
Faculty Of Graduate Studies

Mathematics Program

A STUDY ON HOLLOW-LIFTING

MODULES

Prepared by
Mahmoud Ghannam

Supervised by
Professor Mohammad Saleh

M. Sc. Thesis
Birzeit University

Palestine

2013



A STUDY ON HOLLOW-LIFTING MODULES

Prepared By

Mahmoud Ghannam

Master in Mathematics, Birzeit University, 2013

Supervised By

Prof. Mohammad Saleh

Mathematics Department, Birzeit University

This thesis was submitted in fulfillment of the requirements for the
Master’s Degree in Mathematics from the Faculty of Graduate Studies at

Birzeit University, Palestine.

Program of Mathematics
2013

i



A STUDY ON HOLLOW-LIFTING MODULES

By

Mahmoud Ghannam

This thesis was defended successfully on August 6, 2013

And approved by

Committee Members Signature

1. Prof. Mohammad Saleh Head Of Committee . . . . . . . . . . . . . . .

2. Dr. Hasan Yousef Internal Examiner . . . . . . . . . . . . . . .

3. Dr. Khaled Al-Takhman Internal Examiner . . . . . . . . . . . . . . .

Birzeit University
2013

ii



Acknowledgements
I would love to start with the words of my divine source of inspiration,

Almighty Allah.

Qol Kolon ya’mal ’ala shakelateh farabokom a’lam beman howa
ahda sabeela

Also, I would like to express my utmost honest gratitude to my mentor,
professor Mohammad Saleh for his endless generosity. At last, my sincere
thanks to anybody thinks I owe him.

iii



Declaration
I certify that this thesis, submitted for the degree of Master of Math-

ematics to the Department of Mathematics at Birzeit University, is of my
own research except where otherwise acknowledged, and that this thesis (or
any part of it) has not been submitted for a higher degree to any other
university or institution.

Mahmoud Ghannam Signature . . . . . . . . . . . .
August 6, 2013

iv



Abstract

This humble project aims mainly to reveal the characteristics of what
so-called hollow-lifting modules. We start with providing some basics con-
cerning modules. Afterwards, in part three, we study hollow-lifting modules
and other relevant concepts. In part four, we move towards direct sums of
such modules. Lastly, we will study hollow-lifting modules over commutative
rings.

Keywords: hollow-lifting, f-hollow-lifting, X-hollow-lifting, amply sup-
plemented, duo, UCC.
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 الملخص

 

دراسة وكشف خصائص ما يسمى  هوهذه الرسالة  الهدف الرئيسي من       

ائص العامة بالمقاسات المجوفة الرافعة. في بداية هذا المشروع نقوم بتقديم بعض الخص

لرافعة نقوم بدراسة المقاسات المجوفة ا - في الفصل الثالث -للمقاسات، و بعد ذلك

 وبعض المفاهيم المتعلقة بها

استها في رة للمقاسات التي تم درفي الفصل الرابع، يتم دراسة المجموعات المباش     

اسات المجوفة الفصول السابقة. وفي النهاية ، نقوم بإدخال الحلقات التبادلية ودراسة المق

 الرافعة تحت تأثير هذا النوع من الحلقات

 

ة، مجوفة رافعة، مجوفة رافعة محدودة، تكملة ، مشاركة مغلقة وحيد :كلمات البحث

 ثنائية
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1 Introduction

In the past few years, lifting modules were heavily studied as any re-
searcher in this field can see. Several mathematicians have introduced dif-
ferent generalizations of lifting modules. Actually, the title of this thesis is
just one of those generalizations.

It is commonly known and accepted that, in 2007, Orhan [15] is the
one who has introduced hollow-lifting modules. He called a module M
hollow-lifting if every submodule N of M with M/N hollow has a coessential
submodule in M that is a direct summand of M .

After some research, it has turned out that such concept was provided
in 1984 by K. Csiro [17]. Csiro called a submodule N of M small liftable
if N has a coessential submodule in M that is a direct summand of M .
According to this, he defined a module M to satisfy the lifting property
of hollow modules if every submodule N of M with M/N hollow is small
liftable.

It is obvious that the two definitions of Orhan and Csiro are the same
but named differently.

In [3], hollow-lifting modules were represented in a different terminology.
It has been said that a module M is hollow-lifting (or briefly h-lifting) if it is
amply supplemented and every hollow submodule N of M has a coessential
submodule in M that is a direct summand of M .

Through their paper, A. A. Hassan and B. H. Al-Bahraany [7] have
introduced a generalization called finitely hollow-lifting modules.

In 2012, direct sums of hollow-lifting modules were studied by Wang and
Wu [9]. Add on, they have provided a relative concept calledX-hollow-lifting
modules.

Only to be clear, most of this thesis work is not new. All what we are
trying to do is to clarify what has been done so far and review it in our own
way. Hopefully, we could add something with this promising future.
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Notation
R Ring with unity

M Right Module

End(M) Endomorphism ring of M

Hom(M,M ′) Module homomorphisms from M into M ′

Rad(M) Jacobson radical of M

Soc(M) Socle of M

h(M) The hollow dimension of M

M ∼= M ′ M is isomorphic to M ′

A ≤M A is a submodule of M

A ≤⊕ M A is a direct summand of M

A�M A is small in M

AEM A is essential in M

A ≤ce M A is coessential in M

A ≤cc M A is coclosed in M⊕
i∈I

Mi Direct sum of modules

f.g. Finitely generated

Ker(f) Kernel of a map f

Im(f) Image of a map f
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2 Basics & Preliminaries

2.1 General Basics

In this section we recall some basic concepts in ring and module theory.
Notice that, throughout this thesis R is a ring with identity and every R-
module M is a unitary right R-module, unless otherwise stated. The notion
A ≤M will mean A is a submodule of M .

The first two definitions summarize, in general, some types and classes
of modules and submodules needed in this thesis. Later, we shall reference
them.

Definition 2.1.1 (Some Types Of Submodules). Let M be a module with
A, B, N , and L submodules of M . Then

(a) A is called a minimal submodule of M if A 6= 0 and whenever X ≤M ,
X � A implies X = 0.

(b) A is called a maximal submodule of M if A 6= M and whenever X ≤M ,
A � X implies X = M .

(c) A is called a direct summand of M (denoted by A ≤⊕ M), if ∃ X ≤M
such that M = A⊕X.

(d) A is called a cyclic submodule of M if ∃ m ∈M such that A = mR.

(e) A is called small (or superfluous) in M (denoted by A�M) if whenever
X ≤M , M = A+X implies X = M . In this case, M is called a small
cover of M/A.

(f) A is called essential (or large) in M (denoted by A EM) if whenever
X ≤M , 0 = A ∩X implies X = 0.

(g) If A ≤ B ≤M and AEB, then B is called an essential extension of A
in M .

(h) If A ≤ B ≤ M , then A is called a coessential submodule of B (or
the inclusion A ⊆ B is called cosmall in M) (denoted by A ≤ce B) if
B/A � M/A. In that case, B is called a coessential extension of A in
M .

(i) A is called closed in M , if A has no proper essential extension in M .
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(j) A is called coclosed in M (denoted by A ≤cc M), if A has no proper
coessential submodule in M . i.e., if X ≤ce A then X = A.

(k) A is called strongly coclosed in M (denoted by A ≤scc M), if for any
X ≤M with A � X, X �ce (A+X).

(l) A is called a coclosure (or s-closure) of B in M , if A is a coessential
submodule of B and A is coclosed in M .

(m) N is called a supplement of L in M , if N is minimal with respect to
M = N + L. Equivalently, M = N + L and N ∩ L� N .

(n) N is called a supplement of L in M , if M = N + L and N ∩ L�M .

(o) N is called a strong supplement of L in M , if N is a supplement of L
in M and N ∩ L ≤⊕ L.

(p) N is called a complement of L in M , if N is maximal with respect to
0 = N ∩ L. Equivalently, 0 = N ∩ L and (N + L)/N EM/N .

(q) A is called fully invariant if f(A) ⊆ A ∀ f ∈ EndR(M).

Definition 2.1.2 (Some Types Of Modules). Let M be a module. Then

(a) M is called simple if M 6= 0 and has no nonzero proper submodules.

(b) M is called semisimple (or completely reducible) if every submodule of
M is a direct summand. Clearly, any simple module is semisimple.

(c) M is called indecomposable or (directly indecomposable) if M 6= 0 and
has only 0 and M as direct summands. Clearly, any simple module is
indecomposable.

(d) M is called coatomic if every proper submodule of M is contained in a
maximal submodule of M .

(e) M is called radical if Rad(M) = M .

(f) M is called hollow if M 6= 0 and every proper submodule is small in
M . Equivalently, if A,B ≤M with A+B = M , then either A = M or
B = M .

(g) M is called local if it is hollow and has a unique maximal submodule.

(h) M is called (weakly)supplemented if every submodule of M has a (weak)
supplement in M .
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(i) M is called amply supplemented if for every A,B ≤M with M = A+B,
A has a supplement in M contained in B.

(j) M is called lifting (or has (D1)), if for every submodule N of M , there
exists a direct summand K of M such that K is a coessential submodule
of N in M .

(k) M is said to have (D2) if whenever A ≤ M with M/A isomorphic to a
direct summand in M , then A ≤⊕ M

(l) M is said to have (D3), if for every direct summands A and B of M
with M = A+B, A ∩B is a direct summand of M .

(m) M is called quasi-discrete if it is lifting and has (D3).

(n) M is called discrete if it has (D1) and (D2).

(o) M is called hollow-lifting if every submodule N of M with M/N hollow
has a coessential submodule in M that is a direct summand of M .

(p) M is called a duo module if every submodule of M is fully invariant.

(q) M is said to have finite hollow dimension, if there exists an epimorphism
f : M −→ ⊕ki=1Hi with each Hi hollow and Kerf � M . In that case
we say that a hollow dimension of M is k, denoted by h(M) = k.
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The following concepts are elementary and can be found in [1], [8], and
[21].

Definition 2.1.3 (Bases And Free Modules). Let M be an R-module and
X ⊆M . Then

(a) We define the submodule of M generated by X [denoted by | X) or XR]
as the following.

XR =


{

n∑
i=1

xiri | xi ∈ X, ri ∈ R, and n ∈ N
}

if X 6= φ

0 if X = φ


(b) X is called a generating set of M if XR = M .

(c) X is called linearly independent if for any finite subset {x1, . . . , xm} ⊆ X
with xi 6= xj, it follows from

m∑
i=1

xiri = 0 with ri ∈ R that ri = 0

∀ i = 1, 2, . . . ,m.

(d) X is called a basis of M if X is a linearly independent generating set of
M .

(e) M is called free if it has a basis.

(f) M is called finitely generated (denoted by f.g.) if it has a finite generat-
ing set. By Zorn’s Lemma, we can easily show that if M is a nonzero f.g.
module, then every proper submodule is contained a maximal submodule
of M .

Lemma 2.1.1 (Modular Law). [8, Lemma 2.3.15] Let M be a module and
A,B,C ≤M with B ≤ C. Then (A+B) ∩ C = (A ∩ C) +B.

Proof. Let x ∈ (A+B)∩C. Then x = c = a+ b for some a ∈ A, b ∈ B, and
c ∈ C. But B ≤ C, therefore, a = c−b ∈ (A∩C) and hence x ∈ (A∩C)+B.
On the other hand, Let y ∈ (A∩C)+B. Then y = d+b for some b ∈ B and
d ∈ (A ∩C). Again, since B ≤ C, y = d+ b ∈ (A+B) ∩C. This completes
the proof.

Lemma 2.1.2. [8, Lemma 3.1.5] Let M,M ′,M ′′ be modules with A ≤ M
and B ≤ M ′, and let f : M −→ M ′, g : M ′ −→ M ′′ be homomorphisms.
Then
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(a) f is a monomorphism ⇔ Ker(f) = 0.

(b) f−1(f(A)) = A+Ker(f).

(c) f(f−1(B)) = B ∩ Im(f).

(d) Ker(gf) = f−1(Ker(g)).

(e) Im(gf) = g(Im(f)).

Proof. (a) If f is a monomorphism and x ∈ Ker(f), then f(x) = 0 = f(0)
and hence x = 0. Conversely, if Ker(f) = 0 and f(x) = f(y), then we get
that x− y ∈ Ker(f) and hence x = y.

(b) If x ∈ f−1(f(A)) then f(x) = f(a) for some a ∈ A and hence
x − a ∈ Ker(f). Therefore, x − a = k for some k ∈ Ker(f) which implies
x = a+k ∈ A+Ker(f). On the other hand, if x ∈ A+Ker(f) then x = a+k
for some a ∈ A and k ∈ Ker(f). Therefore, f(x) = f(a+k) = f(a) ∈ f(A),
hence x ∈ f−1(f(A)).

(c) If y ∈ f(f−1(B)) then y = f(x) with x ∈ f−1(B) and hence f(x) ∈ B.
Thus, y ∈ B ∩ Im(f). Conversely, if y ∈ B ∩ Im(f) then y = b = f(x) with
b ∈ B and x ∈M which implies x ∈ f−1(B). Hence, y ∈ f(f−1(B)).

(d) Ker(gf) = (gf)−1(0) = (f−1g−1)(0) = f−1(g−1(0)) = f−1(Ker(g)).

(e) Im(gf) = (gf)(M) = g(f(M)) = g(Im(f)).

Theorem 2.1.1 (The Factor Theorem). [1, Theorem 3.6] Let M , N , and K
be modules with a homomorphism f : M −→ N . If g : M −→ K is an epi-
morphism with Ker(g) ⊆ Ker(f), then ∃! homomorphism h : K −→ N such
that f = hg. Moreover, Im(h) = Im(f) and Ker(h) = g(Ker(f)).Hence,
h is an epimorphism iff f is an epimorphism and h is a monomorphism iff
Ker(g) = Ker(f).

Proof. Since g is an epimorphism, for any k ∈ K there is m ∈ M with
g(m) = k. Moreover, if l ∈M with g(l) = k, then m− l ∈ Ker(g) ⊆ Ker(f)
and hence f(m) = f(l). Therefore, there exists a well-defined mapping
h : K −→ N and such h is indeed a module homomorphism. Now, for the
uniqueness of h, if h̄ : K −→ N is another homomorphism with f = h̄g,
then hg = h̄g. Consequently, since g is an epimorphism, h = h̄. The rest of
this theorem is clear.

Theorem 2.1.2 (The Homomorphism Theorem). [8, Corollary 3.4.2] Let
f : M −→M ′ be a module homomorphism. Then M/Ker(f) ∼= Im(f).
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Proof. Consider the natural epimorphism π : M −→ M/Ker(f). Then
clearly Ker(π) = Ker(f). Therefore, by The Factor Theorem, there exists
a monomorphism h : M/Ker(f) −→ M ′ with f = hπ. Take the homo-
morphism h̄ : M/Ker(f) −→ Im(f). Then h̄ is an isomorphism. Thus,
M/Ker(f) ∼= Im(f)

Theorem 2.1.3 (The First Isomorphism Theorem). [8, Theorem 3.4.3] Let
A and B be submodules of M . Then (A+B)/B ∼= A/(A ∩B).

Proof. Define the mapping f : A −→ (A+B)/B. Then easily we can show
that f is an epimorphism and Ker(f) = A ∩ B. Thus, the proof follows
from The Homomorphism Theorem.

Theorem 2.1.4 (The Second Isomorphism Theorem). [8, Theorem 3.4.6] If
A ≤ B ≤M , then M/B ∼= (M/A)/(B/A).

Proof. Define the mapping f : M/A −→ M/B. Then easily we can show
that f is an epimorphism and Ker(f) = B/A. Thus, the proof follows from
The Homomorphism Theorem.

Corollary 2.1.1. [8, Corollary 3.4.4] If M = A⊕B, then M/A ∼= B.

Proof. M/A = (A+B)/A ∼= B/(A ∩B) = B/0 ∼= B.

The next four definitions are basics in [1] & [8].

Definition 2.1.4 (Small And Essential Homomorphisms). Let M,M ′ be
modules and f : M −→ M ′ be a homomorphism. Then f is called small
(essential) if Ker(f)�M (Im(f) EM ′).

Definition 2.1.5 (The Jacobson radical And Socle Of A Module). Let M
be a module. Then

(a) The Jacobson radical of M (denoted by Rad(M)) is the intersection of
all maximal submodules of M . Equivalently, Rad(M) is the sum of all
small submodules of M . If there are no maximal submodules, we put
Rad(M) = M .

(b) The socle of M (denoted by Soc(M)) is the sum of all minimal submod-
ules of M . Equivalently, Soc(M) is the intersection of all essential sub-
modules of M . If there are no minimal submodules, we put Soc(M) = 0.
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Definition 2.1.6 (Exactness). Let

S = · · · fi−2
> Mi−1

fi−1
> Mi

fi
> Mi+1

fi+1
> · · ·

be a sequence of homomorphisms fi and modules Mi for i ∈ I. Then

(a) S is called exact if for any subsequence of the form

Mi−1
fi−1

> Mi
fi
> Mi+1

it follows that Im(fi−1) = Ker(fi).

(b) S is called split exact if it is exact and Im(fi−1) = Ker(fi) ≤⊕ Mi

∀ i ∈ I.

(c) An exact sequence of the form

0 > M
f

> M ′
g

> M ′′ > 0

is called a short exact sequence. Clearly, this short sequence is exact iff
f is a monomorphism, g is an epimorphism, and M ′/Im(f) ∼= M ′′.

(d) If M is a module and A ≤ M , then we get the following short exact
sequence

0 > A
ι

> M
ν
> M/A > 0

where ι is the inclusion map and ν is the natural epimorphism.

Definition 2.1.7 (Split Homomorphisms). Let M,M ′ be modules. Then

(a) A monomorphism f : M −→ M ′ is said to split if Im(f) ≤⊕ M ′.
Equivalently, f is a split monomorphism iff there exists a homomor-
phism f ′ : M ′ −→M with f ′f = idM .

(b) An epimorphism g : M −→ M ′ is said to split if Ker(g) ≤⊕ M .
Equivalently, g is a split epimorphism iff there exists a homomorphism
g′ : M ′ −→M with gg′ = idM ′.

Lemma 2.1.3. [3, Lemma 1.24] Let M be a module and A,B,C ≤M with
A+B = M , (A ∩B) + C = M . Then A+ (B ∩ C) = B + (A ∩ C) = M .
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Proof.

A+ (B ∩ C) = A+ (A ∩B) + (B ∩ C)

= A+ [(B +B ∩A) ∩ (B ∩A+ C)]

= A+ [B ∩ (B ∩A+ C)]

= A+ (B ∩M)

= A+B

= M

A similar argument for B + (A ∩ C) = M .

Lemma 2.1.4. If M = A⊕B and X ≤ A with M = X +B, then A = X.

Proof. A = A ∩M = A ∩ (X +B) = (A ∩X) + (A ∩B) = X + 0 = X.

Lemma 2.1.5. [3, §2.2 & §2.3] Let M,M ′,M ′′ be right R-modules. Then

(a) A� B ≤M implies A�M .

(b) Ai �M (i = 1, . . . , n) ⇐⇒
n∑
i=1

Ai �M .

(c) If A ≤ B ≤M , then B �M ⇔ A�M and B/A�M/A.

(d) If A ≤ B ≤M and B ≤⊕ M , then A�M ⇔ A� B.

(e) If A ≤ B ≤M and B ≤cc M , then A�M ⇔ A� B.

