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Abstract

The enormous need for well engineered ontologies is growing rapidly, as the need for
ontologies is increasing in many application areas such as data integration, the semantic web,
knowledge engineering, enhanced information retrieval, etc. Due to the central role ontologies
are playing, the World Wide Web Consortium (W3C) developed the Web Ontology Language
(OWL) as a language to author ontologies. However, OWL, like many other similar ontology
languages, does not provide a practical and methodological means for ontology engineering.
In addition, one is required to understand the logical foundation underpinning OWL, which is
very difficult for domain experts. For an ontology language to be easily understood by domain
experts it must be close to the natural language they speak and the ‘logic’ they use. Also, it
should have a graphical notation to enable simple and conceptual modeling. The expressive,
methodological, and graphical capabilities of Object-Role Modeling (ORM) make it a good
candidate for use in ontology engineering. The modeling approach (ORM) selected here is one
of the richest graphical modelling approaches and the knowledge and practice of it is easy to
be acquired at a short period of time. The second version of OWL (OWL 2) is a recommended
web ontology language from W3C which contains the majority of the constructs to be used for
building any needed ontology. Many reasoners such as RacerPro 2.0, Pellet, Hermit, Fact++
and others support reasoning ontologies represented in OWL 2 which is created using the
description logic SROIQ (characterized by expressivity and decidability). In this research, we
(i) map the most commonly used ORM constructs to OWL 2 using SROIQ Description Logic
and, on the other hand, we (ii) extend the ORM notation to cover all OWL 2 constructs not
currently covered by ORM. By doing so, we combine the strengths of both ORM and the
W3C-recommended Web Ontology Language (OWL). This creates a framework that allows
one to engineer OWL ontologies graphically using ORM.
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Chapter One

Introduction

1.1 Introduction and Motivation

Ontology engineering is one of the major challenges that brought the attention of the research
community in the last decade. This is especially due to the growing need for well-engineered
ontologies [G98] for many application areas such as data integration, the semantic web,
knowledge engineering, enhanced information retrieval and others [G98, BGMEQ07, CWO05,
ZWLO08, FO3, FO4, HS10, IMY99, VHS10, ZLWO08]. Due to the central role ontologies play in
realizing the vision of the semantic web [DFV03, FH11, LHO07], the World Wide Web
Consortium (W3C) developed the Web Ontology Language (OWL) among its semantic web
technology stack, as a language to author ontologies for the semantic web. OWL is based on
Description Logic. In particular, the older version of OWL is based on SHOIN [MLLO6]
description Logic while the newest version (OWL 2 [HKP+09]) is based on SROIQ. OWL is
fully supported by many description logic reasoning tools such as Racer [HOO01], Pellet
[PPO4], Hermit*, Fact++ [ THO6].

However, like other ontology languages, using OWL to engineer ontologies is a difficult task
as it does not provide a practical and methodological means for ontology engineering. In
addition, one is required to understand the logical foundation underpinning OWL, which is
very difficult for domain experts. In fact, the limitations of OWL and other similar languages
are not that they lack expressiveness or logical foundations, but their suitability for being used

by subject matter experts. For an ontology language to be easily understood by domain
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experts, it should at least meet the following two requirements [JO5, JO7b]: (i) it must be close
to the natural language the experts speak and the ‘logic’ they use. (ii) The language should
have a graphical notation to enable simple and conceptual modeling. What we mean by
‘graphical notation’ here is not merely visualization but a graphical language that allows for
ontology construction using notations for concepts, relations, and axioms. In other words, such
language should guide domain experts to think conceptually while building, modifying, and
validating an ontology [GHO08, COLO08].

Object-Role Modeling (ORM) is a conceptual modeling approach that has been in use since
the early 1970s in database modeling, and has recently become popular in ontology
engineering [JDMO3]. Its expressive, methodological and graphical capabilities make it indeed
one of the best candidates for building ontologies. Specifically, what distinguish ORM as a
conceptual modeling approach are its simplicity, intuitiveness, stability, and verbalization
capabilities, among many others. ORM simplifies the modeling process by using natural
language, intuitive diagrams, and examples, and by examining information in terms of simple

elementary facts and expressing them in terms of objects and roles [H89, HO1].

Compared to other graphical modeling notations such as EER or UML, ORM is a stable
modeling notation and more expressive [JDMO03, GH08]. This is due to the fact that ORM
makes no use of attributes (i.e., attribute-free). All facts are represented in terms of concepts
(object-types or value-types) playing roles [HO4a]. This makes ORM not impacted by changes
that cause attributes to be remodeled as object types or relationships. Also, one of ORM’s
strongest features is its verbalization capabilities; ORM diagrams can be automatically
verbalized into pseudo natural language [HO04a] (See the example in section 3.1). The
verbalization capability of ORM simplifies the communication with subject matter experts and
allows them to better understand, validate, and build ORM diagrams. It is also important to
note that ORM’s verbalization techniques have been adopted in the business rules community

and have become an OMG standard.

For ORM to be used as an Ontology Engineering methodology, the underlying semantics of
the notation must be formally specified (using logic). Mapping of ORM using First Order

Logic was done comprehensively in [J07a]. In addition, because FOL is not decidable (does



not enable automatic reasoning), ORM was formalized in [J07a, JO7b] using less complex
logic languages that allows for automatic reasoning, namely, DLR Description logic [J07a]
and SHOIN/OWL description logic [HJ10, JO7b]. This extensive work on the formalization of
ORM has indeed played an important role in laying the foundation for using ORM in ontology

engineering.

In order to fully establish ORM as a practical and methodological means for ontology
engineering, we propose to combine the strengths of both ORM and the W3C-recommended
Web Ontology Language (OWL 2) [HKP+09]. In short, we propose to map all ORM
constructs to OWL 2 using SROIQ Description Logic and, on the other hand, extend the ORM
notation to cover all OWL2 constructs not currently covered by ORM. By doing so, we exploit
the advantages of both ORM as an intuitive graphical approach for conceptual modeling and
OWL2 as a standard W3C-recommended language [BKMP09] for authoring ontologies. This
creates a framework that allows one to author OWL 2 ontologies graphically using ORM.

In the extension part (extending ORM to completely represent OWL 2), each construct of
OWL 2 is checked if it is mapped by ORM, if it is not a proposed ORM graphical notation is
chosen to represent that of OWL 2 according to a surveyed evaluation process. The constructs
of OWL 2 that are not covered by ORM and are used to extend ORM are Equivalent Classes,
Disjoint Classes, Intersection of Class Expressions, Class Complement, Class Assertions,
Individual Equality, Individual Inequality, positive object/data property assertion and negative
object/data property assertion. In addition to these proposed notations, some of the constructs

of OWL 2 are represented as non-notational expressions.

It is important to note here that the main purpose of this thesis is to develop an expressive and
methodological graphical notation for OWL 2, which allows people to author OWL 2
ontologies graphically. This is presented in this thesis in two parts. In the first part, we
investigate all ORM constructs by mapping/formalizing them into OWL 2 and its
underpinning SROIQ Description Logic. Here ORM is used and not ORM 2 where ORM s
the same as ORM 2 except that ORM 2 has modified shapes for graphical notations to occupy
less space in modeling. Some new notations of ORM 2 are still not mature. ORM notations are

less complicated than that of ORM 2, where here we concentrate in graphical notations that are



more users friendly. In the second part, we investigate OWL 2 constructs that do not have
equivalent graphical notations in ORM and develop ORM-inspired graphical notations for
them. By doing so, we have developed an ORM-based graphical notation that expresses OWL
2 completely. Because of this, all of our work in this paper is based on the semantics of OWL
2 not on ORM’s semantics as in [JO7a, JO7b]. That is, the semantics of some ORM constructs

were altered to adapt them to the semantics of OWL 2.

1.2 Thesis Statement and Objectives

The aim of this research is to map between Object Role Modeling (ORM) and OWL 2 Web
Ontology Language to enable one to use ORM as a graphical notation in ontology engineering.
Acquiring the knowledge to build an ontology graphically using ORM can be accomplished
with minimal effort and time. However, ORM as a graphical modeling approach is not
supported by currently available reasoners. OWL 2 is the recommended language for
authoring ontologies. However, using the OWL 2 syntax is rather complicated. So an
innovative way to solve this problem is proposed by using ORM as interface for OWL2 for
authoring ontologies. We map between ORM and OWL 2 and extend ORM for complete
representation of OWL 2. The result of mapping enables one to build ontology graphically
and check the correctness of the built ontology using an appropriate reasoner that supports
OowLz2.

The objectives of the thesis are as follows:

e Mapping from ORM into SROIQ Description Logic/OWL 2.

e Extending the notations of ORM to completely represent OWL 2.

e Evaluating the correctness of mapping (ORM into OWL2), using appropriate reasoning

services such as instance checking.

e Evaluating the proposed ORM extension using a survey.

e Extending DogmaModeler (modeling tool) to hold the implementation of mapping
between ORM and OWL 2.



1.3 Contributions

The original contributions of this thesis can be summarized as follows:

1. Contributes to the mapping of ORM into SROIQ/OWL 2. This mapping was done for
each of the twenty nine constructs that forms the ORM notations. This mapping was
carried out jointly and in a close cooperation with Anton Deik and Dr Mustafa Jarrar,

and based on previous research published in [J07a] and [JO7b].

2. Contributes to extending the ORM notation by introducing new graphical notations to
cover OWL 2 constructs not currently covered by ORM. The extended ORM notation
covers all constructs of OWL 2. This extension was carried out jointly and in a close

cooperation with Anton Deik and Dr Mustafa Jarrar.

3. Evaluating the correctness of our mapping, where each mapped ORM construct was
loaded as a complete OWL/XML file into RacerPro 2.0. Different reasoning methods
like consistency, coherency and special instance checking were used to prove the

correctness of our mapping.

4. Evaluating the new ORM extension by means of a survey conducted with more than 31

ORM experts and practitioners.

