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0.1 Notations

Symbol Definition

The natural numbers {1,2,3,...}

Z The ring of integers

Ly, The ring of integers modulo n

Z[i The ring of Gaussian integers, i + 1 = 0

Z[p) The ring of Eisenstein integers, p> + p+1 =10

¢ A group/ring homomorphism

ker ¢ The kernel of the homomorphism ¢

P Euler’s phi function

w The conjugate of the number w

N(w) The norm of the element w, N(w) =w -w

N The number of ring homomorphisms
N(p:R—S) The number of ring homomorphisms from S into R
Rem(m), The remainder upon dividing m by n

Ny (ma, ma, ..., my) The number of elements of the set {mq,ma,...,m,}

that are divisible by pk

w(n) The number of distinct prime factors of n in a ring
A= B The group/ring A is isomorphic to the group/ring B
0 An algebraic integer

() Parentheses: References within the text of the thesis

[ -] Brackets: Referred to Main References list , page 121

{-} Braces: References for footnotes



Abstract

The problem of finding the number of ring homomorphisms between rings of certain prop-
erties has been studied only few times. This thesis discusses the number of ring homomor-
phisms over algebraic integers; starting with the rings of Gaussian integers (Z,,[i] modulo
m),where i = 1. Over the ring of Eisenstein integers (Z,[p] modulo m), where p?>+p+1 = 0,
and over rings of some algebraic integers 6, Z,,[f] for an algebraic integer # with minimal
polynomial p(z) = 22 + uz + v whose absolute radicand, (|u? —4v| = m), is a prime integer
and Z[f] is a UF D. Among the results that have been found by previous researchers, in this
thesis we give some generalizations to the problem. The new ”original” results, corollaries

and theorems, have been marked with an asterisk ( * ).
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Introduction

The main purpose of this thesis is to study the number of ring homomorphisms over certain
rings, starting with the rings of simpler structure and to gradually carry the problem to
rings of a more cumbersome structure.

Firstly; we consider the number of ring homomorphisms between rings of integers Z. We
compute the number of ring homomorphisms between a product of rings of integers into
the ring of integers and into a product of rings of integers for few cases up to reaching a
generalization as a simple formula for each case. After that we consider the problem among
rings of integers mod n, Z,. We give few examples as illustrations.

Secondly; we consider the rings of Gaussian integers, Z[i], and those mod n. We find the
number of ring homomorphisms between these rings and between products of these rings
giving certain generalizations supported by few examples.

After that we consider the rings of Eisenstein integers, Z[p] and Z,[p]. We reach some
generalizations concerning the number of ring homomorphisms between these rings.
Finally; we consider rings of algebraic integers, Z[6], Z,,[f] where 0 has the minimal polyno-
mial p(x) = 22 +uz+v with |u? —4v| a prime and Z,,, [#]’s are unique factorization domains.
We demonstrate the proofs of each case reaching few original generalizations, namely:

n—times

N (¢ : Z[0) x Z[0) x Z[0]) — Zy[0]), N (Z[f] x --- x Z[f] — Z[0])

N (¢ : Zn[0) x Z4[0) x Z;[0) = Zy[60]), N (¢ : Zp, [0] X Zny[0] X -+ X Zn, 0] — Z4,[6])



Outline of the chapters:

Chapter One: Basic Concepts: illustrates introductory material, including basic defi-
nitions, facts and theorems in Abstract Algebra and Algebraic Number Theory that form

the building blocks of thesis.

Chapter Two: Main Results: illustrates the main results (theorems) concerning the
problem of finding the number of ring homomorphisms among the rings mentioned above.

The original results are marked with an asterisk (*).

Chapter Three: Conclusions and Future Work: we give a summary of the thesis
and the main results that were achieved. We raise some important problems that could be

sought in the future.



Chapter 1

Basic Concepts

This chapter covers the main basic concepts, definitions and theorems from
abstract algebra, number theory and algebraic number theory that are used in the theorems
and their proofs in the main results. The proofs of theorems, lemmas and corollaries in this

chapter can be found in the references as specified.

1.1 Groups

Definition 1.1. External Direct Product/Sum
Let G1,Go, . ..,Gy be a finite collection of groups. Then, the external direct product of the

groups G1,Ga, ..., Gy is:
Gl@G2@"'@Gn:{(92792)"'5971) : glEG’L} with

(91,92, -, 9n) (91, 92, - - - 9n) = (9191, 92925 - - - InGn)
where the product in each gig; s according to the operation of the the group G;

Definition 1.2. Group Homomorphism
A homomorphism ¢ from a group G to a group G is a mapping from G into G that

preserves the group operation. i.e. ¢(ab) = ¢(a)p(b)



Definition 1.3. Kernel of a Homomorphism
Let ¢: G — G be a group homomorphism over the groups G and G’ with identity elements

e and € respectively. then the kernel of  =ker¢ = {a € G: ¢(a) =€’}

Definition 1.4. Group Isomorphism

Let ¢ be a one-to-one mapping (function) from a group G onto a group G'. Then ¢ is called
a group isomorphism from G onto G’ if ¢ preserves the group operation. That is:

V oa,be G, o¢la)xp(b) = ¢plaxb). If there is an isomorphism from G onto G, then G

and G are said to be 1somorphic and we write: G = G

1.2 Rings

Definition 1.5. A commutative ring: A commutative ring R is a ring whose multi-

plication operation is commutative.

Definition 1.6. A ring with unity: A ring that has a multiplicative identity is called

a ring with unity.
Note: All rings considered in this thesis are commutative rings with unity.

Definition 1.7. The Ring of Direct Sum: Let Ry, Ro, ..., R, be rings. Then the ring:
R =®> " R = {(a1,a2,...,an)|a; € R;} where the addition and multiplication are

performed component wise.

Definition 1.8. Ideal
A subring I of a ring R is called an Ideal if it is closed under multiplication by the elements

of R, i.e. Vael andVreR,ar €l andra € 1.

1.2.1 Ring Homomorphisms

Definition 1.9. Ring Homomorphism A ring homomorphism ¢ from a ring R to a ring

R’ is a mapping from R into R that preserves the two ring operations: i.e. ¥ a, b € R:

pla+b) =¢(a) +¢(b) and  ¢(ab) = p(a)¢(b)



A one-to-one and onto ring homomorphism is an Isomorphism.

1.2.2 Some Definitions

Definition 1.10. Zero Divisor
A nonzero element a in a commutative ring R is called a zero divisor if there is a nonzero

element b € R such that ab = 0.

Definition 1.11. Integral Domain

An Integral Domain is a commutative ring with unity that has no zero-divisors.

Definition 1.12. Units
An element a in a ring R with unity is called a unit if it has a multiplicative inverse, i.e.

if 3Ja=' € R such that a-a= ' = 1.

Definition 1.13. Irreducibles:
Let R be a ring. An element a € R that is not a unit is called an irreducible element in R

if a = bc then either b or ¢ is a unit.

Definition 1.14. Primes:
Let R be a ring. An element a € R that is not a unit is called a prime in R if a | be implies

that either a | b or a | c.
Remark 1.1. Let R be an Integral Domain. Then every prime element p € R is irreducible.
Note that the converse is not true in general.

Definition 1.15. Quotient Rings:

Let R be a ring, and I < R, then the quotient ring, R/I = (r+1)={r+i: re R,i e I}.



Remark 1.2.
The operations of the ring R/I are defined as:
(ri4+D)4+(re+I)=(r1+r2)+I and (r1+1D)(roa+1)=(rire)+1.

If R is a commutative ring with unity 1, then so is the ring R/I whose identity is (1 + I).

Definition 1.16. The Ring of Integers Mod n, Z,:
The ring of integers modulo n, n € 7 is the set Z, = {0,1,2,...,n—1} under the operations

of addition and multiplication (modulo n).
Remark 1.3. If p is a prime integer, then Z, is an integral domain.

This is clear since p is a prime integer, then by Fermat’s little theorem, every nonzero

element a € Z, has a multiplicative inverse. (And by the finiteness of Z,, it’s also a field).
Definition 1.17. The Quotient Ring 7Z/nZ

The quotient ring Z/nZ = {k +nZ : k = 0,1,2,...,n — 1} with the operations of addition

and multiplication defined by:

(x+nZ)+(y+nZ) = (z+y)+nZ
(x+nZ)-(y+nZ) = (z-y)+nk
Theorem 1.1. Z/n7 = Z,

Definition 1.18. Unique Factorization Domain - UFD -:
An Integral Domain R is called a unique factorization domain (UFD) if nonzero element a €
R that is not a unit, can be written uniquely (up to associates and order of multiplication)

of irreducible elements of R; i.e. a = WHZ? p; where T is a unit.
Remark 1.4. Let R be a UF D, then every irreducible element in R is prime in R.

Proof. Let the ring R be a UFD and let a € R be an irreducible element in R. Suppose
that a | zy for some xz,y € R. Then zy = ap for some p € R. Since R is a UF D, then we
can factor each of x and y as a product of irreducible elements in R. But, by the unique
factorization property, a is an associate of an irreducible factor of either x or y, suppose

a = cd for some d | x. Then x =d-pipy---pr =ca-p1p2 - Pr = a | x O



Definition 1.19. Idempotent Elements:

Let R be a ring. An element a € R is called an idempotent element of R if a*> = a.

Remark 1.5. The only idempotent elements in an Integral Domain are 0 and 1

1.3 Fields

Definition 1.20. Field A field is a commutative ring with unity in which every element

18 a unit.
Theorem 1.2. A finite integral domain is a field.
Theorem 1.3. Any finite field F' has p" elements, where p is a prime, n € Z*.

Definition 1.21. Let F be a subfield of a field K, then K 1is called a field extension of
F denoted by K/F. Furthermore; the degree of the field extension K/F is [K/F] is the

dimension of K as a vector space over F'.

1.4 Some Number Theory

1.4.1 Some preliminaries

Definition 1.22. Euler’s Phi Function Let n € 7T, then Euler’s Phi Function, denoted
by ®(n) is defined as the number of positive integers less than n and that are relatively prime

ton. If n = phphz ... phr € ZF then:

@(n):n.ﬁ(1—1>

i1 Di

Lemma 1.1.

3 ®(d) :Z@(%) =n (1.1)
dn

dln
where ®(n) is Euler’s phi function

Proof. The first equality comes from the fact that an arbitrary divisor of n may also be

written in the form (%)



For the second equality:

Let: 1 < m < n, and ged(m,n) = d, then ged (%, %) = land 1 <% < % then this sets
up a bijection between those m, 1 < m < n — 1 for which ged(m,n) = d and the invertible
classes modulo (%), i.e. their number is ® (%)

Furthermore; the only m of 1 < m < n with ged(m,n) = n is m = n and hence
® () = ®(1) by definition and hence, summing over all possible values of d we get the

n

desired result. O

Definition 1.23. Bézout’s Identity For all m, n € Z\ {0}, with gcd(m,n) = d; there

erist x, and y € Z such that: xm + yn =d.

Remark 1.6. As a result of Bézout’s Identity, we get that; for any two relatively prime

integers m and n: there exist x and y € Z such that: mx + ny = 1.

Lemma 1.2. Let m, n, u € Z and suppose that u | mn with ged(m,u) =1, then u | n.

1.4.2 Congruences

Definition 1.24. Linear Congruence: Letzi,z0 € Z and 0 # n € Z, thenn | (21 — 22)

is written in terms of the linear congruence: z1 = zo mod n.

Lemma 1.3.  Let m,n,a,b € Z with ged(m,n) = 1 such that; an = bn mod m then:

a=b modm

Theorem 1.4 (|14], pages 192-193). Law of quadratic reciprocity Let p and q be two

(g) () ENCOICS

We'll consider the number of solutions to certain types of quadratic congruence:

distinct primes, then:

Lemma 1.4 (, exercise 2.2.8, page 63). Let p be an odd prime integer, then the congru-

ence: 2 =1 mod p® has only two solutions: x =1 mod p® and z = —1 mod p®.

Proof. Let 22 =1 mod p%, then p* | (#2 —1) = p® | (z —1)(z +1). So, we have two cases:



Case 1. If the ged (pa, (x— 1)) > 1 then p | (z — 1) since the only divisors of p® are powers
of p. And since p is an odd prime, p > 2, then p{ (x + 1) = ged (pa, (x + 1)) =1.
Then by lemma (1.2)), page 8, we see that:

p* | (z—1)(z+1) =p*|(r—1). ie. x =1 mod p®.

Case 2. If the ged (p‘”, (x — 1)) =1, then, by lemma lj we see that:

p* | (z—=1)(z+1)=p*|(x+1) = 2=—-1 mod p”

Lemma 1.5 ([15], exercise 2.2.9, page 63). Concerning the quadratic congruence:

22 =1 mod 2F

for k=1 s one solution

for k=2 s two solutions
Its number of solutions

for k>3 s precisely the four solutions:

1, 2k=1 1 2141 —1

Proof.

1. For k =1; 2> =1 mod 2, but we have that V = € Z,
then either =0 mod2, or z=1 mod 2,

then squaring both of these congruences gives us:

=0 mod2= 22=0 mod?2
= 22=1 mod2 ifandonlyif z=1 mod 2

r=1 mod2= 2z’=1 mod 2

2. Fork=2; 22=1 mod2? < 22=1 mod 4



But, we know that Vaxe€Z; x=0, 1, 2 or 3 mod4,

Then, squaring each of these congruences, we get:

=0 mod4 = 22=0 mod4
r=1 mod4 = 2°=1 mod4
r=2 mod4 = 2?2=0 mod4
=3 mod4d = 2z2=1 mod4

Which implies that: 22 =1 mod4 = =1 mod 4 or z =3 mod 4.

Fork>3,22=1 mod 28 = 2F | (22 — 1) <= 2F | (z — 1)(z + 1).

Here we have three cases to consider:

Case 1. When the ged (2’“, (z + 1)) =1, then by lemma , we have:
2°\(x—1) = =1 mod?2"

Case 2. When the gecd (2]‘3, (x — 1)) =1, then by the same lemma we have:
2| (x+1) = 2z=-1 mod?2"

Case 3. When the ged (2’“, (x — 1)) > 1 and the gcd<2k, (x + 1)) > 1; note that the

only divisors of 2¥ are powers of 2 = 2| (z + 1) and 2 | (z — 1). And

E)(5Y) o

Note that equation 2.2 is well defined since k > 2.

ol (x+1)(z—1) = 2872

Now, since %Ll) = @2;1) + 1, then:

either ged (2k_2, @) =1 or gcd <2k_2, L;”) = 1 depending on

10



whether @ is even or odd. Then, by lemma 1) we have:

k=2 (r+1) or 2k

(z —1)

((:v-;l)) or 2k—2

(522) - o

And this leaves us with four possible congruences of 2 modulo 2¥; two of which
have already been considered (z =1 mod 2¢ and 2= —1 mod 2¥). And

the other two possibilities are:

z=2"1_-1 mod2¥ and z=2"1+1 mod 2F.

Hence; x?2=1 mod 2¥ thas 4 solutions for k& > 3; namely:

1, 211, 2F 141 and -1 (1.3)

As a direct consequence of the last lemma, we consider the following two results:

Corollary 1.1. The solutions to the quadratic congruence x> = a mod 2%, for k > 3 are:

2k—1

a, —a, 2144, and —a

2

Proof. Suppose & = xg mod 2F = 2?= x§ mod 2F which implies:

k(22 —ad) = 2F|(z+z0)(x+x0)

where we have three cases:

Case 1. If ged (Qk, (x —i—xo)) =1,=2"| (r —2¢) = =29 mod 2.

Case 2. If ged (2’“, (x — $0)> =1,=2F | (z+29) = 2= —20 mod 2~

11



Case 3. If ged (2’“, (x — :):0)> >1 and ged (2’“, (x + xo)) > 1; since the only divisors

of 2% are powers of 2, then this (along with the fact that 2% | (z + z¢)(z — xo))

implies:
ok—2 <(xzx°)> <<x_2x“)> (1.4)
Note that equation 2.4 is well defined since k > 2. Also, (m+2x0) = (xfzo;r%o) = (x;xo) + xp

then either ged <2k*2, %) =1 or gcd (2’“*2, @) = 1 depending on whether

<(x_2x07)) is even or odd. Then, by lemma 1) we have:

2k—1

(e50) = o

(x +x0) or (x — x)

And this leaves us with four possible congruences of 2 modulo 2¥; two of which are:
(x =20 mod2*¥ and x=-xy mod 2’“)

And the other two possibilities are:
r=21_20 mod 2 and z=21+ 2, mod 2*.

Hence; 2?>=a mod 2¥ has 4 solutions for k& > 3; namely:

2k—1

a, —a, 2 '4a, and -—a

Lemma 1.6. Let k,a € Z with ged(k,a) =1 and a is an odd integer.

Concerning the solutions to 2% =a mod 2F.
Solution 1.1. The solutions to x> =a mod 2F are:
Case 1. For k=1, (2> = a mod 2) has one solution, namely: = =1 mod 2

Case 2. For k =2, (x> = a mod 4) has a solution if and only if a =1 mod 4, and these

solutions are: x =1 mod 4 and x =3 mod 4 Note that; for any odd integer

12



m=2n+1, m?>=4n?>+4n+1, i.e. m> =1 mod 4 (For an odd integer m, its
square value is congruent to 1 modulo 4.
So, for x> = a mod 4 to have a solution, then a = 4l + 1. Therefore, for that

a=4l+1,22=1, or=9( mod 4), i.e. =1 mod 4 or z =3 mod 4.

Case 8. For k > 3, (22 = a mod 2¥) has four unique solutions if a = 1 mod 8 and no

solutions otherwise.

Theorem 1.5. The Chinese Remainder Theorem ([13], Chapter 5)
Let m € Z such that m = ning - - - n, where the n;’s € Z are pairwise relatively prime; then:

Zm = an @an@"'@znr

1.5 Special Rings

1.5.1 The Ring Of Gaussian Integers Z|i]

The set of Gaussian integers: Z[i] = {a + bi : a,b € Z,i* = —1}
Z[i] is a ring under the operations: addition and multiplication defined by:

(a+bi)+(c+di)=(a+c)+ (b+d)i and (a+bi)-(c+di)= (ac—bd)+ (ad+ bc)i.
Remark 1.7. Z[i] is an integral domain

Definition 1.25. The Conjugate of z

Let z1 = x + yi € Z[i], then the conjugate of z1, Z1, is Z] = x — yi.

Definition 1.26. The Norm Function
The norm of an element z = (v + yi) € Z[i] is defined as N(z):

Nz)=z2-Z=(z+yi) (x —yi) = 2%+ 12
Note that Vz € Z[i], N(z) > 0.

Lemma 1.7. (, Ch.12, page 235) Over Z][i], the norm function, N, is multiplicative:
i.e. Foru,v € Z[i], N(uv) = N(u)Nv

13



Proof.
Let z1 = (z + yi), z2 = (u + vi) € Z[i], then:

N(z1) - N(22) = (22 + y?)(u? + v?) = 22u? + 220% + y?u? + y?*0? =

= z2u? + y?v? — 2(zu) (yv) + 2202 + y*u? + 2(zv)(yu) =

= (vu —yv)? + (2v +yu)? = N(21 - 22) N
Corollary 1.2 ([18], proposition 3.4.1, page 50). The only units in Z[i] are: +1, +i

Proof. Firsly, every element in {1, —1,4, —i} is a unit since; 1 and —1 are their own inverses,
and ¢ and —i are the inverses of each other.

On the other hand, suppose z; € Z[i] is a unit, and let zl_l = z9; 1l.e. z1z9 =1.

Then, taking the norm of both sides of the last equation, and using the multiplicative
property, we get: N(z1z2) = N(z1)N(22) = N(1) = 1 Recall that N is a nonnegative integer,
then the only possible solution is that N = £1, but N> 0 - N=1,ie 224932 =1
whose only integral solutions are (a = £1, and b = 0) or (a = 0, and b = £1) which yields:

z1 = %1, and z; = +1. O
Theorem 1.6 ([L3], Ch.12, page 235). Let 21, 22 € Z[i]. If 21 | z2 then N(z1) | N(z2)

Proof. Let z1,z9 € Z[i] such that z1 | z2, then 29 = 21 - w for some w € Z[i], then:

N(z2) = N(zyw) = N(z1)N(w) = N(z1) | N(z2) O
Corollary 1.3. Vz € Z[i] N(z) is even if and only if z is a multiple of (1 +1).

Proof. Let z = w - (1 +1i) for any w € Z[i]. since N(1+1i) =12+ 12 =2,

then N(z) = N(w) - N(1 +1i) =2 - N(w), hence, it’s even.

Conversely; Let z = = + yi has an even norm. Then N(z) = 22 + 4?2 = 0 mod 2. By
considering cases; first, note that if only one of x or y is an odd integer and the other is
even, then 22 +y? is an odd integer too. W.L.O.G. suppose z is even, say (2m), and y is odd,
say (2n+1). Then: 22+y? = (2m)24+(2n+1)? = 4m2 +4n’ +4n+1 = 2(2m?+2n2+2n)+1
which is odd.

Now, assume x and y are both even, say x = 2m and y = 2n. Then:

22 4+ 9% = 4m? + 4n? = 2(2m? + 2n?)
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On the other hand, if x and y are both odd, say x = 2m + 1 and y = 2n + 1: Then:
22 4+9? = 2m+1)2+2n+1)2 =dm? +dm+1+4n? +4n+1 = 2(2m? +2n° +2m+2n+1)

Deducing: =y mod 2, =2 —y=0 mod2and z+y=(z—y)+2y =2y =0 mod 2.

ot yi= <($+y)+(f—y)>+<(w+y)—(w—y)>i:(1+i)<(£+y)+(y—x)i>

2 2 2 2
U

Theorem 1.7 ([18], lemma 3.4.2, page 50). Let z € Z[i], then if N(z) is prime in Z then z

is prime in Z[i], but the converse is not true in general.

Proof. Let z = uv € Z[i] be of a prime norm p € Z*. Then, p = N(z) = N(u)N(v) = either
N(u) =1 or N(v) =1, i.e. either u or v is a unit. So z is a prime element in Z[i].

The converse is not true in general, for example, 3 is a prime in Z but N(3) = 9. O

Lemma 1.8.
Let 0 # z € Z[i], then the divisors u; of z with N(u;) = 1 or N(u;) = N(z) are units or units

multiple of z

Proof. Suppose u | z with N(u) =1, then u = £1 or u = +i.
On the other hand, if N(u) = N(z) Then, since z = uwv = N(z) = N(u)N(v) = N(z)N(v)
= N(v) = 1 and so: v = £1 or v = £i. Thus, v = £z or v = +iz. Hence, u = £z or

u = +iz. O

Theorem 1.8. Unique Factorization(, Ch.12, Theorem 215, page 238)  Every

z € Z[i] with a norm N(z) > 1 can be written uniquely as a product of primes in Z]i].

Proof.  we shall prove this theorem by Strong induction on N(z):

Let z € Z][i] such that N(z) > 1.

Suppose that N(z) = 2 which means that z = 1+ ¢ or z = —1 £ 4. Then, by Theorem
(L.7), = is a prime in Z[d].

Now, suppose that V z € Z[i] with 1 < N(z) < k z is a product of primes in Z[i]. Then:

If there isn’t any Gaussian integer with N(z) = n, then there is nothing to prove.
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So, suppose there is a z € Z[i] such that N(z) = n. If n is a prime, then we’re done. If not,
that is, if n is a composite integer, then write z as a non-trivial factorization: z = uv with
N(u), N(v) < N(z) = n, and by our inductive hypothesis, u and v are each a product of
primes in Z[i]. Hence, z = uv is a product of primes.

Now, to prove uniqueness: If z is a prime, then it’s clearly unique. And if N(z) = 2, then,
as we have seen above that such a z is prime. Proceeding by induction on z:

Now, for the cases N(z) > 3: assume that every z € Z[i] with 1 < N(2) < n, z has a unique
factorization of primes in Z[i].