(f) A�M ⇔ the natural epimorphism f : M −→M/A is a small epimor-
phism.

(g) If A�M , then M is f.g. ⇔ M/A is f.g.

(h) If A,B,C ≤ M with B ≤ C, M = A + B, and C/B � M/B , then
(A ∩ C)/(A ∩B)�M/(A ∩B).

(i) A�M and f ∈ HomR(M,M ′) implies f(A)�M ′.

(j) Let f : M −→M ′ be a small epimorphism. If C �M ′, then
f−1(C)�M .

(k) If f : M −→ M ′ and g : M ′ −→ M ′′ are small epimorphisms, then
gf : M −→M ′′ is also a small epimorphism.



Hollow-Lifting Modules 12

(l) If K1 ≤M1 ≤M , K2 ≤M2 ≤M , and M = M1 ⊕M2, then
K1 ⊕K2 �M1 ⊕M2 ⇔ K1 �M1 and K2 �M2.

Proof. (a) Let X ≤ M with A + X = M . Then B + X = M , therefore,
B + (X ∩ C) = M ∩ C = C. But B � C, so X ∩ C = C, hence C ≤ X.
This implies X = A+X = M . Thus A�M .

(b) Let X ≤M with
n∑
i=1

Ai +X = M . Since A1 �M ,
n−1∑
i=1

Ai +X = M .

Again, Since A2 � M ,
n−2∑
i=1

Ai + X = M . Proceed this process, you get

X = M and hence
n∑
i=1

Ai �M . The converse follows from (a).

(c) Suppose A ≤ B �M . From (a), it follows that A�M . Moreover,
if B/A+X/A = M/A with A ≤ X ≤M , then B+X = M . But B �M , so
X = M and hence B/A�M/A. Conversely, let X ≤M with X +B = M .
Then M/A = (X + B)/A = (X + B + A)/A = B/A + (X + A)/A. But
B/A � M/A, so (X + A)/A = M/A which implies M = X + A. Conse-
quently, since A�M , X = M . Thus B �M .

(d) Suppose M = B ⊕C for some C ≤M and X ≤ B with A+X = B.
Then A + X + C = B + C = M . But A � M , so X + C = M . Now,
B = B ∩M = B ∩ (X + C) = X + (B ∩ C) = X + 0 = X. Hence, A� B.
The converse follows from (a).

(e) Let X ≤ B with A + X = B. The proof ends if we show that
B/X � M/X. So let X ≤ C ≤ M with B/X + C/X = M/X. Then
M = B + C = A + X + C. But A � M , so M = X + C = C. Hence,
B/X �M/X. The converse follows from (a).

(f) Since Ker(f) = A, the proof is trivial.

(g) If M has a finite generating set, say {mi | i = 1, 2, . . . , n}, then
clearly the set {mi + A | i = 1, 2, . . . , n} is a finite generating set of M/A.
Conversely, let {mi+A | i = 1, 2, . . . , n} is a finite generating set of M/A. If

m ∈M , thenm+A ∈M/A and hencem+A =
n∑
i=1

miri+A. This means that

m1R+ · · ·+mnR+A = M . But A�M , therefore m1R+ · · ·+mnR = M
and hence M is f.g.



Hollow-Lifting Modules 13

(h) Let M/(A∩B) = (A∩C)/(A∩B)+X/(A∩B) with A∩B ≤ X ≤M .
Then M = (A ∩ C) + X. But B ≤ C, so M = A + B ≤ A + C,
hence M = A + C. Therefore, by lemma 2.1.3., M = (A ∩ X) + C
and hence M/B = C/B + ((A ∩ X) + B)/B, but C/B � M/B, hence
M = B + (A ∩X). Again, by lemma 2.1.3., M = X + (A ∩B) = X. Thus,
(A ∩ C)/(A ∩B)�M/(A ∩B).

(i) Suppose that f(A) + X = M ′ such that X ≤ M ′. Then we have
M = f−1(M ′) = f−1(f(A) + X) = A + f−1(X). Since A � M , we get
f−1(X) = M , therefore A ≤ f−1(X) which implies f(A) ≤ X. Hence,
M ′ = X. Thus f(A)�M ′.
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(j) Let M = f−1(C) + X. Then M ′ = f(f−1(C) + X) = C + f(X).
Since C � M , M ′ = f(X). Hence, M = f−1(f(X)) = X + Ker(f). But
Ker(f)�M , therefore X = M . Thus, f−1(C)�M .

(k) Since f and g are epimorphisms, gf is also an epimorphism. Now,
Let X ≤ M with Ker(gf) + X = M . Since Ker(gf) = f−1(Ker(g)),
M ′ = f(M) = Ker(g) + f(X). But Ker(g) � M ′, so f(X) = M ′. Conse-
quently, M = f−1(M ′) = f−1(f(X)) = X + Ker(f). As Ker(f) � M , we
have X = M . Thus, gf is a small epimorphism.

(l) Let π1 : M −→ M1, π2 : M −→ M2 be the epimorphism projections
of M onto M1 and M2 respectively. Then π1(K1) = K1 and π2(K2) = K2.
Since x ∈ π1(K1), x = π1(k1) ; k1 ∈ K1, therefore x = π1(k1 + 0) = k1 ∈ K1

and k1 ∈ K1. This implies that k1 = k1 + 0 = π1(k1) ∈ π1(K1). So
π1(K1) = K1. Similarly, π2(K2) = K2. Now, π1(K1⊕K2) = π1(K1)⊕π1(K2)
= π1(K1)⊕0 = K1. Similarly, π2(K1⊕K2) = K2. But K1⊕K2 �M , hence
K1 �M1 andK2 �M2. Conversely, ifK1 �M1 ≤M andK2 �M2 ≤M ,
then K1 ⊕K2 = K1 +K2 �M = M1 ⊕M2.

Lemma 2.1.6. [3, §3.2] Let M be a module. Then

(a) The following are equivalent.

(i) A ≤ce B in M .

(ii) For any submodule X ≤M , B +X = M implies A+X = M .

(b) A ≤ce B in M and B ≤ce C in M iff A ≤ce C in M .

(c) If A ≤ce B in M and N �M , then A ≤ce B +N in M .

(d) If A ≤ce B in M and C ≤ M , then A + C ≤ce B + C in M . The
converse is true if C �M .

(e) If A ≤ce B in M and C ≤ce D in M , then A+ C ≤ce B +D in M .

(f) For A ≤ B ≤M , B ≤ce C in M iff B/A ≤ce C/A in M/A.

(g) If A ≤ce B in M and A+X = M , then A ∩X ≤ce B ∩X in M .

(h) If N �M and A ≤M , then A ≤ce A+N in M .

(i) If M = A+B, A ≤ C, and C ∩B �M , then A ≤ce C in M .
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(j) Let f : M −→M ′ be an epimorphism. If A ≤ce B in M , then
f(A) ≤ce f(B) in M ′.

(k) Let f : M −→M ′ be a small epimorphism. Then

(i) If C ≤ce D in M ′, then f−1(C) ≤ce f−1(D) in M .

(ii) If M = M1 ⊕M2, then f(M1) ∩ f(M2)�M ′.

Proof. (a) (i) =⇒ (ii) Since M = B + X = B + X + A, we get that
M/A = B/A+ (X +A)/A. But B/A�M/A, so X +A = M .

(ii) =⇒ (i) Let A ≤ X ≤M with B/A+X/A = M/A. Then B+X = M .
By (ii), M = A+X = X. Hence A ≤ce B in M .

(b) =⇒ Let A ≤ X ≤ M with C/A+X/A = M/A. Then C +X = M
and hence C/B + (X +B)/B = M/B. But C/B �M/B, so X +B = M .
Consequently, X/A + B/A = M/A. Since B/A � M/A, we have X = M .
Thus, A ≤ce C in M .
⇐= Let A ≤ X ≤ M with B/A + X/A = M/A. Then B + X = M

and hence C + X = M since B ≤ C. It follows that C/A + X/A = M/A.
But C/A � M/A, therefore X = M . Thus, A ≤ce B in M . Now, let
B ≤ X ≤ M with C/B + X/B = M/B. Then C + X = M and hence
C/A + X/A = M/A. Since C/A � M/A, X = M . Therefore, B ≤ce C in
M .

(c) Suppose A ≤ X ≤ M with (B + N)/A + X/A = M/A. Then
B+N+X = M . But N �M , so B+X = M and hence B/A+X/A = M/A.
Since B/A�M/A, X = M . Therefore, A ≤ce B +N in M .

(d) Let A+C ≤ X ≤M with (B+C)/(A+X)+X/(A+C) = M/(A+C).
Then B+C+X = M and hence (B+C+X)/A = M/A. But B/A�M/A,
hence M = C + X = X. Thus, A + C ≤ce B + C in M . For the converse,
suppose C � M and A + C ≤ce B + C in M . Let A ≤ X ≤ M with
B/A+X/A = M/A. Then we get B +X = M and hence (B +C)/(A+C)
= (X + C)/(A+ C) = M/(A+ C). Since A+ C ≤ce B + C in M , we have
X + C = M . But C �M , therefore X = M . Thus, A ≤ce B in M .

(e) From (d), A + C ≤ce B + C in M and B + C ≤ce B + D in M .
Therefore, by (b), A+ C ≤ce B +D in M .
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(f) =⇒ LetA ≤ X ≤M andB ≤ X with (C/A)/(B/A)+(X/A)/(B/A)
= (M/A)/(B/A). Then C + X = M and hence C/B + X/B = M/B. But
C/B �M/B, therefore X = M . Thus, B/A ≤ce C/A in M/A.
⇐= Let B ≤ X ≤ M with C/B + X/B = M/B. This implies that

C/A+X/A = M/A and hence (C/A)/(B/A)+(X/A)/(B/A) = (M/A)/(B/A).
Since B/A ≤ce C/A in M/A, we have X = M . Therefore, B ≤ce C in M .

(g) Let A∩X ≤ C ≤M with (B∩X)/(A∩X)+C/(A∩X) = M/(A∩X).
Then (B ∩ X) + C = M . Moreover, B + X = M since A + X = M and
A ≤ B. Hence, by lemma 2.1.3, we have M = B+(X ∩C) = A+(X ∩C) =
(A ∩X) + C = C. Thus, A ∩X ≤ce B ∩X in M .

(h) LetX ≤M with A+N+X = M . SinceN �M , we have A+X = M
and hence A ≤ce A+N (by part (a)).

(i) Let X ≤ M with C + X = M . Then C = C ∩M = C ∩ (A + B) =
A + (C ∩ B), hence M = C + X = A + (C ∩ B) + X. Since C ∩ B � M ,
M = A+X. Therefore, A ≤ce C in M .

(j) Let M ′ = f(B) + Y for some Y ≤ M ′. Since f is an epimor-
phism, there is X ≤ M such that f(X) = Y . Therefore, M = f−1(M ′) =
f−1(f(B +X)) = B +X +Ker(f). But A ≤ce B in M , so ,by part (a), we
have M = A+X+Ker(f). Consequently, M ′ = f(A)+f(X)+f(Ker(f)) =
f(A) + Y . Hence, f(A) ≤ce f(B) in M ′.

(k) Let M = f−1(D) +X with X ≤ M . Then M ′ = f(f−1(D) +X) =
D + f(X) and hence M ′ = C + f(X) since C ≤ce D in M ′. This implies
that M = f−1(C + f(X)) = f−1(C) + X + Ker(f). But Ker(f) � M , so
M = f−1(C) +X. Thus, f−1(C) ≤ce f−1(D) in M .

(ii) Since Ker(f) � M , M1 ≤ce M1 + Ker(f) [Lemma 2.1.6(h)]. So,
[M2 ∩ (M1 + Ker(f))]/(M2 ∩M1) � M/(M2 ∩M1) [Lemma 2.1.5(h)] and
hence M2 ∩ (M1 +Ker(f))�M since M1 ∩M2 = 0. Consequently, we get
f [M2 ∩ (M1 + Ker(f))] � M ′. Since M1 + Ker(f) = f−1(M1), we have
f [M2∩ (M1 +Ker(f))] = f(M1)∩ f(M2). Thus, f(M1)∩ f(M2)�M ′.

Lemma 2.1.7. [3, §3.7] Let M be a module. Then

(a) Any direct summand of M is coclosed in M .

(b) If A ≤ B ≤M and B ≤cc M , then B/A ≤cc M/A.
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(c) If A ≤cc M and N �M , then (A+N)/N ≤cc M/N .

(d) For A ≤ B ≤ M , if A ≤cc M then A ≤cc B. The converse is true if
B ≤cc M .

(e) Let f : M −→M ′ be a small epimorphism. If A ≤cc M , then
f(A) ≤cc M ′.

Proof. (a) Let A ≤⊕ M . Then M = A ⊕ B for some B ≤ M . If A′ ≤ce A
in M , then M/A′ = (A+B)/A′ = A/A′+ (B +A′)/A′. But A/A′ �M/A′,
hence B +A′ = M . Thus, by lemma 2.1.4, A = A′. Therefore, A ≤cc M .

(b) Let X/A ≤ce B/A in M/A. Then, by the previous lemma, X ≤ce B
in M . Since B ≤cc M , X = B. Therefore, B/A ≤cc M/A.

(c) Let X/N ≤ce (A+N)/N in M/N . Since N �M , it follows from the
previous lemma thatX ≤ce A+N inM . ButN+(A∩X) = (N+A)∩X = X,
hence N +(A∩X) ≤ce A+N . Therefore, we have A∩X ≤ce A in M . Since
A ≤cc M , A ∩X = A and so A ≤ X. But N ≤ X, so X = A + N . Thus,
(A+N)/N ≤cc M/N .

(d) Let X ≤ A with A/X � B/X. Then A/X �M/X. But A ≤cc M ,
so X = A. Hence, A ≤cc B. For the converse, suppose A ≤cc B and
B ≤cc M . Let X ≤ A ≤ M with A/X � M/X. It follows from (b) that
B/X ≤cc M/X and consequently A/X � B/X which means that X ≤ce A
in B. Since A ≤cc B, X = A. Therefore, A ≤cc M .

(e) Let K ′ ≤ce f(A) in M ′. Since f is an epimorphism, there exists
K ≤ A with f(K) = K ′. By lemma 2.1.6(k), f−1(f(K)) ≤ce f−1(f(A))
in M . Now, f−1(f(K)) = K + Ker(f), f−1(f(A)) = A + Ker(f), and
Ker(f)�M . So K ≤ce K+Ker(f) ≤ce A+Ker(f) [Lemma 2.1.6(h)] and
hence K ≤ce A+Ker(f) [Lemma 2.1.6(b)]. Consequently, since K ≤ A, we
have K ≤ce A in M . But A ≤cc M , so K = A and hence K ′ = f(K) = f(A).
Therefore, f(A) ≤cc M ′.

Theorem 2.1.5. [21, §21.6] Let M be a module. Then

(a) If A ≤M , then Rad(A) ≤ Rad(M).

(b) If f : M −→M ′ is a homomorphism, then f(Rad(M)) ≤ Rad(M ′).

(c) If M =
⊕
i∈I

Mi, then Rad(M) =
⊕
i∈I

Rad(Mi).
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(d) M is finitely generated ⇔ Rad(M) � M and M/Rad(M) is finitely
generated.

Proof. (a) If X � A, then X �M . Therefore, Rad(A) ≤ Rad(M).

(b) If A�M , then f(A)�M ′. Hence, f(Rad(M)) ≤ Rad(M ′).

(c) Follows from (a) and (b).

(d) If M is finitely generated, then it has a maximal submodule. There-
fore, Rad(M) 6= M . Now, if Rad(M) +A = M and A 6= M , then A is con-
tained is some maximal submodule, say B. This implies M = Rad(M)+A =
Rad(M) + B = B, a contradiction. Hence Rad(M) � M . The converse
follows from lemma 2.1.5,(g).

Definition 2.1.8 (Irredundant Sum Of Submodules). [21] Let M be a mod-
ule with M =

∑
i∈I

Mi as a sum of submodules {Mi | i ∈ I}. Then this sum is

called irredundant sum if for every i0 ∈ I,
∑
i 6=i0

Mi 6= M .

Definition 2.1.9 (Exchange Property). [15] Let M be a module. Then M
is said to have the (finite) exchange property if for any (finite) index set I,

whenever M⊕N =
⊕
i∈I

Ai for modules N and Ai, then M⊕N = M⊕
(⊕
i∈I

Bi

)
for submodules Bi ≤ Ai. Notice that, a module M has the exchange property
if End(M) is local.

Definition 2.1.10 (Complement Direct Summands Decomposition). [8] Let
M =

⊕
i∈I

Mi be a decomposition of a module M as a direct sum of nonzero

submodules {Mi | i ∈ I}. Then M is said to complement direct summands

if for every A ≤⊕ M , ∃ J ⊆ I such that M = A
⊕(⊕

i∈J
Mi

)
.

The next theorem is a well known important one.

Theorem 2.1.6 (Azumaya). [1, Theorem 12.6] If a module M has a direct
decomposition M =

⊕
i∈I

Mi, where each endomorphism ring, End(Mi), is

local, then the following statements are true:

(a) The decomposition M =
⊕
i∈I

Mi is indecomposable. That is, each sub-

module Mi is indecomposable.
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(b) Every nonzero direct summand of M has an indecomposable direct sum-
mand.

(c) The decomposition M =
⊕
i∈I

complements direct summands.

Corollary 2.1.2. [1, Corollary 12.7] If a module M has a finite direct de-
composition M = M1 ⊕ · · · ⊕ Mn, with each End(Mi) is local, then this
decomposition complements direct summands.

Definition 2.1.11 (Noetherian Modules & Rings). Let R be a ring and M
a right R-module. Then

1. M is called a Noetherian module, if every nonempty set of submodules
possesses a maximal element, with respect to inclusion.

2. R is called a right Noetherian ring, if RR is Noetherian.

Definition 2.1.12 (ACC Condition). A module M is said to satisfy the
ascending chain condition (ACC), if every ascending chain of submodule of
M terminates. That is, if A1 ≤ A2 ≤ A3 ≤ . . . with Ai ≤ M , then there is
n ∈ Z+ such that An = Ai for all i ≥ n.

Lemma 2.1.8. [1, P roposition 10.1] Let M be a right R-module. Then M
is f.g. iff whenever M =

∑
i∈I

Ai, then there exists a finite subset I0 ⊆ I such

that M =
∑
i∈I0

Ai

Proof. If M is f.g. then M =
n∑
j=1

mjR with mj ∈ M . Since M =
∑
i∈I

Ai,

each mj can be written as a finite sum of elements from the Ai′s. This
means that there is a finite subset I0 ⊆ I such that mj ∈

∑
i∈I0

Ai. Therefore,

we have M =
∑
i∈I0

Ai. Conversely, consider the set {mR | m ∈ M} of

submodule of M . By assumption, there exists {m1,m2, . . . ,mn} ⊆M such

that M =
n∑
j=1

mjR. Hence, M is f.g.

Theorem 2.1.7 (Characterization Of Noetherian Modules). [1, P roposition 10.9]
Let M be a module and A ≤M . Then the following are equivalent.

(a) M is Noetherian.

(b) A and M/A are both Noetherian.
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(c) M satisfies the ACC condition.

(d) Every submodule of M is f.g..

(e) For every nonempty set {Ai | i ∈ I} of submodules of M , ∃ a finite
subset I0 ⊆ I such that

∑
i∈I

Ai =
∑
i∈I0

Ai.