5. Implementation: We extended DogmaModeler (an ORM-based modeling tool [JMO08])
to implement (a) our mapping (from ORM into OWL 2) and (b) the new ORM
extension. Also, we have integrated the Hermit reasoning tool into DogmaModeler so
that the correctness of the built ontology can be checked by methods of Logical

reasoning.

The initial and primitive results of this research appeared first in [HJ10], and then it was
revised, extended, evaluated, and implemented in an article submitted to Data and Knowledge

Engineering Journal, Elsevier on December 2011.



1.4 Overview of the thesis

The thesis is divided into six chapters. The current chapter provides an introduction, aim and
objectives for this research. Chapter two introduces and defines ORM, Description Logics, and
OWL 2 in addition to providing a thorough review of related work. Chapter three discusses the
mapping from ORM into OWL 2; it also describes definitions, requirements, and works of
mapping. Chapter four includes extending ORM for complete representation of OWL 2.
Chapter five evaluates the OWL 2 mappings of ORM in addition to our ORM extension.
Chapter six describes the implementation of our work in DogmaModeler tool. Chapter seven

concludes the work.



Chapter Two

Background and Related Work

2.1 Introduction

In this chapter, we shed the light on background and related work. For background we
highlight three fundamental related topics, namely, Object-Role Modeling (ORM),
Description Logics, and Ontology Web Language (OWL 2) that are briefly discussed in the
following related subsections with an example on the Object-Role Modeling (ORM) approach.
For related work we briefly discus two themes and compare them to our thesis work, one of
these themes consider the problem of ontology modeling a problem of visualization and the

other develop formal semantics (i.e., formalize) such as UML and EER.

2.2 Object Role Modeling (ORM)

Object Role Modeling (ORM) which was introduced in the mid of 1970s, is used to model,
transform and query about business information in a fact-oriented context. All facts and rules
can be verbalized in natural languages that are understood of interested users including
unknowledgeable technical users. ORM is an attribute-free modeling language, unlike Entity
Relationship (ER) modeling and Unified Modeling Language (UML) class diagramming,
where ORM treats all elementary facts as relationships between objects making implemented
structures of ORM irrelevant to business semantics. The fact that ORM is an attribute-free
modeling tool maintains the semantic of modeled domain, enhances semantic stability and

makes it easy for ORM structures (of grouping facts) to be verbalized.

In order to build a needed ontology we can graphically use ORM notations to implement the

conceptual modeling techniques in a reasonable way [GH08, JDMO03, CHO5].



ORM is a conceptual modeling method that allows the semantics of a universe of discourse to
be modeled at a highly conceptual level and in a graphical manner. As mentioned earlier,
ORM has been used commercially for more than thirty years as a database modeling
methodology and has been recently becoming popular not only for ontology engineering but
also as a graphical notation in other areas such as modeling of business rules, XML schemes,
data warehouses, requirements engineering, web forms, etc. ORM has an expressive and
stable graphical notation. It supports not only n-ary relations and reification, but a fairly
comprehensive treatment of many ‘practical’ and ‘standard’ business rules and constraint
types such as mandatory, uniqueness, identity, exclusion, implications, frequency occurrences,
subsetting, subtyping, equality, and many others [H89, HO1, HO4b, JO7a, JO7b].

ORM makes it easy to simplify the presented conceptual model using both natural language
(via its verbalization capabilities) and graphical notations to present facts in their simple or
elementary forms. In addition, ORM diagrams can be populated by examples to measure the
correctness of the design [HO1, HO4b]. Practical use cases have shown that skills and know-
how of using ORM can be acquired easily and in a short period of time even by non-IT
specialists [JO7a, JDMO3]. Moreover, several modeling tools support ORM notation such as:

Microsoft Visio ™, DogmaModeler, and Norma.

The example in Fig. 2.1.a below depicts a sample ORM diagram including several rules and
constraints that ORM is capable of expressing graphically. Note the three basic constructs of
ORM; object types, value types, and roles (forming relations).Object types are represented as
solid-line ellipses, value types are presented as dashed-line ellipses and relations as rectangles,
where one or more ORM roles for each ORM relation. For example, the relation

(WorksFor/Employs) in Fig. 2.1.a is a binary relation (i.e., composed of two roles).

The preceding knowledge that underpinning ORM is NIAM (Natural Language Information
Analysis Method) [H89]. NIAM was introduced in the early 70’s. An important reason under

designing NIAM is to use natural language to declare the “semantics™ of a business

application’s data. Fig. 2.1b shows the verbalization of the ORM rules presented graphically in



Fig. 2.1a. One of the most powerful features of ORM is its verbalization capability in which
ORM diagrams can be automatically verbalized into pseudo natural sentences. In other words,
all rules in a given ORM diagram can be translated into fixed syntax sentences [HO1, JDMO03,
HO04a, HC06 JKDO06]. For example, the Mandatory constraint () between ‘Person’ and ‘Has
Gender’ is verbalized by rule-1 in Fig.1b as “Each Person Has at least one Gender”. Similarly,
the role uniqueness constraint («>) is verbalized by rule 2, Subtype (—) by rule 3, (T) by rule
6, (©) and (®) between subtypes by rules 4 and 5, and between roles by rules 7 and 8. The
value constraint ({*M’,’F’} on Gender) is verbalized by rule 9. These verbalizations are
generated automatically by the DogmaModeler tool through using verbalization templates
parameterized over a given ORM diagram. DogmaModeler enables verbalization in 11
different human languages [JKDO6]. The main purpose of this verbalization is to simplify the
communication with non-IT specialists and to allow them to better validate and build ontology

models.

. Each Person Has at least one Gender. (Mandatory)

. Each Person Has at most one Gender. (Role uniqueness)

. Each Male is a Person. Each Female is a Person. (Subtype)

. Each Person cannot be a Male and a Female at the same time.
(Exclusive)

5. Each Person must be, at least, Male or Female. (Totality)

6. If a Person is AffiliatedWith a Company then this Person

WorksFor that Company. (Subset)
7. Same Car cannot be OwnedBy by Person and OwnedBYy a

WorksFor/Employs

AW N P

IOwnqid‘é;y 5 -
. Company at the same time. (Exclusion)
-- o 8. Each Car should be OwnedBY by Person or OwnedBy a

Company, or both. (Disjunctive Mandatory)
9. A Gender can only be one of {M,F}. (Value Constraint)

(a) (b)

Figure 2.1: Sample ORM Diagram along with the verbalization of its rules.
2.3 Description Logics (ALC, SHOIN and SROIQ)

Description logics [BCM+07] are a family of knowledge representation formalisms.
Description logics are decidable fragments of first-order logic, associated with a set of
automatic reasoning procedures [HST99]. The basic primitives of description logic are the
notion of a concept and the notion of a relationship. Complex concept and relationship
expressions can be built from atomic concepts and relationships. For example, one can define
HumanMother as HumanMother & Female [1 3 HasChild. Person. All DLs implies the

open world assumption [NB02].
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ALC [HSTO06] is simple description logic stands for Attributive Concept Language with
Complements. Each feature of description logic has a letter assigned to it for example ALC is
AL augmented with complements. ALC syntax is as follows, where Nc Ng and Ng are atomic
concepts. The followings are concepts: T, L and every A € Nc¢ (all atomic concepts are
concepts). If C and D are concepts and R is a role (binary relation) then CrD, C U D, = C,
VR.C, 3R.C are concepts.

We can use the constructs (primitives of the notations of concept and relationship) of ALC to
represent the complex concept and relationship expressions. As an example the expression
Personr Doctor (Person and Doctor are atomic concepts) means persons that are also doctors.

The expression Doctor M VhasPatient.Person (hasPatient is an atomic role) means that doctors
have only persons as patients.

For the semantic of ALC’s we need the notation of interpretation I = (A', .'), where A'is the
non empty set which is the domain of I and .' which is the interpretation function used to map
every individual to an element a' € A', every atomic concept A to a subset of A' and every role

name to a binary relation(subset of A' x A"). The following definitions represent the semantic
of ALC constructs:

T = Al
1= 09
(cmb)!' = C'ND' (intersection)
(Cu-b)! = C'UD' (union)
(-C)' = A\C' (complement)
(3R.C)' = {xe A'| ye A': (x,y) €R! and y € C'} (exists restriction)
(VR.C)' = {xeA'| (xy) €ER' implies y € C'} (universal restriction)

Figure 2.2: Semantic of ALC

SHOIN which is the base of Web Ontology Language (OWL) is expressive and decidable
description logic. SHOIN equals ( ALC extended with transitive roles(R+)) + role hierarchy

(H)(R = S) + nominals (O) (C = {a,b,c}) + inverse (I)( S = R~ ) + number restrictions (N).

SROIQ Description Logic [HSTO06] compromises both features of expressivity and
decidability. SROIQ is an extension of SHOIN which is the underlying description logic of
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OWL [BHH+04]. However, the rise of the Semantic Web increased the need for a more
featured and expressive Description Logic to author ontologies. As a result of this increasing
demand, SROIQ was introduced with many new features (especially regarding expressivity)
which led to adopting SROIQ as the underpinning logic for OWL 2.

A Description Logic knowledge base is composed of two components: a TBox and an ABoxX.
The TBox contains intensional knowledge in the form of a terminology. TBox is built through
declarations that describe general properties of concepts. The ABox contains extensional
knowledge which is also called assertional knowledge. It is knowledge that is specific to the

individuals of the domain of discourse (knowledge specific to the instances) [BCM+07].

