, the above coexistence equations Eqs. (5.11) must be 

solved; the limiting temperature is characterized as the temperature above which the 

coexistence equations have no real solution.  

    We will follow the procedure that is suggested in [3] and is used in [5] to obtain the 

limiting temperature and we can summarize it in three steps: 

I. The chemical potential of the vapor (RHS of Eq. (5.11.b)) is plotted against the 

corresponding pressure of the vapor (RHS of Eq. (5.11.a)). 

II. On the same graph, the chemical potential of the drop (LHS of Eq. (5.11.b) is 

plotted against the corresponding pressure of the drop (LHS of Eq. (5.11.a). 
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III. The coexistence equations have real solution if the drop and vapor curves 

intersect. This occurs below the limiting temperature and means that we have 

liquid - gas coexistence; above the limiting temperature the drop curve and the 

vapor curve do not intersect. 

       The calculations to find the limiting temperature will be divided into two parts: 

1- Solving the coexistence equations (5.11) with the asymmetry corrections added to 

the drop equations are taken into account while those added to the vapor equation 

are neglected. 

2- Solving the coexistence equations (5.11) exactly. 

In the first part of the calculations we will take into account the asymmetry terms 

added only to the drop equations. This means neglecting the asymmetry corrections on 

the right hand side of the Eqs. (5.11.a) and (5.11.b) which thus become decoupled from 

Eq. (5.11.c).  Next, Eqs. (5.11.a) and (5.11.b) are solved without the vapor asymmetry 

corrections and the vapor asymmetry parameter is calculated using Eq. (5.11.c). 

        Figure 5.3 below shows the relationship at T=5MeV and σ=0.25 between the 

chemical potential and the pressure in the bulk for the case of a drop representing a 

    
    nucleus. In this Figure the asymmetry terms are only added to the drop equations. 

         The bulk isotherm consists of three regions shown in the Figure; the vapor region, 

the unstable region, and the liquid (bulk) region. The drop and vapor isotherms intersect 

at the equilibrium point which means that at this point we have liquid -gas coexistence 

and the nucleus or liquid drop exists in equilibrium with its surrounding vapor. It is easy 

to see that T=5MeV is below the limiting temperature.  
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Figure 5.4 shows that the limiting temperature for the     
    case is T=6.8MeV.  

5.4. EVALUATING THE VAPOR ASYMMETRY PARAMETER. 

For a given temperature (here T=6.8 MeV) the vapor asymmetry parameter is calculated 

as follows: 

First: The chemical potential and pressure at the equilibrium point are determined from 

Figure 5.4. They have the values: -12.05 MeV for the chemical potential and 0.02978 

MeV.     for the pressure. 

Second: The values of the vapor and liquid densities at the equilibrium point are 

determined. They have the values                and                 . 

 

Figure 5.3: The bulk and drop pressure versus chemical potential at T=5MeV and σ=0.25 for      
    

with the asymmetry terms added to the drop equations only. 
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Figure 5.4 shows that the limiting temperature for the     
    nucleus when σ=0.25 is T=6.8MeV. 
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Third:  a plot the left hand side of Eq. (5.11.c) as a function of the density of liquid       is 

shown in Figure 5.5. It is seen that the left hand side of Eq. (5.11.c) does not vary in 

going from density (0.165 - 0.175)     . 

 

 

From Figure 5.5 we find the value of the left hand side at the equilibrium density which is 

0.822. From Eq. (5.11.c) this value also equals             at the equilibrium point and 

can be used to determine    as in the next step. 

Finally: plot              as a function of     at the vapor density calculated at the 

equilibrium point. This is shown in Figure 5.6. Then we get           which is a 

small value of the asymmetry parameter.  

Figure 5.5 shows the left hand side of Eq. (5.11.c) as a function of the liquid density. 
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We see that the vapor asymmetry parameter is small. This is why we can neglect 

the asymmetry corrections added to the vapor as we mentioned earlier in this chapter. 

Table 6 summarizes the values of the limiting temperatures and the asymmetry parameter 

that were obtained for the nuclei     
    and     

    for different Skyrme 

parameterizations. These values were obtained following the same steps above. The 

limiting temperatures obtained in our work when neglecting the vapor asymmetry 

corrections are the same as that obtained previously in [5].  