Proof. (a) =⇒ (b) Since any submodule of A is also a submodule of M , it
follows that any nonempty set of submodules of A has a maximal element.
Therefore, A is Noetherian. On the other hand, let π : M −→ M/A be
the natural epimorphism and X = {Xi | i ∈ I} be a nonempty set of sub-
modules of M/A. Then the set Y = {π−1(Xi) | i ∈ I} is a nonempty set
of submodules of M . Since M is Noetherian, Y has a maximal element,
say π−1(Xj). Now we claim that Xj is a maximal element of X. Suppose
Xj ≤ Xi. Then π−1(Xj) ≤ π−1(Xi). By maximality of π−1(Xj), we have
π−1(Xi) = π−1(Xj). Hence Xj = π(π−1(Xj)) = π(π−1(Xi)) = Xi. So our
claim is true and therefore M/A is also Noetherian.

(b) =⇒ (c) Let A1 ≤ A2 ≤ A3 ≤ . . . be an ascending chain of submodules
of M and π : M −→ M/A be the canonical epimorphism. Consider the
following sets: Γ := {Ai | i ∈ Z+}, π(Γ) := {π(Ai) | i ∈ Z+}, and the set
ΓA := {Ai ∩ A | i ∈ Z+}. Clearly, both π(Γ) and ΓA are nonempty since
Γ is nonempty. Therefore, by assumption, both π(Γ) and ΓA have maximal
elements, say π(Aj) and Ak ∩ A, respectively. Let m = max{j, k}. This
implies that π(Am) = π(Ai) and Am ∩A = Ai ∩A for all i ≥ m. Our claim
is Am = Ai for all i ≥ m. From π(Am) = π(Ai) ∀ i ≥ m it follows that

Am +A = π(π−1(Am)) = π(π−1(Ai)) = Ai +A ∀ i ≥ m.

Moreover, we have

Ai = (Ai +A) ∩Ai (By Modular Law)

= (Am +A) ∩Ai
= Am + (A ∩Ai) (Since Am ≤ Ai ∀ i ≥ m)

= Am + (A ∩Am)

= Am

Hence our claim is true. This ends the proof.

(c) =⇒ (a) For sake of a contradiction, assume that there is a nonempty
set Γ with no maximal elements. Then for every submodule X ∈ Γ, ∃X ′ ∈ Γ
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such that X � X ′. Now, for any X ∈ Γ choose and fix such X ′. This means
that if Y is any submodule in Γ, then the chain: Y � Y ′ � Y ′′ � . . . is an
ascending chain which never terminates, a contradiction.

(d) ⇐⇒ (e) Follows directly from the previous lemma [ you just take
M =

∑
i∈I

Ai in (e)].

(a)⇐⇒ (a) Suppose M is Noetherian and Γ = {Ai | i ∈ I}. Let Λ be the
set of all finite sums of elements of Γ. Since M is Noetherian, Λ must have
a maximal element, say D =

∑
i∈I0

Ai, where I0 ⊆ I and I0 is finite. From

maximality of D, it follows that if i ∈ I then D + Ai = D, hence Ai ≤ D
for all i ∈ I. Therefore,

∑
i∈I

Ai =
∑
i∈I0

Ai.

(e) ⇐⇒ (c) Let A1 ≤ A2 ≤ . . . be an ascending chain of submodules of
M . Consider the set {Ai | i ∈ Z+}. By assumption, it follows that ∃ n ∈ Z+

such that
∞∑
i=1

Ai =
n∑
i=1

Ai. Consequently, An = Ai ∀ i ≥ n.

Corollary 2.1.3. Let R be a ring and M a right R-module.Then

(1) If M is a finite sum of Noetherian submodules, then M is Noetherian.

(2) If R is a right Noetherian ring and M is f.g., then M is Noetherian.

Proof. (1) Suppose M =
n∑
i=1

with Ai ≤ M . The proof is by induction on

n. If n = 1, then the assertion is trivial. So suppose n > 1 and that the

assumption holds for n− 1. That is, L =
n−1∑
i=1

is Noetherian. By the isomor-

phism theorems, we have M/An = (L + An)/An ∼= L/(L ∩ An). From the
previous theorem we know that L/(L ∩ An) is Noetherian, hence M/An is
also Noetherian. Consequently, M is Noetherian since An is Noetherian.

(2) Suppose M =
n∑
i=1

miR. For each i = 1, 2, . . . , n, consider the homo-

morphism φi : RR −→M with r 7−→ mir. By the Homomorphism Theorem,
R/Ker(φi) ∼= Im(φi) = miR. Since RR is Noetherian, it follows that miR is
also Noetherian for each i = 1, 2, . . . , n. Hence, From (1), M is Noetherian.
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Definition 2.1.13 (Artinian Modules). Let R be a ring and M a right
R-module. Then M is called a Artinian module, if every nonempty set of
submodules possesses a minimal element, with respect to inclusion. Equiva-
lently, M satisfies the descending chain condition (DCC).

It has been proved in [3, §2.16 & §5.4] that Any nonzero Artinian module
has a finite hollow dimension. Besides, Any nonzero module with a finite
hollow dimension has a hollow factor module.

Now, we are going to introduce an important example of Z-modules
called the Prüfer p-group.

Definition 2.1.14. [21, §15] Let M be a Z-module and p a prime number.
Then the p-component of M is defined as

p(M) = {m ∈M | pkm = 0 for some k ∈ N}

If we let M = Q/Z, then the p-component of M is called the Prüfer p-group
and denoted by Zp∞.

The following proposition provides some properties of the Prüfer p-group
as a Z-module.

Proposition 2.1.1. [21, §15.10, §15.11, §17.11, §17.13,& §41.23] Let p be a
prime number. Then

(a) Q/Z =
⊕

p:prime
Zp∞.

(b) Zp∞ = {q + Z | q ∈ Q, pkq ∈ Z for some k ∈ N}.

(c) Every nonzero proper submodule of Zp∞ is of the form

(
1

pk
+ Z

)
Z.

(d) The submodules of Zp∞ are totally ordered by inclusion.

(e) Zp∞ is Artinian but not Noetherian module. Moreover, it has no maxi-
mal submodules.

(f) Every submodule of Zp∞ is fully invariant. Thus, Zp∞ is a duo module.

(g) Every proper submodule of Zp∞ is small. (Therefore, Zp∞ is hollow but
not local).
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2.2 Hollow Modules

Recall that a nonzero module M is said to be hollow if every proper
submodule of M is small in M [3, §2.12].

Theorem 2.2.1 (Characterization Of Hollow Modules). [3, §2.12]
Let M be a module. Then the following are equivalent.

(a) M is hollow.

(b) Every factor module of M is indecomposable.

(c) For any nonzero modules K and N and any module homomorphisms

K
f
> M

g
> N , gf is an epimorphism implies that both f and g

are epimorphisms.

Proof. (a) =⇒ (b) Since M is hollow, any factor module of M is hollow and
hence indecomposable.

(b) =⇒ (a) Suppose M is not hollow. Then there exist proper submod-
ules U and V of M with M = U + V . Therefore,

M/(U ∩ V ) = (U + V )/(U ∩ V )

= U/(U ∩ V ) + V/(U ∩ V )

= U/(U ∩ V )⊕ V/(U ∩ V )
∼= (U + V )/V ⊕ (U + V )/U

= M/V ⊕M/U

This means that M/(U ∩ V ) is a decomposable factor module of M , a con-
tradiction.

(a) =⇒ (c) Let K
f
> M

g
> N be module homomorphisms with

K, N nonzero modules, M hollow, and gf epimorphism. Then g is an epi-
morphism. Now, gf is an epimorphism =⇒ gf(K) = N =⇒ g−1(gf(K)) =
g−1(N) =⇒ Im(f) +Ker(g) = M . But Ker(g) 6= M (since if Ker(g) = M
then 0 = M/Kerg ∼= N 6= 0, impossible), hence Ker(g) � M , therefore
Im(f) = M . Thus, f is an epimorphism.
(c) =⇒ (a) Let K �M and X ≤M with M = X +K. Consider the homo-

morphisms X
i
> M

π
> M/K, where i is the inclusion monomorphism

and π the natural epimorphism. Since M/K ∼= X/(X ∩K), πi is an epimor-
phism. By assumption, i is an epimorphism. Consequently, X = i(X) = M ,
so K �M . Thus, M is hollow.
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Lemma 2.2.1. [3, §2.15] Let M be a module. Then the following hold

(a) If M is hollow, then every factor module is hollow.

(b) If A�M and M/A is hollow, then M is hollow.

(c) Let H and M be modules such that H is hollow and H ⊆ M . Then
either H �M or H ≤cc M .

(d) If h(M) = 1, then M is hollow.

Proof. (a) let A, B, and X be submodules of M with A ≤ B � M ,
A ≤ X ≤ M , and B/A + X/A = M/A. Then B + X = M . But B � M ,
therefore X = M . Hence, B/A�M/A.

(b) Let B be a proper submodule of M with B + X = M for some
X ≤M . Then (B+X)/A = M/A, so (B+A)/A+(X+A)/A = M/A. But
M/A is hollow, hence either B + A = M or X + A = M . Since A � M ,
B + A = M implies B = M , a contradiction. Thus, X + A = M . Again,
since A � M , we have X = M . Therefore, B � M which implies that M
is hollow.

(c) Suppose that H is not coclosed in M . Then there exists a proper
submodule A of H such that H/A�M/A. Since H is hollow, A� H and
hence A � M . But H/A � M/A and A � M is equivalent to H � M .
This ends the proof.

(d) If h(M) = 1, then there exists a hollow module H and a small
epimorphism f : M −→ H. But M/Ker(f) ∼= H, hence M/Ker(f) is also
hollow. Since Ker(f)�M , it follows that M is hollow.

Remember that a module M is called local if it is hollow and has a unique
maximal submodule (namely Rad(M)) [3, §2.12]. Also recall that if M is
nonzero and f.g., then every proper submodule is contained in a maximal
submodule of M .

Theorem 2.2.2. [3, §2.15] Let M be an R-module. Then the following are
equivalent.

(a) M is local.

(b) M is hollow and Rad(M) 6= M .

(c) M is hollow and cyclic (or f.g.).
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Proof. (a) =⇒ (b) Suppose that M is local. Then, by definition, M is hollow
and has a unique maximal submodule which is Rad(M), hence Rad(M) 6=
M .

(b) =⇒ (c) Rad(M) 6= M and M is hollow implies that Rad(M) � M
and it is the unique maximal submodule of M . Take any x /∈ Rad(M).
Then xR+Rad(M) = M , consequently, xR = M . Thus, M is cyclic.

(c) =⇒ (a) Since M is f.g., every proper (hence small) submodule of M
is contained in a maximal submodule. Now, if A � M and N is maximal
submodule with A � N , then A + N = M and consequently N = M , a
contradiction. Therefore, all proper submodules of M must be contained
in a unique maximal submodule which is surely Rad(M). Hence, M is
local.

Example 2.1. We consider the following examples:

1. Any simple Z-module is local [3, §2.13].

2. For any prime p, the Z-module Zpk (k ∈ N) is local and hence hollow,
whereas the module Zp∞ is hollow but not local [3, §2.13].

3. Neither Q nor Q/Z is hollow as modules over Z [3, §2.15].

4. The Z-modules Q⊕Q/pZ and Q/Z⊕Q/pZ show that a module might
be non local but still has a unique maximal submodule [3, §2.15].
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2.3 Supplemented Modules

Recall that, From [3] & [21], if A and B are submodules of a module M ,
then

1. A is called a weak supplement of B in M if A+B = M and A∩B �M .

2. A is called a supplement of B in M if A+B = M and A ∩B � A.

3. A is called a strong supplement of B in M if A is a supplement of B
in M and A ∩B ≤⊕ B.

4. The module M is called weakly supplemented if every submodule of
M has a weak supplement in M .

5. The module M is called supplemented if every submodule of M has a
supplement in M .

6. The module M is called amply supplemented if for every A,B ≤
M,M = A+B implies A has a supplement in M contained in B.

Corollary 2.3.1. The following implications are true.
Amply supplemented =⇒ supplemented =⇒ weakly supplemented.

Lemma 2.3.1. [3, §17.9] Let M be a module with A ≤ B ≤M . Then

(a) If A and B have the same weak supplement in M , then A ≤ce B in M .

(b) If A ≤ce B in M and B has a weak supplement in M , then B = A+N
for some N �M .

Proof. (a) Let C be the weak supplement for both A and B. Then we have
M = A+C = B+C, A∩C �M , and B ∩C �M . Since A ≤ B, we have
B = B ∩M = B ∩ (A+ C) = A+ (B ∩ C). Let X ≤M with M = B +X.
Then M = A+(B∩C)+X. But B∩C �M , hence M = A+X. Therefore,
by [Lemma 2.1.6, (a)], A ≤ce B in M .

(b) Let C be a weak supplement of B in M . Then M = B + C and
B ∩ C �M . Again, by [Lemma 2.1.6, (a)], we get M = A+ C. Therefore,
B = B ∩M = B ∩ (A+ C) = A+ (B ∩ C) and B ∩ C �M .

Lemma 2.3.2. [21, §41.1] Let M be a module with submodules A and B.
Assume that A is a supplement of B in M . Then

(a) If A+ C = M for some C ≤ B, then A is a supplement of C in M .
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(b) If C �M , then A is a supplement of B + C in M .

(c) If C ≤ B, then (A+ C)/C is a supplement of B/C in M/C.

Proof. (a) Since C ≤ B and A is a supplement of B in M , we have
A ∩ C ≤ A ∩ B � A and hence A ∩ C � A. Thus, A is a supplement
of C in M .

(b) Clearly A + B + C = M + C = M . Moreover, if X ≤ A with
B + C + X = M , then B + X = M since C � M . Consequently, X = A.
Therefore, A is a supplement of B + C in M .

(c) Clearly (A + C)/C + B/C = M/C. Now, (A + C)/C ∩ B/C =
((A + C) ∩ B)/C = ((A ∩ B) + C)/C. Consider the natural epimorphism
π : A −→ (A + C)/C. Since A ∩ B � A, we have π(A ∩ B) = ((A ∩ B) +
C)/C � (A+C)/C. Hence, (A+C)/C is a supplement of B/C in M/C.

Lemma 2.3.3. [13, P roposition 1.2.1] Let M be a module and N ≤ M .
Consider the following conditions.

(a) N is a supplement submodule of M .

(b) N ≤cc M .

(c) ∀ X ≤ N , X �M implies X � N .

Then (a) =⇒ (b) =⇒ (c) hold. If M is a weakly supplemented module then
(c) =⇒ (a) holds.

Proof. (a) =⇒ (b) Let N be a supplement of a submodule L ≤ M . Then
M = N + L and N is minimal to this property. Now, let K ≤ N with
N/K � M/K. This implies that N + L + K = M + K = M , hence
N/K + (L + K)/K = M/K. But N/K � M/K, so L + K = M . By the
minimality of N , N = K. This means N ≤cc M .

(b) =⇒ (c) Let X ≤ N with X � M . Assume Y ≤ N such that
N = X + Y . Since N ≤cc M , it suffices to show that N/Y �M/Y . So let
M/Y = N/Y +H/Y with Y ≤ H. Then M = N+H = X+Y +H = X+H.
But X �M , hence H = M . Therefore N/Y �M/Y . Consequently, since
N ≤cc M , N = Y . Thus, X � N .

(c) =⇒ (a) Suppose M is a weakly supplemented module and N ≤ M
that satisfies the assumption in (c). Since M is weakly supplemented, there
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is L ≤M such thatM = N+L andN∩L�M . By assumption, N∩L� N .
Thus, N is a supplement of L in M . This completes the proof.

Corollary 2.3.2. If N is a supplement submodule of M and N ′ ≤ N , then
N ′ ≤cc N iff N ′ ≤cc M .

Proof. Follows immediately from [Lemma 2.3.3] and [Lemma 2.1.7, (d)].

Lemma 2.3.4. [11, Lemma 1.4] Let M be a module with A ≤ B ≤ M .
Then

(a) If B is a supplement in M , then B/A is a supplement in M/A.

(b) If A is a supplement in M and B/A is a supplement in M/A, then B a
supplement in M .

(c) If M is a weakly supplemented module such that B/A ≤cc M/A and
A ≤cc M , then B ≤cc M .

Proof. (a) Let N ≤M with M = B+N and B∩N � B. We claim that B/A
is a supplement of (N+A)/A in M/A. Obviously, B/A+(N+A)/A = M/A.
Also, B/A∩(N+A)/A = (B∩(N+A))/A = ((B∩N)+A)/A. Consider the
epimorphism π : B −→ B/A. Then π(B ∩N) = ((B ∩N) + A)/A � B/A
since B ∩N � B. Hence, our claim is verified.

(b) Let A be a supplement of A′ in M and B/A a supplement of B′/A
in M/A. Then M = A + A′, A ∩ A′ � A, M/A = B/A + B′/A, and
B/A∩B′/A� B/A. Also, A∩A′ � B since A ≤ B. From M = (B∩B′)+A′

and M = B+B′ it follows that M = B+(A′∩B′) [Lemma 2.1.3]. Moreover,
B = B ∩ (A + A′) = A + (B ∩ A′) and (B ∩ B′)/A � B/A implies that
(B∩B′∩A′)/(A∩A′)� B/(A∩A′) [Lemma 2.1.5, (h)]. Since A∩A′ � B,
we have (B ∩B′ ∩A′)� B. Thus, B is a supplement of B′ ∩A′ in M .

(c) Follows directly from (b) & [Lemma 2.3.3].

Proposition 2.3.1. [11, P roposition 1.5] If M is an amply supplemented
module, then every submodule of M has a coclosure in M .

Proof. Let A ≤ M . Since M is amply supplemented, ∃ B ≤ M such that
B is a supplement of A in M . i.e., M = A+B and B is minimal with this
property. Again since M is amply supplemented and M = A+B, ∃ C ≤ A
such that C is a supplement of B in M . i.e., M = B+C and B∩C � C. We
claim that C is a coclosure of A in M . To verify this, let C ≤ X ≤M with
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A/C+X/C = M/C. Then M = A+X. Now, X = X∩M = X∩(B+C) =
(X ∩B) +C, hence M = X +A = (X ∩B) +C +A = (X ∩B) +A. By the
minimality of B, X ∩B = B, so B ≤ X. This implies M = B+C ≤ X and
so M = X. Therefore, A/C � M/C, that is, C ≤ce A in M . Moreover, C
is coclosed since it a supplemented submodule in M . Thus, C is a coclosure
of A in M .

Proposition 2.3.2. If M is an amply supplemented module, then any sup-
plement submodule , direct summand, or factor module of M is amply sup-
plemented.

Proof. First, let A be a supplement of B in M . Then M = A + B and
A ∩ B � A. Let X, Y ≤ A such that A = X + Y . This implies that
M = B + X + Y . But M is amply supplemented, so there exists Y ′ ≤ Y
such that Y ′ is a supplement of B+X in M which means Y ′+B+X = M
and Y ′ ∩ (B + X) � Y ′. We will show that Y ′ is a supplement of X in A.
Now, A = A∩M = A∩Y ′+B+X = (A∩B)+(X+Y ′) and so A = X+Y ′

since A ∩B � A. Moreover, From X ∩ Y ′ ≤ (X +B) ∩ Y ′ � Y ′, it follows
that X ∩ Y ′ � Y ′. Hence, A is amply supplemented. On the other hand,
Any direct summand of M is a supplement submodule and hence amply
supplemented by the previous argument. Finally, the assertion for factor
modules follows from [Lemma 2.3.2].