So, let z has a norm N(z) = n and assume that z has two factorizations:
Z=UlUy UL = V1V - - U] (1.5)

Now, since uj is a prime and uj | 2z = wu; | vivg---v;. And since the v;’s are all primes,
then wu; | v; for some j. Reordering, we may write u; | vj,, but u; and vj;, are primes, then

w1 = €v;, for some unit € € {£1,+i}. Then the factorization equation (1.5)) will become:
2 = EVj U Up = Vj V2 - U] (1.6)
Cancelling v;; from both sides leads:

21 = EUQUZ * + + U = VU3 - - - U] (1.7)

Note, N(z) = ( ]\J]ZZ)J < N(2)

Now, note that since ¢ is a unit, then gusy is a prime, and equation (2.8) gives us two prime
factorizations for z1, and by our inductive hypothesis, z; has a unique prime factorization
with k£ — 1 primes on the left and [ — 1 ones on the right. Therefore, k —1=1—-1= k=1

along with some reordering, we get u; = evj;. And therefore the factorization of z is unique.

Note that, Remark (1.7)) on page 13 implies that Z[i] is a UFD. O
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As a direct consequence of this theorem, we get the following corollary:

Corollary 1.4. Let w € Z[i] be a prime. Then uwv =0 mod w if and only if u =0 mod w

orv=0 mod w.

Theorem 1.9 (, Theorem 3.4.3, page 51). Fvery prime p € Z™ is a composite integer

in Z[i] if and only if it is a sum of two squares.

Proof. Let p € Z* be a prime that is composite in Z[i], say p = uv for some non-units u,
v € Z[i]. Then, N(p) = p?> = N(u)N(v) = N(u) = p, letting u = x + yi, then p = N(u) =
22 +y%. Conversely; Let p be a prime in Z* that is a sum of two squares, say, p = 22 + 32,

then p = (z + yi)(x — yi) is a composition of p in Z[i]. O

Theorem 1.10 ([18], ch.3). Let p € Z* be a prime integer such that p =3 mod 4, then p

is not a sum of two squares and it would also be prime in Z[i].

Proof. First of all, let © € Z, then z is either even or odd. If x is even, then x = 2k for
some k € Zt = 22 = 4k*> =0 mod 4.

If z is odd, then z = 2k +1 for some k € Z* then 22 = (2k+1)? = 4k> +4k+1 =1 mod 4.
So, the square of an integer is either 0 or 1 mod 4. Now, adding any two squares ( mod 4):
(04+40=0),(140=1),(1+1=2)( mod4). In each case we never get 3 mod 4, so any
prime p € ZT that is not congruent to 3 modulo 4 cannot be a sum of two squares.
Moreover, in view of theorem , if a regular prime p is not a sum of two squares, then

it cannot be composite in Z[i] and hence it is prime in Z[i]. O

Note, 2 is a special case, since 2 = (1+i)(1—1) but (1+i¢) = i(1—i) and (1—i) = —i(1+17).

That is, the factors of 2 are each a unit multiple of each other. and so 2 = —i(1 +4)2.
Theorem 1.11 (18], ch.3). Let p € Z* be a prime integer; then the following are equivalent:
(1) p=2orp=1 mod 4.

2=_1 mod 4 has a solution.

(2) The congruence equation: x
(3) p= 2%+ y? for some z, y € Z.
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Proof. To show (1) = (2): If p = 2, then every odd integer satisfies the congruence z? = —1
mod 2.

Now Let p be an odd prime in Z* such that p = 1 mod 4: Consider the polynomial

Wwrl = <W<(p21>> - 1> <W((p21)> + 1) (1.8)

where the coefficients are taken modulo p. Counting the number of roots of these polyno-

factorization:

mials, keeping in mind that the number of roots of any polynomial of degree k is less or
equal to k.

The left hand side of (2.9) has the nonzero integers mod p as roots, which are (p — 1) in
number by Fermat’s little theorem.

(p—1)

While on the right hand side, the first polynomial, <W( 2 ) — 1> is of degree (p —1)/2

and so the number of its roots is at most (p — 1)/2 ( mod p). And this implies that the

(p—1)

second polynomial, <W< 2 ) + 1) must have some roots ( mod p), say r. That is: r

(p—1)
satisfying the congruence equation: r( 2 ) = —1 mod p.

Now, p = 1 mod 4 by hypothesis assumption, so p = 4m + 1 for some m € Z. So,

(p—1)
(%;1)) = 2m (an even integer) and so, 7“( 2 ) =—1 mod p < (#™)* = -1 mod p prov-
ing (2).
Now, to show (2) = (3): Suppose for some x € Z satisfies > = —1 mod p, this implies
that p | (z2 + 1) (in Z), and so (in Z[i]):
pl(x+i)(x—1) (1.9)

Claim: p is a composite integer in Z[i]. For, if not: letting p be a Gaussian prime. Then,
by equation (2.10), p | (z +4) or p | (x —¢). Which implies (z £ 1) = p(a + bi) = pb = £1
which is impossible. Hence p is composite in Z[i] and therefore p is a sum of two squares

by theorem (|1.9)).
We have already proven that (3) = (1) above. O
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Theorem 1.12. (@, Theorem 3.4.11, page 54) Let u be a prime in Z[i|, then u is a unit

multiple of one of the following:

(i) (1+1)

(ii) v or v with N(v) = p, where p is a prime in Z and p=1 mod 4
(111) p where p is a prime in Z* and p =3 mod 4

Note that the norm of the primes in part (i) and (ii) are also primes in Z*. But the
norms of the primes in part (iii) are of the form p? where p is a prime in Z* and p = 3
mod 4. Also note that if u € Z[i] is a prime, then N(u) = p or = p? where p is a prime in Z*
and u | p. Moreover, note that if u € Z[i] is a prime such that u # (1 +4) or u # a - (1 4 1)
where « is a unit, then N(u) is an odd integer. So, if u € Z[i] such that N(u) is even, then

u is divisible by (1 + 7).
Lemma 1.9 ([9), Theorem 1, page 604). If a € Z* such that a > 1, then Z[i]/(a) = Zq]i]

Proof. Define ¢ : Z[i] — Z4[i] by ¢(x + yi) = [z]a + [ylai, where [ - ], represents the
equivalence class modulo a.

Note that ¢ is a surjective ring homomorphism; since ¢(a) = [a], = [0]4 so a € ker(¢) and
hence (a) C ker(¢). On the other hand:

if ¢(x + yi) = 0, then both = and y are congruent to 0 mod a, so x = az’ and y = ayl for
some ',y € Z.

s c+yi=axr +ayi=alx +y'i) e (a).

= ker(¢) = (a) and by the First Isomorphism Theorem for rings, we have:

Zi)/(a) = Zy]i]. O
Corollary 1.5. Z[i]/{((1 4 i)") = Zon/2]i]

Proof. Note that since (1 4 i) = 2i, then the ideal {(1 4 )") can be written as:
(L+0)m) =(2)™?) = (2/?),
Therefore, by Lemma (1.9) above: Z[i]/((1 +i)™) = Z[i]/(2™/?) & Ly )2 ]i]. O
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1.5.2 The Ring of Eisenstein Integers Z|[p]
Definition 1.27. The ring of Eisenstein integers; Z[p| = {x+yp : 2,y € Z, p*+p+1 =0}

Note that p = 3™ = % (—1 + z\/g), so p satisfies p? + p+1 = 0.
The three cubic roots of unity are: 1, p and p?, and the ring Z[p] is the ring of algebraic
integers in the quadratic extension Q(y/—3) of Q.
The elements of Z[p] are complex numbers of the form u = a + bp with a, b € Z.

Let u = a + bp € Z[p] and the complex conjugate of u is ¥ = a + bp>.
Definition 1.28. For each u = a + bp € Z[p], the Norm is defined by:

1
Nu)=u-u=(a+bp) (a+0bp?) =a®>+b*>—ab= (a—2b> —1—21)220 (1.10)

Lemma 1.10. Ouver Z[p|, the norm function is multiplicative:

i.e. Foru,v € Zlp], N(uv) = N(u)N(v).
Proof. Let u=a+ bp,v=c+dp € Z|[p|, then:

Nu)=a?>+b?>—ab and N(v)=c?+d?— cd.

Now, uv = (a + bp)(c + dp) = ac + adp + bep + bdp?, but p? = —1 — p, so:

N(u)N(v) = (a® +b* — ab)(c* + d* — cd)
=a’® + a®d® — d’cd
+ b2 + b?d® — bPed

— abc® — abd® + abed
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On the other hand, uv = (ac — bd) + (ad + bc — bd)p and so:

N(uww) = (ac — bd)? + (ad + be — bd)? — (ac — bd)(ad + be — bd)
= a%® + b2d? — 2abed + a*d? + b2
+ 2abed + b*d? — 2abd? — 2b%cd — a*cd
— abc? + abed 4 abd? + b*ed — b2 d?
= a?c® + a®’d® — a®cd
+ b2 4+ b?d? — bcd
— abc® — abd® + abed
= (a®> +b* — ab)(c? + d* — cd)

= N(u)N(v)

Lemma 1.11. Z[p] is an Integral Domain.

Proof. Let a,b € Z[p] and suppose that 0 ¢ {a, b} and ab = 0.

Let a = x1 + x2p, b = y1 + ya2p, where x1, 2, Y1, y2 are nonzero integers (by assumption of
the non-zero-ness of a and b). Then we have:

0 = ab = (x1 + 22p)(y1 + y2p) = T1y1 + T1Yy2p + Toy1p + T2y2p® # 0 since non of the four

terms on the right hand side is equivalent to zero. Therefore, Z is an Integral Domain. [

Proposition 1.1. Z[p| is an Euclidean Domain.

Proof.

Let N denote the norm on Q. Let u and v be two elements of Z[p] with u # 0. Then ¥ = Zg

v

But vv = N(v) is a positive integer. Also, uv lies in Z[p| since both v and v are elements of

Zp] and Z[p] is a ring. So, % = “Z =y + sw for some r, s € Q.

7 v VU

Now, choose m, n € Z such that [r —m| < 1 and |s —n| < § and set 2 = m + nw then

z € Z[p] and



< 12+11+12—3<1
—\2 2 2 2/ 4

Now, set 7 = u — zv then 7 € Z[p|] and either 7 = 0 or:

N(T)ZN(U (Zz)) :N(v)-N(Efz) < Z x N(v) < N(v)

So, the norm N makes Z[p| into an Euclidean Domain. O

Remark 1.8. Since the ring Z[p| with the norm described above is an Euclidean Domain,

ED then it is a PID and hence a UFD.

Lemma 1.12. (, Ch.12, sec. 12.9, page 241-242) Let € € Z[p|, then ¢ is a unit if and

only if N(¢) = 1. Moreover, the only units in Z[p] are {£1,4+p, £p*}.

Definition 1.29.

Let u, v € Z[p]. Then u and v are associates if there exists a unit € such that u = v

Note that if u € Z[p] then the associates of u are:

Definition 1.30.
Let u € Zlp], then u is called a prime in Z[p] if u is not a unit and whenever ulvw implies

that ulv or u|w.

Theorem 1.13. Classification of Fisenstein primes (D/, Theorem 8, page 65)

The primes of Z[p] are (up to multiplication by a unit):
1. Rational primes p € Z such that p=2 or p =5 mod 6.

2. The Eisensteinen integers, u = x + yp with (x? + y* — xy) = p where p is a rational

prime in Z and p =1 mod 6.

3. The number A =1 — p.

22



Proposition 1.2.  Let u € Z[p] with N(u) = p for some prime p € Z,

then w is a prime in Z[p).

Proof. Let u € Z[p] with N(u) = p for some prime p € Z. And suppose u is not a prime in
Z[p], then, since Z[p] is an Euclidean Domain, then wu is reducible in Z[p]. Hence u = wv
for some w, v € Z[p] with N(w) > 1 and N(v) > 1. But note that p = N(u) = N(w)N(v)

which cannot be true since p is a rational prime. Hence, u is a prime in Z[p). O
Lemma 1.13. An analogue to Lemma (1.9), page 19, For any n € Z, Z[p]/(n) = Zy|p]

Proof. Let r € Z, and let [r],, denote the equivalence class ( mod n) in Z. Consider the

mapping:
U Llp) — Znlp) defined by :

& (r+ 5p) = [r]s + [slup.

1 is a surjective ring homomorphism, and the Kernel kert) = (n), and by The First Iso-

morphism Theorem for rings, we have Z[p|/(n) = Zy[p] O

Definition 1.31. Let u be a prime in Zlp], then wu is called primary if u = 2 mod 3.

Which means that if u = x + yp is a complex prime, then x =2 mod 3 and y =0 mod 3
Lemma 1.14. Every prime u in Z[p| divides a rational prime.

Proof. First of all, note that every Eisensteinen integer w divides its norm in Z[p], for
N(w) =w - w.

Now, let u be a prime in Z[p], then u divides a rational integer, namely its own norm. Let
the prime factorization of the norm of u, N(u), in Z be:

Nu) =u-u = pipe---pr = u | p1p2--- Pk, but w is a prime in Z[p]; hence, by Euclid’s

Lemma in Z, u divides one of the (prime) factors on the right hand side. O

Proposition 1.3. For any prime element u € Z[p|, Z|p]/(uZ|p]) is a finite field with N(u)

elements.
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Proof. Firstly, we’ll show that Z[p]/(uZ|p]) is a field:

Claim: Z[p]/(uZ]p]) is an Integral Domain.

Proof: Let a, 8 € Z[p]/(uZ[p]) be nonzero elements, and assume that a3 = 0.

Write a = Ay + uAs, B = By + uBy for some Aj, A9, By, By € Z[p], with (according to our
assumption) Ay # 0, By # 0. Then:

af = (A1 4+ uAs)(B1 + uB2) = A1 By + uC where C = A1 By + A3 B + uAsBs.

Obviously, af # 0 in Z[p]/(uZ|p]) since A1 B; # 0 (for Ay, By € Z[p| which is an Integral
Domain by Lemma . |
Now, let v € Z[p] be any element such that v Z 0 mod u. Since Z[p] is an Euclidean
Domain, then there exist «, 5 € Z[p] such that: av + Su = 1, which implies that av = 1
mod wu, therefore, every nonzero element of Z[p|/(uZ[p]) is a unit, and thus Z[p]/(uZ[p]) is
a field. Now, in order to show that Z[p]/(uZ|p]) is a finite field of N(u) elements; we have

three cases to consider:

(i) u = p, where p is a prime such that p =2 mod 3.

Claim: The set S = {x + yp|z,y € Z,0 < 2,y < p} forms a complete set of represen-

tatives ( mod p).

Proof: Let a = a + bp € Z|[p], then a = mp + =, b = np + y for some m,z,n,y € Z
with 0 < 2,y < p and & = (z + yp) mod p. So, suppose z +yp =z +y p mod p
with 0 < z,y,2’,y < p. Thus: (%f”) + <(y;f’)> p | € Zlp]; which implies that

(%f”) € Z and ((y;f”)> € Z which can be true only if (z—2z') = 0 and (y—y') =0
= 2z =21,y =y . And this in turn implies that the set S above forms a complete set

of representatives mod p n

Hence the number of elements of (Z[p]/(uZ[p]>) is p% = N(p).

(ii) w is a prime in Z[p] with N(u) = wu = g, where ¢ is a prime in Z such that ¢ = 1
mod 3.

Claim: The set T'={0,1,2,...,q—1} forms a complete set of representatives mod u.

Proof: Let u = x +yp, then ¢ = N(u) = 2%+ y? — xy. Note that ¢ | y since if not, then
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q | u and ¢ | w implying that ¢ is a unit in Z[p] which is absurd.

Now, let a = a + bp, then there exist some z € Z such that zy =b mod ¢, and hence
a—zu=a—zx mod q, = o = —zzr mod u. This means that every element of Z[p]
is congruent to a rational integer modulo u. And for each k € Z, k = qc + d for some
c,d € 7Z with 0 < d < q. Therefore, kK = d mod ¢, hence k = d mod u. Thus, every
element of Z[p] is congruent to an element of 7 mod wu.

Now, assume d = d mod uwithd,d € Zand 0 < d,d < q which gives us d—d = uv
for some v € Z[p], and (d — d )2 = ¢N(v) implying that ¢ | (d —d') < d=d mod ¢
yielding: d = d'. Thus T, as given above, forms a complete set of representatives

mod u. [ |

Therefore; the number of elements of (Z[p]/(uZ[p])) is q¢= N(u).

(iii) w =1 — p, then N(u) = N(1 — p) = 12 + (=1)? — 1(-1) = 3.
Claim: The set U = {0, 1,2} forms a complete set of representatives mod wu.

Proof: Let a = a + bp, then a +bu = (a +bp) +b(1 —p) =a+bp+b—bp=a-+0.
Thus, a 4+ bu = a + b, hence a = (a + b) mod u and therefore, every element of Z[p]
is congruent to a rational integer mod w. Thus, for each k € Z, k = 3¢ + d for some
c,d € Z with 0 < d < 3. Hence k = d mod 3 and so k = d mod v implying that
every element of Z[p] is congruent to an element of U = {0, 1, 2}.

Now, suppose that d = d mod u with d, d €Zand 0 < d, d < 3, then d —d = wv
for some v € Z[p], and (d — d )? = 3N(v) implying that 3 | (d —d ) < d=d mod 3
and hence d = d . Hence, U, as given above, forms a complete set of representatives

mod u. [ |

Therefore, the number of elements of (Z[p]/(uZ[p])) is 3= N(u).

Conclusion 1.1. Consequently; we conclude that: Z[p]/{((1 — p)) = Z3|p]
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1.5.3 Rings Of Algebraic Numbers

Definition 1.32. Algebraic Number
Let P(z) = apa™ + an_12" ' + ap_22™ 2 + -+ + a1z + ag be a polynomial (not necessarily
monic) with coefficients a; € Q (The rational numbers), then & € C is called an algebraic

number if it is a root of P(x), i.e. If P(§) = 0.

Definition 1.33. Algebraic Integers

Let £ € C, then £ is called an algebraic integer if it is a root of a monic polynomial:

P)=z"+ap, 12" ' +an_oz" 2 + - + a1z + ag

where a; € Z for all i andn € Z7.

Theorem 1.14. (@, Theorem 21.2, page 371) Let & be an algebraic number. Then there
exists a unique, monic, irreducible polynomial m(x) € Q[x] such that £ is a root of, and if

further & is a root of another polynomial p(x) then m(x)|p(x).

Proof. Let Slz] = {m;(x) € Q[x] : m;(§) = 0,i € Z}, i.e. S[x] is the set of all polynomials
for which ¢ is a root of. Then, choose m(z) € S[x] to be of minimal degree, then:

Claim: m(z) is irreducible

Proof: Suppose m(z), as chosen above, is not irreducible. Then it can be factored as a
product of non-unit polynomials, say: m(z) = f(z)g(z), with:

0 <deg(f(x)),deg(g(z)) < deg (m(x)) and since { is a root of m(z), then:

0=m(&) = f(&)g(&). But C is an integral domain, then either f(£) = 0 or g(¢) = 0 con-
tradicting the minimality of deg (m(x)) for which ¢ is a root of. Thus, m(z) is irreducible. B
For uniqueness, suppose there are two polynomials of smallest degree, call them my (), ma(z)
such that £ is a root of. By division algorithm, there exist polynomials ¢(z),r(z) € Q[z]
such that m;(x) = q(x)ma(z) + r(z), with deg (r(x)) = 0 or deg (r(z)) < deg (ma(x)).
Now, mi(€) = q(€)ma(€) + r(€) with m1(€) = 0,ma(€) = 0 = r(¢) = 0 contradicting
the minimality of the degree of mq(z) and mgo(z) implying that r(z) = 0. Therefore,

mi(x) = q(x)ma(x) but my(x) and ma(x) are of same degree, makes deg (¢(z)) = 0. i.e.
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q(x) is a unit. Hence, m(x) is unique up to associates, and so we may assume it’s monic.

Now, let p(z) € Q[z] such that p(§) = 0. Then, by the minimality of the degree of m(x),
we have deg (p(z)) > deg (m(x)) and so, if m(z) 1 p(z) then by the irreducibility of m(z),
m(z) and p(x) are relatively prime, so ged (m(x), p(z)) = 1. Then, 3 a(z), b(x) € Q[x] such

that a(z)m(x) 4+ b(z)p(z) = 1. And so, a(&§)m(&) +b(&)p(€) = 1 an obvious contradiction,
—_——

~—
=0 =0

hence m(x)|p(z). O

Definition 1.34. Minimal Polynomial
Let £ be an algebraic number, then the monic polynomial m(x) € Q[x] of smallest degree

such that m(€) = 0 is called the minimal polynomial of &.

Definition 1.35. The Degree of &
The degree of an algebraic number, & over a field F' with minimal polynomial m(x) is the

degree of m(x).

Definition 1.36. Quadratic Fields
Let K be a field extension of Q of degree 2 (i.e. [K : Q] = 2), then this field extension is

called a quadratic number field.

Definition 1.37. Number Field

An extension of Q, IC, with finite degree is called a Number Field.

Definition 1.38. The Ring of Integers of a Field
Let IC be a number field, then the set of elements n € K such that n is a root of a monic

polynomial with coefficients in Z, denoted by Oy is called the ring of integers of K; i.e:
Ox={nek: fn)=0, for some monic f(zx) € Zlx]}

And it’s also called an ”Order” of a number field.

Remark 1.9.

Let 0 be an algebraic integer which is a root of a quadratic minimal polynomial, p(z), where
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p(z) = 2%+ ux +v over Z, then the generation (aggrigation) of all algebraic integers of the
form:

§= Do+ 0
where By, f1 € Z forms a quadratic number field, denoted by Z[0]. Then we may write:

0 _ &+(=Bo)

- B1
_ —utrVul—4v
2

= % AL where

vm o= 20+u

and m is a square free integer.

Therefore, any number ¢ € Z[f] can be represented by:

Hence, the fields Z[f] and Z[\/m] are identical. Moreover, m is called the radicand of the
quadratic field K = Z[/m)]

Definition 1.39. Conjugate of &

The conjugate of any algebraic integer & = “JFQ‘/E is € given by:

£ u—+/m
2
Definition 1.40. Trace and Norm of an algebraic integer

The trace and norm of any algebraic integer & € IC, denoted by Tr(§) and N (§) respectively,

are given by:

ﬂ

Tr(¢) = €+& = ’qug/m_'_qum = u
and (1.11)
NEO = €8 = () () = (4

[\
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Chapter 2

Main Results

This chapter presents the theorems and results concerning the number of ring
homomorphisms over the rings of integers, the rings of Gaussian integers, the rings of
Eisentein integers and rings of certain algebraic integers. Proofs of the results are presented
in full details. The original results and theorems are marked with an asterisk (*). Several
examples are given as an illustration to show how the formulas given in the theorems are
excellent tools for finding the number of ring homomorphisms without having to go through

all the intricate calculations.

2.1 Rings of integers
Lemma 2.1. The number of ring homomorphisms ¢ : 7 — 7 is 2

Proof. Let ¢: Z — 7Z Dbe aring homomorphism, and let ¢(1) = x, then:

For any m € Z, ¢(m) = ¢(m - 1) = m - ¢(1) = mzx. Therefore, any ring homomorphism
from Z into Z is completely determined by ¢(1), i.e. by the value of x. Now, since 1 is an
idempotent, then so is ¢(1) as well. So we need to find all idempotent elements in Z:
=2z = 2>-2=0 & z(r—1) =0 = 2 =0 or z =1 Therefore, (1) = 0 or
¢(1) = 1. Which yields two homomorphisms:

p(m)=0 and p(m) =m O
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Lemma 2.2. The number of ring homomorphisms: ¢: Z — ZX7Z is 4

Proof. Let ¢ :7Z — Z x Z be a ring homomorphism. Then, 1 is an idempotent element
in Z then so is ¢(1) an idempotent in Z x Z. And the idempotent elements of Z x Z are:
(0,0) (1,0) (0,1) (1,1) Also, by the property of preserving the multiplication;

we have ¢(n) = n¢(1) and hence we have the following four homomorphisms:

' (0,0) (0,0)
(1,0) (n,0)
where o(1) = hence ¢(n) =
(0,1) (0,m)
(1,1) (n,n)

Corollary * 2.1. The number of ring homomorphisms:

k—times

—NN—
b: Z — ZXLx--X1L is 2k

Proof. Based on the same argument of the previous lemma;
k

—f—
we have for ¢ : Z —Z x --- X Z
®(n) = ne(1) and by the idempotent-ness property; we have ¢(1) = e; where e; is a k-tuple

with 1 in its 7*" coordinate and zeros elsewhere.