SROIQ syntax can be defined as follows. If C and D are concepts and R is a binary relation
(also called role), then (C 1 D), (C U D), (=C), (V R.C), and (3R. C) are also concepts. If R is
simple (i.e., neither transitive nor has any transitive sub-relations), then (< nR) and (= nR)
are also concepts, where n is a non-negative integer. For C and D (possibly complex)
concepts, C = D is called general concept inclusion. SROIQ also allows hierarchy of roles
(R E S§), transitivity of roles (R,), and inverse of roles (S = R™). In addition, SROIQ allows
everything SHOIN allows, in addition to the following [HSTO6]:

i) Disjoint roles: most description logics do not support disjoint roles and this makes
them unbalanced. SROIQ is said to be balanced because it allows the expressivity of
disjoint between roles. For example, the roles brother and father should be declared

as being disjoint.

i) Reflexive, reflexive and antisymmetric roles: these constraints are useful when using
ABox to represent individuals. E.g., the role loves should be declared as being
reflexive (one can love himself), and the role hasSibling should be declared as being
irreflexive (one cannot be the sibling of himself).

iii) Negated role assertion: Although most Abox formalisms allow for only positive role

assertions, SROIQ allows for negated roles assertions as well. For example, such
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statements can be found in a SROIQ Abox: (Rami, Tony): =knows, which means

that Rami do not know Tony.

iv) Role inclusion axioms: these roles are of the form R S ER and S o R = R. For
example, given the following two axioms (1) owns o hasPart E owns, and (2) the
fact that each car contains an engine Car = JhasPart. Engine. This implies that
an owner of a car is also an owner of an engine, i.e., the following subsumption is

implied: 3owns.Car E Jowns. Engine.

v) Universal role U.

vi) Local reflexivity of the form FR. Self. For example, the following expresses the fact

that somebody loves himself/herself: Flikes. Self.

vii)SROIQ also provides what is referred to as Rbox which contains all statements

concerning roles.

SROIQ (D) consists of ALC (description logic) + role chains = SR, SR + O (nominals(closed
classes)), SRO+l(inverse roles), SROI+Q(qualified cardinality restrictions) and
SROIQ+D(data types). Since SROIQ is an extension of ALC (introduced above) we will
introduce the constructs of SROIQ not present in ALC through the following table that shows

syntax and semantic of SROIQ description logic.

Table 2.1 : Syntax and Semantic of SROIQ other than ALC

Name Syntax | Semantic Name Syntax | Semantic
Role chains RoSc | VX Vy(@z((R(x.2) AS(zy)) | S | Nominals {a} {a}
S R — R(xy))) R
R [Transitivity R (RN* (J; Individual equality |[a=b [a'=b'
role hierarchies | g =g |[C'cD' Individual inequality | a#b | a #b'
SRO + |
inverse roles | R | {(xy) [{(y.x) ER'}
SROl + O
Qualified >nR.C | {xe A'|#{ye A'|(xy) €R' andy € C'}>n}
Number <nR.C | {xe A"|#{ye AT|(x,y) €R" and y € C'}<n}

Restriction =nR.C | {xe A"|#{ye A" |(x,y) €R' and y € C"}=n}
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2.4 OWL 2 Web Ontology Language

The W3C-recommended Web Ontology Language (OWL) [BHH+04] is a knowledge
representation language [MMHO04] used to publish and share ontologies on the Web, where
this ontology language includes formally defined meanings. While the underpinning
description logic of OWL is SHOIN, OWL 22 (the new version of OWL) is based on SROIQ
description logic. Roughly speaking, one can often view OWL 2 as SROIQ written in other
syntaxes (XML, RDF/XML, etc). Among OWL 2 basic constructs are: Class (corresponds to
a ‘concept’ in SROIQ or called ‘object-type’ in ORM), Property (corresponds to a SROIQ
‘relationship’ or an ORM ‘role’), and Object (corresponds to a SROIQ individual/assertion).

It is worth also noting here that OWL 2 is supported by several semantic reasoners such as

RacerPro 2, Hermit, Pellet and Fact++°.

As of October 27, 2009, OWL 2 has been set as a W3C recommended as a standard for
ontology representation on the Web. Classes, properties, individuals, and data values are all
supported by OWL 2 and stored semantically on the Web. OWL 2 ontologies are primary
exchanged as RDF documents, where these ontologies can be used with information written in
RDF. In addition to XML/RDF syntax which is used to serialize and exchange OWL 2
ontologies, functional syntax is used to determine the structure of OWL 2 and OWL/XML
syntax is used as an XML serialization for better interoperability. OWL 2 elements are
identified by Internationalized Resource Identifiers (IRIs). It extends OWL 1 which uses
Uniform Resource Identifiers (URIs) [MGH+09, GWQ09]. Every IRl must be absolute to be

published internationally. OWL 2 increases expressive language power for properties.

The following are some of the new features that distinguish OWL 2 from its OWL predecessor
[GWO09]:

i) Syntactic sugar

2 Wwww.w3.0rg/2009/pdf/REC-owl2-overview-20091027.pdf

® http://owl.man.ac.uk/factplusplus/
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e DisjointUnion states that if we have the classes A, B and C then class A is the
union of classes B or C and at the same time class B and C are disjoint to each

other, where no individual can be an instance of class B and C at the same time.

e DisjointClasses states that if we have a set of classes’ constraint by the construct
DisjointClasses then these classes are disjoint to each another, where an individual

of one class of the set cannot be an instance of the other classes of the set.

e NegativeObjectPropertyAssertion (also we have NegativeDataPropertyAssertion)

states that a given individuals are not related to the intended object property.
i) New constructs for properties

o Self restriction: ObjectHasSelf states that if we have an object property such as
likes related to a class person then the individuals of this class are related to

themselves by the object property likes.

e Property Qualified Cardinality Restrictions: ObjectMinCardinality,
ObjectMaxCardinality, = and  ObjectExactCardinality; and  respectively
DataMinCardinality, DataMaxCardinality, and DataExactCardinality allow
asserting minimum, maximum or exact qualified cardinality restrictions for object

and data properties.

o Reflexive, Irreflexive, and Asymmetric Object Properties [MGH+09].

e Disjoint Properties states that if two or more object properties restricted by
DisjointObjectProperties construct then these object properties are exclusive to
each others. Also the same for data properties restricted by DisjointDataProperties

construct.

e Property Chain Inclusion states that if we have two or more object properties
chained by the construct ObjectPropertyChain in a SubObjectPropertyOf axiom

then as a result we have a property that is the composition of several properties.
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o Keys: HasKey allows defining keys for a given class.

iii) Simple metamodeling capabilities

e Punning: OWL 2 allows using the same term for both a class and an individual at

the same time.

iv) Extended Annotations

e Annotations: the construct AnnotationAssertion is used to assert annotations for

classes, properties and individuals.

e Axioms about annotation properties: (AnnotationPropertyDomain) and ranges
(AnnotationPropertyRange) and participate in an annotation property hierarchy
(SubAnnotationPropertyOf). These special axioms have no semantic meaning in
the OWL 2 Direct Semantics, but carry the standard RDF semantics in the RDF-
based Semantics (via their mapping to RDF vocabulary).

v) Declarations: The prior announcement for an entity such as a class is important for
error catching where a declaration in OWL 2 for an entity such as class, datatype,
object property, data property, annotation property, or individual indicates that an

entity is part of the terminology of ontology.

vi) Top and Bottom Properties: In addition to top and bottom classes (owl:Thing and
owl:Nothing), OWL 2 provides top and bottom object
properties(owl:topObjectProperty, owl:bottomObjectProperty) and data properties
(owl:topDataProperty, and owl:bottomDataProperty).

vii)IRIs: OWL 2 uses Internationalized Resource Identifiers (IRIs) for identifying the
elements of ontologies and ontologies themselves in order to come over the language
limitations of URIs [MPPQ09, SWMO04] that were used in OWL 1.
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2.5 Related Work

As discussed previously, our work revolves around establishing ORM as a practical and
methodological means for ontology engineering by combining its strengths with those of the
Web Ontology Language (OWL). There are several approaches and tools similar to our work,
which aim to use graphical notations such as UML and EER for ontology modeling. Also, in
particular, some of them aim to model OWL ontologies graphically. Some of these
approaches and tools consider the problem of ontology modeling a problem of visualization,
thus ignoring the underpinning semantics. However, some efforts exist to develop formal
semantics (i.e., formalize) UML and EER. In this section, we discuss these efforts and

compare them to our approach.

Many efforts exist to use UML or UML-based notations for graphical representation of
ontologies. Cranefield et al, in [CHD+02], proposed using UML as an ontology visualization
and editing tool. Although their goal is to visualize and edit ontologies, they did not consider
the underpinning semantics. Their work does not also provide any type of mapping of the
graphical notation (i.e., UML) into OWL. Brockmans et al, in [BVELO04], introduced a UML-
based notation for the visualization of OWL ontologies by developing a UML profile. In such
approach, OWL is visualized based on the UML profiles of the Ontology Definition
Metamodel (ODM?*). ODM defines a set of UML metamodels and profiles for the
development of RDF and OWL. These UML profiles adapt UML notations to provide a
suitable visual representation of RDF and OWL ontologies. This representation of ontologies
using ODM enables one to only visualize the ontology but does not capture the semantics of it.
This is due to the challenges of developing well-formed and usable UML models with
equivalent semantics in OWL. However, in [KBB+09], Kendall et al presented some potential
extensions to the UML profiles of ODM to address some of the requirements of OWL 2. It is
important to note also that UML itself is a very basic notation; as will be demonstrated later,
ORM is much more expressive as it allows 20 types of rules to be expressed graphically, while

UML support only cardinality rules.

* http://www.omg.org/spec/ODM/1.0/
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Many ontology editing tools are available such as Protégé®, TopBraid®, NeOn’ and
GrOWL[KWFOQ7]. These tools are used to build and edit ontologies by enabling the creation of
classes, object properties and various constraints. After building the needed ontology, it can be
visualized graphically. However, such tools do not capture the ontology semantics. In our
methodology, we build the ontology graphically using ORM notation which is then mapped

into the equivalent OWL 2 constructs capturing the semantics of the ontology.