Theorem 2.3.1. [11, Lemma 1.7] A module M is amply supplemented iff
M is weakly supplemented and every submodule has a coclosure in M .

Proof. =⇒ Follows directly from definitions and [Proposition 2.3.1].

⇐= Let A, B ≤ M with A+B = M . Since M is weakly supplemented
and A ∩ B ≤ M , there exists C ≤ M such that (A ∩ B) + C = M and
(A∩B)∩C �M . Therefore, M = A+ (B ∩C) [Lemma 2.1.3]. Now, let D
be a coclosure of B∩C in M . Then (B∩C)/D �M/D and D ≤cc M . But
M/D = (A + (B ∩ C))/D = (A + D)/D + (B ∩ C)/D, hence M = A + D.
Furthermore, A∩D ≤ A∩B∩C �M implies that A∩D �M . Moreover,
it follows from A ∩ D ≤ D ≤cc M and A ∩ D � M that A ∩ D � D
[Lemma 2.3.3]. Thus, D ≤ B and D is a supplement of A in M . Hence, M
is amply supplemented.

Example 2.2. Consider the following examples.
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1. The Z-module Z in not supplemented [8, §5.2].

2. Artinian modules and semisimple modules are supplemented [8, §5.2].

3. Every lifting module is amply supplemented [Proposition 2.4.1].

4. Q/Z is a weakly supplemented Z-module [3, Example 17.10].

5. Q is a weakly supplemented Z-module [3, Example 17.15].

6. Q is not a supplemented Z-module [3, Example 20.12].
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2.4 Lifting Modules

From [3], Recall that a module M is called lifting (or has (D1)) if for
every submodule N ≤ M , there exists K ≤⊕ M such that K ≤ N and
K ≤ce N in M .

Now we start with a lemma that will be so valuable in characterizing
lifting and hollow-lifting modules.

Lemma 2.4.1. [21, Lemma 41.11] Let M be a module and A ≤ M . Then
the following are equivalent.

(a) There is X ≤⊕ M with X ≤ce A in M .

(b) There is X ≤⊕ M and Y �M with A = X ⊕ Y .

(c) There is a decomposition M = X ⊕X ′ with X ≤ A and A ∩X ′ � X ′.

(d) A has a strong supplement in M .

Proof. (a) =⇒ (b) Let M = X⊕X ′ and X ≤ce A in M . Then A = A∩M =
A ∩ (X ⊕ X ′) = X ⊕ (A ∩ X ′). It remains to show that A ∩ X ′ � X ′.
Consider the homomorphism f : M/X −→ X ′. We can consider f as an
isomorphism since M/X = (X ⊕X ′)/X ∼= X ′. Hence, since A/X �M/X,
we have f(A/X) = A ∩X ′ � X ′ and so we are done.

(b) =⇒ (c) Let M = X ⊕ X ′ and A = X ⊕ Y with Y � M . Then
clearly X ′ is a supplement of X in M . But Y � M , therefore X ′ is a sup-
plement of X+Y = A in M [Lemma 2.3.2, (b)]. Consequently, A∩X ′ � X ′.

(c) =⇒ (d) Suppose that M = X⊕X ′ with X ≤ A and A∩X ′ � X ′. We
claim that X ′ is a strong supplement of A in M . Since X ≤ A, M = A+X ′

and hence X ′ is a supplement of A in M . Moreover, A = A ∩ (X ⊕X ′) =
X ⊕ (A ∩X ′) which means that A ∩X ′ ≤⊕ A. Thus, our claim is true.

(d) =⇒ (a) Let B be a strong supplement of A in M . Then M = A+B,
A ∩ B � B, and (A ∩ B) ⊕ C = A for some C ≤ A. Therefore, we have
M = (A∩B)+C+B and 0 = (B∩A)∩C = B∩C. This means M = B⊕C
and so C ≤⊕ M . Now, we will show that C ≤ce A in M . Let C ≤ X ≤ M
with A/C+X/C = M/C. Then M = A+C = (A∩B)+C+X = (A∩B)+X.
But A ∩B � B implies A ∩B �M , so X = M . Thus, C ≤ce A in M .
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Proposition 2.4.1. Let M be a lifting module. Then the following are true.

(1) Any coclosed submodule of M is a direct summand.

(2) M is amply supplemented.

(3) M is hollow iff it is indecomposable.

Proof. (1) Let A ≤cc M . Since M is lifting, ∃ K ≤⊕ M such that K ≤ce A
in M . But A has no proper coessential submodules, hence A = K.

(2) Let A, B ≤ M with M = A + B. We will show that B contains
a supplement of A in M . From the previous lemma, B = X ⊕ Y , where
X �M and Y ≤⊕ M . Therefore, M = A+ Y . Again by the same lemma,
A∩Y = N ⊕S with S �M and N ≤⊕ M and hence S � Y and N ≤⊕ Y .
Let Y = N ⊕N ′ for some N ′ ≤ Y . Clearly, N ′ is a supplement of N in Y .
But S � Y , therefore N ′ is a supplement of N + S in Y [Lemma 2.3.2, (b)]
which means Y = N ′ + N + S and N ′ ∩ (N + S) � N ′ implying that
(A∩Y )+N ′ = N+S+N ′ = Y . Consequently, M = A+N+S+N ′ = A+N ′.
Moreover, A ∩ N ′ = (A ∩ Y ) ∩ N ′ = (N + S) ∩ N ′ � N ′. Hence, N ′ is a
supplement of A in M with Y ′ ≤ B.

(3) If M is hollow and M = A ⊕ B, then either A = M or B = M ,
hence M is indecomposable. Conversely, suppose M is an indecomposable
lifting module and let A be a proper submodule of M . Since M is lifting,
there exists a direct summand K of M with A/K � M/K. But M is
indecomposable, hence K = 0 and so A�M . Thus, M is hollow.

Theorem 2.4.1 (Characterization Of Lifting Modules). [3, §22.3] Let
M be a module. Then the following are equivalent.

(a) M is lifting.

(b) For every A ≤ M , there is a decomposition M = X ⊕X ′ with X ≤ A
and A ∩X ′ �M .

(c) Every A ≤M can be written as A = X⊕Y with X ≤⊕ M and Y �M .

(d) M is amply supplemented and every coclosed submodule of M is a direct
summand.

(e) M is amply supplemented and every supplement submodule of M is a
direct summand.



Hollow-Lifting Modules 33

Proof. (a)⇐⇒ (b)⇐⇒ (c) Follow from [Lemma 2.4.1].

(a) =⇒ (d) Follows from [Proposition 2.4.1].

(d)⇐⇒ (e) Follows from [Lemma 2.3.3].

(e)⇐⇒ (a) Follows from [Proposition 2.3.1].

Corollary 2.4.1. Any hollow module is lifting.

Proof. Let A ≤M . If A = M then A = M ⊕ 0 with 0�M and M ≤⊕ M .
And if A 6= M , then A = A ⊕ 0 with A � M and 0 ≤⊕ M . Hence, M is
lifting.

Corollary 2.4.2. Any coclosed submodule (hence any direct summand) of
a lifting module M is also lifting.

Proof. Let M be a lifting module and A ≤cc M . From [Proposition 2.4.1],
A ≤⊕ M . Consequently, A is amply supplemented [Proposition 2.3.2].
Now, letA′ ≤cc A. SinceA is a supplement inM , A′ ≤cc M [Corollary 2.3.2].
Hence, A′ ≤⊕ M which implies A′ ≤⊕ A. Therefore, by the previous theo-
rem, A is lifting.

Example 2.3. Consider the following:

1. Since any hollow module is lifting, it follows that the Z-modules Zpk
and Zp∞ are lifting, where p is a prime integer.

2. Consider the Z-modules A = Z/8Z and B = Z/2Z. Since A and B
are hollow, they are lifting. But the module M = A⊕ B is not lifting
since if U is the submodule generating by (2 + 8Z, 1 + 2Z), then U is
not small in M and U does not contain a nonzero direct summand of
M [3, Example 22.5].

3. By following [14,Proposition A.7], the Z-module Z/p2Z⊕Z/p3Z is lift-
ing, whereas the module Z/pZ⊕ Z/p3Z is not lifting.
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In order to proceed, we must recall the following about a module M [14].

(1) M is said to have (D2) , if whenever A ≤M with M/A isomorphic to a
direct summand of M , then A ≤⊕ M .

(2) M is said to have (D3) , if whenever M = M1 +M2 such that M1 and
M2 are direct summands of M , then M1 ∩M2 ≤⊕ M .

(3) M is called discrete, if it is lifting and has (D2).

(4) M is called quasi-discrete, if it is lifting and has (D3).

We must point out that any hollow module is quasi-discrete and any
direct summand of a module with (D2) or (D3) also has (D2) or (D3) re-
spectively [14, Lemma 4.7].

Lemma 2.4.2. [14, Lemma 4.6] Let M be a module with (D2). Then every
epimorphism f : M1 −→ M2 splits, provided that M1 and M2 are direct
summands of M .

Proof. Let M = M1 ⊕ N1 for some N1 ≤ M , and f : M1 −→ M2 be
an epimorphism. By The Homomorphism Theorem, M/(Ker(f) ⊕ N1) =
(M1⊕N1)/(Ker(f)⊕N1) ∼= M1/Ker(f) ∼= M2. But M has (D2), therefore
Ker(f) ⊕ N1 ≤⊕ M and hence Ker(f) ≤⊕ M . Since Ker(f) ≤ M1, we
have also Ker(f) ≤⊕ M1. Thus, f splits.

Corollary 2.4.3. Any Module satisfies (D2) also satisfies (D3)

Proof. Let M = M1 + M2 = M1 ⊕ N1, where M1,M2≤⊕ M and N1 ≤ M .
Then N1

∼= N1/0 = N1/(M1 ∩ N1) ∼= (M1 ⊕ N1)/M1 = M/M1 = (M1 +
M2)/M1

∼= M2/(M1 ∩M2). Therefore, by the previous lemma, M1 ∩M2 is
a direct summand of M , hence M satisfies (D3).

Now we can see that any discrete module is quasi-discrete, and di-
rect summands of discrete (quasi-discrete) modules are also discrete (quasi-
discrete).
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2.5 Duo Modules

Definition 2.5.1. [18] Let M be a module and N ≤ M . Then N is called
fully invariant if f(N) ≤ N for all f ∈ End(M). Moreover, we call M a
duo module if every submodule of M is fully invariant.

Clearly, the trivial submodules of M (which are 0 and M) are fully
invariant. Besides, Any simple module is a duo module.

Lemma 2.5.1. [18, Lemma 1.1] Let M be a right R-module. Then M is a
duo module iff for each f ∈ End(M) and each m ∈ M , there exists r ∈ R
such that f(m) = mr.

Proof. =⇒ Let f ∈ End(M) and m ∈M . Then mR ≤M . But M is duo,
therefore f(mR) ≤ mR and hence f(m) = f(m.1) ∈ mR. This means that
∃ r ∈ R with f(m) = mr.
⇐= Let N ≤M and f ∈ End(M). Now, if n ∈ N then, by hypothesis,

there exists r ∈ R with f(n) = nr ∈ nR ≤ N , hence f(N) ≤ N . Therefore,
M is a duo module.

Proposition 2.5.1. [18, P roposition 1.3] Any direct summand of a duo
module is also duo.

Proof. Let M be a duo module and K ≤⊕ M . Then M = K ⊕ L for some
L ≤ M . Now, let f ∈ End(M) and K ′ ≤ K. Consider the projection map
π : M −→ K and the inclusion map i : K −→ M . Let g = ifπ, then
g ∈ End(M). Moreover, g(K ′) = ifπ(K ′) = if(K ′) = f(K ′). Since M is
duo, g(K ′) ≤ K ′ and hence f(K ′) ≤ K ′. Thus, K is a duo module.

Using [18, Lemma 2.1], we get the following result.

Lemma 2.5.2. Let M = M1 ⊕M2 be a module and A a fully invariant
submodule of M . Then A = (A ∩ M1) ⊕ (A ∩ M2). Moreover, M/A =
(A+M1)/A⊕ (A+M2)/A.

Proof. Let π1 and π2 be the projection epimorphisms onto M1 and M2

respectively and let a ∈ A. Then π1(a) + π2(a) = a. Since π1(A) ≤ A
and π2(A) ≤ A, it follows that π1(a) ∈ A ∩M1 and π2(a) ∈ A ∩M2 and
hence A ≤ (A ∩M1)⊕ (A ∩M2). Consequently, A = (A ∩M1)⊕ (A ∩M2).
Moreover, this implies that (A+M1) ∩ (A+M2) ≤ [(M1 +M2 +A) ∩A] +
[M1 + A+ A) ∩M2] = A+ [M1 + (A ∩M1)⊕ (A ∩M2)] ∩M2 = A. Thus,
M/A = (A+M1)/A⊕ (A+M2)/A.
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2.6 UCC Modules

The concept of UCC modules was introduced in 2002 by the Indian math-
ematician N. Vanaja [5]. This notion was a dual to UC modules which were
studied by Patrick. F. Smith. In this section, we will review some results of
Vanaja about UCC modules which we need in our thesis.

Definition 2.6.1. A module M is called a unique coclosure module (denoted
by UCC), if every submodule of M has a unique coclosure in M .

Example 2.4. Hollow modules and semisimple modules are UCC modules.

Notice that, an amply supplemented module need not be UCC. For ex-
ample, consider the Z-module M = Z/8Z⊕Z/8Z [5, P roposition 4.4]. How-
ever, using theorem 2.3.1, we have the following result.

Corollary 2.6.1. A weakly supplemented UCC module is amply supple-
mented.

According to Vanaja, we can characterize UCC modules through the
next two theorems.

Theorem 2.6.1. [5, Theorem 3.3 & Proposition 3.9] Let M be a module.
Then the following are equivalent.

(a) M is a UCC module.

(b) Every factor module of M is a UCC module.

(c) Every coclosed submodule of M is a UCC module

(d) Given a submodule N ≤M , there exists a coclosure K of N in M such
that if L ≤ce N in M , then K ≤ L.

(e) Every submodule has a coclosure in M , and if N,X, Y ≤ M such that
X ≤ce N in M and Y ≤ce N in M , then X ∩ Y ≤ce N in M

(f) If {Xi | i ∈ I} is any family of submodules of M and N ≤ M with
Xi ≤ce N in M ∀i, then

⋂
i∈I

Xi ≤ce N in M .

Theorem 2.6.2. [5, Theorem 3.12] Let M be an amply supplemented mod-
ule. Then the following are equivalent.

(a) M is a UCC module.
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(b) If N �M and K,L ≤M , then K ∩ L ≤ce [(N +K) ∩ (N + L)] in M .

(c) There exists N0 � M such that M/N0 is a UCC module , and for all
K,L ≤M , K ∩ L ≤ce [(N0 +K) ∩ (N0 + L)] in M .

Now we continue this section by introducing a new type of submodules
which gives a different look at UCC modules.

Definition 2.6.2. [5] Let M be a module and K ≤ M . Then K is called
strongly coclosed submodule (Denoted by K ≤scc M), if whenever X ≤ M
with K � X, then X �ce K +X in M .

The next proposition provide us some properties of strongly coclosed
submodules.

Proposition 2.6.1. [5, P roposition 3.14] Let M be a module and K ≤M .
Then

(i) If K ≤scc M , then K ≤cc M .

(ii) If K ≤scc M and K ≤ H ≤M , then K ≤scc H

(iii) If K ≤scc M and N ≤M , then (K +N)/N ≤scc M/N .

(iv) If Ki ≤scc M ∀ i ∈ I, then
∑
i∈I

Ki ≤scc M .

Finally, the next theorem defines UCC module with respect to their
coclosed submodules.

Theorem 2.6.3. [5, Theorem 3.16] Let M be an amply supplemented mod-
ule. Then the following are equivalent.

(a) M is a UCC module.

(b) Every coclosed submodule of M is strongly coclosed.

(c) The sum of any family of coclosed submodules of M is coclosed.

(d) The sum of two coclosed submodules of M is coclosed.

(e) For any epimorphism f : M −→M ′. If K ≤cc M then f(K) ≤cc M ′.

(f) For all nonempty index sets I and all submodules Ki ≤ Li ≤ M , if
Li/Ki ≤cc M/Ki ∀ i ∈ I, then

∑
i∈I

Li/
∑
i∈I

Ki ≤cc M/
∑
i∈I

Ki.
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2.7 Projective Modules

The notion of projective modules is a generalization of the concept of
free modules. It was first introduced in 1956 by Henri Cartan and Samuel
Eilenberg.

Definition 2.7.1. [14, Definition 4.29] Let P , M be right R-modules. Then
P is called M -projective if for every epimorphism f : M −→ N and every
homomorphism g : P −→ N , ∃ a homomorphism h : P −→ M such that
fh = g. i.e., the following diagram commutes.

P

M
f
>

h

<...
....

....
....

....

N

g

∨
> 0

The module P is called projective if P is M -projective ∀ M , and it is
called quasi-projective (or self-projective) if it is P -projective. Moreover, if
P is M -projective and M is P -projective, then we say that P and M are
relatively projective modules.

Theorem 2.7.1. Let P and M be modules. Then P is M -projective iff
whenever K ≤ M and f : P −→ M/K is a module homomorphism, then
f can be lifted, through the natural epimorphism π : M −→ M/K, by a
homomorphism h : P −→M .

Proof. =⇒ By definition.
⇐= By The Factor Theorem of module homomorphism.

Proposition 2.7.1. [14, P roposition 4.31] If M is N -projective and A ≤ N ,
then M is A-projective and N/A-projective.

Definition 2.7.2. Let M be a module. A small epimorphism f : P −→ M
with a projective module P , is called a projective cover of M .

Now we will recall briefly some well-known results and properties con-
cerned projective modules. Therefore, most of the next results will not be
proved or shortly proved.

Proposition 2.7.2. [14, P roposition 4.32] A module M is (
n⊕
i=1

Ai)-projective

iff M is Ai-projective for all i = 1, 2, . . . , n.
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Corollary 2.7.1. A finite direct sum (
n⊕
i=1

Mi) is quasi-projective iff Mi is

Mj-projective for all i, j = 1, 2, . . . , n.

Lemma 2.7.1. [14, P roposition 4.30] If M is N -projective, then any epi-
morphism f : N −→M splits. Furthermore, if N is indecomposable then f
is an isomorphism.

Proof. Consider the following diagram

M

N
f
> M

idM
∨

> 0

Since M is N -projective, there exists a homomorphism f̄ : M −→ N such
that ff̄ = idM . Hence, f splits. Now suppose that N is indecomposable.
Since f splits, Ker(f) ≤⊕ N . Consequently, Ker(f) = 0. Therefore, f is
an isomorphism.

Theorem 2.7.2. [1, P roposition 17.2] The following are equivalent for a
module M .

(a) M is a projective module.

(b) M is a direct summand of a free module.

(c) Every short exact sequence 0 > K
f
> N

g
> M > 0

splits.

The following lemma can be found in [3].

Lemma 2.7.2. [21, §41.14] Let M be a module and U , V be submodules of
M . Consider the following conditions.

(a) If M = U + V and U ≤⊕ M , then ∃ V ′ ≤ V such that M = U ⊕ V ′.

(b) If M = U ⊕ V , then V is U -projective (and U is V -projective).

(c) If M = U ⊕ V and U ∼= V , then M is self- projective.

(d) If M = U + V and U, V ≤⊕ M , then U ∩ V ≤⊕ M .