Hence, the total number of ring homomorphisms equals the number of the e;’s which equals
to the total number of all possibilities of arranging (with order) the 0’s and 1’s in a k-tuple:

which is simply 2*. O

{1} Henceforth: every result, corollary or theorem that is marked with an asterisk , *, is an original result
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Example 2.1. Consider the ring homomorphisms: ¢ : 7 — 7 X Z X L X 7:
Since 1 is an idempotent in Z then so is ¢(1) in Z X Z X Z X Z.
And so ¢(1) = one of the 16 idempotents in Z x Z x Z. X Z and ¢p(n) = nd(1), and thus we

have 16 ring homomorphisms:

(0,0,0,0), (1,0,0,0) ( (0,0,0,0), (n,0,0,0)
(0,1,0,0), (0,0,1,0) (0,7,0,0), (0,0,n,0)
(0,0,0,1), (1,1,0,0) (0,0,0,n), (n,n,0,0)
(1,0,1,0), (1,0,0,1) (n,0,n,0), (n,0,0,n)
o(1) = hence o(n) =
(0,1,0,1), (0,1,1,0) (0,n,0,n), (0,n,n,0)
(0,0,1,1), (1,1,1,0) (0,0,n,n), (n,n,n,0)
(1,1,0,1), (1,0,1,1) (n,n,0,n), (n,0,n,n)
\ (0,1,1,1), (1,1,1,1) \ (0,n,n,n), (n,n,n,n)

Solution by using the formula in the theorem.

By using the simple formula in the theorem, we have:
./\/'(gb L =L XL XL X Z) = 2% = 16 homomorphisms
Lemma 2.3. The number of ring homomorphisms:
¢: LXZ — Z is 3
Proof. Note that ¢ is completely determined by its action on the idempotent elements in

Z x Z; i.e. by the values of qb((l,())) and qb((O, 1)>
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Let ¢<(1, 0)) = 71 and <b<((), 1)) = x9. Then, by preserving the multiplication we have:

n o= o((1L0)-(10) = ¢(1,0) ¢(1,0) =
0 = o(0-00) = o(1,0)-6(0.1) = ww
0 = o(OD- o) = ¢(©OD)-6((1L0) = wm
= = o(0.)-0.1)) = ¢(0.1)-6(0.)) = 3

Therefore; from the first two equations; we have: x% =z1=>x1=00rzy=1and z129 =0

= x1 =0o0r 9 = 0. And so, if 1 = 1 then 2o = 0.
Similarly, from the last two equations; we have a;% =29 = x9=00r x9 =1 and zox1 =0
= 29 =0o0r 1 =0. And so, if zo = 1 then z; = 0.
Hence; we have three homomorphisms: One that maps everything to zero and the other
two homomorphisms are determined by mapping one of the elements: (1,0),(0,1) to 1 and

the other one to 0. O]

By a similar argument we can conclude the following generalization:

Corollary * 2.2.  The number of ring homomorphisms:
k—times
e N —
¢p: LXZLX---X1L — Z is (k+1)
Proof.

k—times
For ¢ to be an isomorphism, it must map idempotent elements in Z X Z X --- X Z into

idempotent elements of Z. Thus, ¢ is completely determined on its action on the idempo-
k—times

th

e N—
tents of Z X Z x --- x Z which are e;’s where e; is the k — tuple whose 7*"* component is

1 and 0’s elsewhere.
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Now, let x; = ¢(e;), then for preserving the multiplication of homomorphisms, we have:

Ty = ¢(€1'€1> = ¢(er)-gpler) = af
0 = ¢<61'€2> = ¢le1)-dle2a) = w1220

0 = ¢<61'6k> = ¢(e1) - dler) = may

0 = ¢<€2'€1> = ¢(e2)-dler) = zam
Ty = ¢<62'62) = ¢(e2) - ¢plea) = =3

0 = ¢<62'€k> = ¢(e2) - pler) = mwowy

0 = ¢><6¢'61) = ¢(e) pler) = zim
) = o¢(e) Plea) = a2

~

T = ¢(€z"€¢) = ¢(e)-gples) = aF
0 = ¢<6z"€z‘+1> = ¢(ei) - dleiy1) = miwip

0 = ¢<€z"€k> = ¢(ei)-dlex) = mwmy

So, from the set of equations for each i, we get that:
x?:xijxi:00r1‘i:1andximj:()fori;éj:xi:OOrxj:()

And if z; = 1 then z; = 0 for all j # 1.

Therefore, we have (k+ 1) homomorphisms; One that maps everything to 0, and the other k
homomorphisms map one of the idempotent elements, ¢;’s, to 1 and maps the other (k— 1)

ej’s to 0. O
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Lemma 2.4. The number of ring homomorphisms:
¢: ZxZ — ZXZL is 9

Proof. Note, since any element of Z x Z is written in the form (z,y) = z(1,0) + y(0,1),
then any

ring homomorphism is completely determined by the values (;5((1, O)) and qb((O, 1))
Moreover; since (1,0)% = (1,0) and (0,1)? = (0,1) (idempotents), then gb((l,())), d)((O, 1))
must also be idempotents in Z x Z.

Noticing that the idempotents of Z x Z are: (0,0), (1,0), (0,1) and (1,1). So,
(b((l, O)) and <Z><(O, 1)) would take (temporarily speaking) any of these idempotent values.

Considering the following table:

¢((1,0) | o(©.1) | ¢(@w) o(10) | o(0.) | ¢(@w)
(0,0) (0,0) (0,0) (0,1) (0,0) (0, z)
0.0 | (L0 | (0 0.1 | (1o (v)
0.0 | ©1 | 0y ©.) | 01 | (Oz+y)
0.0 | L) | G ) | LY | Ga+y)
Lo | (00 | @0 Ly | (0.0 (z,)
(1LO) | (1L0) | (e47.0) Ly | 10 | (g
Lo | 1 | @y Ly | 01 | @a+y)
Lo | (LD | @+yy) Ly | (L) | @Fyaty)

Where we have scratched out every (x + y) to preserve the idempotent-ness property; so:
For (b((l, 0)) = (0,0) it combines with all 4 choices for ¢((0, 1))

For d)((l, 0)) = (1,0) it combines with only 2 choices for ¢<(0, 1)), and similarly;

For gb((l, 0)) = (0,1) it combines with only 2 choices for qS((O, 1))

While for ¢((1, 0)) = (1,1) it combines with only 1 choice for ¢<(O, 1))

Hence, giving us a total of 1 x4+4+2x2+1x1=9 choices.

Therefore; the number of ring homomorphisms is 9 homomorphisms.
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Note that we could have proven this result in the following manner:

Let ¢: ZxZ — 7ZxZ bearing homomorphism.

Then note that any element (z,y) € Z x Z can be written as:

(z,y) = x(1,0) + y(0,1). Therefore, any ring homomorphisms, ¢, is completely determined
by the values of gb((l, 0)) and gb(((), 1))

Moreover, since (1,0)? = (1,0), and (0,1)? = (0,1) then (1,0) and (0, 1) are idempotents,
and so must also qb((l, 0)) and qb((O, 1)) be idempotents.

Note that the idempotents elements of Z x Z satisfy (a?,b?) = (a,b) which gives us that

a,b=0or 1. And so the idempotent elements of Z x Z are:
0,00 (1,00 (0,1) (L,1)

Now, taking all possible values of (1,0) and (0, 1) from the list of idempotents, and keeping
in mind that (1,1) is an idempotent gives us that we have to choose for z,y in qﬁ((x, y))

from {0, z,y}, giving us that the number of all these possibilities is:

(2+1)=3>=9

Corollary * 2.3.  The number of ring homomorphisms:
¢O: LxXl — LXLXL s 27

Proof. Similar to the argument in the proof of Result I, any ring homomorphism is com-
pletely determined by the values <;5<(1, O)) and qﬁ((O, 1))
Now (1,0) and (0,1) are idempotents implying that ¢<(1,0)> and qb((O7 1)) must also be
idempotents in Z x Z x Z. Noticing that the idempotents of Z x Z x Z are:

(0,0,0) (1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1) (1,1,1)
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Hence, ¢<(1, 0)) and ¢<(0, 1)) would take any of these idempotent values. But, to preserve

the idempotent-ness property, we see that:

e For gb((l,O)) = (0,0,0) it can combine with all 8 choices of the idempotents for
6((0,1)).

e For ¢((1,0)> e {(1,0,0),(0,1,0),(0,0,1)} (i.e. One 1 in its coordinates), then:
d)((l,O)) may combine with only 4 choices for gf)((O, 1)), and we have three cases

of a single 1 in gb((l, 0)) ’s coordinates, thus we have 3 x 4 choices.

e For ¢<(1,0)) e {(1,1,0),(1,0,1),(0,1,1)} (i.e. Two 1I’s in its coordinates), then:
gb((l, 0)) may combine with only 2 choices for gb(((), 1)), and we have three cases of

a double 1 in ¢<(1, O)) ’s coordinates, thus we have 3 x 2 choices.

e Finally, for ¢((1, 0)) = (1,1,1) (Three 1’s in its coordinates), (b((l, O)) may combine
with only one idempotent value for (b((O, 1)), namely (0,0,0), and we only have one

such case, so 1 x 1 choices.

Note that we can summarize the previous cases by using some Combinatorics:
For the first case, we have one case of choosing 0’s out of 3 giving us (g),

For the second case, we have two cases of selecting 1’s out of 3 = (:15),

For the third case, we have four cases of selecting two 1’s out of 3 = (;’),

For the fourth case, we have eight cases of selecting three 1’s out of 3, = (g)

Therefore, the total number of ring homomorphisms is:

(§>23+ <§)22+ <;>2+ @)20 = 2+1)° =3 =27

Where we have used the combinatory’s identity:

En: (’:) L93-i — gn (2.1)

=0
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Corollary * 2.4.  The number of ring homomorphisms:

k—times

——N—
o XL — ZXLX---X17L

is 3k

Proof. Similar to the argument above; any ring homomorphism is completely determined

by the values <Z><(1,0)> and (;5((0, 1))
Now (1,0) and (0,1) are idempotents implying that ¢<(1,0)> and qb((O, 1)) must also be

k—times

——NN—
idempotents in Z X Z X - -+ X 7.

k—times

—t—
Now, the idempotents of Z X Z x --- x Z are the 7 2% 7 [k-tuples fj whose coordinates

are 0’s and 1’s only. So, we have the following cases:

k—times

/—/A .
e For qﬁ((l,())) = (0,0,---,0), then it may combine with the 2* choices for ¢<(O, 1)),

giving us 1 - (lg) choices.

e For qb((l, O)) equals to an k-tuple with only one single 1 in its coordinates and zeros
elsewhere. Then it would combine with (’f) of the values of ¢((0, 1))

and we have 2 such cases.

e For ¢<(1,0)> equals to an k-tuple with only two 1’s in its coordinates and zeros
elsewhere. Then it would combine with (’2“) of the values of gf)(((), 1))

and we have 22 = 4 such cases.

e For d)((l,O)) equals to an k-tuple with only (k — 1) 1’s in its coordinates and zeros
elsewhere. Then it would combine with (kﬁl) of the values of gb(((), 1))

and we have 28~1 such cases.
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e For gb((l, O)) equals to an k-tuple with all 1’s in every coordinates. Then it would
combine with (]Z) of the values of (;S((O, 1))

and we have 2% such cases.

Therefore, the total number of ring homomorphisms is:

k k k k—1 k k—2 k 2 k 1 k 0o _ k
<0>2 +<1)2 +<2>2 ot ()2 )2 ()2 =8

where we have used the identity (2.1)) O
Corollary * 2.5.  The number of ring homomorphisms:

¢: LXLXZL — ZXZLZXZ s 64

Proof. Similar to the argument of the proof of Lemma (2.4)), any (z,y,2) € Z x Z x Z is

written in the form of:
(z,y,2z) =x(1,0,0) +y(0,1,0) + 2(0,0,1)
And the idempotent elements of Z x Z x Z are:
(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

Now, taking all possible values of (1,0,0), (0,1,0) and (0,0,1) from the list of idempotents
gives us that we have to choose for z,y, z in qb((:v, v, z)) from {0,x,y, z}. Therefore; the

number of all these possibilities is:
(3+1)3 =43 =64

O

As a direct consequence of last two results, proceeding inductively; we have the following

Corollary:
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Corollary * 2.6.  The number of ring homomorphisms over:

k—times k—times
——— ——N—
p: LXZLX---X1Z — LXLX-- X1
is given by: (k+1)*

Corollary * 2.7.  The number of ring homomorphisms: ¢ : ZxXZL XL — 7Z is 4

Proof. Let ¢ : Z XZ xZ — Z be a ring homomorphism.

Note, any element of Z x Z x 7Z is written in the form:
(@,9,2) = 2(1,0,0) + y(0,1,0) + 2(0,0,1)
So, any ring homomorphism is completely determined by the values of:

¢(1,0,0> qs(o,l,o) ¢<0,0,1>

And since these are idempotent elements in Z X Z x Z then so are their images, and the
only idempotent elements of Z are 0 and 1.

Consider the following table:

6((1,0,0)) | 6((0,1,0)) | 6((0,0,1) | o((z.))
0 0 0 0
0 0 1 z
0 1 0 Y
0 1 1 (y+=)
1 0 0 T
1 0 1 (z+7)
1 1 0 (z+47)
1 1 1 (z+9+7)

Where we have scratched out four choices in order to preserve the idempotent-ness property;
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so we only have four homomorphisms; namely:

o(@9.9) =0, o(@ww2) =2 o(@s.2)=v o(@y2)=2

Corollary * 2.8.  The number of ring homomorphisms:
b: ZXLXTL — LXZ is 4?2 =16

Proof.

Similar to the previous arguments; any element of Z x Z x Z is written in the form:
(z,y,2) =x(1,0,0) +y(0,1,0) + 2(0,0,1)

And so, any ring homomorphism is completely determined by the values of:

o((1,0,0),  o(0.10),  o(0.01)

Considering the idempotent-ness property of (1,0,0), (0,1,0) and (0,0,1) gives us that
(b((l, 0, O)), ¢<(0, 1, 0)) and (b((O, 0, 1)) would take the values of the idempotent elements
in Z x Z which are: (0,0) (1,0) (0,1) (1,1)

So, we’ll consider the following cases:
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¢((1, 0, 0)) ¢((0, 1, 0)) ¢>((o, 0, 1)) Number of choices for

¢((w,y)>
(0,0) (0,0) (0,0), (1,0), (0,1), (1,1) 4 choices
(0,0) (1,0) (0,0), (0,1) 2 choices
(0,0) (0,1) (0,0), (1,0) 2 choices
(0,0) (1,1) (0,0) 1 choice
(1,0) (0,0) (0,0), (0,1) 2 choices
(1,0) [§%20)] No Choices 0 choices
(1,0) (0,1) (0,0) 1 choice
(1,0) oAy No Choices 0 choices
(0,1) (0,0) (0,0), (1,0) 2 choices
(0,1) (1,0) (0,0) 1 choice
(0,1) (04) No Choices 0 choices
(0,1) (A1) No Choices 0 choices
(1,1) (0,0) (0,0) 1 choice
(1,1) [§%29)] No Choices 0 choices
(1,1) (0A7 No Choices 0 choices
(1,1) Ay No Choices 0 choices

So, we have a total of: 44+24+2+14+2+142+ 1+ 1= 16 ring homomorphisms.
Note that we can summarize the above cases by using some combinatorics

The total number of ring homomorphisms is:
2 2 2
32 3 1=3+1)?=4*=16

{2}(See 7 pages 8 - 10)
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Corollary * 2.9.  The number of ring homomorphisms:
b: LXLXL — ZXZxZ is 43=64

Proof. By using similar argument, it’s easy to see that using combinatorics simplifies the

computing procedure, and we get for the total number of ring homomorphisms to be:

<3>33+ G)>32+ <§)3+ (2)1 — (34 1)% = 43 = 64

Corollary * 2.10.  The number of ring homomorphisms:
k—times

——Nt—
¢: ZXLXL — ZXLx---X1L is 4k

Proof. We may use the same lengthy procedure inductively; we’ve already seen that the

statement is true for £ = 1,2,3. Assuming that the statement is true for k¥ = n for some

n € Z*; Then:
(n+1)—times
O LXLXL — ZLZXLX ------ X 7
n—times

—N—
S ¢ LXLXL — (ZXLX---X1L)X L.

So, we have the the same number of homomorphisms for the k& = n case (which is 4* homo-

morphisms) multiplied by the (three (nontrivial) homomorphisms plus the zero homomorphisms)
from (Z x 7Z x 7) to the extra Z. Hence; we have 4" x 4 = 4"*! homomorphisms.
Note that we could have also used the same Combinatorics procedure which I have pointed

out. Noticing that the total number of homomorphisms is just:

<§>3k+<]1€>3k_1+m+(kf1>3+<2>30 = B+ = 4
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Corollary * 2.11.  The number of ring homomorphisms:

k—times

e N —
b: ZXLXLXL — ZXLX-xX7Z is  5F

Proof. Again; by using Combinatorics, we have; the total number of ring homomorphisms

to be:
<lg>4’“ + <T>4’“‘1 et <k f 1>4+ (Z)zlo = (4+1)F = 5*
O]
Corollary * 2.12.  The number of ring homomorphisms:
k—times m—times
P O: LXLX- - XL — LXLX- X1 18 (k—i—l)m

Proof. We’ll prove the statement P by double induction:

We’ve already proven that P(1,m) = 2™ and P(k,1) = (k+ 1) by Corollary* (page
30) and Corollary* (page 32) respectively.

So, assume that: P(k,m+1) and P(k+1,m) are true for some k, m € ZT.

We need to deduce that P(k + 1,m + 1) is also true!l. That is; we assume that:

The number of ring homomorphisms:
k—times (m+1)—times

——— ———
P(k,m+1) b: Tx- XD — Tx-— %2

(2.2)

is  (k+1)m+D

The number of ring homomorphisms:
(k+1)—times m—times

— —
P(k+1,m) b: Tx-xZ = TZx X2

is (k+2)m
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We will use equation :

So, considering the statement: P(k 4 1,m + 1) which deals with:

(k+1)—times (m+1)—times
— ——f
Nlo: ZXZLx-- XL — LZXLX- XL

(k+1)—times m—times

= N|¢: ZxZx-xZ — ZxLx--xZ xZ

(k+1)—times (m+1)—times
—_—— —_——
So Nl|o: ZXxZLx- - XL — LXLX-xXZL| =

(k+1)—times m—times

——N— ——N—
NVb: ZXLx-- XL — LXLx--xL| x(k+2)

Where the multiplication by (k 4 2) comes from:

the ((kz + 1)(nontrivial) homomorphisms plus the zero homomorphism)
(k+1)—times

———
from (Z x --- x Z) into the extra Z ring.

Therefore; the total number of ring homomorphisms is:

(k+1)—times (m~+1)—times
—t— —N—
N|o: ZXZLx- XL — LXLxX- X7 =

= (k+2)"x (k+2)

= (k+2)0mtD

{3} Note that we could have used equation 1) as well, but it’s much easier to use equation li
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Lemma 2.5. The number of ring homomorphisms:

o L = Ly is  Id(n)

where Id(n) is the number of idempotent elements in Zi,.

Proof.
Since, for 2 € Z we have, as noted before, that ¢(x) = ¢(x - 1) = x¢(1).

So, ¢ is completely determined by its action on 1; i.e. by the value/values of ¢(1). Note that:

Pz +y) = (z+y)o(l) = 2o(1) +yd(1) = ¢(x) + ¢(y)

2
and  play) = ayo(1) = o@)o(y) = xy(6(1)

2
Therefore; ¢ is a ring homomorphism if and only if ((Z)(l)) =¢(1) in Zy,

which implies that ¢(1) takes all the possible values of the idempotent elements of Z,.
Hence, the number of ring homomorphisms from Z into Z, is Id(n) where Id(n) is the

number of idempotent elements of Z,. O

Remark 2.1.
Let ¢ : Zy, — Zy, be a ring homomorphism. Then:

The only homomorphisms possible are those of the form: ¢(x) = ma where v € Zy and

o(1) =m in Z.
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Theorem 2.1. Theorem 2]

The number of ring homomorphisms:
¢ Lm — ZLyn s o2~ (et )

where w(n) = the number of distinct prime divisors of n.

Proof. Let ¢ : Zyp, — Z, be a ring homomorphism.

Then, a ring homomorphism is completely determined by its action on 1.

Moreover, since 1 is an idempotent element in Z,,, then so is ¢(1) in Z,.

Let n = qil q§2 -+~ gt be the prime decomposition of n. Then, by the Chinese Remainder
Theorem, Z,, is naturally ring homomorphic to the direct sum: Zq? @ Zq;g G---BZ gt
Also, we see that any ring homomorphism from Z,, into Z, induces a ring homomorphism
from Z,, into qui fori=1,2,...s.

So, let ¢(1) = a € Zj,, then in the direct sum a = (a1, a9, - ,as) where a; € Zq:i.

Then, each a; is also an idempotent of Zq:i, hence a; = 0, or 1. Which implies that there
are at most 2° ring homomorphisms from Z,, into Z,.

But note that a ring homomorphism is also a group homomorphism, which implies that the
additive order of a; also divides m.

And conversely, if (a1, az,- - as) is any member of the direct sum with a; = 0 or 1 with the
additive order of a; | m,

then there is a ring homomorphism from Z,, into Zqil @ quz @D Zq§5 which carries 1
to (a1,as, -+ ,as). so the number of ring homomorphisms from Z,, into Z, is simply the
number of s-tuples which meet these two conditions.

Now, since the additive order of 0 is 1 and the additive order of 1 in Zq:i is qf", then we
may take a; = 0 or 1 when qfi | m, but we must take a; = 0 when qfi fm.

(7t

Claim: : qfi tm if and only if ¢

t1 t2_

Proof: : (=): Let n =q}'¢y’ -+ ¢°,
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and W.L.O.G. let m = q1T1q2T2 coeqls o qlTl with (T3)'s > 0,
Mo

Denote by M; = min(t;, T;). So ged(m,n) = ¢M1gd™ .- ¢Ms.

Therefore; if qfi f m, then the exponent ¢; of ¢; is t; > T;, = M; = T;, hence:

n _ =My to—My =Ty te—Ms
<gcd(m7 n)) % % G s '

Noting that t; — T; > 0 since t; > T; implying that t; — T; > 1, (at least 1):

(st

(m) Then:

= qi

Conversely (<): Suppose that ¢;

; . n _ Jgt1—My to—My  ti—M;  ts—Ms
swncee : <gcd(m,n)> = 4 4; ‘i

and q; (Wm,n)) = t;— M; 1is at least one;

ie. t; > M;, and M; = mm(tl,T,) = M, =T, = t; >1T;

andso, ¢itq" = ¢itm

[
Therefore, denoting by w(k) the number of distinct prime divisors of the integer k, and

therefore the number of ring homomorphisms from Z,, into Z, is 2w(n)_w<90d<?"’”)>. ]

An illustrating example is given on the next page:
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Example 2.2. Suppose we need to compute the number of ring homomorphisms:

¢ : Lo — Z3o

First, we will solve the problem by finding these homomorphisms:

Let ¢ : Zoo — Z3o be a ring homomorphism: then for an x € Zsg. So, let (1) = a, then
¢(x) = (1) =x- ¢(1) = ax, where a € Zsy and the order of a must divide 30 and 20.
That is: |a| | 30 and |a| | 20. Thus, |a| is a common divisor of 20 and 30, so a € {1,2,5,10}.