Protégé is an open source ontology editor for OWL and recently OWL 2. Protégé is built using
Java and it is a framework for other project plug-ins. By using protége you can build the
needed ontology by using all the constructs of OWL 2 based in SROIQ (D) description logic.
One can create classes, object properties, data object properties, class expressions, individuals
and the relations between these concepts using the various constraints of OWL 2. But here we
still talk about building the intended ontology in a tree-based hierarchy methodology
(composed of classes, properties and individuals) and not in a graphical context representation,
besides not gaining the big picture of modeling. Protégé provides two main techniques of
modeling ontologies, one is Protégé-OWL? editor, and the other is Protégé-Frames editor,
based on Open Knowledge Base Connectivity protocol (OKBC). The built ontology can be
visualized in the shape of tree indicating the classes and the relations between them, but here
we are talking about just displaying the built ontology in a graph representation and not
capturing the semantic of built ontology. OntoViz which is a visualization plug-in included in
Protégé and uses the library of GraphViz® to create an ontology in 2D graph. The built
ontology is displayed in 2D graph showing the classes, their properties, role relations and
instances. Indeed our work is in opposite context where we can build the needed ontology
graphically using the extended ORM. The extended ORM includes all the needed OWL 2
constructs for building the intended ontology. Once the ontology is built graphically in an easy
way with capturing the semantic of ontology, it is automatically formalized into OWL 2 using
the DogmaModeler tool. This highlights our wok in enabling the building of ontology
graphically and in an easy way in comparison with the wide used Protégé modeling tool.

® http://protege.stanford.edu/

® http://www.topquadrant.com/products/TB_Composer.html

" http://neon-toolkit.org

® http://protege.stanford.edu/publications/ontology_development/ ontology101.pdf
® http://graphViz.org


http://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html
http://neon-toolkit.org/
http://protege.stanford.edu/publications/ontology_development/
http://graphviz.org/
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TopBraid is a commercial modeling tool for developing ontologism in semantic web context.
TopBraid Composer is an RDF (Resource Description Framework) and OWL editor, where
one can create the RDF/OWL files and query over them using SPARQL. By using the
TopBraid editor you can create and edit the needed classes, object properties and various
constraints. After creating ontology you can display the graph representation of it, similar to
that of Protégé. As we said before our work is opposite where you can create an ontology
graphically using the extended ORM and consequently you will have its semantic equivalent
in OWL 2.

NeOn is an open source tool that provides an ontology engineering environment based on
Eclipse Integrated Development Environment (IDE). It includes many plug-ins that support
many ontology engineering activities and provides a means of visualizing the ontology as it is

being built.

GrOWL [KWEFQ7] is also a tool for visualizing and editing OWL ontologies with advanced
browsing and navigation tools. Our approach enables one to graphically build the ontology
using ORM notation with semantic capturing and this Ontology is automatically mapped into
OWL and validated.

Mapping EER is done in [BCM+07] and UML is done in [BCGO5]. Formalizing form EER
and UML into DLR;q4s description logic is done in these two works [BCM+07, BCGO05]. Jarrar
[JO7a] implemented mapping from ORM to SHOIN/OWL description logic. SHOIN is chosen
because of its ability of expressiveness and decidability. Each rule of ORM that is supported
by SHOIN is mapped into SHOIN. Twenty two cases of ORM constructs are mapped, where
the purpose is to use ORM as a technique and expressive notation for ontology engineering.
Although mapping ORM into SHOIN is achieved in [JO7b], but mapping ORM into OWL is
not achieved. In our research, mapping between ORM and OWL 2 is achieved and is

implemented automatically by DogmaModeler tool.
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It is also worth noting that the ICOM tool was one of the first tools to enable automated
reasoning with conceptual modeling. ICOM [FNOO] is a conceptual modeling tool, which is
used for knowledge representation by allowing one to design multiple extended ontologies.
ICOM was first released in 2000 [FNOO], but recently it has version 3 release [FFT10]. ICOM
has reasoning capabilities. ICOM supports ontology modeling using a graphical notation that
is a mix of UML and EER notations. ICOM™ enables one to build ontologies using multiple
ER or UML class diagrams with various inter and intra constraints. The class diagrams and
constraints are formally translated into class-base logic. It can express EER and UML class
diagrams enriched with various constrains, into classes and relations involved with
expressions, representing various ontologies. ICOM s integrated with a description logic

reasoning server that acts as a background inference engine to enable automatic reasoning.

ICOM does not express ORM, where our work express extended ORM for full representation
of OWL 2, where ORM is friendlier for use than ER and UML and at the same time more rich
with needed constrains for knowledge representation. ICOM represents ER or UML class
diagrams into DIG for the purpose of reasoning, but not into OWL 2, where in our work we
map extended ORM into OWL 2. The implementation of mapping is done using the extended
DogmaModeler (extended to hold mapping between ORM and OWL 2). Once we build the
needed ontology graphically using ORM under DogmaModeler tool. An OWL 2 file is
automatically generated. We can reason about the generated OWL 2 file by using Hermit
reasoned(integrated with DogmaModeler) that supports OWL 2.

Barzdins et al. [BBC+10] proposed a hard extension of UML class diagrams to visualize OWL
2 in a dense way, but here we still talking about visualization method that not exactly capture
the semantics of OWL 2. Here textual representation is still used to represent OWL 2
constructs in a graphical way like disjoint, equivalent and others, so here the representation of
OWL 2 constructs is not graphically pure while our work semantically represents OWL 2
constructs with pure graphic notations. The proposed extension is implemented to visualize
OWL 2 using a UML graphical editor called OWLGrEd. As we said, in our work we are
talking about extending ORM to graphically represent the constructs of OWL 2 that are not

10 www.inf.unibz.it/~franconi/icom/files/icommanual.pdf
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represented by ORM, in order to be able to use ORM as an interface of OWL 2 in order to be
able to build an ontology graphically in an easy way . This extension is implemented using the
extended tool (DogmaModeler). Some of the extension that is done in [BBC+10] to represent
uncovered OWL 2 constructs by UML is already included in ORM like equivalent and disjoint
properties, in addition to the Boolean relations between class and class expression or even
between class expressions themselves. OWL 2 is indicated by its expressive power of class
expressions and at the same time ORM graphically do represent the relation between class and
class expression, as also between class expressions themselves. Where ORM as a basis of
concepts and relations between them in addition to the used constraints graphically represents
the class expressions like denoting that a class A is a subclass of an expression of ‘some values
from’ or “all values from’. All these features indicate that ORM is a robust graphical tool as a
fact oriented conceptual modeling tool and contains a rich set of constraints not covered in
UML and ER.

Many other similar tools and frameworks which enable a text tree-based methodology for
knowledge representation and not enabling graphical building of ontology are available such
as, IBM Integrated Ontology Development Toolkit [IIODT*], SWOOP** DOME, and
DERI*® Ontology Management Environment among many others. Although all of these tools
allow a graphical representation of the ontology, this representation is merely a visualization
that ignores the underpinning semantics, in contrast to our proposed ORM ontology

engineering paradigm.

The investigation of the ORM notation is done by formalizing it using both DLR;4 description
logic [JO7a, KO7] and SHOIN description logic [HJ10, JO7b]. The main purpose of this
formalization/mapping was to enable automated reasoning on the formal properties of ORM
diagrams, such as detecting constraint contradictions and implications. Thus, in this study of
ORM, the native semantics of ORM were used which were expressed in DLR and SHOIN
Description Logics. Anoher point we are concerning about SROIQ which is the logic

underpinning OWL 2 that is decidable and supported by many reasoners and not DLR;g as in

' http://www.alphaworks.ibm.com/tech/
2 http://www.mindswap.org/2004/SWOOP/
3 http://dome.sourceforge.net/


http://www.alphaworks.ibm.com/tech/
http://www.mindswap.org/2004/SWOOP/

21

[KO7]. In [BMSTQ7] an attempt of mapping OWL into ORM/RIDL was done but it was not
complete where not all ORM constructs were covered in this research as Ring constraints and
role disjoitness; In addition the author did not rely in specified description logic and relied in
OWL and not OWL 2 that includes new features where OWL 2 was not available at that time
of research. However, in the mapping presented in this thesis, we have altered the native
semantics of ORM to adapt it to that of OWL 2 (i.e., we have used the semantics of OWL 2
not of ORM). That is, we have expressed the semantics of OWL 2 graphically using the ORM
notation, without employing the semantics of ORM. For example, ORM subtypes are proper
subtypes. We say that B is a proper subtype of A if and only if the population of B is always a
subset of the population of A, and A # B. This implies that the subtype relationship is acyclic;
hence, loops are illegal in ORM. However, such loops according to the semantics of OWL 2
are allowed which means that the classes involved in the loop are equivalent. Furthermore,
object types (i.e., classes) in ORM are mutually exclusive. That is, according to ORM
semantics, it is not allowed for an object-type to be a subtype of two different object-types,
unless these two supertypes have a common supertype. However, such a multiple inheritance

is allowed according to the semantics of OWL 2.

Another important difference between ORM and OWL 2 semantics is that ORM adopts a
close world assumption while OWL 2 adopts an open world assumption [NB02]. A closed
world assumption states that any statement that is not known to be true or false is false. On the
contrary, an open world assumption states that, unless the truth-value of a statement is
explicitly determined, it is unknown. For instance, originally, ORM assumes that any two
object types are disjoint, without the need to state it explicitly (closed world assumption).
Here, we follow OWL 2’s open world assumption where any two object types are not known
whether they are disjoint or not, except if stated explicitly. The same applies, for example, to
instances (assertions), where OWL 2 semantics states that any two instances are not
considered different (unequal) or equal unless it is explicitly stated (open world assumption).
In short, in this thesis, we don’t present or follow ORM semantics, but rather use the ORM

graphical notation to depict OWL 2 constructs using OWL 2 semantics.
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Chapter Three

Mapping ORM into SROIQ/OWL 2

3.1 Introduction

Since we concentrate on the ability of expressivity and decidability for our mapping results
(SROIQ achieves this ability [HST06]), we will use SROIQ Description Logic (which is the
most common in ontology engineering and it is the language underpinning OWL 2) as a
reference to map from ORM into OWL 2. First, we formally map the ORM construct into
SROIQ Description Logic and then we represent this model in OWL 2. Our scope of
conversion is every construct of ORM.

3.2 Use Case

Before delving into the details of the mapping of ORM using SROIQ/OWL2, we first present
a use case where we map the sample ORM diagram in Figure 2.1 into OWL2. Part of the
mapping is depicted in Figures 3.1 through 3.3 along with a brief discussion. The full mapping
using OWL/XML is provided in Appendix A-1.