Then (a)⇔ (b), (b)⇒ (c), and (a)⇒ (d).
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Proof. (a) ⇒ (b) Suppose M = U ⊕ V and A ≤ U . Let p : U −→ U/A be
the natural epimorphism and f : V −→ U/A be any homomorphism. Define
the submodule N = {u − v | u ∈ U, v ∈ V, and p(u) = f(v)}. Since p is an
epimorphism, M = U +N . So, by (a), ∃ N ′ ≤ N with M = U ⊕N ′. Now,
let π : M = U ⊕ N ′ −→ U be the projection of M onto U . This gives the
homomorphisms V −→ M −→ U . Now, (1 − π)(V ) ≤ N ′ ≤ N . Therefore,
if v ∈ V then v − π(v) ∈ N and hence f(v) = πp(v). i.e., f = πp. Thus, V
is U -projective.

(b)⇒ (a) Let M = U + V and M = U ⊕X, where X ≤M . By (b), we
can assume that X is U -projective. Consider the following diagram.

U > M > M/V > 0

X

∧

Since X is U -projective, this diagram can be lifted commutatively by a ho-
momorphism f : X −→ U . Therefore, if x ∈ X then x+ V = f(x) + V and
hence (1 − f)(X) ≤ V . So we have M = U + X ≤ U + (1 − f)(X) which
implies that M = U + (1− f)(X). Let V ′ = U + (1− f)(X). Then V ′ ≤ V
and M = U + V ′. Now, if y ∈ U ∩ V ′ then y = u = (1 − f)(x) for some
u ∈ U and x ∈ X. Consequently, x = u + f(x) ∈ U ∩ X = 0 and hence
y = 0, that is U ∩ V ′ = 0. Thus, M = U ⊕ V ′.

(b)⇒ (c) Clear.

(a) ⇒ (d) Let U, V ≤⊕ M with M = U + V . By (a), we can find the
submodules U ′ ≤ U and V ′ ≤ V such that M = U ⊕ V ′ and M = U ′ ⊕ V .
Therefore, M = (U ∩ V ) + (U ′ + V ′) and 0 = (U ∩ V ) ∩ (U ′ + V ′). Hence,
M = (U ∩ V )⊕ (U ′ + V ′). That is, U ∩ V ≤⊕ M .
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3 Hollow-Lifting Modules

In this section we will try to uncover the structure of hollow-lifting
modules as possible as we can. After that, we introduce what so-called
completely hollow-lifting modules by adding a new condition. Eventually,
we represent a generalization called finitely hollow-lifting modules.

Just to know, it is not worthless to remind again that throughout R
denotes a ring with identity and every R-module M is a unitary right R-
module, unless otherwise stated.

3.1 Definition & Characterization

Definition 3.1.1. A module M is called hollow-lifting if every submodule
N of M with M/N hollow has a coessential submodule in M that is a direct
summand of M .

Example 3.1. It is clear that lifting modules(hence hollow modules) and
semisimple modules are hollow-lifting. Moreover, any module having no hol-
low factor modules is trivially hollow-lifting.

The following proposition provides a simple characterization of indecom-
posable hollow-lifting modules

Proposition 3.1.1. [15, P roposition 2.7] Let M be an indecomposable mod-
ule. Then M is hollow-lifting iff M is hollow, or else M has no hollow factor
modules.

Proof. The sufficiency is clear. Now, Suppose that M has a proper submod-
ule N such that M/N is hollow. Then, since M is hollow-lifting, ∃ K ≤⊕ M
with K ≤ce N in M . But M is indecomposable, therefore K = 0. Conse-
quently, N/K = N/0 ∼= N and M/K = M/0 ∼= M , hence N � M . Thus,
M is hollow.

Now, we can link hollow-lifting and amply supplemented modules through
the following proposition.

Proposition 3.1.2. If M is hollow-lifting, then every coclosed submodule
N of M with M/N hollow is a direct summand of M . The converse is true
if M is amply supplemented.

Proof. Let M be a hollow-lifting module and N ≤cc M with M/N hollow.
Then ∃ L ≤⊕ M such that N/L � M/L. But N ≤cc M , so N = L.
Hence, N is a direct summand of M . The converse follows directly from
[Proposition 2.3.1].
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Lemma 3.1.1. [1, P roposition 5.5] Let M = H1 ⊕H2 be a module and N
be a submodule of M . Let π1 : M −→ H1 be the projection epimorphism of
M onto H1. Then M = N ⊕H2 ⇔ π1|N : N −→ H1 is an isomorphism.

Proof. First, Ker(π1|N ) = N ∩ Ker(π1) = N ∩ H2. So π1|N is monomor-
phism ⇔ N ∩H2 = 0. Moreover, since π1|H1 = idH1 and Ker(π1) = H2,

π1(N) = π1(N +H2)

= π1((N +H2) ∩ (H1 +H2))

= π1[((N +H2) ∩H1) +H2]

= π1((N +H2) ∩H1)

= (N +H2) ∩H1.

So π1|N is an epimorphism ⇔ (N +H2) ∩H1 = H1 ⇔ H1 ≤ N +H2

⇔ M = N +H2. This completes the proof.

The following result provides another example of hollow-lifting modules.

Proposition 3.1.3. [15, P roposition 2.1] Let H1 and H2 be hollow modules.
Then the following are equivalent for the module M = H1 ⊕H2.

(a) M is hollow-lifting.

(b) M is lifting.

Proof. (b) =⇒ (a) Trivial.
(a) =⇒ (b) Let N ≤ M . Consider the natural projections π1 : M −→ H1

and π2 : M −→ H2. If π1(N) 6= H1 and π2(N) 6= H2. Then, since H1

and H2 are hollow, π1(N) � H1 and π2(N) � H2 and hence we get that
π1(N)⊕ π2(N)� H1⊕H2. Now claim that N ⊆ π1(N)⊕ π2(N). To verify
that, let n ∈ N then n = (h1, h2), where h1 ∈ H1, h2 ∈ H2. Therefore,
π1(n) = h1 and π2(n) = h2, that is, n = (π1(n), π2(n)). So our claim is
verified. Consequently, N � M . Thus, M is lifting. Now, assume that
π1(N) = H1. Then M = N + H2. By the second isomorphism theorem,
M/N = (N + H2)/N ∼= H2/(N ∩H2) . But H2 is hollow, so H2/(N ∩H2)
is hollow, therefore M/N is also hollow. Hence, since M is hollow-lifting,
there exists K ≤⊕ M with K ≤ce N in M . Thus, M is again lifting.

Example 3.2. Using [Example 2.2] and the previous proposition, we get
that the Z-module Z/p2Z⊕Z/p3Z is hollow-lifting but Z/pZ⊕Z/p3Z is not.
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To introduce a useful characterization of hollow-lifting modules, we start
with the following lemma.

Lemma 3.1.2. [15, P roposition 2.3] Let M be a module and U ≤M . Then
the following are equivalent.

(a) U has a strong supplement in M .

(b) U has a coessential submodule that is a direct summand of M .

Proof. (a) =⇒ (b) Let V be a strong supplement of U in M . Then we
have M = V + U , V ∩ U � V , and U = (V ∩ U) ⊕W for some W ≤ U .
Consequently, we have M = V + U = V + (V ∩ U) +W = V +W and also
0 = W ∩ (V ∩U) = W ∩V . This means that M = V ⊕W , hence W ≤⊕ M .
Now, if W ≤ X ≤M and U/W +X/W �M/W , then U +X = M and so
M = (U ∩ V ) +W +X = (U ∩ V ) +X. But V ∩ U � V , so V ∩ U � M ,
hence X = M . Therefore, U/W � M/W . Thus, W is the submodule we
seek.

(b) =⇒ (a) Let A ≤ce U with A ≤⊕ M . Then U/A � M/A and
A ⊕ B = M for some B ≤ M . We claim that B is a strong supplement of
U in M . To verify this claim, we must show that B + U = M , B ∩ U � B,
and B ∩ U ≤⊕ U . Now, A+B = M and A ≤ U implies B + U = M . Also,
(B∩U)∩A = 0∩U = 0. Moreover, (B∩U)+A = (B+A)∩U = M∩U = U .
Hence, (B∩U)⊕A = U . This means (B∩U) ≤⊕ U . Finally, if X ≤ B with
(B ∩ U) +X = B, then M = A+B = A+ (B ∩ U) +X = U +X. Hence,
M/A = U/A + (X + A)/A. But U/A � M/A, so X + A = M . Therefore,
B = B∩M = B∩(X+A) = X+0 = X. Thus, B∩U � B. This completes
the proof.

Corollary 3.1.1. Let M be a module. Then the following are equivalent.

(a) M is hollow-lifting

(b) Every submodule N ≤M with M/N hollow has a strong supplement in
M .

Proposition 3.1.4. [15, P roposition 2.5] Let M be a module. Then the
following are equivalent.

(a) M is hollow-lifting.

(b) Every submodule N ≤M with M/N hollow can be written as N = K⊕L,
where K ≤⊕ M and L�M .
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Proof. (a) =⇒ (b) Let N ≤M with M/N hollow. Then, since M is hollow-
lifting, ∃ K ≤⊕ M such that K ≤ N and N/K � M/K. Let F ≤ M
with M = K ⊕ F . We claim that L = F ∩ N is the one we seek. To
verify that, we have to show that N = K ⊕ L and L � M . First of all,
we have K + L = K + (F ∩ N) = (K + F ) ∩ N = M ∩ N = N . Also,
K ∩L = K ∩ (F ∩N) = (K ∩ F ) ∩N = 0∩N = 0. Hence, N = K ⊕L. To
show L�M , it suffices to prove that L� F . So let X ≤ F with L+X = F .
Then F = (F ∩ N) + X = F ∩ (N + X) which implies F ≤ N + X and
hence M = F + K ≤ N + X + K = N + X. This means M = N + X.
Now, (N +X +K)/K = N/K + (X +K)/K = M/K, but N/K �M/K,
therefore X+K = M . Consequently, X = F . This completes this direction.

(b) =⇒ (a) Let N ≤ M with M/N hollow. Then, by the assumption,
N = K ⊕L with K ≤⊕ M and L�M . Now, let X ≤M with K ≤ X and
N/K+X/K = M/K. Then N +X = M , so K+L+X = M . But L�M ,
therefore X + K = X = M . This implies that N/K � M/K. Thus, M is
hollow-lifting.

Now, we are ready to introduce the following characterization.

Theorem 3.1.1 (Characterization Of Hollow-lifting Modules). Let
M be a module. Then the following are equivalent.

(a) M is hollow-lifting.

(b) Every submodule N ≤M with M/N hollow can be written as N = K⊕L,
where K ≤⊕ M and L�M .

(c) Every submodule N ≤M with M/N hollow has a strong supplement in
M .

(d) For every submodule N ≤M with M/N hollow, there exists a decompo-
sition M = X ⊕X ′ with X ≤ N and N ∩X ′ �M .

Proof. The theorem is just a combination of [Lemma 2.4.1], [Corollary 3.1.1],
and [Proposition 3.1.4],

Remark. An example of a hollow-lifting module which is not lifting was in-
troduced by C. Lomp [12, P roposition 2.1]. Actually, he provided a full pa-
per for this purpose. Unfortunately, it has turned out that this example has
some mistakes as Lomp himself declared. However, Orhan [15, Remark 2.10]
has pointed out how to construct such example. The next two propositions
clarify our point.
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Proposition 3.1.5. Any indecomposable module with no hollow factor mod-
ules is hollow-lifting but not lifting.

Proof. Trivially, M is hollow-lifting. To show that M is not lifting, we first
claim that M has a nonzero proper submodule. If not, then M is a simple
module and hence hollow, a contradiction. So let A be a nonzero proper
submodule of M . Now, if M is lifting then A can be written as A = X ⊕ Y
with X ≤⊕ M and Y �M [Theorem 2.4.1]. But M is indecomposable and
A �M , therefore X = 0 and hence Y = A, a contradiction. Thus, M is not
lifting.

Proposition 3.1.6. Let K be a semisimple module and N an indecompos-
able module with no hollow factor modules. If M = N ⊕ K, then M is
hollow-lifting but not lifting.

Proof. Let L be a submodule of M such that M/L is hollow . First of all,
M/L = (N+K)/L = (N+L)/L+(K+L)/L. But M/L is hollow, therefore
either N + L = M or K + L = M . If N + L = M then M/L ∼= N/(N ∩ L)
which is impossible because M/L is hollow and N has no hollow factor
modules. So, M = K + L. But K is semisimple, hence (K ∩ L) ≤⊕ K. It
follows that there exists E ≤ K such that K = (K ∩ L) ⊕ E. Therefore,
M = K + L = E ⊕ (K ∩ L) + L = E ⊕ L. Hence, L ≤⊕ M and so M is
hollow-lifting. Now, if M is lifting, then N is also lifting [Corollary 2.4.2].
Since M is indecomposable, it follows that N is hollow [Proposition 2.4.1],
a contradiction. Thus, M is not lifting.
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3.2 More Properties Of Hollow-lifting Modules

We begin this part by the following quick result.

Proposition 3.2.1. [15, P roposition 2.9] Let M1,M2, . . . ,Mn be modules
with no hollow factor modules. Then M = M1 ⊕M2 ⊕ · · · ⊕Mn is hollow-
lifting.

Proof. We claim that M has no hollow factor modules. Otherwise, if N ≤M
with M/N hollow, then (M1 +N)/N + · · ·+(Mn+N)/N = M/N is hollow.
Therefore, there exists i ∈ {1, 2, . . . , n} with (M/N) = (Mi + N)/N which
means Mi has a hollow factor module, a contradiction. So our claim is true.
Consequently, M is hollow-lifting.

The following lemma [15, Lemma 2.11] is useful in supporting some re-
sults.

Lemma 3.2.1. Let M be a module and K ≤⊕ M such that K has the finite
exchange property. If K ≤ N ≤ M and N has a strong supplement in M ,
then N/K has a strong supplement in M/K.

Proposition 3.2.2. [15, P roposition 2.12] Let M be a hollow-lifting module
and K ≤⊕ M such that K has the finite exchange property. Then M/K is
hollow-lifting.

Proof. Let N ≤ M with K ≤ N and (M/K)/(N/K) is hollow. Then
M/N ∼= (M/K)/(N/K) and hence M/N is hollow. But M is hollow-lifting,
so N has a strong supplement in M . Consequently, by the above lemma,
N/K has a strong supplement in M/K. Thus, M/K is hollow-lifting.

Proposition 3.2.3. [15, P roposition 2.13] Let M be a hollow-lifting module
having a nonsmall hollow submodule. Then M has a hollow direct summand.

Proof. Let H be a nonsmall hollow submodule of M . Then ∃ N � M
with M = H + N . Therefore, M/N = (H + N)/N ∼= H/(H ∩ N). But
H is hollow, so H/(H ∩ N) is also hollow, hence M/N is hollow. Since
M is hollow-lifting, ∃ L ≤⊕ M such that N/L � M/L. Moreover, we
have M/L = (H + N)/L = (H + N + L)/L = (H + L)/L + N/L. But
N/L � M/L, so M/L = (H + L)/L ∼= H/(H ∩ L). This means that M/L
is hollow. Now, let K ≤ M with M = L ⊕K. Then M/L = (L + K)/L ∼=
K/(K ∩ L) = K/0 ∼= K, hence K is hollow. Thus, K is a hollow direct
summand of M .
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Lemma 3.2.2. Let M be a module with submodules A and B. If A is a
strong supplement of B in M , then A ≤⊕ M . Moreover, if B is a maxi-
mal submodule and A is a strong supplement of B, then A is a local direct
summand of M .

Proof. Suppose A is a strong supplement of B in M . Then M = A + B,
A∩B � A, and (A∩B)⊕C = B for some C ≤M . Claim that M = A⊕C.
Firstly, A∩C = A∩C ∩B = 0. Moreover, B = C+ (A∩B) = (C+A)∩B,
therefore B ≤ C + A, hence M = A + B = A + C + A = A + C. So our
claim is verified and so A ≤⊕ M .

Now, suppose B is a maximal submodule and with a strong supplement
A. Then M/B is simple module and hence hollow. Also, we have that
M/B = (A+B)/B ∼= A/(A ∩B) which implies A/(A ∩B) is simple, hence
hollow. But A ∩ B � A, so A is also hollow. Now, A ∩ B is maximal
submodule of A, moreover it is unique since if X ≤ A is any other maximal
submodule of A, then X + (A ∩ B) = A. But A ∩ B � A, so X = A,
contradicting the maximality of X. Hence, A is local. This ends the proof.

As a result of the previous lemma, we provide the following proposition.

Proposition 3.2.4. [15, Lemma 2.14] Let M be a hollow-lifting module hav-
ing a maximal submodule N . Then M has a local direct summand.

Proof. Since N is maximal, M/N is a simple module and so it is hollow.
But M is hollow-lifting, so N has a strong supplement in M , say K. By the
previous lemma, K is a local direct summand of M .

In order to continue reviewing our properties, we give the following ter-
minology.

Definition 3.2.1. [15] A module M is called coatomic if every proper sub-
module of M is contained in a maximal submodule.

Lemma 3.2.3. If M is a coatomic module, then Rad(M)�M .

Proof. For the sake of a contradiction, assume Rad(M) is not small in M .
Then ∃ a proper submodule K ≤ M such that M = Rad(M) + K. But
M is coatomic, so K is contained in a maximal submodule N ≤ M . But
Rad(M) is the intersection of all maximal submodules of M , therefore we
get that M = Rad(M) +K ≤ N and hence M = N , a contradiction. Thus,
Rad(M)�M .
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The next result gives a good structure of coatomic hollow-lifting modules.

Proposition 3.2.5. [15, P roposition 2.16] Let M be a coatomic hollow-
lifting module. Then M can be written as an irredundant sum of local direct
summands of M .

Proof. Since M is coatomic, Rad(M) � M and hence a proper submod-
ule, therefore M has a maximal submodule containing Rad(M). But M
is hollow-lifting, so it has a local direct summand. Let N be the sum of
all local direct summands of M . If N is a proper submodule of M , then
there is a maximal submodule L ≤ M with N ≤ L. Now, M/L is simple
and hence hollow, but M is hollow-lifting, so L has a strong supplement P
in M . Moreover, P is a local direct summand of M since L is a maximal
submodule, therefore P ≤ N . This implies that M = L+ P ≤ L+N = L,
contradicting the maximality of L. Hence, M = N . So let M =

∑
i∈I

Ai,

where each Ai is a local direct summand of M . Then

M

Rad(M)
=

∑
i∈I

Ai

Rad(M)
=
∑
i∈I

Ai +Rad(M)

Rad(M)

But each
Ai +Rad(M)

Rad(M)
∼=

Ai
Rad(M) ∩Ai

which is simple [3, §20.4]

Hence, by [1, P roposition 9.3], ∃ K ⊆ I such that

M

Rad(M)
=
⊕
k∈K

[
Ak +Rad(M)

Rad(M)

]
Thus, M =

∑
k∈K

Ak since Rad(M)�M . This ends the proof.

Proposition 3.2.6. [15, Corollary 2.17] Let M be a coatomic module with
Rad(M) = 0. Then the following are equivalent.

(a) M is hollow-lifting.

(b) M is supplemented.