Now, the elements of Zsy that are of these orders are:

Order | The elements

1 0

2 15

5 |6, 12,18, 24

10 | 3,9, 21,27

Moreover, since 1 is an idempotent, so is ¢(1) too, that is: a®

= a. Computing the squares
of our elements ( mod 30), we find:

02=0, 152 =15, 62 =6, 122 = 24, 182 = 24, 32 = 9, 92 = 21, 212 =21 and 27°> = 9.

Therefore, the underlined elements are the idempotents, so a = 0,6,15,21 and we have four

ring homomorphisms:

¢(x) =0, o¢(z)==6x, o¢(r)=15z, ¢(zr)=21z

Solution by using the formula in the theorem. Considering our formula above (in

the theorem), we only have the following simple calculations to do:

m = 20,n = 30, (gcd(?n,n)) = (gcd(%%,SO)) = (%) =3, w(30) =3, w(3) =1, hence:

N(qb : ZQO — Zgo) = 2w(30)—w(3) = 23_1 = 22 =4
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Theorem 2.2. [§, Theorem 1]

The number of ring homomorphisms:

¢ Ly X X Ly,  — Zpk

18 (1 + Npk(my, ma, - - ,mr))

Where Nk (mi,ma, ..., m;) is the number of elements in the set {m1,ma,...,m;} that are

divisible by pF.

Proof. Let ¢ : Zp, X -+ X Ly, — Ly be a ring homomorphism.

Let e; be the r-tuple with 1 in the i* component and 0’s elsewhere. Then ¢ is completely
determined by ¢(e1), p(e2),. .., p(er).

Note that since e;’s is an idempotent element in Z,, for each 7, then so are the ¢(e;) in Z,x
V i, thus, ¢(e;) =0 or 1 Vi.

Also, if ¢(e;) = ¢(ej) =1 for some i # j. Then we have:

0= ¢(0) = ¢(eiej) = ¢(ei)op(e;) = 1, a contradiction.

Therefore, if ¢ is not the zero homomorphism, then ¢(e;) = 1 for exactly one value i:

Claim: For that 4, p* must divide m;
Proof: Let ¢ : Zy,;, — Zyx be a natural ring homomorphism; then ¢ is surjective by def-

inition. Z,,, has the identity element [1],,, and since ¢ is surjective, then ¢([1],,,) is the

(3

identity of Zyk, so ¢([1]m,) = [1],x, but:

0] = 6(0hmy) = Sl Um) = mi([Lm,) = M1l = il e

which implies p* | m;. |

Hence, for each i, p* must divide m;, so the number of ring homomorphisms:

Ly X +++ X Ly, into Zpk is 1+ Npp(my, ma, - ,my). O
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Example 2.3.

Suppose we want to compute the number of ring homomorphisms: ¢ : Zyo X Zg — L2
Note that ¢ is completely determined by its action on (1,0) and (0,1):

Let $((0,1)) = a, then since 6(0,1) = (0,0) in Z1 X Zg then 6a = 0 in Zs, and therefore
a=0o0ra=2.

The first value; a =0 gives us the first nontrivial homomorphism ¢((z,y)) = z( mod 4).
The second value; a = 2 gives us qb((a:,y)) = x + 2y, but this wouldn’t be a ring homomor-
phism, and so, only the first possibility would be allowed.

Therefore, we have two ring homomorphisms, namely:

Solution by using the formula in the theorem.

Let’s compute the number of ring homomorphisms by using the formula in the theorem:
The number of elements in the set {12,6} that are divisible by 2% = 4 is 1 (namely, 12),
i.e. Ny2(12,6) = 1.

Hence the number of ring homomorphisms is 1 + Ny2(12,6) = 1+ 1 = 2. We see that this
is a much easier way to compute the number of ring homomorphisms than actually finding

those homomorphisms.

As a direct consequence of the last theorem, we get:

Theorem 2.3. [§, Theorem 2]

The number of ring homomorphisms:

@1 Ly X XLy, = Loy X XDk
Py Ps

18
S
H (1 + Nk, (ma, ma, - - ,mr)>

=1
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2.2 Rings of Gaussian integers

Lemma 2.6. Fori?+1 =0, The number of ring homomorphisms:
¢ 20 — Z is 1

Proof. Let ¢: Z[i] — Z be a ring homomorphism.

Any element in Z[i] is of the form (z + yi) and for any = € Z, ¢(z) = ¢(z - 1) = z¢(1), and
o(x +1y) = zé(1) + yo(i). So, any ring homomorphism is completely determined by the
values of ¢(1) and ¢(i). Now, since 1 is an idempotent in Z (12 = 1), then so is ¢(1). And
the only idempotent elements in Z are 0 and 1. Then; ¢(1) = 1, or ¢(1) = 0: Note that
¢(1) cannot be 1. Since, if it were, ¢(1) = 1; then we have:

0= gb(x + (—a:)) = ¢(x) + ¢(—x) = ¢(—z) = —¢(z), and considering ¢(7):

We have —1 = ~6(1) = (1) = 6(i2) = (6(1)) = (6(i))" = ~L which would imply
that ¢(i) takes imaginary values in Z, an absurd. Therefore, the only ring homomorphisms

from Z[i] into Z is the zero (trivial) homomorphism: ¢(z + iy) = 0. O

Lemma 2.7. The number of ring homomorphisms:
¢: 2 —  ZJi 18 3

Proof. Let ¢ : Z[i] — Z]i] be a ring homomorphism.

Similar to the argument above: we have ¢(1) =1 or 0.

If ¢(1) = 0 then we have the trivial homomorphism.

If (1) = 1, then ¢(z) = z6(1) and 0 = ¢(x+(—x)) = ¢(2)+d(—z) and 50 $(—z) = —(z)
Thus; —1= ~6(1) = o(~1) = 6(2) = (6(1)) = 6(5) = =i

and so ¢(z +iy) = x¢(1) + yé(i) = x + yi. Therefore; the only ring homomorphisms are:

dlx+yi)=x+yi x4+ yi) =x—yi Pplx+yi)=0
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Theorem 2.4. [4 Theorem 1]

Fori®> +1 =0, The number of ring homomorphisms:

¢:2li]  —  Z[i]/{n)

is  cp - 39

Where w(n) is the number of distinct prime factors of n in Z[i] and where:

1 ifdin;

Cp =

if 4 | n but 81 n;

wlot

w

if 8| n

Proof. Let ¢ :Z[i] — Z[i]/{n) be a ring homomorphism.
Then, ¢ is completely determined by its action on 1 and 3.

Let ¢(1) = a, and ¢(i) = b. Now, since 12 =1, 1-i =i, and i> = —1; then in Z[i]/(n):

12=1 = a’2=a
l-e=7¢ = a-b=0D

P?=-1 = b =—a

Let the prime decomposition of n be: n = p’flpéC2 ---pkr then by the Chinese Remainder

Theorem, we have:

Z[/(n) = Z[)/ ) @ Z/5) © - Zh)/ (o)

But a homomorphism from Z[i] — Z[i]/(n) induces a homomorphism
from Z[i] into Z[z]/(pf”> for all j.

In the direct sum; let a = (a1, az,...,a,), and b= (b1, ba,...,b), then:

2
a;

k; k; k;
= aj modpj] & pj]\(a?—aj) ~ pj]‘aj(aj_l)
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But Z[i] is a UFD (by theorem (L.8), page 15) with a; and (a; —1) are relatively
prime, which implies that either p?j | aj or p?j | (a; —1).

Thus, either a; =0, or a; = 1.

If aj:0 then bj:aj~bj:() = bj:O

If aj=1 then b?:—aj:—l = b?—}—le

Therefore; (b; +i)(b; —i) =0 in Z[i]/(p?)7 which implies p?j | (bj +1)(bj — 1)
Now, if p; # 1 + 4, then since the only prime divisors of 2¢ is (1 +4) (up to associates),

then p; cannot divide both factors: (b; +4) and (b; — 4); and therefore:
k; : k; : L
p;’ [ (bj+4) or pi|(bj—i) = b;j==i

Now, consider the case when p; =1 +i:

Note that since (1+1i)% = 24, then (1 +1) can divide both factors; but since n is an integer,
and since |1 + 4| = v/2, then the exponent, kj, of p; (= 1+ 4) must be an even integer, say
k;j = 2t.

Then we have to consider three cases:

Case 1. kj =2, Then by Corollary (1.5 ,page 19, we have:

Z[/p3) = Zl/{20) = ZE)/(©2%%) = Z[i]/{2)

And hence we have two possibilities for b;.

Case 2. For k; = 4, by the same Corollary (1.5)), we have:

zli / (v}

And the number of possibilities for b; is 4.

=~ 7] /(2Y?) = Z[]/(2?) = Z[i]/{4).

pj:1+i>
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Case 3. For k; > 6, note that p? = 2i, so if p? divides (b; +1);

ie. if 2i | bj +14; = bj + i = 2mi for some m € Z, hence:
bj=2mi—i = bj—i = 2mi—2 = 2i(m—1) = (p?=2i)|(bj—1)

So, if pil(bj+i) = pj|(bj—1i)
Similarly; if p? | (bj — 1), then 3 [ € Z such that b; — i = 2l4, and so:
bj=2li+i = bj+i = 2li+2 = 2i(l+1) = pj|b+i

Therefore p? = (1 +14)? divides one factor if and only if it divides the other.
But (1 +4)® = 2i(1 +14) = (2i — 2) which cannot divide both factors for:
if ((1+4)? = (20 - 2)) ‘(bj +4), then:

bi+i = (2i—2)m
= b = (2i-2Qm—i
= b = 2mi—-2m—i=1i(2m—1)—-2m
= bj—i = 2i(m—1)—2m

And (14+4)®f (2i(m—1) —2m) [F] | i.e. (1+4)3} (bj —i), So (1+4)? cannot divide
both factors, b; + i, b; — 4, hence (1 + i)*~2 must divide one of the factors.
Now, (1+9)k72 = (149272 = (1402070 = (1+4)2)"" = (201 =201 (up

to associates). Note that the set 2= 1(r + si) has 4 elements in Z[i]/(2%/?) and:
. . ~ i1 K
Z[i)/{2*7?) = 2[i] /(2') = Z1[i]/ (p}") (2.4)

which gives 2 x 4 = 8 possibilities for the values of b;. So we determined the
necessary and sufficient conditions for the existence of a ring homomorphisms from

Z[i] into Z[i]/(n).

{4 view of Theorem 1! page 14, N((1+ 1)3) =84 4(2m2 —2m+1) = N(2i(m — 1) — 2m)
—_———

an odd number
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Conversely; If (a1,aq,...,a,) and (b1, ba,...,b,) are any elements of the direct sum which
satisfy the above conditions, then the number of ring homomorphisms from Z[i] into Z[i]/(n)

is as claimed. O

Example 2.4. The ring homomorphisms from: Z[i] — Z[i]/(3):

First, we solve the problem by actually finding the ring homomorphisms:

Let ¢ : Z[i] — Z[i]/(3) be a ring homomorphism, then:

Since (x +1y) = x(1) +y(i), then ¢(x + iy) = xd(1) + yo(i), and so ¢ is completely deter-
mined by its action on 1 and i.

Let (1) = a and ¢(i) = b, so ¢(x +iy) = ax + by
’=1=da=a=a=0o0ra=1.

i?=-1=b=—-a=b=0orb=d4i, iec inZsi], b=1,2i

If a =0 then b =0 and we have the zero homomorphism: ¢(z + iy) = 0.

Ifa=1 and b =1, then ¢(x +iy) = x + iy

If a =1 and b = 2i, then ¢(x + iy) = x + 2iy, which is a ring homomorphism since:
Let a« = x + 1y, B = u+iv, then: ¢(a) = x + 2iy and ¢(B) = u + 2iv and:
a-fB=(zu—yv)+i(zv+yu),

d(a-B) = (ru—yv) + 2i(2zv + yu) = (zu+2yv) + 2i(zv + yu)

() - o(B) = (z + 2iy) (u + 2iv) = (vu—4yv) + 2i(zv + yu)

= (zut2yv) + 2i(z0 + yu) = d(a - §)

Therefore, we have ./\/'(d) : Z[i) — Z[z]/(?))) = 3, namely:

o(x +1iy) =0, oz +1iy) = x + 1y, d(z + iy) = x + 2iy

Solution by using the formula in the theorem.

Let’s consider the same problem using the formula in the theorem:
Note, 413 (41n) and we have the first case of ¢,,: thus, ¢, = 1.
w(3) =1 (3 is a prime in Z[i]) Therefore:

/\/(¢ L Z[i] — Z[i]/<3>> —1x3*® =1x3 =3
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Theorem 2.5. [4 Theorem 2]

The number of ring homomorphisms:
¢:Z[i)/(m) —  Z[i]/{n)

is e - 320 (Gt

where w(k) is the number of distinct prime factors of k in Z[i] and ¢, is:

1 if4+n,0r2|<m);
=05 i 21 (eafiry ) ond 4| n but 81n;
3 if8|n and 24 (gatsmy)

Proof.

Note that we still have the same conditions as in the previous theorem’s proof, but moreover:
Let ¢ : Z[i]/(m) — Z[i]/(n)
be a ring homomorphism, and let the prime decomposition of n € Z[i]/{n) be:
n=prpst

Let ¢(1) =a = (a1,az,...,a;) € Z[i]/(n). Then:
When a; =1 € Z[i]/(pfj), then ma; =m =0 in Z[z]/(pf’> because m - 1 = 0 in Z[i]/(m)
So, whenever p?j doesn’t divide m, then only the trivial homomorphism for that component

of the direct product is possible, hence, reducing the exponent of 3 or 5. ]
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Example 2.5.

Consider the number of ring homomorphisms: ¢ : Z[i]/(3) — Z[i]/(6):

Solving the problem by finding the ring homomorphisms:

For an a € Z[i]/(3), a = a(1) + b(i), so ¢ is determined by the values of ¢(1) and ¢(i). So,
let e = ¢(1) and f = ¢(i), we have the following conditions to satisfy:

e2=e, ef = f, f> = —e with 3e = 0,and as an idempotent, e € {0,1,3,4}.

Fore=0 = f =0 giving us the zero homomorphism: (e, f) = (0,0).

For e =1 and e = 3 are not acceptable since 3e # 0 in either case.

Fore=4 = f?>=—4, and so f = +i giving us (e, f) = (4,2i) and (4, —2i).

Therefore, we have the following 3 ring homomorphisms:
oz +iy) =0 o(x +iy) = 4dx + 21y o(x +1iy) = 4o — 2iy

Solution by using the formula in the theorem.

Solving the problem using the formula in the theorem.

We have m =3 and n =6, and 416 giving us the first case of ¢, which is ¢, = 1.

Note, even thought 2 is not a Gaussian prime and it factors as 2 = (1 +)(1 — i), but
actually, the number of distinct prime factors of 2 is one since (1 + 1) and (1 — i) are the
same Gaussian prime (for 1 4+i =i(1 —1)). Hence, we have,the number of prime divisors

of 6 is 2 in Z[i], and that of 2 is 1, thus:

Hence, N'(¢ : Z[i}/(3) — Z[i]/(6)) = cn - 3°®*(&59) = 1 . 300w —g2-1 _ 3
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Theorem 2.6. Theorem 1]

The number of ring homomorphisms:

O L li] X Zyli]  —  Zyi]

is ¢ - 5“(’“)*‘“<m) . 32w(gcd<n’?n,k>)fw(gcdﬁn,k))fw(gcdfn,m)

where w(s) is the number of distinct prime factors of s in Z[i] and:

1 if either 41k or (4 | k, (2‘ (W%)) and (2‘ (M)))

if4 |k, 8tk and (4| n or 4| m but not both)

ALk 81k and 2 f (ko)

3 if8|k and (8| n or8|m but not both)

T if8 |k and 2 f (i)

wlot

Cp =

ul©o

Proof.
Let ¢ Dplt] X Zpli] —  Zgli]

be a ring homomorphism; then any ring homomorphism is completely determined by its
action on (1,0), (0, 1), (¢,0) and (0, 7).
Let the the prime decomposition of k be: k = p|'py?---p;*.
Then, by the Chinese Remainder Theorem:

Zk[l] = Zp? [l] X Zpgz [Z] X e X Dore [Z]
For ¢ ((1,0)) and ¢ ((0,1)):
Let ¢ ((1,0)) =u mod k and ¢ ((0,1)) =v mod k, then:
Let ¢ ((s,t)) = (us +vt) mod k
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but

and

0 = ¢<(070)):¢<(m,0)):m¢((1,0)):mu, so u=0 or u=m

u = ¢<(1,O)>:¢<(1,0)2>:(¢<(1,0)>)2:u2, so u=0 or u=1

Similarly 0 = qﬁ((0,0)) = (b((O,n)) = n¢<(0, 1)) = nw, so v=0 or v=n

And

v o= gb((O,l)):¢<(O,1)2):<¢<(O,1)>>2:v2, so v=0 or v=1

Therefore; ¢ ((1,0)) and ¢ ((0,1)) in Zij [i] each is equal to 0 or 1 Vj.
j

And since ¢ sends idempotent elements into idempotent elements, then any ring homomor-

phism is completely determined by its action on (¢,0) and (0, ):

So let a = ¢ ((i,0)) and b = ¢ ((0,7)). Thus, the ring homomorphism is completely deter-

mined by its action on the values of a, b.

Moreover, the order of a must divide ged(m, k) and the order of b must divide ged(n, k).

Suppose p; # 1+ i then we have three cases to consider:

Case 1. If p;j | ged(m,n) then:

(1,02 = (1,00 =-1(1,0) = af=—u
(7,0) - (0,7) = (mu, no) = aj-bj=0
(0,4)2 = (0,-1)=-1(0,1) = b5=-v

But v =0,1, and v = 0, 1. Thus, for u,v # 0, ajz = —1 and b? = —1.

Therefore, p;j | (a; +1i)(a; — ) and p;j | (bj +1)(bj — 7).

= a; = 0,7 or —¢ and b; = 0,7 or —i.

Now, k = pi'py? - - p;* and by the Chinese Remainder Theorem:

Zyli] = Zyri [i] X Zyra[i] x -+ X Zyyre[i]; so a homomorphism from Zn[i] x Zyli] into
Zki] induces a homomorphism from Z,,[i] X Z,[i] into prj [i] V.

J

Now, since (i,0)? = —i(4,0), then a? = —ia; mod p;j = p;j | aj(a; + i), and
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since Zpy[t] X Zy|t] is a UF D, then a; and (a; + i) are relatively prime; therefore,
either p;j | aj or p;j | (aj +1); = (aj =0 or aj = —z') €2, [1]
J

Therefore, in Zp»jj [] (aj =0ora; = —z‘) along with (bj =0, 1, —i) giving us
J

(0,0) | (0,4) | (0,=i
(=%,0) | (=i,4) | (=1, 70)
Similarly, (0,1)* = —i(0,1) = b5 =

= (b =0, or bj = ~i) € 2,1,

J

Therefore, in prj [1] (bj =0orb; = —i) along with (aj =0, 1, —i) giving us:
J

0,0 (7,0) | (—1,0)

0.=4) | (4, =) | (=i, —0),

M 0, =1 (_iv 0)

(07 Z) (i’ 0) /(7%/77), M

Also, note that the number of primes p; such that p;j | ged(m,n, k) is:

k) = (gearmmm)

Case 2. If p;j | m but p;j f n, then we have:

aj =0, ¢, or —t and b; =0 = we have 3 choices

And noting that the number of primes p; such that p;j | m but p;j fn is:

()~ (o)

Case 3. If pgj | n but p;j ¥ m, then we have:

aj =0, and b;=0, ¢, or —¢ = we have 3 choices

Also, the number of primes p; such that p;j | n but p;j fm is:

o (eatmm) —« (o)

When p; = 1 + i, complication arise: since (1 +)? = 2i = (1 + i) can divide both factors
Of (((Ij + i), (aj —

i)), and ((bj —4),(bj +1i)). And |1 +i| = V2 = r;, the exponent of p;,
must be an even integer, and so, we have to consider three cases:
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Case 1.

Case 2.

Case 3.

rj =2, = pgj = 2i, and by equation ,page 54, we have: ijj [i] = Zsli].
J

so if 2 | ged(m,n) then: Let ¢((7,0)) =wi mod 2 and ¢((0,4)) =vi mod 2.
So ¢((s,t)) = (us + vt) mod 2, then:

0 = ¢((0,0)) =¢((2¢,0)) = 26((i,0)) =2iu = u=0or 1
0 = ¢((0,0) =¢((0,2)) = 2¢((0,i)) =2iv = v=0 or 1

and thus we have three choices.

rj = 4, then we have:

Zilil = Zi

If 4 | ged(m, n), then ¢((s,t)) = us + vt mod 4, and noting that:

0 = ¢((0,0)) =¢((43,0)) = 4¢((i,0)) =4iv = u=0, 1, 2 or 3
0 = ¢((0,0)) =¢((0,4i)) = 4¢((0,i)) =4iv = v=0, 1, 2 or 3

Therefore, we have 9 choices.
If 4 | m or 4 | n; but not both, then we have either v = 0,1,2,3, and v = 0, or vise
versa: v =0,1,2,3, and v = 0 giving us 5 choices.

If4tm and 4fn = u=v =0 = one choice.

If r; > 6:

If 8 | gcd(m, n), then similar to the explanation in Case 2, a; and b; would have 8
choices each, giving us 2 x 8 + 1 = 17 choices.

If 8 | m or 8 | n but not both, = 9 choices.

And if 8 { m and 8 1 n, then we have only one choice, and hence, completing the

proof.
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Example 2.6.

Concerning the number of ring homomorphisms ¢ : Zs[i| X Z4[i]| — Zgli]

¢ is determined by its action on the generators ((1, 0),(0,1),(z,0), (0, 2)) of Zsi] X Zy4|i] (as
being a group homomorphism) along with the additional ring-homomorphism conditions on
the images of those generators.

So, let © = gb((l, 0)),y = ¢((O, 1)),u = (b((i, 0)),0 = ¢(O,i)), then:

r=u=0, 2, 4, 2¢, 4, 2+2i, 2+4i, 44 2i, 4+4di andy=v =0, 3, 3i, 3+ 3.
But ¢ being a ring homomorphism requires that x and y to be idempotents and x -y = 0,

2 = —y. Combining these conditions we get that:

u-v=0,u>=—-z,v
r=0, 4;,y=0, 3;u=0, 4, 45;v=0, 3, 3i;

For oo =a+ bi and 8 = c+ di, we have the following 9 ring homomorphism:

S((1L0) 9((0.1) ¢((.0) 6((0.) ’
0 0 0 0 (3c+3d)
0 3 0 3 (3¢c) + (3d)i
0 3 0 3 (4a) + (4b)i
! ’ " So ¢(a, /3) =4 (4a + 3c + 3d) + (4b)i
4 3 4 3
A 5 " 5 (4a + 3¢) + (4b + 3d)i
4 0 4 0 (4a + 4b)
4 3 4 3 (4a + 4b + 3¢ + 3d)
4 3 4 3 (4a + 4b + 3¢) + (3d)i

\

Solution by using the formula in the theorem. We have:

m=3,n=4,k =06, first of all, note that 416, thus ¢, = 1. Then, the w’s:

<gcd(r]fz,n,k)) - (gcd(§,4,6)) = (1) =6, (gcd(l:n,k)) - (gcd?S,G)) =(5) =2

(s ) = (i) = (9) =3, Thus w(6) = 2, w(3) = 1, w(2) = 1
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and the number of ring homomorphisms ¢ : Zsi] X Z4li] — Zg[i] is:

N=c,- 5“(’“>*“<m) . 32”(gcd(mk,n,k>>*“<gcd(lin,m)*“’(gcd(kn,k))

-1. 5w(6)—w(6) . 32w(6)—w(2)—w(3) -1. 50 . 32~2—1—1 _ 32 -9

Theorem 2.7. [0, Theorem 1]

The number of ring homomorphisms:

G Lo li] X X L [i]] —  Zogli]
18 Ck

L+2Ny of pF=2 or p=3 mod4

1+4N if ph=4

where Cj, =
1+ 6N, if pF=2F k>3
1+8Ny if p=1 mod4
\
Where N, is the number of elements in the set: {m1,ma,...,m,} that are divisible by P

Proof.