The basic ORM constructs are mapped to OWL 2 as follows. An object/value type is mapped
as a Class in OWL 2 whereas an ORM role is mapped as an ObjectProperty/DataProperty.
Before mapping the ORM rules and constraints to OWL 2, one must first declare the
object/value types and roles in OWL 2. Fig. 3.1 depicts the declarations of the object types
Person and Company and the ORM relation WorksFor/Employs of Fig. 3.2.a. The complete
declarations of the ORM diagram are provided in the Appendix.
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1. <Declaration> 7. <Declaration>
2. <Class IRI="#Person"/> 8. <ObjectProperty IRI="#Employs'"/>
3. </Declaration> 9 </Declaration>
4. <Declaration> 10. <Declaration>
5. <Class IRI="#Company'/> 11. <ObjectProperty IRI="#WorksFor'"/>
6. </Declaration> 12. </Declaration>

Figure 3.1: OWL 2 declarations of Classes and Object Properties
The diagram in Fig. 3.2.a contains 9 rules which we map into SROIQ/OWL-2 in Fig. 3.2.b
below. These rules are: (1) Subsumption (subtype), (2) Mandatory, (3) Role Uniqueness, (4)
Total Constraint, (5) Exclusive Constraint, (6) Subset Constraint, (7) Disjunctive Mandatory

(inclusive-or), (8)Exclusion, and (9)Value Constraint.

WorksFor/Employs

{M, F}
-~
( Gender)

N_—/

AY

(@) The ORM diagram in Fig. 2.1.a

Subtype: Male = Person, Female = Person Subset: AffiliatedWith = WorksFor
1. <SubClassOf> 28. <SubObjectPropertyOf>
2. <Class IRI="#Female"/> 29. <ObjectProperty IRI="#AffiliatedWith"/>
8- <Class IRI="#Person"/> 30. <ObjectProperty IRI="#WorksFor'"/>
4. </SubClassOf> 31. </SubObjectPropertyOf>
5. <SubClassOf> . .
6. <Class IRI="#Male"/> Disjunctive Mandatory:
7. <Class IRI="#Person"/> Car £ 30wnedBy. Person 30wnedBy. Company
8. </SubClassOf>

. . 32. <EquivalentClasses>
Mandatory: Person = JHasGender. String 33, <Class IRI="#Car"/>

34. <ObjectUnionOf>

9. <EquivalentClasses> 35. <Class IRI="#0wnedByC.Company"/>
10. <Class IRI="#Person"/> 36. <Class IRI="#0wnedByP.Person"/>
11. <DataSomeValuesFrom> 37. </ObjectUnionOf>
12. <DataProperty IRI="#HasGender"/> 38. </EquivalentClasses>
13. <Datatype abbreviatedIRI="xsd:string"/>
14. </DataSomeValuesFrom> Exclusion: OwnedBy.Person E — OwnedBy. Company

15. </EquivalentClasses>
39. <EquivalentClasses>

Role Uniqueness: Person E < 1HasGender. String 40. <Class IRI="#0wnedByC.Company"/>
41. <ObjectComplementOf>

16. <EquivalentClasses> 42. <Class IRI="#0wnedByP.Person'/>
17. <Class IRI="#Person"/> 43. </ObjectComplementOf>
18. <DataMaxCardinality cardinality="1"> 44. </EquivalentClasses>
19. <DataProperty IRI="#HasGender"/> .
20. <Datatype abbreviatedIRI="xsd:string"/> Value Constraint: Gender = STRING, Gender = {M, F}
21. </DataMaxCardinality>
22. </EquivalentClasses> 45. <DataPropertyRange>
Total and Exclusive Constraints: Person £ Male Female, 3673' <D2§2§;8E251t‘)>/ IR1="#HasGender™/>

o B Male N Female= L 48. <Literal datatypelRI="&xsd;string"> M
23. <DisjointUnion> </Literal>
24. <Class IRI="#Person"/> 49. <Literal datatypelRI="&xsd;string"> F
25. <Class IRI="#Female"/> </Literal>
26. <Class IRI="#Male"/> 50. </DataOne0f>
27. </DisjointUnion> 51. </DataPropertyRange>

(b) The SROIQ/OWL 2 mapping of the ORM rules in (a)
Figure 3.2: The ORM diagram of Fig. 2.1.a and the mapping of its rules to SROIQ/OWL 2
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Subsumption (subtype) is depicted as an arrow (—) in ORM. In our example, this arrow is
seen in two places: between Male and Person, and between Female and Person. This means
that all instances of Male (all males) form a subset of the population of Person (all persons).
This is also true for the object-type Female. In OWL 2, SubClassOf construct is used to
represent this rule (lines 1-8, Fig. 3.2.b).

Mandatory is depicted as a dot (e) on the line connecting Person object type with hasGender
role. This constraint indicates that, in every interpretation of this schema, each instance of the
object-type Person must have at least one Gender. This rule is mapped in OWL 2 in lines 9-
15, Fig. 3.2.b.

Role Uniqueness is depicted by an arrow < spanning along the role hasGender. In OWL 2,
we map this rule as shown in lines 16-22 in Fig. 3.2.b. This constrains indicates that, in every
interpretation of this schema, each instance of the object-type Person must have at most one

Gender.

Total and Exclusive Constraints are depicted as (®) and (®) between the Male and Female
subtypes. The Total Constraint means that the population of Person is exactly the union of the
population of Male and Female subtypes. The exclusive constraint means that the intersection
of the population of Male and Female is always empty. In our example, we use DisjointUnion
OWL 2 construct (lines 23-27, Fig. 3.2.b) which expresses both Total and Exclusive

constraints.

Subset Constraint is depicted in the ORM diagram in Fig. 3.2.a as an arrow (1) between the
roles AffiliatedWith and WorksFor; which means that the role AffiliatedWith is a subset of role
WorksFor. That is, all Persons who are affiliated with a Company must work for that
company. This is written in SROIQ as: AffiliatedWith & WorksFor. Representation in OWL
2 is done using SubObjectPropertyOf (lines 28-31, Fig. 3.2.b)

Disjunctive Mandatory (inclusive-or), is depicted as (®) between two or more roles,
illustrating that the disjunction of these roles is mandatory for members. In our example, each

instance of object-type Car must be owned by at least a Person or a Company or both. This is
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written in SROIQ description logic as: Car £ 3JO0wnedBy. Person U

30wnedBy. Company). This rule is mapped in OWL 2 in lines 32-38.

Exclusion, is represented as (®) between the roles it connects (in Fig. 3.a, it connects between
the two OwnedBYy roles of object-type Car). It means that each member of the population
cannot play both roles constrained by exclusion. In the example, no car can be owned by a
Person and a Company at the same time (OwnedBy.Person & — OwnedBy. Company).
Representation in OWL 2 is depicted in Fig 3.2.b (lines 39-44).

Value Constraint, is represented as {"M’,’F’} above the Gender dashed-line ellipse. This
constraint indicates the possible set of values that the value type Gender can be populated
with. Here, Gender can take any of the two STRING values: ‘M’ and ‘F’. No other value is

allowed. This constraint is mapped in OWL 2 in lines 45-51.

In the following subsections we thoroughly discuss the mappings of the ORM constructs into
OWL 2 and its underpinning SROIQ Description Logic.

3.3 Object-Types and relations

3.3.1 Binary and N-ary relationships (n > 1):

ORM supports n-ary relationships, where n > 1. Each argument of a relationship in ORM is
called a role. For example, consider the binary ORM relationship WorksFor/Employs in Fig.
3.2.a which has two roles, namely, WorksFor and Employs. However, SROIQ only supports
binary relationships. Note that an ORM role is represented as a relationship in SROIQ. Thus,
a binary ORM relationship is represented by two SROIQ relationships (that represent ORM
roles) in addition to an inverse axiom to state that both SROIQ relationships are inverse to
each other. Fig. 4.a (Rule-1) depicts a binary ORM relationship, its formalization into SROIQ),
and its mapping into OWL 2. Fig. 3.3.b (Case-1) shows the general case of an ORM n-ary
relationship, which cannot be represented in SROIQ/OWL 2. One can refer to [JO7a] for the
representation of Case-1 using DLR Description Logic. In this case, however, the n-ary
relationship can be converted to binary relationships [HO1] and then mapped into
SROIQ/OWL 2.



26

The mapping of the binary ORM relation presented in Rule-1 represents the case where A and
B (Fig. 3.3.a) are both object-types (equivalent to OWL 2 classes). However, in the case where
either A or B are ORM value-types, the value-type is mapped into a “Literal” (the universal
datatype) in OWL 2, or to any of its sub-datatypes. If, for example, B is a value-type, as
depicted in Rule-1’, the ORM role ra is mapped into an OWL 2 DataProperty with datatype
“Literal”. Notice that this DataProperty is called raB; the concatenation of the names of both
the ORM role (ra) and the ORM value-type (B). Also note that we don’t need an additional
inverse axiom, because in this case only one DataProperty is needed to represent the ORM

relation between an object-type and a value-type.

Rule-1 Rule-1’ TS Case-1
O (8) (A8

AC Vr,B,BE VIgA rgE Vry AC Vr,B,BC L/T;E7?:4L ° °
<ObjectPropertyDomain> <DataPropertyDomain> n>2

<ObjectProperty IRI="#r,"/> <ObjectProperty IRI="#r,B"/>
<Class IRI="#A"/> <Class IRI="#A"/> | 2 | | In |
</ObjectPropertyDomain> </DataPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#rg"/> <DataPropertyRange>

Cannot be represented in SROIQ/OWL2

<Class IRI="#B"/> <DataProperty IRI="#r,B"/>
</ObjectPropertyDomain> <Datatype
<ObjectPropertyRange> abbreviatedIRI="rdfs:Literal"/>
<ObjectProperty IRI="#r,"/> </DataPropertyRange>
<Class IRI="#B"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#rg"/>
<Class IRI="#A"/>
</ObjectPropertyRange>
<InverseObjectProperties>
<ObjectProperty IRI="#r,"/>
<ObjectProperty IRI="#rg"/>
</InverseObjectProperties>

(a) (b)
Figure 3.3: Binary and N-ary relationship

3.3.2 Unary Relationship:

Although unary roles are allowed in ORM, they cannot be represented directly in
SROIQ/OWL 2. The example below (Fig. 3.4.a) shows an ORM unary relationship which
means that a person may smoke; or in FOL [JO7b]: Vx (Smokes(x) — Person(x)). The
population of this fact is either true or false. In order to map ORM unary roles into
SROIQ/OWL 2, we introduce a new class called BOOLEAN, which takes one of two values:
{TRUE, FALSE}. Each ORM unary fact is seen as a binary relationship in SROIQ/OWL 2,
where the second concept is BOOLEAN. Rule-2 in Fig. 3.4.b presents the general case
mapping of ORM unary fact types to SROIQ/OWL 2.