(c) M is semisimple.
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Proof. (a) =⇒ (c) Since M is a coatomic hollow-lifting module, M can
be written as a sum of local direct summands. Let H be any local direct
summand of M . Then Rad(H) ≤ Rad(M) = 0, so Rad(H) = 0, hence the
zero submodule is the only small submodule of H. But H is local, hence
hollow, therefore H contains no proper submodules other than 0. Thus, H
is simple. This means that M is a sum of simple submodules. So M is
semisimple [1, P roposition 9.3].

(c) =⇒ (b) Suppose M is semisimple module and let L ≤ M . Then
L ≤⊕ M , therefore M = L ⊕ K for some K ≤ M . This means K is a
supplement of L in M . Hence, M is supplemented.

(b) =⇒ (a) Let L ≤ M with M/L hollow. Since M is supplemented,
∃ H ≤ M such that H is a supplement of L in M . i.e., M = L + H and
L ∩ H � H, hence L ∩ H � M . But Rad(M) = 0, therefore L ∩ H = 0.
Thus, M = L ⊕H. This means that H is a strong supplement of L in M .
Hence, M is hollow-lifting.

Lemma 3.2.4. If M is an amply supplemented module with finite hollow
dimension, then M has a coclosed submodule K with M/K hollow.

Proof. Since M has a finite hollow dimension, ∃ N ≤M such that M/N is
hollow [13, § 3.1.4]. But M is amply supplemented, so by [Proposition 2.3.1]
N has a coclosure in M , say K. That means that K is coclosed in M and
N/K � M/K. Now, M/N ∼= (M/K)/(N/K), hence (M/K)/(N/K) is
hollow which implies, since N/K �M/K, that M/K is hollow.

Proposition 3.2.7. [15, Lemma 2.18] Let M be an amply supplemented
hollow-lifting module, and K ≤cc M such that M/K has a finite hollow
dimension. Then K ≤⊕ M .

Proof. The proof is by induction on h(M/K). If h(M/K) = 1, then M/K
is hollow [Lemma 2.2.1]. But M is hollow-lifting and K ≤cc M , so K ≤⊕ M
[Proposition 3.1.2]. Now, assume that h(M/K) = n and for any T ≤cc M
with h(M/T ) < n, T ≤⊕ M . Since M is amply supplemented, M/K is
amply supplemented [Proposition 2.3.2]. But M/K has a finite hollow di-
mension, so from the previous lemma ∃H/K ≤cc M/K with (M/K)/(H/K)
hollow, hence H ≤cc M [Lemma 2.3.4]. But M is hollow-lifting and M/H ∼=
(M/K)/(H/K) is hollow, so H ≤⊕ M , that is, M = H ⊕ H ′ for some
H ′ ≤M . Consequently, H ∩ (K ⊕H ′) = (H ∩K)⊕ (H ∩H ′) = K ⊕ 0 = K,
and (H/K) ⊕ ((K ⊕H ′)/K) = (H ⊕K ⊕H ′)/K = (M ⊕K)/K = M/K,
Therefore, (K ⊕ H ′)/K ≤cc M/K, hence K ⊕ H ′ ≤cc M [Lemma 2.3.4].
Thus, by induction, K ⊕H ′ ≤⊕ M . Hence, K ≤⊕ M .
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Proposition 3.2.8. [15, P roposition 2.19] Let M be an amply supplemented
module with a finite hollow dimension. Then the following are equivalent.

(a) M is lifting.

(b) M is hollow-lifting.

Proof. (a) =⇒ (b) Clear
(b) =⇒ (a) Let N ≤ M . Since M is amply supplemented, N has a

coclosure in M . i.e., ∃ K ≤ M with K ≤cc M and K ≤ce N in M .
Now, since M has a finite hollow dimension, M/K has also a finite hollow
dimension, hence K ≤⊕ M by the previous proposition. Thus, M is lifting.

Now, consider the following lemma.

Lemma 3.2.5. [1, Lemma 17.17] Suppose that a module M has a projective
cover f : P −→ M . If Q is a projective module and g : Q −→ M is an
epimorphism, then Q has the decomposition Q = P1⊕P2 such that P1

∼= P ,
P2 ≤ Ker(g), and the restriction g|P1 : P1 −→ M is a projective cover for
M .

Proof. Consider the following diagram

Q

P
f
>

h

<
M

g

∨
> 0

0
∨

Since Q is projective, the above diagram is commutative with exact row
and column. Moreover, since f is a small epimorphism and fh = g, h is
also an epimorphism. Now, h splits because P is projective [Lemma 2.7.1].
Therefore, there exists a monomorphism h̄ : P −→ Q such that hh̄ = idP
and hence Q = Im(h̄)⊕Ker(h). Let P1 = Im(h̄) and P2 = Ker(h). Then
Q = P1⊕P2, P1

∼= P since h̄ is a monomorphism and P2 ≤ Ker(g) because
fh = g. Now, M = g(Q) = g(P1) and so the sequence

P1
g|P1 > M > 0

is exact. Moreover, gh̄ = fhh̄ = f , therefore we have
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Ker(g|P1) = h̄(Ker(f))� h̄(P ) = P1.

Thus, g|P1 is a projective cover of M . This completes the proof.

Using the last lemma, we can deduce the next result.

Proposition 3.2.9. Let M be a projective module. Then M is hollow-lifting
iff for every submodule N of M with M/N hollow, M/N has a projective
cover.

Proof. =⇒ Since M is hollow-lifting, it follows that M has the decomposi-
tion M = X ⊕ Y with X ≤ N and N ∩ Y �M [Theorem 3.1.1] and hence
N ∩ Y � Y . Consider the following short exact sequence

0 > N ∩ Y ι
> Y

π
> Y/(N ∩ Y ) > 0

Now, Y is projective since M is projective and Y ≤⊕ M . Moreover,
Ker(π) = N ∩ Y � Y . Hence, π : Y −→ Y/(N ∩ Y ) is a small epi-
morphism with Y projective. That is, Y/N ∩ Y has a projective cover. But
M/N = (Y +N)/N ∼= Y/(N ∩ Y ). Thus, M/N has a projective cover.

⇐= Let N ≤ M with M/N hollow. Then, by assumption, M/N has
a projective cover, say f : P −→ M/N . Now, consider the natural epi-
morphism π : M −→ M/N . Then, by the last lemma, M has the decom-
position M = P1 ⊕ P2 such that P1

∼= P , P2 ≤ Ker(π) = N , and the
restriction π|P1 : P1 −→ M/N is projective cover for M/N . Therefore,
Ker(π|P1) = N ∩ P1 �M . Hence, M is hollow-lifting.
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3.3 Completely Hollow-lifting Modules

The idea of completely hollow-lifting modules has come out by Orhan
[15] as a result of not being able to find a hollow-lifting module with a direct
summand that is not hollow-lifting .

Definition 3.3.1. A module M is called completely hollow-lifting if every
direct summand of M is hollow-lifting.

Clearly, any completely hollow-lifting module is hollow-lifting. But the
converse is not obvious yet as we pointed before.

Let us now start with the following result.

Proposition 3.3.1. [15, P roposition 5.1] Let M be a weakly supplemented
module UCC module. If M is hollow-lifting, then it is completely hollow-
lifting.

Proof. Let N ≤⊕ M and A ≤ N with N/A hollow. Then M = N ⊕ N ′
for some N ′ ≤M . Moreover, M must amply supplemented [Theorem 2.3.1]
and hence N is also amply supplemented by [Proposition 2.3.2]. Therefore,
there is A′ ≤cc N with A′ ≤ A and A/A′ � N/A′. Now, since N ≤cc M
[Lemma 2.3.3], it follows that A′ ≤cc M from [Lemma 2.1.7, (d)]. Hence,
A′ ⊕ N ′ ≤cc M by [Theorem 2.6.3]. Now, (N/A′)/(A/A′) ∼= N/A which is
hollow. But A/A′ � N/A′, therefore N/A′ is hollow [Lemma 2.2.1, (b)] and
so M/(N ′⊕A′) is hollow. Since M is hollow-lifting, N ′⊕A′ ≤⊕ M implying
that A′ ≤⊕ N . Thus, N is hollow-lifting. This ends the proof.

The next proposition provides a different condition so that a hollow-
lifting module becomes completely hollow-lifting.

Proposition 3.3.2. [15, P roposition 5.2] If M is a hollow-lifting module
and satisfies (D3), then it is completely hollow-lifting.

Proof. Let M = N ⊕ N ′ and A ≤ N with N/A hollow. We will show
that N is hollow-lifting. Clearly, M/(N ′ ⊕ A) is hollow because M/A =
N/A ⊕ (N ′ ⊕ A)/A. But M is hollow-lifting, hence there exists K ≤⊕ M
such that K ≤ N ′ ⊕ A and (N ′ ⊕ A)/K � M/K. Therefore, M = K + N
and so [N ∩ (N ′ ⊕ A)]/(K ∩ N) � M/(K ∩ N) [Lemma 2.1.5, (h)]. But
M has (D3), therefore K ∩ N ≤⊕ M and hence K ∩ N ≤⊕ N . Since
N/(K ∩ N) ≤⊕ M/(K ∩ N), it follows that A/(K ∩ N) � N/(K ∩ N).
Thus, N is hollow-lifting.
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Now by recalling what a duo module means, we have the following two
results.

Proposition 3.3.3. [15, Lemma 5.5] If M is a hollow-lifting module and A
is a fully invariant submodule of M , then M/A is hollow-lifting.

Proof. Let U/A ≤ M/A with (M/A)/(U/A) hollow. Then we have that
(M/A)/(U/A) ∼= M/U . But M is hollow-lifting, therefore there is B ≤⊕ M
with B ≤ U and U/B � M/B. Suppose M = B ⊕ B′. It follows that
(A+U)/(A+B) = U/(A+B)�M/(A+B) [Lemma 2.1.5, (i)]. We claim
that (B + A)/A ≤⊕ M/A. By [Lemma 2.5.2] and since M = B ⊕ B′, we
have M/A = (A+ B)/A ≤⊕ (A⊕ B′)/A. So our claim is true. Thus, M/A
is hollow-lifting.

Corollary 3.3.1. If M is a duo hollow-lifting module, then it is completely
hollow-lifting.

Proof. Let N ≤⊕ M . Then M = N⊕N ′ for some N ′ ≤M . By assumption,
M/N ′ is hollow-lifting. Now, M/N ′ ∼= N . Therefore, N is hollow-lifting.
This completes the proof.

The last corollary helps us to introduce the next result.

Theorem 3.3.1. [15, Theorem 6.3] If M = M1⊕M2 is a duo module, then
M is hollow-lifting iff both M1 and M2 are hollow-lifting.

Proof. The forward direction is an immediate result of [Corollary 3.3.1].
Now, let A ≤ M with M/A hollow. Then A is a fully invariant submodule
of M , hence from [Lemma 2.5.2] we have A = (A ∩M1)⊕ (A ∩M2) and so
M/A = (A + M1)/A ⊕ (A + M2)/A. But M/A is hollow, therefore we get
that (A + M1)/A = M/A and so M2 ≤ A. Since M1 is hollow-lifting and
(A+M1)/A ∼= M1/(A∩M1), there exists B1 ≤⊕ M1 such that B1 ≤ A∩M1

and (A ∩M1)/B1 � M1/B1. Therefore, A/(B1 ⊕M2) � M/(B1 ⊕M2).
Since B1 ⊕M2 ≤⊕ M , it follows that M is hollow-lifting.

Corollary 3.3.2. If M = M1 ⊕ · · · ⊕ Mn is a duo module, then M is
hollow-lifting iff each Mi (i = 1, . . . , n) is hollow-lifting.

Proof. The proof is by induction using [Proposition 2.5.1].
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The following two lemmas can be found in [14]. They will be helpful to
end this part.

Lemma 3.3.1. [14, Lemma 3.19] Let M be a module having the exchange
property and suppose A = M ⊕ N ⊕ L = (

⊕
i∈I

Ai) ⊕ L. Then there exist

submodules Bi ≤ Ai such that A = M ⊕ (
⊕
i∈I

Bi)⊕ L.

Proof. Let π be the projection epimorphism of M onto
⊕
i∈I

Ai. Then we

get Ker(π) = L. Moreover, the restriction of π to M ⊕ N is an isomor-
phism. Now, π(M) ⊕ π(N) =

⊕
i∈I

Ai. Since M has the exchange property

and π(M) ∼= M , we have π(M) ⊕ π(N) = π(M) ⊕ (
⊕
i∈I

Bi) with Bi ≤ Ai.

Therefore, A = M ⊕N ⊕L = π−1[π(M)⊕ (
⊕
i∈I

Bi)] = M ⊕ (
⊕
i∈I

Bi)⊕L.

Lemma 3.3.2. [14, Lemma 3.20] Let M = X ⊕ Y be a module. If X and
Y have the exchange property, then so is M .

Proof. Let A = M ⊕N =
⊕
i∈I

Ai. Then A = X ⊕ Y ⊕N = Y ⊕ (
⊕
i∈I

Bi) with

Bi ≤ Ai. Then, from the previous lemma, we have A = X ⊕ Y ⊕ (
⊕
i∈I

Ci)

with Ci ≤ Bi. Hence, M has the exchange property.

The following two results end this part.

Proposition 3.3.4. [15, P roposition 5.7] Let M =
⊕
i∈I

Mi be a module such

that the decomposition
⊕
i∈I

Mi complements direct summands and End(Mi)

is local ∀ i ∈ I. If M is hollow-lifting, then it is completely hollow-lifting.

Proof. Let A be a direct summand of M . Then M = A ⊕ B for some
B ≤ M . From [14, Theorem 2.25] we get that M has the finite exchange
property. Therefore, from the previous lemma, B must has the finite ex-
change property. But M is hollow-lifting, so M/B is also hollow-lifting by
[Proposition 3.2.2]. Since M/B ∼= A, it follows that A is hollow-lifting.
Hence, M is completely hollow-lifting.

Corollary 3.3.3. Let M = M1 ⊕ · · · ⊕ Mn be a module such that each
End(Mi) is local. If M is hollow-lifting, then it is completely hollow-lifting.

Proof. Follows from [Corollary 2.1.2].
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3.4 Finitely Hollow-lifting Modules

The concept of finitely hollow-lifting modules (Shortened: f-hollow-lifting)
was introduced in [7] as a generalization of hollow-lifting modules.

Definition 3.4.1. A module M is called f-hollow-lifting if every f.g. sub-
module N of M with M/N hollow has a coessential submodule in M that is
a direct summand of M .

Example 3.3. Consider the following examples. [7, Example 2.1]

1. Any hollow-lifting module is f-hollow-lifting.

2. The Z-module Z/4Z is f-hollow lifting.

3. The Z-module Q is f-hollow-lifting but not hollow-lifting.

4. Z, as a submodule of QZ, is not f-hollow-lifting.

Remark. The last two examples above tell us that a f-hollow-lifting module
need not be hollow-lifting. Besides, a submodules of a f-hollow-lifting module
also need not be f-hollow-lifting. However, if a module M is Noetherian, then
hollow-lifting and f-hollow-lifting modules are equivalent [Theorem 2.1.7].

Let us now start representing some properties about f-hollow-lifting mod-
ules. Before that, we must point out that most results will appear as imita-
tions of those hollow-lifting modules possess.

Proposition 3.4.1. [7, P roposition 2.4] Let M be a module and N a f.g.
fully invariant submodule of M . Then M/N is f-hollow-lifting.

Proof. Similar to the proof of [Proposition 3.3.3].

Example 3.4. [7, Remark 2.5] Consider the Z-module M = Z/4Z⊕ Z/8Z
and let A = 2Z/4Z ⊕ 0 be a submodule of M . Then M is hollow-lifting
[Example 3.2] and hence it is f-hollow-lifting. But M/A is not f-hollow-
lifting since M/A = [Z/4Z⊕ Z/8Z]/[2Z/4Z⊕ 0] ∼= [(Z/4Z)/(2Z/4Z)]⊕ 0 ∼=
(Z/2Z)⊕ (Z/8Z) which is not f-hollow-lifting.

The process of characterizing f-hollow-lifting modules has turned out to
be easy because it is very similar to that of hollow-lifting modules. The next
five results support our thought.
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Lemma 3.4.1. Let M be a module and U a f.g. submodule of M . Then U
has a strong supplement in M iff U has a coessential submodule that is a
direct summand in M .

Proof. This is an immediate result of [Lemma 3.1.2].

Corollary 3.4.1. A module M is f-hollow-lifting iff any f.g. submodule U
of M with M/U hollow has a strong supplement in M .

Proposition 3.4.2. [7, Theorem 3.4] Let M be a module. Then M is f-
hollow-lifting iff every f.g. submodule U of M with M/U hollow can be
written as U = K ⊕ L with K ≤⊕ M and L�M .

Proof. Just imitate the proof of [Proposition 3.1.4].

Proposition 3.4.3. [7, Theorem 3.1] Let M be a module. Then M is f-
hollow-lifting iff for every f.g. submodule U of M with M/U hollow, there
is a decomposition M = X ⊕X ′ with X ≤ U and U ∩X ′ �M .

Proof. Follows from [Lemma 2.4.1].

Proposition 3.4.4. Let M be a f-hollow-lifting module. Then every f.g.
coclosed submodule U of M with M/U hollow is a direct summand of M .
The converse is true if M is amply supplemented.

Proof. The same proof of [Proposition 3.1.2].

Now we can introduce the next characterization.

Corollary 3.4.2 (Characterization Of F-hollow-lifting Modules). Let
M be a module. Then the following are equivalent.

(a) M is f-hollow-lifting.

(b) Every f.g. submodule N ≤M with M/N hollow can be written as
N = K ⊕ L, where K ≤⊕ M and L�M .

(c) Every f.g. submodule N ≤M with M/N hollow has a strong supplement
in M .

(d) For every f.g. submodule N ≤ M with M/N hollow, there is a decom-
position M = X ⊕X ′ with X ≤ N and N ∩X ′ �M .
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We proceed by providing more properties of f-hollow-lifting modules.

Proposition 3.4.5. Let M be an indecomposable module. The following
are equivalent.

(i) M is f-hollow-lifting.

(ii) M is hollow, or else M has no f.g submodule N such that M/N is
hollow

Proof. (ii) =⇒ (i) Trivial.
(i) =⇒ (ii) Suppose M has a f.g. submodule N with M/N is hollow.

Then there exists K ≤⊕ M with K ≤ce N in M . But M is indecomposable,
hence K = 0. Therefore, N �M and hence M is hollow.

Proposition 3.4.6. [7, P roposition 2.7] Let M be a f.g. duo f-hollow-lifting
module. Then every direct summand of M is f-hollow-lifting.

Proof. Let M = N ⊕ N ′. We will show that N is f-hollow-lifting. Now,
M/N ′ = (N + N ′)/N ∼= N . By [Proposition 3.4.1] we get that M/N ′ is
f-hollow-lifting. Hence, N is f-hollow-lifting.

Proposition 3.4.7. [7, P roposition 2.8] Let M be a f.g. f-hollow-lifting
module. If M has (D3) then every direct summand of M is f-hollow-lifting.

Proof. Let N ≤⊕ M and K a f.g. submodule of N with N/K hollow.
Suppose M = N ⊕ N ′. Then M/(N ′ ⊕ K) is hollow. Since M is f.g., so
is N ′ ⊕ K. But M is f-hollow-lifting, therefore there exists A ≤⊕ M with
(N ′ ⊕K)/A�M/A. Now M/A = (N + A)/A+ (N ′ + A)/A. Moreover, if
M = N ′ + A then M = N ′ + K, a contradiction. Therefore, since M/A is
hollow, M = N+A. This implies that [N∩(N ′⊕K)]/(N∩A)�M/(N∩A)
and so N ∩A ≤ce K in M . But M has (D3), hence N ∩A ≤⊕ M implying
N ∩A ≤⊕ N . Therefore, N ∩A ≤ce K in N [Lemma 2.1.5]. This completes
the proof.
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Proposition 3.4.8. [7, P roposition 3.6] Suppose that M is a module with
Rad(M) = 0. Then M is f-hollow-lifting iff every f.g. submodule N of M
with M/N hollow is a direct summand of M .