 

 

Nucleus 

 

 

σ 

Without clusters ( This Work) 

   (MeV)       
    

 

          
 

   

 
208

Pb 

 
208

Pb 

1 

 

7.60 0.1652 0.0137 0.1500 

0.25 

 

5.49 0.1689 0.0077 0.1700 

109
Ag 

 
109

Ag 

1 

 

9.22 0.1642 0.0168 0.0522 

0.25 

 

6.80 0.1682 0.0100 0.0515 

 

        

Table 6: The values of the limiting temperature, the liquid and the vapor densities and the vapor 

asymmetry parameter obtained at the limiting temperature. These values were obtained by 

neglecting the asymmetry corrections for the vapor in Eqs (5.11.a) and (5.11.b).  

Figure 5.6 shows  
 
          plotted against   . 
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Now let us solve the coexistence equations, Eqs. (5.11) exactly, in this case the 

asymmetry corrections are added to both the drop and vapor sides of Eqs. (5.11.a) and 

(5.11.b). We begin the calculations by substituting the liquid equilibrium density obtained 

in Table 6 in the left hand side of Eq. (5.11.c), and then we calculate the vapor 

asymmetry parameter    at each value of vapor density   : 

   
            

 
      

    

 
 
     

 
            

              
  
   
   

 
 
     

 

 

 

where g=2 . 

The value of    is then used in the right hand side of Eqs. (5.11.a) and (5.11.b) and so, 

these equations are solved for the limiting temperature and the asymmetry parameter   . 

The calculation is repeated until self-consistency is achieved. In practice one iteration is 

found to be sufficient. The values of the limiting temperatures and other parameters 

obtained in this way are summarized in Table 7 below for different nuclei. The values of 

the limiting temperature obtained in this case are the same as that obtained in [5]. 

 

 

Nucleus 

 

 

σ 

Without clusters ( This Work) 

   (MeV)       
    

 

          
 

   

 
208

Pb 

 
208

Pb 

1 

 

7.48 0.1656 0.0137 0.1500 

0.25 

 

5.47 0.1685 0.0079 0.1691 

109
Ag 

 
109

Ag 

1 

 

9.20 0.1643 0.0169 0.0519 

0.25 

 

6.80 0.1690 0.0102 0.0504 

 

Table 7: The values of the limiting temperatures, densities, and the vapor asymmetry parameters 

obtained when the coexistence equations are solved exactly. 
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  It is seen that the values of the asymmetry parameter are larger for the lead 

nucleus than that for the silver nucleus. Larger values of    mean a larger percentage of 

neutrons are in the vapor. This difference may be attributed to the larger number of 

protons in the lead nucleus. This increases the potential barrier that the protons inside the 

nucleus face and prevents them from evaporation. 

Comparing the results summarized in Table 6 and Table 7 it is seen that solving 

for the vapor asymmetry parameter exactly does not change drastically the results of the 

limiting temperatures, this can be understood when comparing the results of the limiting 

temperatures, vapor and liquid densities, and the vapor asymmetry parameters calculated 

in the two cases when including the vapor asymmetry corrections and when neglecting 

them, for example we look at the results of the 
109

Ag  nucleus at the Skyrme 

parameterization σ=1 the limiting temperature that is calculated in the two cases differ 

only by          , also very small differences are noticed when comparing the values of 

the liquid and vapor densities and the vapor asymmetry parameters obtained in the two 

cases. 
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CHAPTER6. RESULTS AND CONCLUSIONS 

In this chapter we study the effect of the presence of clusters in the surrounding vapor on 

the stability of hot nuclei. Including clusters in the vapor is the main significant 

difference between this study and that reported in [5]. We will compare the results of this 

work mainly with those of [5]. 

6.1. THE COEXISTENCE EQUATIONS WITH CLUSTERS IN THE VAPOR 

We will assume that the vapor surrounding the hot nucleus is an infinite uniform 

distribution of clustered nuclear matter at low density, composed of nucleons, tritons, 

helions, deuterons, and alphas, all assumed to be uncharged. We have derived the 

equation of state that describes this clustered vapor in chapter (4) using the nuclear 

statistical equilibrium model. 