@ Person T YSmokes.BOOLEAN

Rule-2
.
a Lt 1 A vr.Boolean

<Declaration>
<Class IRI="#Person"/>
</Declaration>
<Declaration>
<DataProperty IRI="#Smokes"/>
</Declaration>
<DataPropertyDomain>
<DataProperty IRI="#Smokes"/>
<Class IRI="#Person"/>
</DataPropertyDomain>
<DataPropertyRange>

<Declaration>
<Class IRI="#A"/>
</Declaration>
<Declaration>
<DataProperty IRI="#r"/>
</Declaration>
<DataPropertyDomain>
<DataProperty IRI="#r"/>
<Class IRI="#A"/>
</DataPropertyDomain>
<DataPropertyRange>
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<DataProperty IRI="#Smokes"/> <DataProperty IRI="#r"/>
<Datatype <Datatype
abbreviatedIRI="xsd:boolean"/> abbreviatedIRI=""xsd:boolean"/>
</DataPropertyRange> </DataPropertyRange>
(@) (b)

Figure 3.4: Unary Relationship
3.4 Subtypes

ORM subtypes are proper subtypes. That is, as discussed earlier, we say that B is a proper
subtype of A if and only if the population of B is always a subset of the population of A, and
A # B, i.e., loops are illegal in ORM. However, because the focus of this thesis is to establish
a graphical representation of OWL 2, we adopt the semantics of OWL 2, whose subtype
relation, SubClassOf, is not a proper subtype (i.e., loops are allowed). Thus, for example, the
axiom “Female is a Person” is written using OWL 2 semantics as: Woman E Person,
without the need to add the axiom (Person % Woman), as opposed to following ORM

semantics. Rule-3 presents the mapping of the general case of subtypes using SROIQ/OWL 2.

3.5 Total Constraint

Total constraint (©) in ORM is equivalent to UnionOf construct in OWL 2. This rule means
that the population of the supertype is exactly the union of the population of all subtypes

constrained by this rule. Rule-4 represents the formalization of the general case.

3.6 Exclusive Constraint

ORM exclusive constraint (®) is equivalent to DisjointClasses construct in OWL 2. It means
that the population of the subtypes constraint by this rule is pairwise distinct, i.e., the
intersection of the population of each pair of the subtypes must be empty. Rule-5 represents
the formalization of the general case of the exclusive constraint.

Please note that in most of the examples and general case mappings in this thesis, the OWL 2

declarations are omitted due to space limitations.
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Rule-3 0
BEA

<SubClassOf>
<Class IRI="#B"/>
<Class IRI="#A"/> <EquivalentClasses>
</SubClassOf> <Class IRI="#A"/>
<ObjectUnion0f>
<Class IRI="#A,"/>
<Class IRI="#A;"/>

<DisjointClasses>
<Class IRI="#A;"/>
<Class IRI="#A,"/>

.<C|aSS IRI="#A,"/>

ZClass IRI="#A,/> </DisjointClasses>

</0ObjectUnionOf>
</EquivalentClasses>

(a) (b) (c)

Figure 3.5: Formalization of ORM Subtype, Total Constraint and Exclusive Constraint.

3.7 Mandatory Constraints
3.7.1 Role mandatory:

ORM’s Role mandatory constraint is depicted as a dot on the line connecting a role with an
object type. Rule-6 of Fig. 3.6.a presents the general case formalization of this rule. Each
instance of the object-type A must be related to at least one instance of object-type B by the
relation r,/rg. In OWL 2, this rule is mapped using ObjectSomeValuesFrom/
DataSomeValuesFrom constructs as shown in Fig. 7.a. ObjectSomeValuesFrom is used when
B is object-type, where as DataSomeValuesFrom is used when B is value-type. OWL 2
qualified minimum cardinality (ObjectMinCardinality/DataMinCardinality) construct can also
be used to restrict the population of A to at least relate with one instance of B. However, the
usage of ObjectSomeValuesFrom/ DataSomeValuesFrom is more elegant than
MinCardinality.

3.7.2 Disjunctive Mandatory:

The Disjunctive Mandatory constraint is used to constrain a set of two or more roles connected
to the same object type. It means that each instance of the object type’s population must play
at least one of the constrained roles. In the general case presented in Fig. 3.6.b along with its
formalization, each instance of object-type A must play at least one of the constrained roles:

(r1,...,1,) related to the instances of classes Ay, ... A,respectively.
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Rule-6

° 7] a AC3,.B

<EquivalentClasses>
<Class IRI="#A"/>

ALCFri. A L. LJTr,.An

<ObjectSomeValuesFrom>

<ObjectProperty IRI="#ry"/> <EquivalentClasses> <EquivalentClasses>
<Class IRI="#B"/> <C|§SS IRI="#r . A" /> <ObjectUnionOf>
</0bjectSomeValuesFrom> <Objec¥50meValuesFrom> <Class IRI="#r;.A,"/>
</EquivalentClasses> <ObjectProperty IRI="#r,"/> .
<Class IRI="#A,"/> <Class IRI="#r,.A,"/>
</0ObjectSomeValuesFrom> </ObjectUnion0Of>
</EquivalentClasses> <Class IRI="#A"/>

</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#r,.A,""/>
<ObjectSomeValuesFrom>
<ObjectProperty IRI="#r,"/>
<Class IRI="#A,"/>
</0ObjectSomeValuesFrom>
</EquivalentClasses>

(@) (b)
Figure 3.6: Mapping of ORM Mandatory Constraints

3.8 Unigueness Constraints
One can distinguish between three types of Uniqueness Constraints in ORM, namely, role uniqueness,

predicate uniqueness, and external uniqueness.

3.8.1 Role Uniqueness:

Role uniqueness is represented by an arrow spanning a single role in a binary relationship.
Rule-8 of Fig. 3.7.a presents the general case mapping of this rule. This constraint means that
each instance of an object-type A plays the relation rp for at most one instance of B. Role
uniqueness is mapped to OWL2 wusing qualified maximum cardinality
(ObjectMaxCardinality/DataMaxCardinality) construct (restricted by ‘1°).

3.8.2 Predicate Uniqueness:

This constraint is represented in ORM, as shown in Fig. 3.7.b, by an arrow spanning more than
a role in an n-ary relationship. In the example shown in Fig. 3.7.b, in any instance of this
relation, both Student and Vehicle must be unique together, i.e., functional dependency.
Although this constraint can be represented using First Order Logic (FOL) and DLR;g
Description Logic [J07a, JO7Db], it cannot be represented using SROIQ/OWL 2.

3.8.3 External Uniqueness:

As shown in Fig. 3.7.c, ORM External Uniqueness constraint (denoted by ‘U’), applies to
roles from different relationships. The roles that participate in such a uniqueness constraint

uniquely refer to an object-type. For example (Fig. 3.7.c), the combination of (Author, Title,
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Edition) must be unique, i.e., different values of (Author, Title, Edition) refer to different

books. This constraint cannot be represented using SROIQ/OWL 2.

==
Rule-8 Tl
<« Case;Z S .—:_:
‘—_—“ (B)Acsin.s . . >
[ [ Inl T%]izn T}
<EquivalentClasses> Cannot be represented in SROIQ/OWL2 Cannot be represented in SROIQ/OWL2

<Class IRI="#A"/>

Example WrittenBy/Writes
<ObjectMaxCardinality cardinality="1"> Example @ P Y @
<ObjectProperty IRI="#r, ""/> ¢ _—‘--\
<Class IRI="#B"/> @ @ \
</ObjectMaxCardinality> -- ) = @

</EquivalentClasses>

(a) (b) (©)

Figure 3.7: Uniqueness Constraints

3.9 Frequency Constraints

We distinguish between frequency constraints that span (1) a single role, which we call “‘Role
Frequency’ constraints and (2) multiple roles, which we call ‘Multiple-Role Frequency’

constraints.

3.9.1 Role Frequency:

A frequency constraint (min-max) on a role is used to specify the number of occurrences that
this role can be played by its object-type. Fig. 3.8.a depicts the general case formalization of
this rule. This constraint means that role ra is played by the object-type A for a number of
occurrences between n and m. We map this constraint to OWL2 by using the qualified number
restrictions of OWL 2 ObjectMinCardinality/DataMinCardinality and
ObjectMaxCardinality/DataMaxCardinality constructs.

3.9.2 Multiple-Role Frequency:

A multiple-role frequency constraint spans more than one role (Figure 3.8.b). This constraint
means that, in the population of the constraint relationship, the constraint roles must be played
together by the related object-types for a number of occurrences between n and m. Multiple-

role Frequency Constraint cannot be formalized in Description Logic [J07b] and OWL 2.
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Rule-9

n-m
° A; g B L

<ObjectPropertyRange>
<ObjectProperty IRI="#r,"/>

Case-4

<ObjectProperty IRI="#r,"/> —T1--1
Cleoe IR/ [T el T o]
</ObjectMinCardinality>
</ObjectPropertyRange .
<ObjectPropertyRange> Not supported in SROIQ/OWL2
<ObjectProperty IRI="#r,"/>
<ObjectMaxCardinality cardinality="m">
<ObjectProperty IRI="#r,"/>
<Class IRI="#B"/>
</ObjectMaxCardinality>
</ObjectPropertyRange>

(@)

Figure 3.8: Frequency Constraints

(b)

3.10 Value Constraint

The value constraint in ORM indicates the possible set of values (i.e., instances) that an
object-type can be populated with. A value constraint on an object-type A is denoted as a set
of values {xy, X2, ..., Xn} depicted near an object type. Value constraints can be declared only
on ORM Lexical Object Types (LOT), which are depicted as dotted-line ellipses, and the
values should be well-typed, i.e., their data types should be either String such as {‘hi’, ‘98’,
‘it’} or Number such as {3,4,5}. Notice that quotes are used to distinguish string values from
number values. It is worth noting that OWL 2 supports many data types besides integer and
string which is an advantage of OWL 2 over OWL 1 (which only supports integers and

strings). OWL 2 DataOneOf construct is used to map the Value constraints (Fig. 3.9).