Proof. Suppose thatM is f-hollow-lifting andN a f.g. submodule withM/N
hollow. Then N = K ⊕L with L�M and K ≤⊕ M [Corollary 3.4.2]. But
Rad(M) = 0, hence L = 0. Thus N ≤⊕ M . The converse is clear.

Now we give the following concept which was introduced in [3].

Definition 3.4.2. A module M is called f-lifting if for any f.g. submodule
N of M , there exists K ≤⊕ M such that K ≤ce N in M .

Using the last concept, we can provide the next proposition which gives
another example of f-hollow-lifting modules.

Proposition 3.4.9. [7, P roposition 2.10] Let H1 and H2 be two hollow mod-
ules and M = H1 ⊕H2. Then M is f-hollow-lifting iff it is f-lifting.

Proof. The same proof of [Proposition 3.1.3].

The following result is just an imitation of [Proposition 3.2.9]

Proposition 3.4.10. Let M be a projective module. Then M is f-hollow-
lifting iff for every f.g. submodule N of M with M/N hollow, M/N has a
projective cover.

Proof. The same proof of [Proposition 3.2.9]



Hollow-Lifting Modules 59

3.5 X-hollow-lifting Modules

In this part, we discuss the relative properties of hollow-lifting modules.
Let M and X be modules. Harmanic, in [6], defined the following set.

B(M,X) = {A ≤M ; ∃Y ≤ X,∃f ∈ Hom(M,X/Y ), ker(f)/A�M/A}

Now, we provide the following properties.

(*) B(M,X)-lifting : For any N ∈ B(M,X), there exists K ≤⊕ M with
N/K �M/K.

(*) B(M,X)-hollow-lifting : For any N ∈ B(M,X) with M/N hollow, there
exists K ≤⊕ M with N/K �M/K.

(*) B(M,X)-(D3) : For any A ∈ B(M,X) and B ≤ M , if A and B are
direct summands of M with M = A+B, then A ∩B ≤⊕ M .

Following these properties, we get the next concepts.

(1) M is called X-lifting if it satisfies the B(M,X)-lifting property.

(2) M is called X-hollow-lifting if it satisfies the B(M,X)-hollow-lifting
property.

(3) M is called X-quasi-discrete if it satisfies both the B(M,X)-lifting and
B(M,X)-(D3) properties.

(4) M is called X-amply supplemented if for and submodules A and B of
M with A ∈ B(M,X) and M = A+ B, there exists a supplement P of
A in M with P ≤ B.

Lemma 3.5.1. [6, Lemma 2.2] Let M , N , and X be modules. Then

(a) If A ∈ B(M,X) and B ≤ce A in M , then B ∈ B(M,X).

(b) If B ≤ A ≤M , then A ∈ B(M,X) iff A/B ∈ B(M/B,X).

(c) If h : N −→M is an epimorphism and A ∈ B(M,X), then
h−1(A) ∈ B(N,X)

(d) If h : M −→ N is an epimorphism and A ∈ B(M,X) with
Ker(h) ≤ A, then h(A) ∈ B(N,X). The converse is true if Ker(h) ≤ A.
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Let us start with the properties of X-hollow-lifting modules.

Proposition 3.5.1. [20, P roposition 4.3] If M is an X-hollow-lifting mod-
ule, then every coclosed submodule N ∈ B(M,X) with M/N hollow is a
direct summand of M . The converse is true if M is X-amply supplemented
and B(M,X) is closed under supplement submodules.

Proof. The forward direction is obvious. Now, let N ∈ B(M,X) with M/N
hollow. Since M is X-amply supplemented, N has a supplement L in M .
But B(M,X) is closed under supplement submodules, hence L ∈ B(M,X).
Moreover, N contains a supplement Y of L in M and so Y ∈ B(M,X).
Therefore, since N ∩ L� L, it follows that (N ∩ L)/(Y ∩ L)� L/(Y ∩ L).
But (N ∩L)/(Y ∩L) ∼= N/Y and L/(Y ∩L) ∼= M/Y , hence N/Y �M/Y .
We claim that Y ≤⊕ M . To verify this, let f : M/Y −→ M/N be an
epimorphism with Ker(f) = N/Y and let K/Y be a proper submodule of
N/Y . Then either (K + N)/N � M/N or K + N = M . If K + N = M
then K = M , a contradiction. This implies that K/Y � M/Y and hence
M/Y is hollow. Thus, our claim is true. This completes the proof.

Proposition 3.5.2. [20, P roposition 4.6] Let M be an X-hollow-lifting mod-
ule. Then M/N is X-hollow-lifting for every fully invariant submodule N
of M .

Proof. Let A/N ∈ B(M/N,X) with (M/N)/(A/N) hollow. Then M/A
is hollow and A ∈ B(M,X) [Lemma 3.5.1]. But M is X-hollow-lifting,
therefore ∃ B ≤⊕ M with B ≤ A and A/B �M/B. Assume M = B ⊕B′.
Then A/(B + N) � M/(B + N) and M/N = (B + N)/N ⊕ (B′ + N)/N
since N is fully invariant. Thus, M/N is X-hollow-lifting.

Corollary 3.5.1. If M is a duo X-hollow-lifting module, then every direct
summand of M is X-hollow-lifting.

The next two result give us different conditions for a direct summand of
an X-hollow-lifting module to be so.

Proposition 3.5.3. [20, P roposition 4.5] If M is an X-hollow-lifting mod-
ule having B(M,X)-(D3), then every direct summand of M is X-hollow-
lifting.

Proof. Let N ≤⊕ M and K ∈ B(N,X) with N/K hollow. Suppose that
M = N ⊕N ′. Since M/K = N/K ⊕ (N ′ ⊕K)/K, M/(N ′ ⊕K) is hollow.
Let π : M −→ N be the projection epimorphism of M onto N . Then
π(N ′⊕K) = K and Ker(π) = N ′. So N ′⊕K ∈ B(M,X) [Lemma 3.5.1, (d)].
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But M is X-hollow-lifting, so there exists A ≤⊕ M such that A ≤ N ′ ⊕K
and (N ′ ⊕ K)/A � M/A. Hence, A ∈ B(M,X) and M = A + N . So
K/(A ∩N) � M/(A ∩N) [Lemma 2.1.5, (h)]. Since M has B(M,X)-(D3)
property, A ∩ N ≤⊕ M and hence N/(A ∩ N) ≤⊕ M/(A ∩ N). Therefore,
N is X-hollow-lifting.

Lemma 3.5.2. Every epimorphic image of an X-amply supplemented mod-
ule M is X-amply supplemented.

Proof. Let h : M −→ N be an epimorphism. Let A and B be submodules of
N withN = A+B and A ∈ B(N,X). ThenM = h−1(A)+h−1(B) and hence
h−1(A) ∈ B(M,X) [Lemma 3.5.1, (c)]. Since M is X-amply supplemented,
there exists H ≤ M with M = H + h−1(A) and H ∩ h−1(A) � H. Now,
since N = A + h(H), h[h−1(A) ∩ H] = A ∩ h(H) � h(H). Thus, N is
X-amply supplemented.

Proposition 3.5.4. [20, P roposition 4.4] Let M be a UCC X-amply supple-
mented module such that B(M,X) is closed under supplement submodules. If
M is X-hollow-lifting, then every direct summand of M is X-hollow-lifting.

Proof. Let M = N ⊕ N ′ and A ∈ B(N,X) with N/A hollow. By the pre-
vious lemma, N is X-amply supplemented. Hence, There exists a coclosed
submodule A′ of N with A′ ≤ A and A/A′ � N/A′ and so A′ ∈ B(N,X).
Moreover, A′⊕N ′ ≤cc M . Since N/A′ is hollow, it follows that M/(N ′⊕A′)
is also hollow. Now, consider the projection epimorphism π : M −→ N .
Then π(N ′ ⊕ A′) = A′ and Ker(π) = N ′, hence N ′ ⊕ A′ ∈ B(M,X). But
M is X-hollow-lifting, therefore N ′ ⊕ A′ ≤⊕ M and so A ≤⊕ N . Hence, N
is X-hollow-lifting.

Lemma 3.5.3. [20, P roposition 4.15] Let M be a module. If the sequence
0→ X ′ → X → X ′′ → 0 is exact, then B(M,X ′) ∪ B(M,X ′′) ⊆ B(M,X).

Proof. Since the given sequence is exact, we may assume that X ′ ≤ X and
X ′′ = X/X ′. Clearly, B(M,X ′) ⊆ B(M,X). Now, let A ∈ B(M,X ′′). Then
there existsK ≤ X ′′ and f ∈ Hom(M,X ′′/K) such thatKer(f)/A�M/A.
Since X ′′ = X/X ′, K = K ′/X ′ for some K ′ ≤ X. Therefore, we have
f : M −→ X/K ′. Hence, A ∈ B(M,X). This completes the proof.
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The following result is an immediate consequence of the last lemma.

Corollary 3.5.2. If 0→ X ′ → X → X ′′ is an exact sequence and M is an
X-hollow-lifting module, then M is both X ′-hollow-lifting and X ′′-hollow-
lifting.

The next result is similar to Proposition 3.1.3

Proposition 3.5.5. [20, P roposition 4.2] Let H1 and H2 be two hollow mod-
ules and M = H1 ⊕H2. Then M is X-hollow-lifting iff it is X-lifting.

Proof. An analogy to the proof of [Proposition 3.1.3].
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4 Direct Sum Of Hollow-lifting Modules

4.1 Direct Sum Of Two Hollow-lifting Modules

At the beginning, let us point out that a (finite) direct sum of hollow-
lifting modules need not be so.

Example 4.1. Consider the Z-modules A = Z/2Z and B = Z/8Z. Then
both A and B are hollow-lifting because they are hollow. But M = A⊕B is
not hollow-lifting [Example 3.2]

The main question in this part is : When the sum of two hollow-lifting
modules is so? The theorem below answers that.

Theorem 4.1.1. Let M1 and M2 be two hollow-lifting modules such that
M = M1 ⊕M2. If any one of the following conditions holds, then M is
hollow-lifting.

(a) M is a duo module.

(b) M1 and M2 are relatively projective.

(c) M1 is radical, M2 is coatomic, and M1 and M2 are relatively h-small
projective.

(d) M is amply supplemented and any of the following holds.

(i) M1 and M2 are relatively *cojective.

(ii) M1 is h-small M2-projective and every coclosed submodule N of M
with M/K hollow and M = K +M1 is a direct summand of M .

(iii) M1 and M2 are relatively h-small projective and every coclosed
submodule N of M with M/K hollow and M = K+M1 = K+M2

is a direct summand of M .

(iv) M2 is M1-projective and M1 is h-small M2-projective.

(v) M1 is semisimple and h-small M2-projective.

Before we prove this theorem, we must define some concepts and provide
some results.
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Following [22] we get the next definition.

Definition 4.1.1. Let M1 and M2 be two modules. Then M2 is said to
be M1-*cojective if for any supplement M ′1 of M1 in M1 ⊕M2 , we have a
decomposition M1 ⊕M2 = M ′1 ⊕M ′′1 ⊕M ′2 with M ′′1 ≤ M1 and M ′2 ≤ M2.
We say that M1 and M2 are relatively *cojective if M2 is M1-*cojective and
M1 is M2-*cojective.

Y. Wang, in [20], has introduced the following result.

Proposition 4.1.1. [20, Corollary 3.5] Let M = M1⊕M2 be an amply sup-
plemented module with M1, M2 hollow-lifting. If M1 and M2 are relatively
*cojective, then M is hollow-lifting.

The following definitions can be found in [2] and [9].

Definition 4.1.2. Let M1, M2 be modules. Then

(a) M1 is said to be small (nearly) M2-projective, if every homomorphism
f : M1 −→ M2/A; A ≤ M2 and Im(f) � M2/A (Im(f) 6= M2/A),
can be lifted to a homomorphism φ : M1 −→M2. That is, the following
diagram commutes (f = πφ).

M2
π
> M2/A > 0

M1

f
∧

φ

<..................

(b) M1 is h-small M2-projective if any homomorphism f : M1 −→ M2/A,
where A ≤ M2, M2/A hollow, and Im(f) � M2/A, can be lifted to a
homomorphism φ : M1 −→M2.

(c) M1 and M2 are called relatively small (nearly or h-small) projective if
M1 is small (nearly or h-small) M2-projective and M2 is small (nearly
or h-small) M1-projective.

Remark. clearly, nearly projectivity ⇒ small projectivity ⇒ h-small projec-
tivity. However, If M2 is hollow, then h-small M2-projectivity, small M2-
projectivity, and nearly M2-projectivity coincide. Moreover, the properties
of small (nearly or h-small) projectivity are inherited by direct summands.
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The next result is a direct consequence of [Lemma 2.7.2].

Corollary 4.1.1. Let M1 and M2 be modules and let M = M1⊕M2. Then
M1 is M2-projective iff for every submodule N of M with M = N + M2,
there exists N ′ ≤ N such that M = N ′ ⊕M2.

Proposition 4.1.2. [15, P roposition 6.2] Let M1 and M2 be two hollow-
lifting modules and M = M1 ⊕M2. If M1 and M2 are relatively projective,
then M is hollow-lifting.

Proof. Let L be a submodule of M such that M/L is hollow. Then we have
M/L = (M1 + L)/L + (M2 + L)/L. Since M/L is hollow, it follows that
either M = M1 + L or M = M2 + L. Without loss of generality, assume
M = M1 + L. Then M/L ∼= M1/(M1 ∩ L) and hence M1/(M1 ∩ L) is
hollow. Since M2 is M1-projective, there exists A ≤⊕ L with M = M1 ⊕ A
[Corollary 4.1.1]. Therefore, L = L ∩M = (L ∩M1) ⊕ A. Now, because
M1 is hollow-lifting and M1/(M1 ∩ L) is hollow, there is X ≤⊕ M1 with
X ≤M1∩L and (M1∩L)/X �M1/X. Hence, M = M1⊕A = X ′⊕X⊕A
for some X ′ ≤ M1 which implies that X ⊕ A ≤⊕ M and X ⊕ A ≤ L.
We claim that X ⊕ A ≤ce L in M . Let B ≤ M with X ⊕ A ≤ B and
B/(X ⊕A) +L/(X ⊕A) = M/(X ⊕A). Then M = L+B = (L∩M1) +B.
Since (M1 ∩ L)/X � M1/X, we have B = M . So our claim is verified.
Thus, M is hollow-lifting.

The following three lemmas characterize the types of projectivity which
were mentioned in [Definition 4.1.2].

Lemma 4.1.1. [9, Lemma 2.3] Let M1 and M2 be two modules such that
M = M1⊕M2. Then M1 is nearly M2-projective iff for every submodule N
of M with M = N +M2 and M 6= N +M1, there exists N ′ ≤ N such that
M = N ′ ⊕M2.

Proof. =⇒ Consider the homomorphism g : M1 −→ M/N such that
m1 7−→ m1 +N and the epimorphism f : M2 −→ M/N ; f(m2) = m2 +N .
Then Im(g) = (N + M1)/N 6= M/N . Therefore, there exists a homomor-
phism φ : M1 −→M2 with fφ = g. Define N ′ = {m1− φ(m1)| m1 ∈M1}.
Then N ′ ≤ N and M = N ′ ⊕M2.
⇐= Let A ≤ M2, f : M1 −→ M2/A with Im(f) 6= M2/A and let

π : M2 −→ M2/A be the natural epimorphism. Now, define the submodule
N = {m1 + m2 ∈ M1 ⊕M2 | f(m1) = −π(m2)}. Then M = N + M2.
Since Im(f) 6= M2/A, M 6= N + M1. Therefore, there exists N ′ ≤ N with
M = N ′ ⊕M2. Let h : N ′ ⊕M2 −→ M2 be the projection epimorphism.
Then f = πh|M1 .Thus, M1 is nearly M2-projective.
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Lemma 4.1.2. [11, Lemma 2.4] Let M1 and M2 be two modules such that
M = M1⊕M2. Then M1 is small M2-projective iff for every submodule N of
M with (M1+N)/N �M/N , there exists N ′ ≤ N such that M = N ′⊕M2.

Proof. =⇒ Let N ≤ M with (N +M1)/N � M/N . Then M = N +M2.
Consider the homomorphism g : M1 −→ M/N , where g(m1) = m1 + N ,
and the epimorphism f : M2 −→ M/N with f(m2) = m2 + N . Then
Im(g) = (N + M1)/N � M/N . But M1 is small M2-projective, therefore
there exists a homomorphism φ : M1 −→ M2 such that fφ = g. Define
the submodule N ′ = {m1 − φ(m1) | m1 ∈ M1}. Then N ′ ≤ N and
M = N ′ ⊕M2.
⇐= Let A ≤ M2 , f : M1 −→ M2/A with Im(f) � M2/A, and let

π : M2 −→ M2/A be the natural epimorphism. Now, define the submodule
N = {m1 + m2 ∈ M1 ⊕M2 | f(m1) = −π(m2)}. Then N ≤ M , A ≤ N
and M = N + M2. Let Im(f) = X/A with X ≤ M2 and consider the
homomorphism h : M2/A −→ M/N , where h(m2 + A) = m2 + N . Since
Im(f) � M2/A, h(X/A) = (X + N)/N � M/N . Moreover, we have
(N + M1)/N � M/N because (N + M1)/N ≤ (X + N)/N . Hence, by
assumption, there exists N ′ ≤ N with M = N ′ ⊕M2. Now, consider the
projection epimorphism α : N ′ ⊕M2 −→ M2. Then f can be lifted by the
restriction α|M1 : M1 −→M2. Thus, M1 is small M2-projective.

Lemma 4.1.3. [15, P roposition 6.6] Let M1 and M2 be two modules and
M = M1 ⊕M2. Then M1 is h-small M2-projective iff for every submodule
N of M with M/N hollow and M 6= M1 +N , there exists N ′ ≤ N such that
M = N ′ ⊕M2.

Proof. =⇒ Let N ≤ M with M/N hollow and M 6= M1 + N . Now,
M/N = (M1 +M2)/N = (M1 +N)/N + (M2 +N)/N . But M/N is hollow
and M 6= M1 + N , therefore M = M2 + N . The proof proceeds exactly as
the previous lemma.
⇐= Let A ≤ M2 , f : M1 −→ M2/A with Im(f) � M2/A and M2/A

hollow. Let π : M2 −→ M2/A be the natural epimorphism. Define the
submodule N = {m1+m2 ∈M1⊕M2 | f(m1) = −π(m2)}. Again, follow
the steps of the previous lemma’s proof and then the proof will complete

The next result helps us connect between projectivity and small (and
nearly) projectivity.

Lemma 4.1.4. Let M1 and M2 be two modules and M = M1⊕M2. Assume
that for any submodule N of M , M = N +M2 =⇒ M 6= N +M1. Then if
M1 is small M2-projective, then M1 is M2-projective.
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Proof. Let N ≤M with M = N+M2. Then (M1+N)/N �M/N . But M1

is small M2-projective, hence there exists N ′ ≤ N such that M = N ′ ⊕M2.
Thus, M1 is M2-projective [Corollary 4.1.1].