Let ¢ : Zyp, [i] X =+ X L, [i] — Zy,k[i] be a ring homomorphism.

Let eq,e2,...,e, be the r — tuples such that each e; has 1 in the 4t component and 0
elsewhere.

Let fi, fa,..., fr be the r — tuples such that each f; has 7 in the 4% component and 0
eslewhere.

Then ¢ is completely determined by the values of ¢(e;) and ¢(f;) for j =1,2,...,7r.

Note that since each e; is an idempotent element in Z,,,[i], then so is ¢(e;) in Z,x[i].

And if  ¢(e;)) #0, é(ej) #0 for P F ]
then 0=0¢(0) = o¢(eie;) = o¢(ei)p(ej) #0  which is a contradiction
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And hence for a nonzero homomorphism ¢, we have ¢(e;) # 0 for exactly one value 4, and

for that ¢, p* must divide m;. Moreover:

firfi=—e = o(fi) - ¢(fi) = —o(es)
ei-fi=fi = p(ei) - o(fi) = o(fi)
o(ei) is an idempotent = ((Z)(ei))z = ¢(e;) mod pF

Therefore o(ei) <¢(ez) - 1) =0 mod p*

Then, we will consider the following cases:

Case 1. p¥ =2 or p=3 mod 4, So we have:

2=z mod 2

22=2 modp=3 mod4

Then, equation (3.2) has a solution if and only if z =0 or 1;

But  ¢(e;) # 0 = plei) =1

So  @le) =1 = (6()" = —o(e) = 1

Moreover, as for the generator of Z,[i], (1 — i), we have [1 —i| = v/2 and so:

(B(f))°=-1 = o(f)=+i if p‘t4

which gives us two choices for this case (p¥ =2 or p=3 mod 4).
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Case 2. p* = 4: We have (qﬁ(ei))Q = ¢(e;) mod 4.
Then, by Lemma 1.6, Case (pages 12-13), we get:
<(¢>(ei))2 = ¢(e;) mod 4) has a solution if and only if:

¢(e;) =1 mod 4 or ¢(e;) =3 mod 4

-1 ) = 4
So, modulo 4, <¢(fz))2 = —¢(e;) = = o(fi) 7

-3 = o(fi) = +V3i

Therefore ¢(f;) has 4 possibilities (for p¥ = 2).

Case 3. p* =2 and for k > 3, we have:

2

(8(£))> = —¢(e;) = =1 mod 2* = (¢(£;))° = —1 mod 2*

Then we have either one of the following two cases:
(6(f)* = -1 = o(fy) =i
And by equation , page 11, we have:
o(f;) =21 + bi, where  b=1, -1, 2141, on7l_1

Hence, ¢(f;) has 6 possibilities.

Case 4. For p =1 mod 4:
Now (¢(f))" = —éle),  o(fi)- dler) = o(fi) :

For ¢(e;)=1 = (gZ)(fi))QE—l modp = o(f;) =i
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Since (m2 = —1 mod p) has a solution if and only if (p =1 mod 4);
And the number of solutions to the quadratic congruence is:

1—|—(_?1):2 for p=1 mod4

Therefore, (((ﬁ(fz))2 =—1 mod p) has two solutions for p =1 mod 4;

So, taking into considerations the associates of each solution §;, for j = 1,2:

Hence, ¢(f;) has a total of 8 possibilities.

Theorem 2.8. [0, Theorem 2]

The number of ring homomorphisms:

& Lny [1] X Ly [i] X -+ X DLy, [1] —>pr1 [i] x Zka[i] X oo X 7 g [i]

2 Ps

i=s
18 H Ch
i=1
Where Cy, is as in theorem (page 63).

Proof. Using the same argument as in the last theorem’s proof, and taking the product of

all those numbers for each case. O
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2.3 Rings of Eisenstein integers

Theorem 2.9. [4, Theorem 3]

Let p be a solution of: p* +p+1=0, Then, the number of ring homomorphisms:

¢:Zlpl —  Zulp]

is ey - 39

where w(n) is the number of distinct prime factors of n in Z[p] and:

1 if31n;

Cn = if 3| n but 91 n;

[SSIPN

W~y

if 9| n

Proof. Let ¢ : Zlp] — Zy[p] be a ring homomorphism.
Andlet ¢(1)=a, and ¢(p) = b, then:

12=1 = a’=a

l-p=p = a-b=2b

PHp+1=0 = b+b+a=0
Let the prime-power decomposition of n € Z[p] be: n = p’fl pé” -.pkr . then:

2

aj = a; = a;j=0 or a;=1:
If aj:O, then bj:aj'bj:()
If a;=1, then b +bi+1=0

= =) —p) =0 in Zyll = |- o)t —p?)

p;
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Suppose pj # (1 — p), then:
(bj = p*) = (bj — p) = p(1 = p)
Therefore; (1 — p) is the only prime divisor of the difference of these two factors (up to

associates), i.e. p; cannot divide both factors, and thus, b;=p or b; = P2

When p; = (1 — p), then, since (1 — p) can divide both factors, and since |1 — p| = /3, and

since n is an integer, then k;, the exponent of p;(= 1 — p), must be an even integer.

Moreover; by the Conclusion of Proposition 6 (1.5.2)), page 25: Z x,;[p] = Z3[p].
p.

J

So; a*=a, a-b=b and b’ +b+a=0 with p§j|(bj—p)(bj—p2)

And for kj =2 and p; = (1 — p):
Pi=0=pP=1-2p+p"=(1+p")=2p=—p—2p=-3p = pi=-3p

which shows that :  Zlpl/(p?) = Z[p] /(1 - p)2) = Zlpl /(~3p) = Z[p)/(3)

So, p? =-3p|(bj —p); de b;j=p mod(-3p), and

p
ij. = -3p|(bj—p?), ie b;=p?> mod (—3p)

Now, if kj >4 (i.ekj=4,6,8,---), then:
p; = (1—p)*=(=3p)* = 9p°

P} = (=3p) - 9p* = =27p°,

P} = (=3p) - —27p" = 81p*,

P = (1= ) = (-1 8

Hence: (1—p)*i~1 = (1 — p)°% divides one factor. And since Z[p]/((1 — p)) has 3 elements,
then (1 — p)%~! divides 3 elements in Z[p]/ (pf’> Therefore, we have (1 — p) divides 3
elements and (1 — p)*~! divides 3 elements, and so we have in total (including the zero

possibility) 7 possibilities.
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So, we have determined the necessary conditions for the existence of a homomorphism from
Z[p] into Zy|p).

Conversely, if (a1,as9,...,a,) and (b1,be,...,b,) are the elements of the direct sum which
satisfy the above conditions, then there is a homomorphism from Z|[p] into Z[p]/(n) and the

number of homomorphism is as claimed. O

Example 2.7.

Considering the ring homomorphisms: ¢ : Z[p] — Za[p]:

Using the usual method of finding the ring homomorphisms: ¢ is determined completely by
its action on 1 and p.

Let ¢(1) = a and ¢(p) = b, then b> + b+ a = 0, and:

?=1=d=a=a=0,1.

Now, ifa =0, then b> +b=0=b=0 orb= —1=p? + p,

but the second choice wouldn’t preserve the ring-multiplication property, and so b = 0.
Ifa=1, thenb®> +b+1=0= b=p,p°

and thus we have three ring homomorphisms:

plx+py) =0, S@+py)=z+py, dl@+py) =x+py

Solution by using the formula in the theorem. We have:
n =2, 312, so this is the first case of ¢, on page 67 (c, =1).
w(2) =1 since 2 is an Eisenstein prime, and:

Thus, N'(¢ : Z[p] — Zs[p]) = ¢, - 3°W =132 =31 = 3.
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Theorem 2.10. [4, Theorem 4]

The number of ring homomorphisms:

¢ Zmlpl  —  Zulp]

is e - 320 (Gt

where w(k) is the number of distinct prime factors of k in Z[p] and:

L ifeither 3t n, o3| ()
Cn = % Z'JC?’Jf<gcd(Tann)) and3|nbUt9+n;
53 | (gt ) and 91 n

Proof.

Let ¢ :Zpnlp) — Znlp] be a ring homomorphism.

And let the prime decomposition of n be: n = p]fl pSQ oephr,

Note that we still have the same conditions as in the previous theorem’s proof, but moreover:
Letting ¢(1) = a = (a1, aq,...,a,).

Then, whenever a; =1 € Z[p]/(pfj% we have:
ma; =m=0¢€ Z[p]/(pfﬂ since m-1=m =0 € Zlp]/(m)

So, whenever p?j doesn’t divide m, then, only the trivial homomorphism for that component

of the direct product is possible, hence, reducing the exponent of 3. O
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Example 2.8.

Consider the ring homomorphisms: ¢ : Zs|p| — Z¢|p]:

As in the previous example, ¢ is completely determined by its action on 1 and p;

Let e = ¢(1) and f = ¢(p), then we have to find ¢ that satisfies the following conditions:
e2=ce, ef =e, f24+f+e=0 and as e is the image of an idempotent, we must have
e € {0,1,3,4}, the idempotents of Zg[p]. Moreover, as 3-1 =0 in Zs[p|, then 3e = 0.
Fore=0, then f>+ f+e=f2+f=0= f =0 and so we have the zero homomorphism:
(e, f) = (0,0).

Fore=1 ore=3, they are not acceptable, since 3e # 0 in either case.

Fore =4, f24+ f4+e = f24+ f +4 = 0 whose solution is f = 4,4p,rp* giving us the
homomorphisms:

(e, f) = (4,4), (4,4p) and (4,4p°).

Therefore, we have four ring homomorphisms.

Solution by using the formula in the theorem. We have:

m =3, n=06. <gcd(7n,n)> = (gcd?&ﬁ)) =(3)=2

and 312, 3|6 but 916 which is the first case of ¢, and therefore, ¢, = %

And for the w’s, w(n) =w(6) =2, w (gc+) =w(2) =1 Hence:

(m;n)

N(6: 2zl Zlpl) =53 =

[SCNRE
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Theorem 2.11. [, Theorem 3]

The number of ring of ring homomorphisms:

¢ 2 Lo, [p] X Lany [p] X -+ X Zan, [p] = Zypr[p]

18 C

(

1L+ 2Ny(mi,ma,...,m,) ifp#3, and p=3 mod 4

1+ 3N, (m1,ma,...,m,) if pF =3

where C}f =
L+ 6Nk (my,ma,...,my) ifpP =3F k>2
L+ 8Ny (my,ma,...,m;) ifp=1 mod 4
Where Nk (m1,ma, ..., m;) is the number of of elements in the set {mi,ma,...,m;} that

are diwisible by p*.

Proof.

Let ¢ : Zmy[p] X Ziny[p) X =+ X L, [p] —  Zy[p] be a ring homomorphism.

Let e1,e2,...,e, be the r — tuples such that each e; has 1 in the 4t component and 0
elsewhere.

Let fi, f2,..., fr be the r — tuples such that each f; has p in the 4% component and 0
eslewhere.

Then ¢ is completely determined by the values of ¢(e;) and ¢(f;) for j =1,2,...,7.

Since V j, each e; is an idempotent in Zy,[p], then so is each ¢(e;) in Z[p].

AZSO, fO?" ¢(6’L) 7é 07 ¢(6]) 7é 0 fO’f‘ ) %]
= 0=0¢(0) =¢(e; €j) = ¢(ei) ¢(e;) #0; A contradiction.

Hence; ¢(e;) # 0 for exactly one value of i, and for that i, p* must divide m;. Moreover:

Pofite=0 = (6(f)>+6(fi) +dle) =0
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So, we consider the following cases:

Case 1.

Case 2.

Case 3. If p¥ = 3% k > 2, then, as in the proof of theorem 2.7, , page 65:

If p* # 3 and p =3 mod 4:

Note that, by the idempotent-ness of each ¢(e;), we have:

(le))? =dle)) = dle)=1 = (o(f))° +o(fi)+1=0

which implies that: o(f)=p or o(f;)=p>
But, [1 — p| = v/3, thus, if p* #3, and p=3 mod 4

then  &(f;) has only two choices (p, p?).

If p* = 3; then:
(6(f))* +¢(f) +1=0 ( mod p¥)

for pk =3
P

(6(f))* +(f) +1=0 ( mod 3)

And the solution to equation 3.3 is:

¢(f2) = ]-7 12 and — 2p

Therefore; o(f;) has 3 possibilities.

Thus; &(f;) has 6 possibilities.

Case 4. Finally, for p =1 mod 4; then, as in the proof of theorem 2.7, , pages 65 - 66:

Therefore; ¢(fi) has 8 possibilities.
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Theorem 2.12. [, Theorem 4]
Let p;, 1 <1 < s, be primes not necessarily distinct. Then, the number of ring homomor-

phisms:

¢t Ly [p] X Ly [p] X -+ X L, [p]  — Zpllﬂ [p] % Zplgw [p] x -+ % sz;s [p]

1=8
18 HC’k
i=1
Where CY, is as defined in the previous theorem (Theorem, , page 72).

Proof. Using the same argument as in last theorem’s proof, and taking the product of each

result. O

Theorem 2.13. Theorem 2:

The number of ring homomorphisms:

¢ Zmlpl X Znlp)  —  Zilp]

is ¢y - 5“(’“)*‘”<m) . 32”(gcd<w’in,k)>*“<gcd(’3n,k)>*“<gcd(kn,k>>

where w(s) is the number of distinct prime factors of s in Z[p] and:

1 if either 31k or (3 | &, (3‘ (m) ), and<3‘ (m) ))

i3 1k 91k ond 3 f (st

if 9|k and (3| n or 3| m but not both)

) k
1 Zf9|kand3)((m)

ol

Cp —

w3

Proof.
Any ring homomorphism from Z,[p] x Zy[p] into Zg[p] is completely determined by its
action on: (1,0), (p,0), (0,1), (0,p).
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Let the prime-power decomposition of k in Z[p| be:

71,72

kj:pl p2 p:f
Then by the Chinese Remainder Theorem:
Zilp] = Ly [p] X Zoyrz[p] X - - - Zyyre [p]

Let ¢ : Zp[p] X Zn[p] — Zi[p] be a ring homomorphism.
Then, as before, we have: ¢ ((0,1)) =0 or 1, and ¢((1,0)) =0 or 1.

Let qb((p,O)): a = (ay,a9,...,at)
and ¢((0,p)) b = (bi,b2,...,bt)

And therefore, any ring homomorphism is completely determined by a and b: but the order
of a must divide the ged(m, k), and similarly, the order of b must divide the ged(n, k).

Firstly: suppose that p; # 1 — p, then we have 4 cases to consider:

Case 1. If p;j | gcd(m, n), then note that since ¢ ((0,1)) = 0 or 1, then:

(p,0) - (p,0) = p? = af =q,
(0,p) - (0, p) = p? = b =10
and (,0)(0,0) = (0,0)=0 = a;b; =0

Now, ajb; = 0, a?—l—aj—{—l:Oand b?+bj+1:0, s0:

note that 0 = ¢((0,0)) = ¢((mp,0)) = me((p,0)) = may,

and since p;j | gcd(m,n) = pgj | m = a; =0.

But ajz +a; +1 =0 is factored out as (a; — p)(a; — p*) =0 = a; = p, or a; = p?
hence: a; =0, p, or 0.

Similarly; 0 = 6((0,0)) = #((0,np)) = n((0, p)) = nby;

andp;j | ged(m,n) :>ij | n = b; =0, and b§+bj—|-1 =0= (b; —p)(bj —p?) =0,

Hence, b; = 0, p or p?, but ajb; = 0, hence we reduce one choice, giving us 5
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choices. Therefore, The number of primes, p;, such that pgj | ged(m,n, k) is:

o)~ ()

Case 2. If pgj | m but p;j fn then a; =0, p or p? and bj = 0. which implies that we have 3

choices, and the number of primes p; such that p;j | gcd(m, k) but p;j fnis:

(tmnm) ()

Case 3. If p;j | n but pgj t m then a; = 0, b; = 0, p or p>. = we have 3 choices too, and

hence the number of primes p; such that p;j | ged(n, k) but p;j tm is:

(atmnm) ~ (aten)

Case 4. If p;j fm and p;j fn, then a; = bj = 0 = we only have the trivial case.

When p; =1 — p, complication arise, because (1 — p) can divided both factors.
And since |1 — p| = V3, and k; is an integer, then r;, the exponent of p;, must be an even
integer:

For r; = 2, then pgj = p? =(1-p?=-3p = ijz_[p] = Zs|p], and so we have the

following cases:

Case 1. If 3 | ged(m,n); 3 | m, = p? | m and p? | (aj — p)(aj — p?):
which implies that p? can divide both factors, and hence:
a; = p mod p? has exactly one solution.
a; = p? mod p? has exactly two solutions; giving a total of 3 solutions,
and similarly for b; gives us 3 choices too.

But ajb; =0 = aj = b; = 0 giving us a total of 1 +2 4 3 + 1 = 7 choices.
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Case 2. If 3| m or 3 | n but not both;
a; = p mod p]z = one solution.
a; = p? mod p? = 2 solutions.

and b; =0 = a total of 1 +2+ 1 = 4 choices.
Case 3. If 31 m, and 3{n = a; = b; = 0 = one choice.
Secondly; For an even r; > 4 (i.e. r; =4, 6, ...), then we have the following cases:

Case 1. If 9 | gcd(m,n) then we have:
a; = p mod pjz has exactly one solution.
a; = p? mod p? has exactly two solutions.
a; = o' mod p? for [ = 2%, where s > 2 has exactly three solutions.
Giving us 1+ 2 4+ 3 = 6 choices.
and similarly for b;:
bj = p mod p? has exactly one solution.
b = p?> mod p]z has exactly two solutions.
b = ot mod p? for [ = 2%, where s > 2 has exactly three solutions.
Giving us another 6 (= 1+ 2 + 3) choices.

But a;b; = 0 giving us a total of 6 + 6 + 1 = 13 choices.

Case 2. If 9 | m or 9 | n but not both, then:
cj = p mod p? has exactly one solution.
cj = p? mod p? has exactly two solutions.
cj = ol mod p? for [ = 2°, where s > 2 has exactly three solutions.
where ¢ represents either a or b for 9 | m, or 9 | n respectively;

along with a;b; = 0 giving us a total of 1 +2 4 3 4+ 1 = 7 choices.

Case 3. Finally; if 91 m, and 9 { n, then we only have the trivial case, and this finishes our

proof.
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Example 2.9.

Consider the ring homomorphisms: ¢ : Zs[p] X Z4[p] — Z¢|p]

Let o = x + yp € Zs[p] and B = u+ vp € Zy[p).

Then for any (o, B) € (Z3[p] x Za[p]), o = x(1,0) + y(p,0) and 5 = u(0,1) 4 v(0, p)

So, any ring homomorphism, ¢, is completely determined by its action on (1,0), (p,0),
(0,1) and (0, p).

Let e; = ¢(1,0), e2 = ¢(0,1), f1 = ¢(p,0), and fa = ¢(0, p); then we must have:

For i = 1727' 612 = €4, eifi - fi7 €1€2 = f1f2 - 07 e; € {0717374}

along with 3e; = 0 and 4es = 0.

Fore; =0, ea =0 = f1 = fo =0 giving us: (e1,es, f1, fo) = (0,0,0,0).

For ey =0, e =1 or eg =4 are not acceptable, since 4 - es # 0 in either case.

For e; =0, ea = 3 is acceptable since 4 - e =4 -3 =0 in Zglp]. And:
f24+fotea=f2+fo+3=0= fo=23p,3p? giving us the following homomorphisms:
(617 €2, f17 f2) = (07 37 07 310) or = (07 37 07 3/)2)

For ey =1 or e; = 3 are not acceptable, since 3e; # 0 in either case.

Forei =4, es=0= f1 =4,4p,4p% and fy = 0 giving us:

(61, €2, f17 f2) = (47 0,4, O); (47 0, 4:07 0) or (47 0, 4p2a 0)
For ey = 4, ex = 3 give us the following homomorphisms:

(61, €2, f17 f2) = (47 37 47 3p)7 (47 3a 4a 3p2)7 (47 37 4p7 39)7 (47 37 4p7 302): (47 37 4/)2’ 3p)7 (4a 3a 4P27 302)

Therefore, we have the following twelve ring homomorphisms:
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(letting « = a+bp and B =c+dp):

¢((1,0)) ¢((p,0)) ¢((0,1)) ¢((0,p)) o(a, B)
0 0 0 0 0
0 0 3 3p 3¢+ 3dp
0 0 3 3p? 3¢ + 3dp?
4 4 0 0 4a + 4b
4 4p 0 0 4a + 4bp
4 4p? 0 0 4a + 4bp?
4 4 3 3p (4a + 4b+ 3c) + 3dp
4 4 3 3p? (4a + 4b+ 3c) + 3dp?
4 4p 3 3p (4a + 3c) + (40 + 3d)p
4 4p 3 3p? (4a + 3c) + 4bp + 3dp?
4 4p? 3 3p (4a + 3c) + 3dp + 4bp?
4 4p? 3 3p? (4a + 3c) + (4b + 3d)p?

Solution by using the formula in the theorem.

For: the ring homomorphisms ¢ : Zs|p| X Zalp] — Zg|p)

Here, m=3,n=4, and k = 6: so,

4

3| k but 91k which gives us the first case of c,, and hence ¢, = 3.
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Therefore:

N (¢ : Zslp] x Zalp] = Zelp]) =
_ (%) . 5w(6)—w(6) . 32w(6)—w(2)—w(3)

- (%) . 50.32(2)-1-1 % .32 = 12 homomorphisms

Notice the simplicity of the calculations done for the formula in the theorem compared
to the complications of those calculations done by going through the regular methods of

finding the ring homomorphisms.
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2.4 Certain rings of algebraic numbers

Lemma 2.8.

Let m € Z be any square free integer, then the number of ring homomorphisms:
6: Zlvm| — Z[Vm) is 3

Proof.
Let 6:ZlVm T

Note: Z[y/m] = {z + yv/m : z,y € Z}. Thus, any element of Z[\/m] is of the form:
x + yy/m, and for any x € Z, a nonzero homomorphism ¢(z) = . So, any homomorphism
¢ is completely determined by the value of ¢(y/m).

Now, suppose that ¢(y/m) = a + S/m for some «, 5 € Z.

Thus, ¢(k + Iv/m) =k + l(a+ By/m).
So, let a,b € Z[\/m], so; a = x + y/m, b= z+ uy/m, Then:

¢(a) - ¢(b) = d(a-b) (2.7)

The right hand side of equation (2.7) is:

ola-b) = o((@+yym)-(z+uym)) = o((wz+yum) + (zu+yz)ym)

= (zz+yum) + (zu + yz)(a + S/m)

(2.8)
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And the left hand side of equation is:
6(@) - 6() = o((@+yvm))-o((z+uvm)) = (@+yla+Bym))- (=+ua+sym))
= (w2 + wula + Bym) + y2(a + Bym) + yula + Bym)

= (JTZ + yua? + yuBim + 2yua,6’\/ﬁ) + (zu + zy)(a + By/m)
(2.9)

Equating the results of both equations, 4.2, 4.3 yields:

(xztyum)+(zu + yz)(a + Bvm) = (:Uz+yua2+yu62m+2yua5\/m> +(zu + 2y)(a + Bv/m)

Cancelling the underlined (equal) terms leads:

(xz +yum) = (@ + yua? + yuBim + 2yuaﬂ\/ﬁ)
= yu(m) = gyu(a® + B*m + 2a8y/m)
Which implies that:
m = o + B*m + 2aB8ym (2.10)

And since m is a square free integer, then \/m & Z. So, the last equation would be possible
onlyifaf=0=a=0o0r g=0.
If 5 =0 then: m = o? which is impossible since o € Z and m is a square free.