The nuclei that are immersed in the vapor are treated as hot liquid drops, they are 

assumed to exist in thermal, mechanical, and chemical equilibrium with the surrounding 

vapor.  Mechanical equilibrium requires the equality of the pressure inside and outside 

the hot nucleus. Chemical equilibrium requires the equality of the chemical potential of 

protons inside and outside the hot nucleus and similarly for the chemical potential of the 

neutrons. Here it must be noted that chemical equilibrium is already attained between the 

clusters and the nucleons in the vapor by the use of the NSE model. These conditions of 

equilibrium are essentially the same as the coexistence equations (5.9). The only 

modification is the inclusion of the effect of the clusters in the vapor pressure. Here these 

coexistence conditions are written as: 
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(6.1.a) 

                                                           (6.1.b) 

                                  

                                   

 

(6.1.c) 

                    

Where the subscript “free” refers to the contributions of the free nucleons in the vapor, 

and it is calculated by the use of the ideal gas equation of state given by Eq. (2.26). 

         is the pressure of symmetric nuclear matter with the Skyrme interaction given by 

Eq.( 3.30). 

            is the pressure of the clusters in the vapor and contains contributions from all 

the clusters. 

       is the pressure term that results from the asymmetry of the nuclear matter derived 

previously in chapter (3), and it is given by Eq. (3.31). 

          and              are the Coulomb and surface terms of the pressure inside the 

hot liquid drop . They are given by Eqs. (5.4) and (5.7) respectively. 

        is the chemical potential of symmetric nuclear matter with the Skyrme interaction 

given by Eq. (3.22). 

       and        are the chemical potential terms resulting from the asymmetry of the 

nuclear matter for the protons and neutrons, respectively. They are given by Eq. (3.23) 

and (3.27).   
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In calculating the limiting temperature for this case we follow the procedure of 

chapter (5). We can write the coexistence equations (6.1) in analogy with Eqs. (5.11) as: 

                                            

                                              

(6.2.a) 

                     
 

 
                                        

(6.2.b) 

            
 

 
                         

(6.2.c) 

where    and    are given by Eqs. (3.24) and (3.25) in chapter (3). The quantities    and 

    on the right-hand side of Eqs. (6.2.b) and (6.2.c) give the contribution of the chemical 

potential of the free nucleons in the vapor. In the NSE model the only interaction between 

nucleons in the vapor is by forming clusters. The Skyrme interaction parameters    and 

   in Eqs. (3.24), (3.25) and (3.31) are therefore set to zero on the right-hand side of Eqs. 

(6.2.a), (6.2 b), and (6.2.c).   

6.2. THE LIMITING TEMPERATURE  

In our calculations we will take into account the asymmetry terms added to the drop 

equations only. We will find that the density of free nucleons in the vapor is very small 

and most of the contribution to the vapor pressure comes from the clusters. We thus 

neglect the asymmetry terms on the right hand side of Eqs. (6.2.a) and (6.2.b) which thus 

become decoupled of  Eq. (6.2.c). Then we solve the two Eqs. (6.2.a) and (6.2.b) for the 

equilibrium values and we use equation (6.2.c) to get the vapor asymmetry parameter    

at any temperature T. 
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A plot of the pressure versus chemical potential is shown in Figure 6.1 at 

T=2.8MeV and for the σ=0.25 Skyrme interaction for the nucleus     
    immersed in a 

clustered nuclear vapor. We see that the pressure reaches a maximum value then drops 

indicating that the system enters the mechanically unstable region beyond the maximum, 

while the chemical potential keeps steadily increasing. In Figure 5.3 the pressure and 

chemical potential both reach the maximum value at the same time and then they fall side 

by side. The difference between the two Figures is a result of including clusters in the 

calculations represented in Figure 6.1.  

 

 

       

From Figure 6.1 the equilibrium point has the values: P =0.01392 MeV.     and 

µ=-8.759 MeV and it occurs in the mechanically-stable region. The Figure therefore 

Figure 6.1: shows the chemical potential versus pressure for a 
109

Ag nucleus at T=2.8 MeV in the 

presence of clusters in the vapor state. The dotted line shows the chemical potential of the liquid 

drop (LHS of Eq. (6.2.b)) versus the corresponding pressure (LHS of Eq. (6.2.a)). The continuous 

line shows the same quantities for the vapor state.  
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shows that T=2.8MeV is below the limiting temperature and that the limiting temperature 

has a higher value.  

In Figure 6.2 we are calculating the limiting temperature of the silver nucleus 

    
    using the Skyrme interaction with σ=0.25. The Figure shows that the limiting 

temperature for this nucleus is T=3.3 MeV. We see that at the limiting temperature the 

drop curve intersects the vapor curve at the maximum pressure. At temperatures above 

the limiting temperature the intersection will take place in the mechanically unstable 

region and the drop will fragment into parts. 