The last lemma provides the following result.

Corollary 4.1.2. Let M1 and M2 be two modules and M = M1 ⊕ M2.
Assume that for any submodule N of M , if M = N+M2, then M 6= N+M1.
Then the following are equivalent.

1. M1 is M2-projective.

2. M1 is small M2-projective.

3. M1 is nearly M2-projective.

Lemma 4.1.5. [15, P roposition 6.11] Let M1 and M2 be two modules with
M2 hollow-lifting and M = M1 ⊕M2. If M1 is h-small M2-projective, then
every coclosed submodule K of M with M/K hollow and M 6= K +M1 is a
direct summand of M .

Proof. Let K be a coclosed submodule of M such that M/K is hollow and
M 6= K + M1. Then there is K ′ ≤ K with M = K ′ ⊕M2 [Lemma 4.1.3].
Therefore, M/K ′ ∼= M2 and hence M/K ′ is hollow-lifting. Moreover, we
have K/K ′ ≤cc M/K ′ [Lemma 2.1.7, (b)]. Also, K/K ′ ≤⊕ M/K ′ because
(M/K ′)/(K/K ′) ∼= M/K which is hollow. Thus, K ≤⊕ M .

Recall that a module M is called coatomic if every proper submodule of
M is contained in a maximal submodule. Moreover, it is called radical if
Rad(M) = M . [15]

Proposition 4.1.3. [15, P roposition 6.16] Let M1 and M2 be two hollow-
lifting modules and M = M1 ⊕ M2. Assume that M1 is radical, M2 is
coatomic, and M1 and M2 are relatively h-small projective. Then M is
hollow-lifting.

Proof. Let N ≤M with M/N hollow. Then M = M1 +N or M = M2 +N .
We claim that the last two equalities cannot happen simultaneously. Now,
if M = M1 + N = M2 + N , then M/N ∼= M1/(M1 ∩ N) ∼= M2/(M2 ∩ N).
Therefore, M2/(M2 ∩ N) is both coatomic and radical. This implies that
M2/(M2 ∩ N) = 0 and N = 0, impossible. So our claim is true. Now,
since M1 and M2 are relatively h-small projective, the proof completes by
[Proposition 4.1.2] and [Lemma 4.1.3].
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Now, we back to the proof of theorem 4.1.1

Proof of theorem 4.1.1

(a) Follows from [Theorem 3.3.1].

(b) Follows from [Proposition 4.1.2].

(c) Follows from [Proposition 4.1.3].

(d) (i) Follows from [Proposition 4.1.1].

(ii) Follows from [Proposition 2.3.1] and [Lemma 4.1.5].

(iii) Follows from [Proposition 2.3.1] and [Lemma 4.1.5].

(iv) Follows from (ii).

(v) Follows from (iv).
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4.2 Direct Sum Of Hollow Modules

In this section, we will provide some conditions so that a direct sum of
hollow modules would be hollow-lifting. Just to be clear, we will use directly
some former results, especially from [14].

First of all, let us begin with the following definition which was introduced
in [14].

Definition 4.2.1. M1 is called almost M2-projective if for every epimor-
phism f : M2 −→ K and every homomorphism g : M1 −→ K, either there
exists h : M1 −→M2 with fh = g or there exists a nonzero direct summand
N of M2 and h̄ : N −→M1 with gh̄ = f |N .

The next two lemmas will help us provide some results

Lemma 4.2.1. Let M1 be a hollow module and M2 be an indecomposable
module. Assume that there is no epimorphism from M2 to M1.Then M1 is
almost M2-projective if and only if M1 is M2-projective.

Proof. Suppose that M1 is almost M2-projective. Let A be a submodule of
M2 with f : M1 −→ M2/A any homomorphism and consider the natural
epimorphism π : M2 −→ M2/A. If there exists a nonzero N ≤⊕ M2 and a
homomorphism h : N −→ M1 with fh = π|N , then N = M2 because M2 is
indecomposable. Consequently, π|N = π and hence fh is an epimorphism.
But M1 is hollow, so h : M1 −→ M2 is epimorphism, a contradiction.
Therefore, there exists a homomorphism g : M1 −→ M2 with πg = f .
Hence, M1 is M2-projective. The converse is always true.

Lemma 4.2.2. Let M = M1 ⊕M2 be a module. Assume that for every
proper submodule N ≤M , if M = N +M2 then M 6= N +M1. Then there
is no epimorphism between M1 to M2.

Proof. Suppose that there exists an epimorphism f : M1 −→ M2. Let
N = {m1 + f(m1) | m1 ∈M1}. Then N ≤M , N ∼= M1, and M = N ⊕M2.
But f is an epimorphism, so M = N +M1, a contradiction.
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The next characterization is well known and has a vital importance in
our thesis.

Theorem 4.2.1. [2, Theorem 1] Let M =
n⊕
i=1

Mi be a direct sum of hollow

modules such that each End(Mi) is local. Then the following are equivalent.

(a) M is lifting.

(b) Mi is Mj-projective for all i 6= j.

(c) For any subset J of I = {1, 2, . . . , n},
⊕
j∈J

Mj is almost
⊕

i∈I−J
Mi-projective.

Theorem 4.2.2. [15, P roposition 4.5] Let M1 and M2 be hollow modules
with local endomorphism rings. Assume that there is no epimorphism be-
tween M1 and M2. Let M = M1 ⊕M2. Then the following are equivalent.

(a) M is hollow-lifting.

(b) M is lifting.

(c) M is quasi-discrete.

(d) M1 and M2 are relatively projective.

(e) M1 and M2 are relatively almost projective.

Proof. (a)⇐⇒ (b) Follows from [Proposition 3.1.3].
(d)⇐⇒ (e) Follows from [Lemma 4.2.2].
(e)⇐⇒ (b) Follows from [Theorem 4.2.1].
(c)⇐⇒ (d) Follows from [14, Corollary 4.50].

Corollary 4.2.1. Let M1 and M2 be hollow modules with local endomor-
phism rings. Assume that Rad(M1) = M1, M2 is local, and M = M1⊕M2.
Then the previous theorem is true for M .

Proof. We only need to prove that there is no epimorphism between M1

and M2. So suppose that f : M1 −→ M2 is an epimorphism. Then
M2 = f(M1) = f(Rad(M1)) ≤ Rad(M2). Therefore, M2 = Rad(M2), a
contradiction since M2 is local. On the other hand, let g : M2 −→M1 be an
epimorphism. Since M2 is local, Rad(M2) 6= M2 and hence Rad(M2)�M2.
This implies that g(Rad(M2)) � g(M2) = M1, hence Rad(M1) 6= M1, a
contradiction. This completes the proof.
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Now, we can use [Corollary 4.1.2] to get the next result below.

Corollary 4.2.2. [15, Theorem 4.8] Let M = M1 ⊕M2 where M1 and M2

are hollow modules with local endomorphism rings. Assume that for every
proper submodule N ≤M , if M = N +Mi then M 6= N +Mj ∀ j 6= i. Then
the following are equivalent.

(a) M is hollow-lifting.

(b) M is lifting.

(c) M1 and M2 are relatively projective.

(d) M1 and M2 are relatively small projective.

(e) M1 and M2 are relatively nearly projective.

(f) M1 and M2 are relatively almost projective.

(g) M is quasi-discrete.

The next theorem provides some sufficient condition for nearly projectiv-
ity in direct sums of hollow modules.

Theorem 4.2.3. [15, Theorem 4.1] Let M =
⊕
i∈I

Mi, where all Mi are hollow

and
⊕
i∈I

Mi complements direct summands. If M is hollow-lifting, then
⊕
i 6=j

Mi

is nearly Mj-projective.

Proof. Let A ≤ Mj and f :
⊕
i 6=j

Mi −→ Mj/A be a homomorphism with

Im(f) 6= Mj/A. Consider the natural epimorphism π : Mj −→ Mj/A.
Define the submodule B = {x+ y | x ∈

⊕
i 6=j

Mi, y ∈Mj , and f(x) = −π(y)}.

Then M = B +Mj and A ≤ B and M/B = (B +Mj)/B ∼= Mj/(B ∩Mj),
hence M/B is hollow. But M is hollow-lifting, so there exists D ≤⊕ M with
B/D � M/D. Since M/B ∼= (M/D)/(B/D), M/D is also hollow. Now,⊕
i∈I

Mi complements direct summands and D ≤⊕ M implies that ∃ k ∈ I

with M = D ⊕Mk. Besides, M/D = (B +Mj)/D = B/D + (D +Mj)/D,
but B/D � M/D, therefore M = D + Mj . Now, if k 6= j, then f will be
an epimorphism, a contradiction. So k = j and hence M = D ⊕Mj . Let
α : M = D⊕Mj −→Mj be the projection map, and take the homomorphism
β = α|⊕

i 6=j
Mi

:
⊕
i 6=j

Mi −→ Mj . Then πβ = f . Thus, the direct sum
⊕
i 6=j

Mi is

nearly Mj-projective.
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The previous theorem grants the next two results.

Corollary 4.2.3. Let M =
⊕
i∈I

Mi, where all Mi are hollow and
⊕
i∈I

Mi

complements direct summands. If M is hollow-lifting, then for all i 6= j, Mi

is nearly (small) Mj-projective.

Proof. Suppose i 6= j. then
⊕
i 6=j

Mi is nearly (small)Mj-projective. But

Mi ≤⊕
⊕
i 6=j

Mi, hence Mi is nearly (small) Mj-projective.

Corollary 4.2.4. Let M1 and M2 be hollow modules with local endomor-
phism rings. If M = M1⊕M2 is hollow lifting, then M1 and M2 are relatively
nearly (small) projective.

Proof. Follows immediately from [Theorem 4.2.3] and [Theorem 2.1.6].

Proposition 4.2.1. [15, P roposition 4.9] Let M =
⊕
i∈I

Hi be a module with

all Hi hollow. If M is hollow-lifting and has (D3), then for every i ∈ I,⊕
j 6=i

Hj is Hi-projective.

Proof. By [Lemma 2.2.1, (c)], IfHi �M then
⊕
j 6=i

Hj = M and henceHi = 0

which implies that
⊕
j 6=i

Hj = M is Hi-projective. So assume Hi is not small

in M and let N be a proper submodule of M with M = N + Hi. Now,
M/N = (N + Hi)/N ∼= Hi/(N ∩ Hi), hence M/N is hollow. But M is
hollow-lifting, so ∃ K ≤⊕ M with K ≤ N and N/K � M/K. Therefore,
from M/K = (N + Hi + K)/K we get M = K + Hi. Since M has (D3),
(K ∩ Hi) ≤⊕ M , but this cannot happen unless K ∩ Hi = 0. Therefore,
M = K ⊕ Hi. This means that we have a submodule K ≤

⊕
j 6=i

Hj with

M = K ⊕Hi. Thus,
⊕
j 6=i

Hj is Hi-projective [Lemma 2.7.2].

Theorem 4.2.4. Let M =
n⊕
i=1

Hi be a finite direct sum of hollow modules

Hi and suppose M has (D3). Then the following are equivalent.

(a) M is hollow-lifting.

(b) M is lifting.

(c) M is quasi-discrete.
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(d) Hi is Hj-projective for all i 6= j.

Proof. (c)⇔ (d) Follows from [14, Corollary 4.50].
(a)⇒ (d) Follows from the previous proposition.
(c)⇒ (b)⇒ (a) Trivial.

Using the previous result, we can prove the following theorem.

Theorem 4.2.5. Let M be a hollow-lifting module satisfying (D3). If M
has a finite hollow dimension n, then M is lifting.

Proof. It suffices to show that M is a finite direct sum of hollow modules.
The proof is by induction on h(M) = n. If n = 1, we are done. So assume
n > 1 and for any hollow-lifting module N having (D3) with h(N) < n,
N is a finite direct sum of hollow modules. We claim that M is not inde-
composable. To verify our claim, assume not. Then, Since M has a finite
hollow dimension, there exists A proper submodule A ≤M with M/A hol-
low. But M is hollow-lifting, therefore there exists B ≤⊕ M such that
B ≤ A and A/B � M/B. Hence, M is hollow, a contradiction. So Our
claim is true. This implies that M has a decomposition M = M1 ⊕ M2

such that M1 and M2 are nonzero. Since h(M) = h(M1) +h(M2), it follows
that h(M1) < n and h(M2) < n. Moreover, M1 and M2 are hollow-lifting
[Proposition 3.3.2]. Hence, by the induction hypothesis, Both M1 and M2

are finite direct sums of hollow modules. Thus, M is a finite direct sum of
hollow modules and hence it is lifting.

Now, we are able to give the next characterization

Theorem 4.2.6. Let M =
⊕
i∈I

Hi be a direct sum of local modules Hi such

that Rad(M)�M and there is no epimorphism between Hi and Hj ∀ i 6= j.
Then the following are equivalent.

(a) M is quasi-discrete.

(b) M is hollow-lifting and the decomposition
⊕
i∈I

Hi complements direct

summands.

Proof. Follows from [14, Theorem 4.48].
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5 Hollow-lifting Modules Over Commutative Rings

Finally, in this section, we will have a brief overview on hollow-lifting
modules over commutative rings.

We start with the following result.

Proposition 5.0.2. Let R be a Noetherian ring and M a f.g. hollow-lifting
R-module. Then M is a finite direct sum of local modules.

Proof. Since M is f.g., it has a maximal submodule. Therefore, M has
a local direct summand N [Proposition 3.2.4]. Moreover, M is Noetherian
[Corollary 2.1.3] and hence N is f.g. [Theorem 2.1.7, (d)]. This implies that
End(N) is local, so N has the finite exchange property [21, Theorem 4.2]. It
follows that M/N is hollow-lifting [Proposition 3.2.2]. Hence, by induction,
M is a direct sum of local modules.

The following theorem characterizes hollow-lifting modules over commu-
tative Noetherian rings.

Theorem 5.0.7. Let M be a nonzero indecomposable module over a com-
mutative Noetherian ring. Then the following are equivalent.

(a) M is hollow-lifting.

(b) M is lifting.

(c) M is hollow.

Proof. (c) =⇒ (b) =⇒ (a) are clear.

(a) =⇒ (c) From [19, P roposition 2.24 & Theorem 4.30], M has an Ar-
tinian factor module. But every Artinian module has a finite hollow dimen-
sion and hence M has a hollow factor module [3, §5.4]. Thus, M is hollow
[Proposition 3.1.1].

The next lemma helps us provide a property of hollow-lifting modules
over local commutative rings.
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Lemma 5.0.3. [23, Folgerung 3.3] Let R be a commutative local ring and
M a f.g. R-module. Then the following are equivalent.

(a) M is lifting.

(b) Every submodule N of M with M/N cyclic has a strong supplement in
M .

Proposition 5.0.3. [15, P roposition 3.3] Let R be a commutative local ring
and M a f.g. R-module. If M is hollow-lifting, then it is lifting.

Proof. Let N ≤M such that M/N is cyclic. Then M/N is a local R-module
since R is local. Hence, M/N is hollow. But M is hollow-lifting, therefore
N has a strong supplement in M [Corollary 3.1.1]. Thus, M is lifting by the
previous lemma.

Remark. Actually, it has turned out by Orhan [15] that the condition: ” R
is a local ring ” is not necessary in the previous lemma. Therefore, we have
the following result.

Proposition 5.0.4. [15, Corollary 3.4] If M is a f.g. module over a com-
mutative ring R, then M is lifting iff it is hollow-lifting.

Remark. Wang and Yu, in [20], has used the previous result to prove that a
factor module of a hollow-lifting module need not be a hollow-lifting module
[20, Example 2.2 & Example 2.3].

Now, we shall provide some results about f-hollow-lifting modules over
commutative rings. Before doing that, we have to recall some concepts. If
M is a right R-module and x ∈M , then the Annihilator of x is a right ideal
of R defined by:

Ann(x) = {r ∈ R | xr = o}

Also, if R is an integral domain and M is an R-module, then M is called
torsion-free if Ann(x) = 0 for all nonzero x in M [7].

Proposition 5.0.5. [7, P roposition 3.7] Let R be an indecomposable inte-
gral domain and M a torsion-free R-module. If M is f-hollow-lifting module
and has a hollow factor module M/xR for some x ∈ M , then either M is
hollow or xR ≤⊕ M .

Proof. Since M is f-hollow-lifting module, it follows that xR = K⊕L, where
K ≤⊕ M and L�M [Proposition 3.4.2]. Now consider the following short
exact sequence
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0 > Ann(x)
ι

> R
f

> xR > 0

Where ι is the inclusion monomorphism and f(r) = xr ∀ r ∈ R. Since
M is torsion-free, we have Ann(x) = 0 and hence R ∼= xR. But R is
indecomposable, hence xR is indecomposable as an R-module. Therefore,
either xR = K or xR = L. Now, If xR = K then xR ≤⊕ M . And if xR = L
then xR�M and so M is hollow [Lemma 2.2.1].

The next two results are concerned with a commutative f-hollow-lifting
ring R. Just recall that an element e ∈ R is called an idempotent if e2 = e.

Proposition 5.0.6. [7, P roposition 3.9] Let R be a commutative f-hollow-
lifting ring. Then for each x ∈ R with R/xR hollow, there exists an idem-
potent e ∈ xR such that x(1− e) ∈ Rad(R).

Proof. Let x ∈ R with R/xR hollow. Since R is f-hollow-lifting, there
is a decomposition R = K ⊕ N such that K ≤ xR and xR ∩ N � R
[Proposition 3.4.3]. Therefore, there exists an idempotent e ∈ R such that
K = eR and N = (1− e)R. Now, we claim that xR ∩N = x(1− e)R. Let
y ∈ xR ∩ N , then y = xr1 = (1 − e)r2 for some r1, r2 in R. Therefore,
y = (1 − e)(1 − e)r2 = (1 − e)xr2 = x(1 − e)r2 ∈ x(1 − e)R. Conversely,
let z ∈ x(1 − e)R. Then z = x(1 − e)r for some r ∈ R. Clearly, z ∈ xR.
Moreover, z = xr − xer = xr(1 − e) ∈ R(1 − e) = N . Hence, our claim
is verified. But xR ∩ N � R, so x(1 − e)R ⊆ Rad(R). It follows that
x(1− e) ∈ Rad(R).

Corollary 5.0.5. Let R be a commutative f-hollow-lifting ring. Then for
each x ∈ R with R/xR hollow, there exists y ∈ R such that (xy)2 = xy and
x− xyx ∈ Rad(R).

Proof. From the previous proposition, there is an idempotent e ∈ xR such
that x(1 − e) ∈ Rad(R). Therefore, e = xy for some y ∈ R and hence
(xy)2 = e2 = e = xy. Moreover, x(1− e) = x(1− xy) = x− xyx ∈ Rad(R).

Remark. Since any hollow-lifting ring is f-hollow-lifting, the last two results
hold for a commutative hollow-lifting ring.
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The following diagram summarizes some classes of modules and the re-
lations between them.

Local Discrete

Quasi− discrete
∨

Supplemented

Hollow
∨

(f.g. or Rad(M)6=M)

∧

>
<

(Indecomposable)

>

Lifting
∨

> Amply supplemented

∧

UCC
∨

Completely hollow − lifting
∨

Weakly supplemented
∨

(UCC)

∧

Semisimple

∧

> Hollow − lifting
∨

(UCC or D3)

∧

Simple

∧

f − hollow − lifting
∨

(Noetherian)

∧
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