If « = 0 then: m = mfB? = 1 = B2 & B = £1 which gives us two nonzero homomorphisms:

¢(Vm)y = a+pvm and ¢(vVm)- = a—pvym
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Theorem 2.14. @ Theorem 8] Let 6 be an algebraic number over Z with minimal polyno-
mial p(x) = x? + ux + v whose absolute radicand,(m = |u? — 4v|), is a prime integer and
Z[0] is a UFD then:

The number of ring homomorphisms:

¢: Z[0) — Zip0lis ey -390

Where w(k) is the number of prime factors of k in Z[0], and:

.

1 if mtk

=122 if o m|k obut m?tk

2mt1
bl af m? |k

Proof. Let k = p’il p? ---pls be the prime-power decomposition of k in Z[f], then by the

Chinese Remainder Theorem:
Zk[e] = Zpil [9] X oo X Zpgs [9]

Let ¢ be a ring homomorphism from Z[f] into Z[f]. Then ¢ is completely determined by
its action on 1 and 6.

Let o(1) =a = (a1,aq,...,as) and ¢(0) = b= (b1,ba,...,bs).

Since 12 = 1 (an idempotent element in Z[6]), then a; must also be an idempotent element

in Zptj 0] v j. e ajz. =a; in Zptj 0], = a;=0, or aj =1.
i j

Note, b= ¢(0) = ¢(1-0) = ¢(1) - $(0) = ab, so bj = a;b; =0 whenever a; = 0.

If aj = 1, then b; = a;b; # 0, (Recall: P(z) = 2? + ux + v, and |u? — 40| = m, a prime).

Now, b +ubj+v=0 and 6*>+ub+v=0
= b2 Tr(0)b; + N(6) = 0

where Tr = the trace = (6 + 6) and N() = the norm = 6.

{5} Henceforth, when referring to 6, 0 will always have the same definition as in Theorem m
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That implies:
b7 — (04 0)b; +60 =0
Hence; b? — (04 0)bj +600 =0 in Z[6)
Therefore; pz-j |(bj — 6)(b; — 0)

Now, If p; # /m, then p;j cannot divide both factors, then p; = ¢ or 0 which gives us the

following 3 choices:

(IJZO bj:()
CL]:1 b]:G
aj; =1 bj:§

If p; = /m, then pzrj may divide both factors, and since |p;| = \/m, then t;, the exponent

of pj, must be an even integer, giving us the following two cases:

Case 1. t; = 2, then, m | k but m? { k, then working in Z,,[6]:
bj=x+y0, x, y€ Ly and b?+ubj+v:O

— 1 1
Note, ®+ub+v=0 = H:%—i-i\/%:i(\/ﬁ—u)

so 0=

(Vim =)

N

So, to write b; in the form:

bj=x+yl for some y € Zpy
bj =2+ 5vm

= bj=5 taytivm— gy
= b=y (v - )

so, bj= u(yz_u) +y0, for some y € Ly

Thus, bj has m choices, and hence c = mT“
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Case 2. If ¢; >4, then m? | k which implies that:

ti 4 6 8 pj =vm ti o 3 4
p] _pjv p]a p]? —_— p] =m-, m-, m., -

S0, p;j_l divides one factor, and since Z,[0]/(p;) has m elements and thus b; has

2m+1

2m choices; = ¢ = =75

Example 2.10. Consider the ring homomorphisms ¢ : 0] — Z3[0]

where 0 is the algebraic number with the minimal polynomial p(z) = 2% + x + 2:

Here k=3 and m = [u? —4v| =12 —4-2| =1 =8| = | - 7| =7, a prime.

Note, any element o € Z[0], a =z +y0 = x(1) + y(0), x,y € Z, and 0 = (71%‘/?7)

So, any ring homomorphism is completely determined by its action on 1 and 6.

Let ¢(1) = a and ¢(0) = b, thus b> + b+ 2a = 0, and in Z3[0).

Then a®> =a and s0, a=0,a=1 ora=2.

Note that if a = 2 then b>+b-+2a =0 = b?>+b+4 = b2 +b+1=0 = b = p, the Eisenstein
integer, which wouldn’t give us a ring homomorphism in Z[0).
Ifa=0thenb+b=0=0b=0o0rb=—-1=2 (in Z3[0)]).

But b = 2 wouldn’t preserve the multiplication, and hence no ring homomorphism. Thus;
a=0=b=0.

and if a = 1, then b> + b+ 2 = 0 whose only solutions are: b= 0 and b= 6.

Therefore, we have the following three ring homomorphisms:
¢z +yb) =0,  dla+yd)=x+yld,  Sz+yb)=xz+yd

Solution by using the formula in the theorem.
Here, m =7, k =3, so m+1{k which is the first case of ¢ on page 83. Thus, ¢ = 1,
w(3) =1, and therefore:

N (¢ : Z[0) — Zs[h]) = 1- 3¥G) = 1.3' =3  homomorphisms.
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Theorem 2.15. [}, Theorem 10]

The number of ring homomorphisms:
o ZO) x Z[0) — 740 [} s - 500

where w(k) is the number of prime factors of k in Z[0], and:

¢

1 if mtk

Ce =4 2L gt o |k, but m?tk

4m+1 ’Lf m2 | k

Proof.
Let ¢ : Z[0] x Z[] —  Zi[f] be a ring homomorphism,
and let k = ptl1 p? -+ pls be the prime-power decomposition of k in Z[6)].

Then ¢ is completely determined by its action on (1,0), (0,1), (6,0) and (0,6).

By Chinese Remainder Theorem: Zilf] = Zpil [0] x - X Z1. [6].

Note, ¢((1,0)) —0 or 1, and ¢>((0, 1)) —0 or 1.

Let gb((@,())) =a=(a,aqs,...,as) in Zg[d], and

let ¢((0,9)) — b= (b, ba,...,bs) in Zyf].

So, ¢ is completely determined by the values of a and b. So, as in the previous theorem’s

proof, we have:

a; =0, 0, or 0 b; =0, 0, or 0

{6} 9 as in theorem page 83
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But (0,0)-(0,0) =0 = ajb; = 0. So the number of combinations is 2% + 1 = 5 choices.

Now, If p; = \/m, then we have two cases to consider:

Case 1. Iftj:2:>p§j zp?:m:
Thus, if m | k but m? { k, then (as in the proof of theorem (2.14) ): a; and b; each

has an (m + 1) choices, along with a;b; =0 = (m+1)+ (m+1)—-1=2m+1

2m—+1

choices, making the value of ¢ = =7¢

Case 2. If t; > 4, = m? | k : then again, as in the proof of theorem (2.14)), a; has (2m+1)
choices, and b; has (2m + 1) choices with a;jb; = 0 (reducing one) gives us the
number of choices is:

(2m+1)+(2m+1)—1:4m+1makingck:‘*mi;‘l,

O
Example 2.11.
Consider the ring homomorphisms ¢ : Z[0] x Z[0] — Zg[0]
where 0 is the algebraic number with the minimal polynomial p(x) = z% + x + 2:
Here, k=3, u=1,v=2 som=|[u?—4v| =[12-4(2)| =1 -8/ =| -7 =17, a prime.

Let a = x4y, 6 =u+ vl, we have:

For any («, B) € Z[0] x Z[6], (v, B) = (2(1,0) + y(6,0),u(0,1) 4+ v(0,6))

So, any ring homomorphism, ¢, is completely determined by its action on (1,0), (6,0),(0,1), (0,0).
Let a = ¢(1,0), b = ¢(0,0), ¢ = (0,0), and d = ¢(0,0):

Note that, to have a homomorphism, ¢ must map idempotent elements into idempotent el-
ements; thus: a®> = a, ¢ = ¢, along with: ab="b, ¢d = d and ac = bd = 0.

Idempotents in Zgl0] are: 0,1,3,4, so a,c = 0,1,3,4. Now to assure ac = 0, we consider
all the cases possible:

Fora=0,ac=0 forc=0,1,3,4. Taking each case alone:
a=0,c=0andb®+b+2a=0=0>+b=0=b=0,2,3,5 but to keep ab = b would
imply that only b =0 is allowed. And d*> +d+2c=d*>+d=0= d=0.

So, we have the zero homomorphism: (a,b,c,d) = (0,0,0,0).
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Fora=0,c=1,b=0,d>4+d+2c=d*>+d+2=0=d=10,0,40,40. And note
that the condition cd = d is satisfied for the four values of d, and thus we have the four
homomorphisms: (a,b,c,d) = (0,0,1,6), (0,0,1,0), (0,0,1,46), (0,0,1,40).
Fora=0,c=3,b=0,d*>4+d+2c=d>+d+6=0=d=0,2,3,5, but in order to have
cd = d, we must have d = 0,3 only. Giving us the following two homomorphisms:
(a,b,e,d) =(0,0,3,0), (0,0,3,3).
Fora=0,c=4,b=0,d*+d+2c=d>+d+2=0= d=20,0,40,40, along with cd = d
= d = 46,40. Thus, we have: (a,b,c,d) = (0,0,4,46), (0,0,4,40).

Fora=1, withac=0=c=0. d*>4+d+2c=d’+d=0= d=0 only.

And B +b+2a=0>+b+2=0=b=20,0,40,40 and all the values of b satisfy ab = b,
thus, we have the following four homomorphisms:

(a,b,c,d) = (1,6,0,0), (1,6,0,0), (1,46,0,0), (1,46,0,0).

Fora=3 withac=0= c=0,4:

a=3,¢c=0:d*>4+d+2c=d*+d=0=d=0.
P4+b+2a=0+b+6=0>+b=0=b=0,2,3,5. But ab=>b holds only for b = 0,3.
Thus, we have the following two homomorphisms: (a,b,c,d) = (3,0,0,0), (3,3,0,0).
Fora=3,¢c=4,b=0,3, andd*>+d+2c=d>+d+2=0=d=10,0,40,40. But cd = d
= d =40,40. Giving us: (a,b,c,d) = (3,0,4,460), (3,0,4,40), (3,3,4,40), (3,3,4,40).
Fora=4 withac=0= ¢c=0,3:
Fora=4,c=0,+b+2a=b0>+b+2=0=b=20,0,40,40 along with ab = b leaves us
with b = 46, 46.

d+d+2c=d>+d=0=d=0,2,3,5, and cd = d holds only for d = 0. Thus, we have
the two homomorphisms: (a,b,c,d) = (4,46,0,0), (4,46,0,0).
Fora=4,¢=3,b=40,40, @ +d+2c =d*+d+6=d>+d=0=d =0,2,3,5.
And, c¢d = d holds only for d = 0,3 and therefore, we have the four homomorphisms:
(a,b,c,d) = (4,46,3,0), (4,460,3,3), (4,40,3,0), (4,46,3,3).

Therefore, we have the following 25 ring homomorphisms as illustrated on the next page:
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Let o = a+ b0, = c+ df such that (04, 6) € Z[0] x Z10)

¢(1,0) #(6,0) ¢(0,1) ¢(0,0) ¢ (v, B)
0 0 0 0 0
0 0 1 c+ do
0 0 1 460 c+ 4df
0 0 1 0 c+df
0 0 1 40 c+4do
0 0 3 3¢
0 0 3 3 3¢+ 3d
0 0 4 46 4c + 4d6
0 0 4 40 4c + 4d0
1 0 0 0 a+ bo
1 [ 0 0 a+ bl
1 46 0 0 a -+ 4b0
1 40 0 0 a + 4b0
3 0 0 0 3a
3 3 0 0 3a + 3b
3 0 4 460 (3a + 4c)4do
3 0 4 460 (3a + 4¢) 4 4dO
3 3 4 460 (3a + 3b + 4c)4df
3 3 4 40 (3a+ 3b+4c) + 4df
4 46 0 0 4a + 4b0
4 40 0 0 4a + 4b0
4 460 3 0 (4a + 3¢) + 4b0
4 46 3 3 (4a+ 3c+ 3d) + 4b0
4 40 3 0 (4a + 3c) + 4b0
4 40 3 3 (4a+ 3c+ 3d) + 4b0
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Solution by using the formula in the theorem.

Considering the formula in the theorem:

We have k =6, m =7 so, m+tk and thus we have the first case of cx,

socp=1. And w(k) = w(6) = 2, thus the number of these ring homomorphisms is:

N =g -5°%) = 1.5% =25 homomorphisms
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Theorem * 2.1.  The number of ring homomorphisms:

n—times

o: ZO) X ZO) x---xZO] — Zgld) [P s

1+ P(n,1) (2 + N1+ No+ N3+ + Nr> + P(n,2) )i <N1NiA(Il,I,~/k))
+ P(n,2)) (NZNiA(Ig,Ii/k)) + o+ P(n,2)NeaNeAr, e
=3
+ Pn,3)(MNaNs [ Agory) + o+ Pe3) (NN T Ao m)
i,j=1,2,3 4,j=1,2,r
i#] i#j
+ P(?’L,?)) (N2N3N4 H A(IiJj/k’)) + e 4+ P(TL, 3)(N2N3N7« H A(Iiyfj/k))
1,j=2,3,4 4,j=2,3,r
i#j i#j
4
+ P(n,4) (N1N2N3N4 I1 A(Ii,lj/k)) n .+ P(n,4) (NlNzNgN,, I1 A(Ii,fj/k))
ij=1 ij=1
i#] i,ﬁ'#
i#]
+ P(n,r — 1)(N1N2"'Nr71 H A(Ii,lj/k)) + -+ P(nar)(N1N2"‘Nr H A(Q,g/k))-
ij=1 ij=1
iJ#J' i]#j
(2.11)

Where 1;’s are the "r” idempotents of Zj,
N; is the number of solutions, s;, of (5172 +ux +v-I; = 0) such that I;s; = s;, where
P(x) = 2% + uz + v is the minimal polynomial of 0,

And A is a characteristic function, defined by:

1 4f ab=0 mod k n!
Aapk) = and P(n,s) =

0 i ab#0 modk

(2.12)

{7} 9 as in theorem page 83
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Proof.

n—times

Let ¢ Z[O) X Z[O] x --- x Z[0] — 7|6

be a ring homomorphism;
Note that, for all k& € N, Z;, has 29(¥) idempotents, where w(k) is the number of distinct
prime divisors of k. So, the number of idempotents is always an even number, and 0,1 are
always idempotents of Zj.
Let a; be the n-tuple with 1 in the i** coordinate and zeros elsewhere, and b; be the n-tuple
with @ in the i*" coordinate and zeros elsewhere. Let e; = ¢(a;) and f; = ¢(b), then ¢ is
completely determined by the values of e;, and f;.
Let S; be the set of idempotents of Zj, then S; has 2¢(%) elements, an even number.
0 is an idempotent, which would give us the zero homomorphism, the ”1” in equation .
1 is also an idempotent, so one of the ¢;’s is 1 and the rest are zeros. But in any case; for
e; = 1, we have f? 4+ uf; + ve; = 0 has two solutions; namely, 0 and 0 giving us P(n,1)
homomorphisms.
Now, let I; be another idempotent (different from 0 and 1). Then, let e; = I; and the rest
of the e;’s are zeros. Let Ni be the number of solutions of 2% + uz + vI; = 0 in Z[f] which
would give us N1 homomorphisms. But we also have the same number of homomorphisms
for the P(n,1) cases. Therefore, we have P(n,1) - N; homomorphisms.
Similarly for any other idempotent I;, we have P(n,1) - N; homomorphisms.
Now, we take the product of any two idempotents such that their product is zero, so that
e; - e; = 0, and here comes the role of the characteristic function A, and the number of
arrangements of any two idempotents among the n possible values of the e;’s is P(n,2) =
()

n—2)1 )"
Similarly, we take the combination of any three idempotents, and then any four, etc.

Proceeding inductively, yields to the formula above (2.11]). O
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As a special case of Theorem™ (2.1). We have the following theorem:

Theorem * 2.2.  For any prime p € N, and any k € N The number of ring homomor-

phisms:
n—times
o\

¢ Z[0) X Z[0) x -+ X Z[0] = Z[0)  is (14 2n)

Proof. The proof follows directly from the fact that for any prime p € N, the only idempo-
tents of Z,x are 0 and 1.
0 gives us the zero homomorphism. I; = 1 and P(n,1) = (#&)l) =n, N1 = 2, since for

any e; = 1, we have two solutions for fi2 + uf; +ve; = 0, namely, 6 and 6, and therefore,

the number of homomorphisms is 1 + P(n,1) - Ny =1+ 2n. O

Example 2.12.

Consider ¢ : Z[0] x Z[0] x Z[0] — Zs|0],

where 0 has the minimal polynomial: P(x) = 2% + x + 2.

Let e = ¢(1,0,0), e2 = ¢(0,1,0), e3 = ¢(0,0,1), and

f1=¢(6,0,0), fo =¢(0,6,0), f3 = #(0,0,0), Then, we have:

eiej =0 and fif; =0 fori# j. e? =e;, ¢, fi = fi, and fi2 + fi+2¢;, =0 fori=1,2,3.

In order to meet these conditions; we have: e; € {0,1} as idempotent elements in Zs[0].
ei=0= fi=0ande;=1= f; €1{0,0}.

Working exactly as in example ;

we get the following 7 homomorphisms denoted by:

(21,22, T3, 24,75, 76) = (e1,e2,€3, f1, f2, f3) =
(0,0,0,0,0,0) , (1,0,0,6,0,0)
(1,0,0,6,0,0) , (0,1,0,0,6,0)
(0,1,0,0,6,0) , (0,0,1,0,0,0)
(0,0,0,0,0,6)

Solution by using the formula in the theorem.

n =3, therefore; N' = (1 + 2(3)) = 7 homomorphisms.
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Example 2.13. Consider ¢ : Z[0] x Z[0] x Z[0] — Z¢[0],

where 0 has the minimal polynomial (z% + = + 1).

Let e; = ¢(1,0,0), ea = ¢(0,1,0), e3 = ¢(0,0,1),

The idempotents of Zgl0] are {0,1,3,4}. f1 = ¢#(6,0,0), fo = ¢(0,0,0), f3 = ¢(0,0,6).

Forei=es=e3=0= f; =0 fori=1,2,3 giving us the zero homomorphism.:

(e1,e2,es, f1, f2, f3) = (0,0,0,0,0,0).

Forei =es=0,e3 =1, then f1 = fo =0 and f?? + f3+1 =0 has two solutions: 6,0.

Giving us: (e1, ez, €3, f1, f2, f3) = (0,0,1,0,0,6), (0,0,1,0,0,0).

Similarly, for e = e3 = 0, ea = 1, = f; = 0 for i = 1,3 and fo = 60,0, giving us:

(e1,€2,€3, f1, f2, f3) = (0,1,0,0,6,0), (0,1,0,0,6,0).

And, fores =e3=0,e1 =1, = fi=0 fori=2,3 and f1 = 0,0, giving us:

(e1, €2, €3, f1, f2, f3) = (1,0,0,6,0,0), (1,0,0,6,0,0).

Now, fore; =ea=0,e3=3= f; =0 fori=1,2,

and f2 + f3+ 3 =0 has two solutions, 30, 30. giving us:

(e1,ea,e3, f1, f2, f3) = (0,0,3,0,0,36), (0,0,3,0,0,30).

Forei=e3=0,e3=3,= fi =0 fori=1,3 and fo = 36,30, giving us:

(e1, €2, €3, f1, f2, f3) = (0,3,0,0,360,0), (0,3,0,0,36,0).

Forey=e3=0,e1=3,= fi =0 fori=2,3 and f1 = 36,30, giving us:

(e1,€2,€3, f1, f2, f3) = (3,0,0,36,0,0), (3,0,0,36,0,0).

Forei=es=0,e3=4= f;=0 fori=1,2,

and f2 + f3+4 = 0 has three solutions; 4, 40, 46, giving us:

(e1,€2,€3, f1, f2, f3) = (0,0,4,0,0,4), (0,0,4,0,0,46), (0,0,4,0,0,46).

e1=e3=0,ea=4,= f; =0 fori=1,3 and fo = 4,40, 40, giving us:

(e1,€2, €3, f1, f2, f3) = (0,4,0,0,4,0), (0,4,0,0,46,0), (0,4,0,0,46,0).

Forey=e3=0,e1=4,= fi =0 fori=2,3 and fi = 4,460,460, giving us:

(e1,e2, €3, f1, f2, f3) = (4,0,0,4,0,0), (4,0,0,46,0,0), (4,0,0,46,0,0).

Now, for e = 0, ea = 3, e3 = 4 = f1 = 0, fo = 0,0, f3 = 4,40,0. giving us

(e1, €2, €3, f1, f2, f3) = (0,3,4,0,30,4), (0,3,4,0,36,40), (0,3,4,0,36,49),
(0,3,4,0,30,4), (0,3,4,0,30,46), (0,3,4,0,30,40),
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Similarly, for e =0, ea = 4, e3 = 3, gives us:
(e1,e2, €3, f1, f2, f3) = (0,4,3,0,4,30), (0,4,3,0,46,36), (0,4,3,0,40,30),
(0,4,3,0,4,30), (0,4,3,0,40,30), (0,4,3,0,40,30),
And fore; =3, e =0, e3 =4, and for e; =4, es =0, e3 = 3 gives us, respectively,:
(e1,e2, €3, f1, f2, f3) = (3,0,4,30,0,4), (3,0,4,30,0,46), (3,0,4,30,0,40),
(3,0,4,30,0,4), (3,0,4,30,0,46), (3,0,4,30,0,40),
(e1,e2, €3, f1, f2, f3) = (4,0,3,4,0,30), (4,0,3,40,0,30), (4,0,3,40,0,30),
(4,0,3,4,0,30), (3,0,4,40,0,30), (4,0,3,40,30),
forer =3, ea =4, e3 =0, and for eg =4, eg = 3, e3 = 0 gives us, respectively,:
(e1,e2, €3, f1, fo, f3) = (3,4,0,36,4,0), (3,4,0,36,46,0), (3,4,0,36,40,0),
(3,4,0,30,4,0), (3,4,0,30,46,0), (3,4,0,30,46,0),
(e1,e2,e3, f1, fo, f3) = (4,3,0,4,30,0), (4,3,0,46,30,0), (4,3,0,46,36,0),
(4,3,0,4,30,0), (4,3,0,46,30,0), (4,3,0,46,36,0),

Which are 58 homomorphisms in total.

Solution by using the formula in the theorem. We have, Iy = 3, I, = 4:
22+ + I, =0 has two solutions and z? + x + Iy = 0 has three solutions.
Therefore, Ny = 2 and N2 = 3 and Ap, 1,/k) = Nzas6) = 1 since 3-4 =10 in Zg.

Therefore, the total number of ring homomorphisms is:

N =14 P, 1) (24 Ny + No ) + P(n,2) (Ny - N+ Ay, 1y i) )

— 14 <(3§‘1)1> <2+2+3) + <(3E!2)!> (2 3. 1)

=1+ 3(7) + (%) (6) =14+21+36=058 homomorphisms
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Example 2.14.
Consider ¢ : Z[0] x Z[0)] x Z[0] x Z[0] — Z30[0], with minimal polynomial P(x) = x4z +1.
Let e; = ¢(1,0,0,0), ea = ¢(0,1,0,0), e3 = ¢(0,0,1,0), e4 = ¢(0,0,0, 1), and

fi = 6(6,0,0,0), f> = 6(0,6,0,0), fs = 6(0,0,6,0), f1 = (0,0,0,0).

The idempotents of Zsy are {0,1,6,10,15,16,21,25}, hence, e; € {0,1,6,10,15,16,21,25}.
For e; = 0 gives us the zero homomorphism:

(e1,e2,es, €4, f1, f2, f3, f1) = (0,0,0,0,0,0).