We calculated the values of the limiting temperatures for the nuclei     
    and 

    
    using the Skyrme parameterizations with σ = 1 and σ = 0.25. The results are 

summarized in Table 8 where we also show the results obtained earlier in Chapter (5) 

without the inclusion of clusters in the surrounding vapor. 

 

 

Nucleus 

 

 

Σ 

Without clusters With clusters 

TL     
 

   

 

   

 

TL  

 

   
 

      

 

      

208
Pb 

 
208

Pb 

1 

 

7.6 0.1652 0.01370 0.15000 2.8 0.153 0.0376 0.599 0.0003 

0.25 

 

5.49 0.1689 0.00772 0.17000 2.8 0.172 0.0376 0.545 0.0003 

109
Ag 

 
109

Ag 

1 

 

9.22 0.1642 0.01678 0.05220 3.3 0.169 0.0405 0.187 0.00035 

0.25 

 

6.8 0.1682 0.01000 0.05147 3.3 0.170 0.0405 0.190 0.00035 

 

 

 

Table 8: Comparison between the results with and without clusters included in the vapor. TL is the 

limiting temperature (in MeV),       and     are the equilibrium liquid and vapor densities ( in fm
-3

)  and 

    is the  vapor asymmetry parameter,       is the density of free nucleons (in fm
-3

 ) in the vapor, all 

evaluated at the limiting temperatures when the vapor asymmetry parameters are neglected. 
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We see in Table 8 that the free nucleon density is very small compared with the 

total vapor density calculated at the limiting temperature. This indicates that the vapor 

consists mainly of clusters, and justifies neglecting    (the asymmetry of the free 

nucleons) in solving the coexistence equations. Here it must be emphasized that    is the 

asymmetry of the free nucleons only. The total asymmetry of the vapor is much less and 

Figure 6.2: Determining the limiting temperature for a hot 
109

Ag nucleus in the presence of clusters in the 

vapor state. The dotted line shows the chemical potential of the liquid drop (LHS of Eq. (6.2.b)) versus the 

corresponding pressure (LHS of Eq. (6.2.a)). The continuous line shows the same quantities for the vapor 

state.  
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close to zero, we evaluated  the value of this parameter to be of order     at the 

temperatures 2.8 and 3.3 MeV, and of order     at T=8MeV These values are 

reasonable since the vapor consists essentially of symmetric clusters and not free 

nucleons. 

6.3. Conclusions 

 We can conclude from Table 8 the following: 

a) Including clusters in the vapor state lowers the value of the limiting temperature 

in comparison with that obtained in [5] where the clusters were not taken into 

account.  

b) For a certain nucleus (e.g.     
   ) the value of the limiting temperature obtained  

with the σ=0.25 Skyrme interaction  is the same as that obtained with the σ=1 

Skyrme interaction  . This result is not surprising because the Skyrme interaction 

does not play any role in the NSE model and the vapor constituents are assumed 

to be non-interacting aside from the condition of chemical equilibrium.  

c) The limiting temperature for the       
   nucleus is smaller than the limiting 

temperature of the     
    nucleus. This is expected since the Coulomb instability 

is a result of the Coulomb force acting between protons in the nucleus. Since 

the       
   nucleus has a larger number of protons than the      

    nucleus, the 

effect of the Coulomb force is larger and the limiting temperature will be lower 

for       
   . The result that the limiting temperature is lower for nuclei with larger 

number A (and hence larger number Z) was also obtained in References [3, 5]. 
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  In this thesis we include only light clusters (deuterons, helions, tritons, and 

alphas) while other heavier clusters may be formed in the low density nuclear matter. In a 

future work these heavier clusters may be included and their effect on the limiting 

temperature may be investigated. 

        Medium modifications such as the density dependent effective masses of nucleons 

and clusters are not included. Future work may include medium effects and give more 

realistic results. 

The effect of the charge of the vapor and the density dependent effective mass has 

been investigated by Jaqaman in [7] but is neglected in the present work.  

This work can be used to study supernovae explosions, and examine the early 

evolution of the universe. In such systems we have hot nuclei immersed in a hot 

surrounding vapor. The stability of these hot nuclei will play a role in determining the 

changing behavior of the system with time. 
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APPENDIX A  

Series Reversion: 

       Given the series       
 

  =       
     

    we can reverse this series and 

write: 

      
 

         
     

     

Substitute          
     

    in the power series of Y, then by the equality of 

the two sides the coefficients of the new inverted series are found: 
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