Rule-10

~~~~~~~~~~

rBESTRING, rB={xy,..., x,} rB= NUMBER, rB={Xi,...,X,}

< DataPropertyRange>
<DataProperty IRI="#rB"/>
<DataOneOf>
<Literal datatypelRI="&xsd;string"> x </Literal>
<Literal datatypelRI="&xsd;string"> x </Literal>

<Literal datatypelRI="&xsd;string"> x, </Literal>
</ DataOneOf>

</DataPropertyRange>

< DataPropertyRange>
<DataProperty IRI="#rB"/>
<DataOneOf>
<Literal datatypelRI="&xsd;int"> x </Literal>
<Literal datatypelRI="&xsd;int"> % </Literal>

<Lit-ert;1l -datatypelRI="&xsd;int"> X, </Literal>
</DataOneOf>
</DataPropertyRange>

Figure 3.9: Value Constraints

3.11 Subset Constraint

The subset constraint (—) between two roles is used to restrict the population of these roles so
as one is a subset of the other. Fig. 3.10.a (Rule-11) depicts the general case mapping into
SROIQ/OWL 2. It shows that all instances of A which plays the role‘s’ must also play the role
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‘r’. Rule-12 formalizes the case of subset constraint between two relations: the set of tuples of

the subsuming relation is a subset of the tuples of the subsumed relation.

ORM also allows subset constraints between tuples of roles (not necessarily contiguous) as
shown in case-5, where each i™ and j™ roles must have the same type. The population of the
set of the j" roles is a subset of the population of the set of the i"" roles. However, this last case
cannot be represented in SROIQ/OWL 2.

Rule-11 - a Rule-12 |I:|
o‘ sCC rB 1 SEr

<EquivalentClasses> < SubClassOf> q
<Class IRI="#r.B"/> <Class IRI="#s.C"/> < SUbggf)}egct:;?’g:lEzngRl:"#s"/> Cannot be represented in SROIQ/OWL2
<ObjectAl lValuesFrom> <Class IRI="#r_B"/>

<ObjectProperty IRI="#r"/>

<ObjectProperty IRI="#r"/> < /SubClassOf> < /SubObjectProperty0f>

<Class IRI="#B"/>
</0bjectAl 1ValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAl lValuesFrom>
<ObjectProperty IRI="#s"/>

<Class IRI="#C"/>
</0bjectAl 1ValuesFrom>
< /EquivalentClasses>

(a) (b) (c)
Figure 3.10: Subset Constraints

3.12 Equality Constraint

Similar to the subset constraint, the equality constraint (<) between roles and relations are

mapped as shown in rules 13 and 14 (Fig. 3.11) respectively.

Rule-13 - a Rule-14 |I:|
° s.C=rB } s=r

<EquivalentClasses> <EquivalentClasses> <Equi - B
—n " — @ quivalentObjectProperties> -- --
<Class IRI="#r_.B"/> <Class IRI="#s.C"/> A g
<ObjectProperty IRI="#s"/> i
<ObjectAl IValuesFrom> <Class IRI="#r.B"/> J perty Cannot be represented in SROIQ/OWL2

<ObjectProperty IRI="#r"/>
< /EquivalentObjectProperties>

<ObjectProperty IRI="#r"/> </EquivalentClasses>
<Class IRI="#B"/>
</0bjectAl lValuesFrom>
< /EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAllValuesFrom>

<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>
</0bjectAl IValuesFrom>
</EquivalentClasses>

(a) (b) (c)
Figure 3.11: Equality Constraints
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3.13 Exclusion Constraint

Similar to the subset and equality constraints, the exclusion constraint (®) between roles and
relations are mapped as shown in rules 15 and 16 (Fig.3.15) respectively. OWL 2 construct
(DisjointObjectProperty) is a new feature of OWL 2 which states that two roles are disjoint to
each other (It is representation in SROIQ is “Dis(s,r)”).

Rule-15 Rule-16 Case-7
s.CE-rB [: sE-r
.l s &
<EquivalentClasses> <EquivalentClasses> <DisjointobjectProperties> R, . . rj
<Class IRI="#r.B"/> <Class IRI="#s.C"/> ZObjectProperty IRI="#s"/> .
<ObjectAl IValuesFron> <ObjectComplenentof> 1] perty Cannot be represented in SROIQ/OWL2

<ObjectProperty IRI="#r"/>
< /DisjointObjectProperties>

<ObjectProperty IRI="#r"/> <Class IRI="#r._.B"/>
<Class IRI="#B"/> </O0bjectComplementOf>
</0ObjectAllValuesFrom> </EquivalentClasses>
< /EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAllValuesFrom>
<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>
</O0bjectAl IValuesFrom>
</EquivalentClasses>

(a) (b) (©)

Figure 3.12: Exclusion Constraints

3.14 Ring Constraints

ORM allows ring constraints to be applied to a pair of roles (i.e., on binary relations) that are
connected directly to the same object-type, or indirectly via super types. Six types of ring

constraints are supported by ORM as illustrated in what follows.

OWL 2 supports Reflexive, Irreflexive, and Asymmetric object properties as a new feature in
addition to Symmetric and Transitive that are supported by OWL 1.

3.14.1 Symmetric (sym):

This constraint states that if a relation holds in one direction, it also holds on the other. Fig.
3.13.a (Rule-17) depicts the general case formalization using SROIQ/OWL2.

3.14.2 Asymmetric (as):

Asymmetric constraint is the opposite of the symmetric constraint. If a relation holds in one
direction, it cannot hold on the other. Fig. 3.13.b (Rule-18) depicts the general case
formalization using SROIQ/OWL2.
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3.14.3 Antisymmetric (ans):

The antisymmetric constraint is also an opposite of the symmetric constraint, but not exactly the
same as asymmetric. The difference is that all asymmetric relations must be irreflexive, which is
not the case for antisymmetric. Fig. 3.13.c (Case-8) shows an example of this constraint in
addition to the general case formalization in SROIQ. Note that, up to our knowledge, this
constraint cannot be expressed in OWL 2 because one cannot express role complement in OWL
2.

3.14.4 Irreflexive (ir)

The Irreflexive ring constraint states that an object cannot participate in a relation with
himself. For example a person cannot be the ‘parent of’ himself (cannot play the role of
‘ParentOf’ with himself). However, for example, one can love himself, i.e., the ‘love’ relation
is reflexive; a ring constraint supported by SROIQ/OWL but not by ORM. Fig. 3.13.d (Rule-
19) depicts the general case formalization using SROIQ/OWL 2.

3.14.5 Acyclic (ac):

The acyclic constraint is a special case of the irreflexive constraint. For example, stating that
the relation ‘ParentOf’ is acyclic means that a person cannot be directly (or indirectly through
a chain) ‘ParentOf’ himself. In ORM, this constraint is preserved as a difficult constraint.
“Because of their recursive nature, acyclic constraints maybe expensive or even impossible to
enforce in some database systems”[ JO7a].Up to our knowledge, acyclicity with any depth on
binary relations cannot be represented in SROIQ/OWL 2 (see Fig. 3.13.e).

3.14.6 Intransitive (it):

A relation R is intransitive over its population if f Vx,y,z [R(x,y) AR(y,z) » —R(x,z)]. For
example, if a Person X is FatherOf Person Y and Y is FatherOf Z, then it cannot be that X is
FatherOF Z. See Fig. 3.13.f for the general case formalization in SROIQ. However, as in the
case of the antisymmetric constraint, this constraint cannot be expressed in OWL2 because

one cannot express role complement in OWL2.
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Rule-17 Rule-18 @ Case-8
@ Sym (R) Asy(R)
| Com N
[ ] Eathe{ T 1—(Son) [ [ @
siblingOf parentOi GreaterOrEqual/
<SymmetricObjectProperty> <AsymmetricObjectProperty>
<ObjectProperty IRI="#R"/> <ObjectProperty IRI="#R"/> RE (EIR'Self)U(_'Rd)_
</SymmetricObjectProperty> </AsymmetricObjectProperty> Cannot be representedin OWL2.
(R: siblingOf) (R: parentOf) (R: GreaterOrEqual)
(®) (b) (c)
Rule-19 @ Case- 9 Case-10
i (R) erson) ()
oir - °ac Ot -
sisterOf/ parentOfj atherOf
<lIrreflexiveObjectProperty> . RoR C —R
sObyectRnopentyIRISE#RE/> Not Supported in SROIQ/OWL2. Ca;not_b;representedin owL.
</IrreflexiveObjectProperty> )
(R: sisterOf) (R: fatherOf)
(d) (e) ()

Figure 3.13: Ring Constraints

3.15 Objectified Relation

An objectified relation in ORM is a relation that is regarded as an object type, receives a new
object-type name, and is depicted as a rectangle around the relation. In the example in Fig.
3.14.a, each (Student, Vehicle) enrollment is treated as an object-type that scores a Grade. In
addition to this axiom, it is assumed that there must be a uniqueness constraint spanning all
roles of the objectified relation, although it is not explicitly stated in the diagram. Objectified
relations cannot be represented in SROIQ/OWL 2 as the additional uniqueness axiom cannot
be represented in SROIQ/OWL 2. Refer to [JO7a] for the representation of objectified relations
in DLR description logic.

3.16 Syntatic Sugar for ORM/OWL 2

ORM and OWL 2 provide syntactic sugar formalization to ease the modeling of some

constraints, such as identity, total and exclusive constraints which are illustrated below.

3.16.1 Identity Constraint:

This constraint determines the unique identifier of an object-type, and is usually specified
inside the ellipse of the object-type (see Fig. 3.14.b). This constraint implies two constraints:
role mandatory (section 4.5.1) and role uniqueness (section 4.6.1). This means that the object-

type, specified as ‘key’ in Fig. 3.14.b, uniquely identifies the object-type A: i.e., it is
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mandatorily related to the object-type A and each instance of ‘key’ is related with at most one
instance of A and each instance of A is related to at most one instance of ‘key’ . Although this

constraint is not supported by SROIQ, it is mapped to OWL2 using the *‘HasKey’ construct.