If one of the e;’s is 1, then f; =6 or 0,

and so we have 8 homomorphisms:

(0,0,0,1,0,0,0,6) (0,0,0,1,0,0,0,8) (0,0,1,0,0,0,8,0)
(0,0,1,0,0,0,8,0) (0,1,0,0,0,6,0,0) (0,1,0,0,0,8,0,0)

(]"0’ 07 07 0’ 07 07 O) (]"O’ 07 0755 07 07 O)

If one of the e;’s is 6, then f; = 66 or 60, which gives 8 homomorphisms:

(0,0,0,6,0,0,0, 60)
(0,0,6,0,0,0,60,0)
(6,0,0,0,66,0,0,0)

If one of the e;’s is 10, then f; = 10,100 or 100, giving us 12 homomorphisms:

0,0,0,10,0,0,0, 10

( )
(0,0,10,0,0,0,10,0)
(0,10,0,0,0,10,0,0)
( )

10,0,0,0,10,0,0,0

0,0,0,10,0,0,0,100
0,0, 10,0,0,0,106,0
0,10,0,0,0,106,0,0
10,0,0,0,0, 106, 0,0

(0,0,0,6,0,0,0,60)
(0,6,0,0,0,66,0,0)
(6,0,0,0,66,0,0,0)

)
)
)
)

(0,0,6,0,0,0,60,0)
(0,6,0,0,0,68,0,0)

(0,0,0,10,0,0,0,100
(0,0,10,0,0,0,108,0
(0,10,0,0,0,100,0,0
(10,0,0,0,106,0,0,0

{8} Henceforth in this example, (z,z,z,z,x,2,2,2) = (e1, €2, €3, €4, f1, f2, f3, fa)
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If one of the e;’s is 15, then f; = 150, or 150, giving us 8 homomorphisms:

(0,0,0,15,0,0,0,156) (0,0,0,15,0,0,0,156) (0,0,15,0,0,0, 156, 0)
(0,0,15,0,0,0,158,0) (0,15,0,0,0,150,0,0) (0,15,0,0,0,158,0,0)
(15,0,0,0,150,0,0,0) (15,0,0,0,158,0,0,0)

If one of the e;’s is 16, then f; = 16,160,160, giving us 12 homomorphisms:

0,0,0,16,0,0,0,16) (0,0,0,16,0,0,0,166) (0,0,0,16,0,0,0, 160

0,0,16,0,0,0,16,0) (0,0,16,0,0,0,160,0) (0,0,16,0,0,0,166,0

0,16,0,0,0,16,0,0) (0,16,0,0,0,166,0,0) (0,16,0,0,0,160,0,0

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
(16,0,0,0,16,0,0,0) ( ) ( )

16,0,0,0,0,166,0,0) (16,0,0,0,160,0,0,0

If one of the e;’s is 21, then f; = 216, or 210, giving us 8 homomorphisms:

(0,0,0,21,0,0,0,216) (0,0,0,21,0,0,0,218) (0,0,21,0,0,0,216,0)
(0,0,21,0,0,0,218,0) (0,21,0,0,0,216,0,0) (0,21,0,0,0,216,0,0)
(21,0,0,0,216,0,0,0) (21,0,0,0,218,0,0,0)

If one of the e;’s is 25, then f; = 250 or 250, giving us 8 homomorphisms:

(0,0,0,25,0,0,0,256) (0,0,0,25,0,0,0,250) (0,0,25,0,0,0,250,0)
(0,0,25,0,0,0,250,0) (0,25,0,0,0,250,0,0) (0,25,0,0,0,250,0,0)
(25,0,0,0,250,0,0,0) (25,0,0,0,250,0,0,0)

For to the e;’s to equal two of the idempotents, they have to satisfy that e;e; = 0 in Zso[8],
and this is satisfied only for: {(6,10), (6, 15), (6,25), (10,15), (10,21), (15,16)}.
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0,0,6,10,0,0,66,10)
0,0,6,10,0,0,60,10)
0,0,10,6,0,0,10,66)
0,0,10,6,0,0,10,60)
0,6,0,10,0,66,0,10)
0,6,0,10,0,66,0,10)
0,10,0,6,0,10,0,66)
0,10,0,6,0,10,0,60)
0,6,10,0,0, 66,10, 0)
0,6,10,0,0, 60, 10, 0)
0,10,6,0,0, 10, 66, 0)
0,10,6,0,0, 10, 66, 0)

6,0,0,10,60,0,0,10
10,0,0,6,10,0,0,60
10,0,0,6,10,0,0,60
6,0,10,0,66,0,10,0

10,0,6,0,10,0,60,0
10,0,6,0,10,0,60,0
6,10,0,0,60,10,0,0
6,10,0,0,66,10,0,0

(
(
(
(
(
(
(
(
(
(
(
(
(6,0,0,10,66,0,0,10
(
(
(
(6,
(
(
(
(
(
(10,6,0,0,10,66,0,0
(

)
)
)
)
)
6,0,10,0,60,0,10,0)
)
)
)
)
)
)

10,6,0,0,10,66,0,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

0,0,6,10,0,0,60,100
0,0,6,10,0,0,66,100
0,0,10,6,0,0,100, 60
0,0,10,6,0,0,100,60
0,6,0,10,0,66,0,100
0,6,0,10,0,66,0,100
0,10,0,6,0,100,0,60
0,10,0,6,0,100,0, 60
0,6,10,0,0,66,100,0
0,6,10,0,0,66,106,0
0,10,6,0,0,100, 66,0
0,10,6,0,0,106, 66,0

)
)
)
)
)
)
)
)
)
)
)
)
6,0,0,10,66,0,0,100)
6,0,0,10,60,0,0,106)
10,0,0,6,100,0,0,60)
10,0,0,6,106,0,0,60)
6,0,10,0,60,0,106,0)
6,0, 10,0,60,0,106,0)
10,0, 6,0, 100, 0, 60,0)
10,0,6,0,106, 0,60, 0)
6,10,0,0,66,100,0,0)
6,10,0,0,66,106,0,0)
10,6, 0,0, 100,66, 0,0)

)

10,6,0,0,100,60,0,0
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(O
0,
(
(
0,
(
(O
0,
(
(O
0,
(
(
(
(
(6,
(
(
(
(
(6,
(
(

For any two of the e;’s to equal the pair (6,10), we have the following 72 homomorphisms:

0,0,6,10,0,0,60,106)
0,0,6,10,0,0,60,100
0,0,10,6,0,0, 100, 60
0,0,10,6,0,0, 106, 66
0,6,0,10,0,60,0,100

0,6,0,10,0,0,60, 100
0,10,0,6,0,108,0, 60
0,10,0,6,0,108,0,60
0,6,10,0,0,60,100,0
0,6,10,0,0,60, 106, 0
0,10,6,0,0, 108, 66,0
0,10,6,0,0, 100, 60,0

)
)
)
0)
)
)
)
)
)
)
)
6,0,0,10,66,0,0,100)
6,0,0,10,66,0,0,100)
10,0,0,6,100,0,0,60)
10,0,0,6,100,0,0,60)
6,0,10,0,66,0,106,0)
6,0,10,0,66,0,100,0)
10,0, 6,0, 100, 0, 66,0)
10,0,6,0,108,0, 60, 0)
6,10,0,0,66,100,0,0)
6,10,0,0,66,100,0,0)
10,6,0,0,108,66,0,0)

)

10,6,0,0,100,60,0,0



0,0,6,15,0,0,606, 150
0,0,6,15,0,0,60, 15

0,6,0,15,0,60, 0,150
0,6,15,0,0,60, 150, 0
6,0,0,15,66,0,0,150
6,0,0,15,60,0,0,150
6,0,15,0,660,0,150,0

0,15,6,0,0,156, 66
0,0,15,6,0,0,150,60
0,15,0,6,0,150,0,60
0,15,6,0,0,156,60,0
15,0,0,6,156,0,0, 66
15,0,0,6,156,0,0, 60
15,0,6,0,156,0,66,0

( )
(O 50)
( )
( )
(6, )
( )
( )
(6,15,0,0,60,150,0,0)
o, )
( )
(O )
( )
( )
( )
( )
(15,6,0,0, 150,68, 0,0)

For any two of the e;’s to equal the pair (6,15),

we have the following 48 homomorphisms:

0,0,6,15,0,0,66,150)
0,6,0,15,0,66,0,150)
0,6,0,15,0,60,0,150)
0,6,15,0,0,60,156,0)
6,0,0,15,60,0,0,150)
6,0,15,0,66,0,156,0)

6,0,15,0,60,0,150,0)

,0,15,6,0,0,156, 66)
0,15,0,6,0,156,0,60)
0,15,0,6,0,150,0,60)
0,15,6,0,0, 150, 60,0)
15,0,0,6,156,0,0, 60
15,0,6,0,150,0,66,0
15,0,6,0,156,0,68, 0

(
(
(
(
(
(
(
(6,15,0,0,60,150,0,0)
(0
(
(
(
(
(
(
(15,6,0,0,150,66,0,0

)
)
)
)
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(
(
(
(
(
(
(
(
(0
(
(
(
(
(
(
(

0,0,6,15,0,0,60,150)
0,6,0,15,0,60,0,150)
0,6,15,0,0,66,156,0)
0,6,15,0,0,60,150,0)
6,0,0,15,66,0,0,150)
6,0,15,0,66,0,150,0)
6,15,0,0,660,156,0,0)
6,15,0,0,60,156,0,0)

0,15,6,0,0, 150, 60)
0,15,0,6,0,156,0,60)
0,15,6,0,0,156,60,0)
0,15,6,0,0,150,60,0)
15,0,0,6,150,0,0, 66
15,0,6,0,156,0, 60,0
15,6,0,0,156,66,0,0

)
)
)
15,6,0,0, 150,68, 0, 0)



0,0,6,25,0,0,60,250
0,0,6,25,0,0,60, 250

0,6,0,25,0,60, 0,250
0,6,25,0,0,60,250,0
6,0,0,25,60,0,0,250
6,0,0,25,60,0,0,250
6,0,25,0,60,0,250,0

0,0,25,6,0,0,250,60

0,25,6,0,0,250,60
0,25,0,6,0,250,0,60
0,25,6,0,0,250,60,0
25,0,0,6,256,0,0,60
25,0,0,6,250,0,0,60

o,
(
(O
(
(
(6,
(
(
(0
o,
(
(O
(
(
(25,0,6,0,250,0,60,0
(

)
0)
)
)
)
)
)
6, 25,0,0,60,250,0,0)
)
)
)
)
)
)
)
)

25,6,0,0,250,60,0,0

For any two of the e;’s to equal the pair (6,25),

we have the following 48 homomorphisms:

0,0,6,25,0,0,60,250)
0,6,0,25,0,66,0,250)
0,6,0,25,0,60, 0,250
0,6,25,0,0,60, 250, 0
6,0,0,25,60,0,0,250
6,0,25,0,660,0,250,0
6,0,25,0,60,0,250,0
6,25,0,0,60,250,0,0
0,0,25,6,0,0,250, 60
0,25,0,6,0,250,0,60
0,25,0,6,0,250,0,60
0,25,6,0,0,250,60,0
25,0,0,6,250,0,0,60
25,0,6,0,250,0,60,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(25,0,6,0,250,0,60,0
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)

25,6,0,0,250,60,0,0

100

0,0,6,25,0,0,60,250)
0,6,0,25,0,60,0,250)

6,25,0,0,660,256,0)
0,6,25,0,0,60,250,0)
6,0,0,25,60,0,0,250)
6,0,25,0,66,0,250,0)

25,0,0,66,256,0,0)

0,0,25,6,0,0,250,60)
0,25,0,6,0,250,0,60)
0,25,6,0,0,256,60,0)
0,25,6,0,0,250,60,0)
25,0,0,6,250,0,0,60
25,0,6,0,250,0,60,0

(
(
(0,
(
(
(
(6,
(6,25,0,0,60,250,0,0)
(
(
(
(
(
(
(25,6,0,0,250,66,0,0
(

)
)
)
)

25,6,0,0,250,60,0,0



0,0,15,10,0,0,156,10)
0,0,15,10,0,0, 156, 10)
0,0,10,15,0,0,10,1560)
0,0,10,15,0,0, 10, 150)
0,15,0,10,0,156,0,10)
0,15,0,10,0,156,0,10)
0,10,0,15,0,10,0,156)
0,10,0,15,0, 10,0, 150)
0,15,10,0,0,156,10,0)
0,15,10,0,0,156, 10,0)

0,10,15,0,0,10,156,0)

15,0,0,10,150,0,0, 10
15,0,0, 10, 156, 0,0, 10
10,0,0, 15,10,0,0, 150
10,0,0,15,10,0,0, 150
15,0,10,0,150,0,10,0

10,0,15,0,10,0,150,0
10,0,15,0,10,0,156,0
15,10,0,0,156,10,0,0
15,10,0,0, 156, 10,0,0

(
0,
0,
(
0,
0,
(
0,
0,
(
0,
(0,10,15,0,0,10,156, 0)
(
(
(
(
(
(
(
(
(
(
(10,15,0,0,10,156,0,0
(

)
)
)
)
)
15,0,10,0,158,0, 10, 0)
)
)
)
)
)
)

10,15,0,0, 10,156, 0,0

0,0,15,10,0,0, 156, 100
0,0,15,10,0,0, 156, 100
0,0,10,15,0,0,106, 150
0,0,10,15,0,0,100, 15

0,15,0,10,0,156,0, 106
0,15,0,10,0, 156, 0,106
0,10,0,15,0,100,0, 150
0,10,0,15,0,106,0, 150
0,15,10,0,0,156,106,0
0,15,10,0,0,156,106,0
0,10,15,0,0,106,156,0

( )
( )
( )
( 0)
( )
( )
( )
( )
( )
( )
( )
(0,10,15,0, 0,106, 156,0)
(15,0,0, 10, 156,0,0,1080)
(15,0,0,10,150,0,0, 106)
(10,0,0,15,106,0,0,150)
(10,0,0,15,100,0,0,150)
(15,0,10,0,156,0, 106, 0)
(15,0,10,0,156,0, 106, 0)
(10,0,15,0,100,0, 156,0)
(10,0,15,0,100,0, 156, 0)
(15,10, 0,0, 156,106, 0,0)
(15,10,0,0, 156,106, 0,0)
(10, 15,0,0, 100,156, 0,0)
( )

10,15,0,0, 106, 1560, 0,0
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For any two of the e;’s to equal the pair (10,15), we have the following 72 homomorphisms:

0,0,15,10,0,0, 156,100
0,0,15,10,0,0,156, 10
0,0,10,15,0,0,100, 150
0,0,10,15,0,0,100,15
0,15,0,10,0,156,0,10
0,15,0,10,0,0,156, 10
0,10,0,15,0,100,0, 150
0,10,0,15,0,100,0,150
0,15,10,0,0,156,106,0
0,15,10,0,0,156,106,0
0,10,15,0,0,100,156,0

( 9)
( 0)
( )
( 0)
( 06)
( 9)
( )
(0, )
( )
( )
(0, )
(0,10,15,0, 0,100, 156, 0)
(15,0,0,10,156,0,0,100)
(15,0,0,10,150,0,0, 106)
(10,0,0, 15,100, 0,0, 156)
(10,0,0, 15,100, 0,0, 150)
(15,0,10,0,156,0, 106, 0)
(15,0,10,0,156,0, 108, 0)
(10,0,15,0,100,0, 156,0)
(10,0,15,0, 100, 0, 150, 0)
(15,10, 0,0, 156,106, 0,0)
(15,10, 0,0, 156,106, 0,0)
(10,15,0,0, 100,156, 0,0)
( )

10,15,0,0, 106, 156, 0,0

For (10,21), we’ll get 72 homomorphisms, For (15,16), we’ll get 72 homomorphisms too.



In order to have three different values of the e;’s, they must be pair-wise zero ( mod 30)
under multiplication, and this is only possible for the triple: {6,10,15}; which gives us 288
homomorphisms:

The first 48 are the following:

(0,6,10,15,0,66, 10, 150)
(0,6,10,15,0,60, 100, 150)
(0,6,10,15,0,66,10,156)
(0,6, 10, 15,0,60, 100, 156)
(0,6,15,10, 0,66, 150, 10)
(0,6,15,10,0, 60,150, 100)
(0,6,15,10,0,66, 150, 10)
(0,6,15,10,0, 60, 150, 100)
(6,0,10,15,66,0,10,156)
(6,0,10,15,66, 0,100, 150)
(6,0,10,15,66,0,10,150)
(6,0,10,15,60, 0,100, 150)
(6,0,15,10, 60, 0,150, 10)
(6,0,15,10, 60,0, 156, 100)
(6,0,15,10, 66,0, 156, 10)
(6,0,15,10,60, 0,150, 100)

(0,6,10,15,0,60, 10, 150)
(0,6,10,15,0, 60,100, 150)
(0,6,10,15,0,60, 10, 150)
(0,6,10,15,0,60, 100, 150)
(0,6,15,10, 60,156, 10)
(0,6,15,10,60, 150, 106)
(0,6,15,10,0,60, 150, 10)
(0,6,15,10,0, 60, 156, 100)
(6,0,10,15,60,0, 10, 150)
(6,0,10, 15,66, 0,100, 150)
(6,0,10,15,0, 60, 10, 156)
(6,0,10,15,60, 0,100, 150)
(6,0,15,10,66,0, 150, 10)
(6,0,15,10,60,0,156,100)
(6,0,15,10,60, 0,150, 10)
(6,0,15,10,60,0,1560,100)

0,6, 10, 15,0,66,100, 150
0,6,10,15,0, 66,100, 15
0,6,10,15,0,60, 100, 156
0,6,10,15,0,60,100, 15
0,6, 15,10, 0,66, 150, 100
0,6,15,10,0, 66, 156, 10
0,6, 15,10, 0,60, 150, 100
0,6,15,10,0, 66, 150, 10

6,0,10,15,66,0,100, 15
6,0, 10, 15,66, 0,100, 150
6,0,10,15,60,0,100, 15
6,0, 15,10, 66, 0,150,100
6,0,15,10,66, 0,150, 10

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(6,0,15, 10,60, 0,150, 100
(

)
0)
)
0)
)
0)
)
0)
6,0,10,15,60,0,100, 150)
50)
)
0)
)
0)
)
)

6,0,15,10,60,0,150, 100

Permuting the three values (6,10, 15) produces the rest of the 240,

Therefore, we have a total of:

(1+8+8+12+8—|—12+8+8+72+48+48—|—72+72+72—|—288:737) homomorphisms.
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Solution by using the formula in the theorem. ¢ : Z[0] x Z[0] x Z[0] x Z[0] — Z300]
For k = 30, the idempotents {I; = 6,1y = 10,13 = 15,1, = 16, I5 = 21, I = 25}
Ay nyky = Mepogso) = 1 Ay 1wy = Me,1s/30) = L A naye) = Ms,16/30) = 0,
Aty 1 7k) = Mo21/30) = 00 May1g k) = Mo,25/30) = 1 Mt 15 /k) = M10,15/30) = 1,
Ay = Naoie/30) = 0, Ay 1576 = N1o.21/30) = 1, Mro,16/8) = A(10,25/30) = 0,
AN, nam) = Nasie/30) = 1 Ay, 1578 = Mas21/30) = 0, Ay, 16/8) = Ms,25/30) = 0,
Ay sk = Maes21/30) = 0, Ay 1/k) = Mae,25/30) = 0, Ars,16/k) = A21,25/30) = 0
The number of solutions of (% +x + I;), ”N;” are as follows:

I =6: 224+ 24+ 6 =0 has two solutions, so Ny = 2.

I, =10: 22 4+ 2 + 10 = 0 has three solutions, so No = 3.

I3 =15: 22 + 2 + 15 = 0 has two solutions, so N3 = 2.

I, =16: 22+ 2+ 16 = 0 has three solutions, so Ny = 3.

Is =21: 22 4+ 2 + 21 = 0 has two solutions, so N5 = 2.

Is = 25: 22+ 2 + 25 = 0 has two solutions, so Ng = 2.

P(s,2) = P(4,2) = () = () = % = 12.

P(s,3) = P(4,3) = () = (4) = % = 24.

103



Therefore the number of ring homomorphisms is:

N =1+n(2+ Ny + Ny + Ny + Ny+ Ng + N)
+ P(4,2) (NlNQA(Il,Ig/k) + N1NsAq, 15 /5) + NiNaA(q, 1,78
+ NiNs Ay 15 k) + N1N6A(11,16/k)>
P(4,2)( NaN3A 1, 15/k) + N2NaA (1, 1,/5) + N2Ns A1, 156y + N2Ne Ay, Iﬁ/k)>

P(4,2

)

N3Nl 1,/k) + N3NsA(gy.15/8) + N3N6A(13,16/k)>

P(4,3 N1N2N3A(11 I/k) A(11,I3/k) ’ A(I2J3/k‘)>

P(4,3){ NiNaNuA (1, 1o /k) - My, 1agk) - Ata,1a/m)

P(4,3) NuN2Ns A1y 1,0y - My 15 /k) - M1a,15 k)

P(4,3)( NiNaNeA (1, 1o /k) - M1y ,16 /%) A1a,06/8)

P(4,3)( NaN3sNeA (1,1, /1) - M1o,16/k) - M13,16/8)

P(4,3)( NsNaNsA (15, 1,/8) - M, 15 /%) - A1a,15/8)

4, 3)( N3aNaN6A (15,1, /k) - M, 16 k) - A1a,16/k)

+ o+ o+ o+ o+ o+ o+

(
(
(
(
(
(
P(4,3
(
(
(
(
(

)
)
)
)
NaNsNsA(ry15/k) - Mo, 15/k) ° 13,15/1«))
)
)
)
4,3) ( NaNsNoA (1, 1 iy - Mirato sy - A 15716/@)

(
(
(
(
(
(
<N2N3N4A(12,13/k> Nz, 1a /) - A1, 1a/k)
(
(
(
(
(

)
)
)
)
)
)
)
P(4,3)
)
)
)
)
(

144 +2+3+2+3+2+2)

(2 3(1) +2-2(1) +2-3(0) +2-2(0) + 2 - 2(1 ))

2(3 2(1) +3-3(0) +3-2(1) +3- 2(0))

2( -3(1) +2-2(0) +2- 20)) 2(3 2(0) + 3 - 2(0))+2-2(0)

( 3 2(1)(1)(1) +2-3-3(1)(0)(0) + 2+ 3-2(1)(0)(1) +2-3-2(1)(1)(0))
4(3-2-3)(1)(0)(1) +3-2-2(1)(1)(0) + 3 - 2 - 2(1)(0)(0)

+3-2(1)(0)(0)2 - 3-2(1)(0)(0)3 - 2 - 2(0)(0)(0))

1+4(16)+12(6+44+04+0+4)+126+0+6+0+6+0+0+0+0+0)

[\D

++++++
[N}

_l’_

24(124+04+0++0+04+0+0+0+0+...)

1+64+ 168+ 144 4 72 + 288 = 737 homomorphisms
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Theorem 2.16. [, Theorem 9]

The number of ring homomorphisms:

¢ :

where ¢, =

Zn 0]

— Zk [9] {9}

18

cp, - 3“(k)_w(m)

if mtk or m‘ (gcd(kn,k)>

if m|k, m*tk and m/f(

if m?|k and m /f(gcdéﬂnvk))

Where w(k) is the number of prime factors of k in Z[6)].

Proof.

To determine the number of ring homomorphisms from Z,[0] into Z[f], we see that we

have the same conditions as in the last theorem’s proof.

. t ..
However, for a non zero homomorphism, when a; # 0,then pjj must divide n.

So when p;j t n, then for that component we must reduce the number of ring homomorphisms

accordingly by 1: = instead of w(k) we have w(k) — w (%) completing the proof. [

9} 9 as in theorem , page 83
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Example 2.15.

Consider the ring homomorphisms: ¢ : Zs|0] — Zg[0),

Where 0 is the algebraic number with minimal polynomial P(x) = 2% +z + 1.
That is; 0 = (71%‘/?3) = p, the Fisenstein number.

Note that this is just e:mmple(@ which has been solved on page 71.