3.16.2 Total and Exclusive Constraints:

The Total and Exclusive constraints (section 3.5 and 3.6) often appear together in ORM.
Instead of using two separate OWL2 constructs for their mappings (ObjectUnionOf and
DisjointClasses), OWL2 provides one construct, namely, DisjointUnion, which fulfills both

Total and Exclusive Constraints (Fig. 3.14.c).

Rule-23
Case- 9 “ ” Rule-22
gt Enroliment AL (<1 identifiedBy.Key)
M (JidentifiedBy.Key)
Key E (<1 identifies.A)
<DisjointUnion>
scores/scoredBy <HasKey> <Class IRI="#A"/>

Cannot be represented in SROIQ/OWL2.

<Class IRI="#A"/>
<DataProperty IRI="#key"/>
</HasKey>

(@)

(b)

<Class IRI="#A,"/>

<Class IRI="#A,"/>
</DisjointUnion>

(©)

Figure 3.14: (a) Objectified Relations, (b) Identity Constraint, (c) Total and Exclusive

Constraints




37

Chapter Four

Extending ORM for Complete representation of OWL 2

4.1 Introduction

In chapter 3 of this thesis, we mapped all ORM constructs to SROIQ/OWL2. This allows one
to build his/her ontology graphically using ORM and then map it automatically into OWL2.
However, the current graphical notations of ORM are not sufficient to represent all OWL2
constructs (i.e., some OWL2 constructs cannot be represented graphically using ORM). In this
section, we extend the ORM graphical notation to represent the eleven OWL2
constructs/expressions not covered currently by ORM. These OWL2 constructs are: (i)
Equivalent Classes, (ii) Disjoint Classes, (iii) Intersection of Class Expressions, (iv) Class
Complement, (v) Class Assertions, (vi) Individual Equality, (vii) Individual Inequality, (viii)
Positive Object/Data Property Assertions, (ix) Negative Object/Data Property Assertions, (X)
Reflexive, (xi) and Transitive. In addition we use already existing notations to represent Thing
and Nothing Classes , and also Top and Bottom Object/Data Properties. Some of the OWL 2
expressions cannot be logically represented in a graphical format, so we use non-graphical
notations for representing these OWL 2 expressions to completely cover OWL 2. The OWL 2
expressions that are not represented graphically and represented in non-notational expressions
include (i) Datatypes, Facets, and Data Range Expressions, and (ii) Annotations. The graphical
notations that we developed for representing the above mentioned eleven constructs in ORM
were evaluated by means of a survey that included 31 practitioners in the field of ORM and
OWL. After the evaluation process, final notations were chosen based on the results of the


http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
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survey. In this way of complete representation of OWL 2 using ORM we can build an
ontology graphically using ORM under the semantic of OWL 2. Using this mechanism we
can combine both the simplicity of representing an ontology and the full functionality needed
to check the correctness of the built ontology. The resulting OWL 2 ontology is supported by
many sound and complete reasoners that can verify its correctness. Section 4.2 — 4.8 briefly
discusses those eleven OWL2 constructs and our proposed graphical notations for their

representation in ORM.

4.2 Equivalent Classes

An Equivalent Class constraint in SROIQ/OWL 2 states that all classes constrained by this
rule are semantically equivalent to each other. This rule is expressed in OWL2 using the

EquivalentClasses construct and in SROIQ description logic using the notation of ‘=’.

However, no notation is available in ORM for representing this construct, because ORM
proposes that there is no need for equivalent objects within the same modeling case. However,
because of the rapidly increasing usage of ontologies in data integration, the Equivalent
Classes constraint is highly needed. The proposed notation for representing this constraint
using ORM is shown in Fig. 4.1 along with a clarifying example. 1t’s worth mentioning that
this graphical notation was preferred by a (50%) of practitioners who participated in the

evaluation survey.

Proposed ORM Notation: +—>

o[ T (T (R | ™

SRolq | Human = Being =Person

sRolq| A;=A=..= A,
OWL2| <EquivalentClasses>
owL2| <EquivalentClasses> <Class IRI="#Human"/>
<Class IRI="#A1"/> <Class IRI="#Being"/>
<Class IRI="#A2"/> <Class IRI="#Person"/>

</EquivalentClasses>

<Class IRI="#An"/>
</EquivalentClasses>

(@) (b)

Figure 4.1: Equivalent Classes Constraint

4.3 Disjoint Classes

The population of all classes constrained by the Disjoint Classes constraint is pairwise distinct,
i.e., the intersection of the population of each pair of the constrained classes must be empty.
This rule exists in ORM. However, it is restricted to be used between subtypes that belong to
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the same supertype. As, in ORM, all objects within a modeling case are assumed to be disjoint
with each other. This rule is expressed in OWL2 using the DisjointClasses construct. For
representing this constraint in ORM, we propose to use the notation of (®), as shown in Fig.
4.2. 1t’s worth mentioning that, from the three suggested graphical notations in the survey, this
graphical notation was chosen by (64%) of practitioners who participated in the evaluation

survey.

Proposed ORM Notation: ()

ORM
ORM X ‘lﬁﬂ:lb

SRoOIQ | Kid M Old N Young=_1

SROIQ | A;MA,M..MA=L o
OowL2| <DisjointClasses>

OWL2| <DisjointClasses> <Class IRI="#Kid"/>
<Class IRI="#A1"/> <Class IRI="#01d"/>
<Class IRI="#A2"/> <Class IRI="#Young"/>

</DisjointClasses >

<Class IRI="#An"/>
</DisjointClasses >

(@) (b)

Figure 4.2: Disjoint Classes Constraint

4.4 Intersection of Class Expressions

The intersection of classes A and B is all the individuals (instances) of A that are also
instances of B but no other instances. This expression cannot be expressed currently in ORM.
In OWL2, ObjectintersectionOf expression is used to represent the intersection of classes,
whereas the notation of ‘1" is used for the SROIQ representation, as shown in Fig. 19. In
ORM, we propose to use the notation of ‘[’ inside a bubble located on the edge of an ellipse
(see Fig. 4.3). This bubble connects directly via lines to the classes to be intersected. Inside
the ellipse, the name of the class equivalent to the intersection expression is assigned. Note
that the intersection bubble can be connected directly to many classes: the classes which are
being intersected. No other relations are allowed to be connected through the bubble.
However, the ellipse (which represents the equivalent class of the intersection expression) can

be connected via any relation to any other class.
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Proposed ORM Notation: @ PersonStudentYoung_Intersection
@)

SROIQ | PersonStudentYoung_Intersection = Person N Student N Young

ORM OWL2 | <EquivalentClasses>

- <Class IRI=“PersonStudentYoung Intersection”/>
SROIQ | A _Intersection=A;MA,M..MN A, <ObjectIntersectionOf>

- <Class IRI="#Person"/>
OWL2| <EquivalentClasses> —m .
<Class IRI=“A_Intersection”/> s IRISHSUEEEYS

- N <Class IRI="#Young"/>
<ObjectlIntersectionOf> Z -
<Class IRI="#A1"/> </ObjectintersectionOf >

<Class IRI="#A2"/> </EquivalentClasses>

<(-Ziéss IRI="#An"/>
</Objectlintersection0f>
</EquivalentClasses>

€) (b)

Figure 4.3: Intersection of Class Expressions

4.5 Class Complement

The complement of class A refers to the population of the Universe of Discourse (UoD) that is
not of A (i.e., the instances outside of A). This expression cannot be expressed currently in
ORM. In OWL2, ObjectComplementOf expression is used to represent class complement,
whereas the notation of ‘=’ is used for the SROIQ representation, as shown in Fig. 4.4. In
ORM, similar to the Intersection of Class Expressions discussed above, we propose to use the
notation of ‘=’ inside a bubble located at the edge of an ellipse (see Fig. 4.4). This bubble
connects directly via a line to the class to be complemented. Inside the ellipse, the name of the
class equivalent to the complement expression is assigned. Note that the complement bubble
can only be connected directly to one class: the class which is being complemented. No other
relations are allowed to be connected through the bubble. However, the ellipse (which
represents the equivalent class of the complement expression) can be connected via any

relation to any other class.
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Proposed ORM Notation: @ w
®

ORM

Qi Cltu] >

SROIQ [ NotAnimal = - Animal

ORM o owL2 <EquivalentClasses>

<Class IRI="“NotAnimal”/>

srolq | NotA=-A <ObjectComplementOf>
owl2| <EquivalentClasses> <Class IRI="#Animal"/>
<Class IRI="NOtA”/> </ObjectComplementOf>
<ObjectComplementOf> </EquivalentClasses>
<Class IRI="#A"/>
</0ObjectComplementOf>
</EquivalentClasses>
(@) (b)

Figure 4.4: Class Complement

4.6 Universal and Empty Classes
Two classes in OWL 2 are predefined, namely, the classes “owl:Thing” and “owl:Nothing”.

“owl:Thing” is referred to as the Universal Class while “owl:Nothing” is called the Empty
Class. The extension of class “owl:Thing” (i.e., its instances) is the set of all instances in the
Universe of Discourse (UoD). Thus, all classes are subclasses (i.e., subtypes) of this universal
class. On the other hand, the extension of class ”owl:