We've found that we have the four ring homomorphisms:

(e, f) = (0,0),(4,4), (4,4p) and (4, 402)

Solution by using the formula in the theorem.
Here, m=3,n=3,k=06 andm |k (3]6) but m>{k (3216).
4

So, we have the second case of ¢ = (T‘H) = (g)

(st ) = () = 8 =2 w(6) =2, w(2) = 1,

and therefore N (¢ : Z3]0] — Zg[0)]) = g 3271 =

QO >
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Theorem 2.17. [}, Theorem 11]

The number of ring homomorphisms:

b: Znlf] x 2,]0] — Z4[0]) [(10F

18

Ch - 500~ (garntm) . 52 (Gaorm) (Gt )~ (Geatim)

1 if eithermtk or m|k, but m*(m),m)((Wkn’kO

Where ¢}, = § m+1 if m|k, m*tk and m|l, or m|n but mf{ged(n,l)

dmtl oy m2 |k and m/f(m)

and w(m) is the number of prime factors of m in Z[6)].

Proof.

Let k = pi'p%? - p's in Z[6], then by the Chinese Remainder Theorem:
Zi[0] = Zptll [6] x Zpgz [0] - X Z1. [0]

Then ¢ is completely determined by its action on (1,0), (0,1), (0,0), (0,0).

Note that, as in the previous proofs, ¢ ((1,0)) and ¢ ((0,1)) is each =0 or 1.

Let ¢ ((6,0)) = a = (a1,az2,...,as) and ¢ ((0,0)) =b= (b1,ba,...,bs) in Z|[0)].
Then ¢ is completely determined by the values of a and b.

Now, if p; # /m, then p;j cannot divide both factors; then p; = 6 or # which gives us:

|

aj = 0, 9, @ N bj = 0, 0,

Which gives us 22 4+ 1 = 5 possibilities.

{19} 9 as in theorem , page 83
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If pj = /m, pi-j may divide both factors, = t; is even:

Case 1. For t; = 2, pzj = p5 = m. For m | k but m? { k:

If m | I; or if m | n but m{ged(n,l) in Z,[0] then:

Either a; = 0, bj = 0, 69, 0.
= bj=xp+yd, T, Y € Zy and b?+ubj+v:0.
And similar to the proof of theorem (2.14]), we have:

m+1

b; has m choices, giving us that ¢, = ™5

Or aj = 0, (9, §7 bj =0.
=  aj =2q+Yab, Ta, Yo € Ly and a?—{—uaj—}—v:().

Similarly; a; has m choices, giving us that ¢, = mT‘H

Case 2. For t; > 4, so m? | k and m { W, then a; has (2m + 1) choices and b; has

(2m+1) choices, along with a;b; = 0, thus, we have (4m+1) choices and ¢}, = 4’”5—“

O]

Example 2.16.

Consider the ring homomorphisms: ¢ : Z3[0] x Z4]0] — Zg[0],

where § has the minimal polynomial: P(z) = 2* + x + 1, thus 6 = (4%‘/?3) =p.

Note that this is just ezample@, where we’ve found twelve ring homomorphisms on page

79.

Solution by using the formula in the theorem. Here, n = 3,1 =4, k =6, m = 3,
m |k (3]6) and m? t k (3216) thus we have the second case of our ¢, = ™ = 3 and the

solution follows identically as that on page 81.

A more illustrating example is given on the next page:
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Example 2.17. The ring homomorphism: ¢ : Z4[0] x Zg|0] — Z12[6],

where 0 has the minimal polynomial P(z) = 2% + = + 1.

Let e; = ¢(1,0), ea = ¢(0,1), f1 = ¢(0,0), fa = ¢(0,0).

Note that e; € {0,1,4,9}, the idempotents of Z12[0)].

Fori=1,2: e;fi=fi, fA+ fi+ei =0, 3e; = 6ea = 0.

Foreg =es =0 = f1 = fo =0, giving us (e1, ez, f1, f2) = (0,0,0,0)

For ey =1, or eg =1 are both not acceptable, since 4e1 = 4 # 0 and 6ey = 6 # 0.

Fore; =0, eg =4, (note here, 6ea = 6-4=24=0) = fo = 4,40, 40.

For eo =9 is not acceptable, for 6eo =6-9 =54 =6 #£ 0.

For e; =1 or 4 are not acceptable, 4e1 # 0 in either case.

For e; = 9, (note, 41 = 4-9 = 36 = 0), ea = 0 = f1 = 90,90, fo = 0 giving us:
(e1,e2, f1, f2) = (9,0,96,0), (9,0,96,0).

Fore; =9, ea =4, (4e; =0, 6eg = 0); giving us:

(e1,€2, f1, f2) = (9,4,90,4), (9,4,90,40), (9,4,90,40), (9,4,90,4), (9,4,90,40), (9,4,90, 40).

Therefore, we have the following 12 homomorphisms:

(0,0,0,0)  (0,4,0,4)  (0,4,0,46)
(0,4,0,40) (9,0,90,0) (9,0,99,0)
(e1,e2, f1, f2) = _
(9,4,90,4) (9,4,90,40) (9,4,90,49)

(9,4,90,4) (9,4,90,40) (9,4,90,40)

Solution by using the formula in the theorem.

7

Here,n:4,l:6,m:3,k:12,m|kandm2+kwithm|l,'So,ck:m+1:%

T3
(gcd(llz,n,l)) = (gcd(fﬁ,n)) = % =0, <gcdé€k,n)) = (gcd(1122,4)) = % =3,

(i) = (geattom) = =2

Therefore, the number of ring homomorphisms is:

N = ¢, - 52(12)~w(6) . 320(12)~w(3)-w(2) — % .50.32)-1-1 — % - 32 = 12 homomorphisms.

109



Theorem * 2.3.

The number of ring homomorphisms:
G Ly (0] X Ly 6] % -

1+<M1+M2+M3+"'+MT>

r

+ (MgMiA(IQ,Ii/k:)> -
=3

+ (MleMs H A(Imfj/k)> +

i7j':17‘2,3
7]

+ (M2M3M4 H A(L'Jj/k)> T

7:7.]':27374
i#j

4
+ (N1N2N3N4 H A(Ii,fj/k)) +

i7j:1
i#j

n (MlMQ"'Mr—I 11 A(M;-/k)) +

iJ:l
i#j

X T 0] — Zyl0] [V s

+ ET: (MlMiA(Il,zi/k)>

=2

n (Mr_erA(zr_l,zr/kzﬂ

T (MleMT 11 A(Ii,lj/k))
i,9=1,2,r
i

T (MQM;),MT 11 A(M/k))
©,=2,3,r
i#]

+ (M1M2M3Mr l.__[l A(Iivlj/’“)>
g
i

+ (M1M2--~Mfr 11 A(fivfj/’“))'
ij=1
i#]

Where r and I; as defined in Theorem* on page 91, and M; is defined by:

M; = N; Z A(Iiﬂj/k)

Where A is as defined in equation (2.12) on page 91.

{1} 9 as in theorem , page 83



Proof.

Note that this theorem is just a generalization of Theorem™ ([2.1]), and the proof is identical
to that of Theorem* with the additional condition that we must have n;I; = 0 in
order to take it into account for producing a homomorphism, for ¢ = 1,2,...,s and for
every idempotent I; of the r idempotents of Zj. And here comes the role of defining the
new parameter M;, which is as defined, characterizes those idempotents that would be taken
into account. Moreover, note that we have omitted the P(n,i) coefficients from the formula

since it is accounted for in the definition of M;’s. O

Example 2.18. Consider the ring homomorphisms ¢ : Za|0] x Z4[0] x Z2|0] — Zg|0)
where 0 is the algebraic number with the minimal polynomial p(x) = z% + + 2
That is; 0 = (_1%‘/?7)
Let e = ¢(1,0,0), e2 = ¢(0,1,0), e3 = ¢(0,0,1),
J1=9(0,0,0), fa =¢(0,0,0), fs = ¢(0,0,0)
We have to take into considerations the following conditions in searching for the ring
homomorphisms:
e? =e; and e; f; = f; with ff + fi+2e; =0 fori=1,2,3, with e;ej = f;f; =0 fori# j.
Moreover, since 2(1) = 0 in Zg and 4(1) = 0 in Z4 then,
we must also have 2e; = 2e3 = 0 and 4ea = 0. So, the only allowed idempotents of Zg[0)
are 0 and 3. Therefore; e, ea,e3 € {0,3}.
Now, for e; =0 = eg,e3 € {0,3}.
e1=0= f1 =0, and if ea =0, then fo =0.
Now, if also, e3 = 0 then f3 =0 giving us (e1, ea, €3, f1, f2, f3) = (0,0,0,0,0,0)
And if e3 = 3, then f2 + f3+2e3 = f3 + f3 =0 = f3=0,3 giving us that:
(e1,e2,e3, f1, f2, f3) = (0,0,3,0,0,0) and (0,0,3,0,0,3)
If e1 =0 and eo = 3, then es =0 and f1 = f3 =0 and fo = 0,3, giving us:
(e1,e2,es, f1, f2, f3) = (0,3,0,0,0,0) and (0,3,0,0,3,0)
If e =3 then es = e3 =0 and f1 = 0,3, fo = f3 =0 giving us:

(617627637f17f27f3) - (37070707070); (37070737070)
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Therefore, we have the following seven ring homomorphisms:

Let o =a+ b0, B=c+db, vy =e+ f0O, then:

¢(1,0,0) ¢(0,0,0) ¢(0,1,0) ¢(0,0,0) (0,0,1) (0,0,0) o(e,B,7)
0 0 0
0 0 3¢
0 3 3¢+ 3f
0 0 3b
0 0 3b + 3e
3 0

0

3a

o O w w o o o
oS o o o w w o
w o o o o o o
o O w o o o o

3 3a + 3d

Solution by using the formula in the theorem.

Here, we have the non-one idempotents of Zg are {0,1; = 3,1y = 4}.
ni=2,n,=4,n3=2 and k = 6.

The number of solutions of (x> +x + 21 = 2? + 2 +6 = 22 + 2 = 0) is two, so Ny = 2.
The number of solutions of (x> +z+ 2l = 2> +2+8 =22+ 2+2 = 0) is two, so Ny = 2.
Aty k) = Nzj276) = 1 since 3-2 =0 in Zg, A1, ny/k)y = Nza/6) = 1 since 3-4 =10 in Zg,
ANy = MNa2/6) = 1 Miyna k) = Ma2s6) = 0 since 4-2 # 0 in Zg.

A1y ma/k) = Naase) = 0 since 4 -4 # 0 in Ze, N(1,m5/8) = Na2/6) = 0.

And Ap, 1,k = Nase) = 1 since 3-4=10in Zg.  Therefore:

M; = Ny (A(,Lm/k) + Ay ng) + A(Ihng/k)> H My = (A(Iz,m/k) + A1y n0) + A(Iz,”s/’f))
:2<1—|—1+1):2-3:6 =<0+0+0):0

Therefore, the total number of ring homomorphisms is:

N=1+ (M1 + Mz) + (MlMQA(Il,Ig/k)>
— 14 <6+0> + (6-0~0)

=14+6=7 homomorphisms

112



Example 2.19. Consider example on page 109; ¢ : Z4[0] x Zg|0] — Z12]6],
whose solution was based on Theorem which is a special case of theorem™ .'
Now, n1 =4, ny =6, k =12, the idempotents of Z12 are: 0,1,4,9

I =1, Ny =2, Iy =4, Ny =3, I3 =9, N3 =2I;

Ak = MNaanz) =0, Ay k) = MNagjiz) =0, Ary1yk) = M3a/12) = 1

Aty k) = Naai2) =0, A1y noyky = MNaeyi2) = 0,
Ao sk) = Naaj12) =0, Aty naky = Najo/12) = 1,
Atz k) = Noajiz) = 1, A (13m0 /k) = No9/12) = 0,

M, =N (A(Il,nl/k) + Aok ) = 2<0 +0

_
_.l_
o

) )
My = N (Atyins iy + Mtamasiy) = 3(0+1) =3
) )

My = N (A m ) + Actymariy) = 2(

Therefore, the number of ring homomorphisms is:

3
N =1 + Z (Mz) + M1M2A([1,[2/k) + M1M3A(11713/k) + MQMQA(I%[Q/k)

=1
+ My MaM3 A, 1,1 Mry 1 k)N (15,15 /1)

=1+ (0+3+2)+(0-3(0) + (0-2(0)) + (3-2(1)) + (0-3-2) - (0-0-1)

=1454+04+0+6+0=12 homomorphisms,
which is consistent with the solution of page 109.
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Example 2.20. Consider ¢ : Zg|0] x Zg[0] x Zg[0] — Zs|0)],

with 6 has the minimal polynomial P(x) = 2% + = + 1.

Let ey, ea, e3, f1, fa, f3 be defined as in example .

The idempotents of Zg are {0,1,3,4}. So, e; € {0,1,3,4}.

Note that we must satisfy the same conditions in the previous example, in addition to that
e;-n; =0, fori =1,2,3, n; = 6. So, we must have 6e; = 0:

Fore; =0 — f; =0 giving us the zero homomorphism:

(e1, €2, €3, €4, f1, f2, f3, f1) = (0,0,0,0,0,0)

For e; =1, note thatn; -e; =6-1 =0, so 1 is acceptable,

Now, e; =1 — fi = 6,0 giving us 8 homomorphisms:

(0,0,0,1,0,0,0,6) (0,0,0,1,0,0,0,0) (0,0,1,0,0,0,6,0)

(0,0,1,0,0,0,6,0) (0,1,0,0,0,6,0,0) (0,1,0,0,0,6,0,0)

(1,0,0,0,60,0,0,0) (1,0,0,0,6,0,0,0)

Fore; =3, n; e =0, 3 is acceptable, and f; = 30,30, giving us 8 homomorphisms:

(0,0,0,3,0,0,0,30)
(0,0,3,0,0,0,36,0)
(3,0,0,0,36,0,0,0)

Fore; =4, n;-e; =0, 4 is acceptable, and f; = 4,460,460, giving us 12 homomorphisms:

(0,0,0,4,0,0,0,4
(0,0,4,0,0,0,4,0
(0,4,0,0,0,4,0,0
(

4,0,0,0,4,0,0,0

) (
) (
) (
) (

(0,0,0,3,0,0,0,30)
(0,3,0,0,0,36,0,0)
(3,0,0,0,36,0,0,0)

0,0,0,4,0,0,0,46)
0,0,4,0,0,0,46,0)
0,4,0,0,0,46,0,0)
)

4,0,0,0,46,0,0,0

(0,0,3,0,0,0,36,0)
(0,3,0,0,0,36,0,0)

0,0,0,4,0,0,0,460
0,0,4,0,0,0,46,0

( )
( )
(0,4,0,0,0,46,0,0)
( )

4,0,0,0,460,0,0,0

{12}Henceforth in this example, (z,z,2,2,x,2,2,2) = (e1, €2, €3, €4, f1, f2, f3, f1)

114



For two of the e;’s to equal two of the idempotents, their product must be zero, so 3 and
4 meet this condition.

And this combination would give us 72 homomorphisms:

0,0,3,4,0,0,306,4
0,0,3,4,0,0,30,4
0,0,4,3,0,0,4,30
0,0,4,3,0,0,4,30
0,3,0,4,0,36,0,4
0,3,0,4,0,360,0,4
0,4,0,3,0,4,0,30
0,4,0,3,0,4,0,30
0,3,4,0,0,36,4,0
0,3,4,0,0,36,4,0
0,4,3,0,0,4,30,0

3,0,0,4,30,0,0,4
3,0,0,4,360,0,0,4
4,0,0,3,4,0,0,30
4,0,0,3,4,0,0,30
3,0,4,0,30,0,4,0
3,0,4,0,30,0,4,0
4,0,3,0,4,0,30,0
4,0,3,0,4,0,36,0
3,4,0,0,36,4,0,0
3,4,0,0,30,4,0,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(4,3,0,0,4,36,0,0
(

)
)
)
)
)
)
)
)
)
)
)
0,4,3,0,0,4,30,0)
)
)
)
)
)
)
)
)
)
)
)
)

4,3,0,0,4,36,0,0

0,0,3,4,0,0, 36,46
0,0,3,4,0,0,30,460
0,0,4,3,0,0,46, 360
0,0,4,3,0,0,46,30
0,3,0,4,0,36,0,460
0,3,0,4,0,30,0,46
0,4,0,3,0,46,0,36
0,4,0,3,0,46,0,30
0,3,4,0,0,36,46,0
0,3,4,0,0,36,46,0
0,4,3,0,0,46,30,0

3,0,0,4,36,0,0,46
3,0,0,4,30,0,0,40
4,0,0,3,46,0,0, 30
4,0,0,3,46,0,0,30
3,0,4,0,36,0,46,0
3,0,4,0,30,0,46,0
4,0,3,0,46,0,36,0
4,0,3,0,46,0,36,0
3,4,0,0,36,46,0,0
3,4,0,0,30,46,0,0

(
(
(
(
(
(
(
(
(
(
(
(0,4,3,0,0,46,30,0
(
(
(
(
(
(
(
(
(
(
(4,3,0,0,46,36,0,0
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

4,3.0,0,46,36,0,0
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0,0,3,4,0,0,360, 460
0,0,3,4,0,0,30,460
0,0,4,3,0,0,40, 36
0,0,4,3,0,0,46, 30
0,3,0,4,0,36,0,460
0,3,0,4,0,0,30, 460
0,4,0,3,0,46,0, 36
0,4,0,3,0,46,0,30
0,3,4,0,0,36,46,0
0,3,4,0,0,36,46,0
0,4,3,0,0,46,30,0

3,0,0,4,30,0,0, 40
3,0,0,4,30,0,0,40
4,0,0,3,46,0,0, 36
4,0,0,3,46,0,0,30
3,0,4,0,36,0,46,0
3,0,4,0,30,0,460,0
4,0,3,0,46,0,36,0
4,0,3,0,46,0,36,0
3,4,0,0,36,46,0,0
3,4,0,0,30,40,0,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(4,3,0,0,46,30,0,0
(

)
)
)
)
)
)
)
)
)
)
)
0,4,3,0,0,46,36,0)
)
)
)
)
)
)
)
)
)
)
)
)

4,3,0,0,46,36,0,0

Therefore, we have (1 + 8 + 8 + 12 + 72) = 101 homomorphisms.



Solution by using the formula in the theorem.
Here,nj=k=6,I1 =1, [=3,I3=4, Ny =2, Ny =2 and N3 = 3.
Ay k) = N gjey = 0 since 1-3 # 0,

Aty k) = Mage) = 0 since 1-4 0,

A1y 13/0) = N3a/6) = 1 since 3-4 =10,

Aty = Aae/6) = 1 since 1-6 =10,

Attymisky = Maese) = 1 since 3-6 = 0,

Ar3mi k) = Maer6) = 1 since 4-6 =0,

My =Ny (A(h,m/k) + Arynoyk) + Ay ns i) + A(h,m/k)) = 2<1 +1+1+ 1) =2(4)=38
Mz = N> (A(Iz,m/k) T Aty ma /by + Ayma/k) + A(12,n4/k)) - 3<1 +1+1+ 1) =3(4) =12
Ms = N3 (A(ls,m/k) T Mz na k) T Mana k) + A(Is,m/k)) = 2<1 +1+1+ 1) =2(4) =8
Therefore, the number of ring homomorphisms is:
3
N=1+ Z (MZ> + MlMQA(IlJz/k) + M1M3A(I1J3/k) + M2M3A(12J3/k)
i=1

:1+<8+12+8>+(8-12-(0))+(8-8-(0))+(8-8-(1))

=1+28+72=101 homomorphisms
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Theorem 2.18. Theorem 2]

The number of ring homomorphisms:

¢ Loy [0] X Zing[0] X -+ X Ly, (0] — Zp[6] [}
is Cy
L+ Npe(my,ma,...,m;) if either p*=2 or p=3 mod4
(m+1)Npk(mlam277mT) Zf pk:4
where C}j =
(142m)Ny(my,mg,...,m;) if pF=2F k>3
\1+8Npk(m1,m2,...,m7ﬂ) if p=1 mod4
Proof.

Let ¢ 1 Zypy [0] X Ziny[0] X -+ X L, [0] = Zk[0] be a ring homomorphism.

Then ¢ is completely determined by its action on  ¢(e;) and ¢(f;) for i = 1,2,...,7,
where:

ej is the r-tuple with 1 in the 4t component and 0 elsewhere, and

fj is the r-tuple with 6 in the 4t component and 0 elsewhere.

Note, since for each j = 1, e; is an idempotent in Z,, [0]; then so is each ¢(e;) in Z,x[0].
And for ¢(e;) # 0, ¢(ej) # 0 for i # j

= 0= ¢(0) = d(ese;) = ¢(es)p(e;) # 0, a contradiction.

So, if ¢ is not the zero homomorphism, then ¢(e;) # 0 for exactly one value of i. And for
that 4, p* must divide m;; So we just need to compute the number of idempotent elements in
Z,x[0]. And since the idempotent elements are ¢(e;)’s, satisfying the quadratic congruence

(¢(e5))* = ¢(e;) mod p¥, then the number of idempotent elements in Zy,k[0] depends on

the number of solutions to that quadratic congruence under different cases:

{13} 9 as in theorem , page 83
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Using the results in the proof of theorem (2.7) (page 63); we consider the solutions of the

quadratic congruence: 2 = x mod p”, and following those cases in the proof of theorem

BT, we get:

(i) p* =2, or p =3 mod 4, we have only one solution, so if Nk (ma,ma, ..., my) is the
number of elements in the set {m1,ma,...,m,} that are divisible by "

Then we have the number of idempotent elements is:
(1 + Ny (ma, ma, ..., mr)>

(ii) p* = 4, The number of solutions is (m 4 1), hence the number of idempotent elements
is:

((m + 1) Nk (my, ma, ... 7m7‘))

(iii) p* = 2*, k > 3, the number of solutions is (2m + 1), hence the number of idempotent
elements is:

((Zm + 1) Ny (ma, ma, ..., mr))

(iv) p =1 mod 4, then we have 8 solutions for each m;, and hence the number of idem-

potent elements is:

(1 + 8Npk (ml,mg, . ,mr)>
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Chapter 3

Conclusions and Future Work

3.1 Conclusions

We have considered the number of ring homomorphisms over special rings, namely:
e The ring, and rings related to the ring of Integers, Z.
e The ring, and rings related to the ring of Gaussian integers, Z][i].
e The ring, and rings related to the ring of Eisenstein integers, Z[p].

e The ring, and rings related to the ring of a certain algebraic number, Z[f] where 6 is
an algebraic number and Z[f] is a unique factorization domain (UF D) under certain

conditions.

Secondly, we were able to reach new generalizations concerning the number of ring homo-
morphisms over the ring of integers, Z and rings related to it as well as those of certain
rings of an algebraic number subject to specific condtions, namely: Z[f] and its quotient
rings where 6 is an algebraic integer with minimal polynomial: p(z) = 2% + uz + v where
m = |u? — 4v| is a prime. These original results were marked with an asterisk (*).

We have given some examples in order to illustrate how to use the formulas given in the
theorems. It’s clear from the examples that these formulas are much easier to use than the

regular methods of finding the ring homomorphisms.
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3.2 Future Work

I think that it would be interesting to consider the number of ring homomorphisms over:

e The ring of algebraic integers Z[f] where 6 is an algebraic integer whose minimal poly-
nomial is: P(z) = 22 + uz + v, where the radicand, (u? — 4v) = m, and m is a square

free integer (not necessarily a prime).

e The quadratic number fields Q[f] where 6 is an algebraic number with certain minimal

quadratic polynomial (whose coefficients € Q) under certain conditions.

e The ring of cubic algebraic integers Z[f] where € is an algebraic integer with simple

minimal cubic polynomial with coefficients € Z.

I do believe that these problems are worth working on; for they open the way to reach wider
generalizations, and hence, to have a clearer conception about algebraic number fields and

their relations.
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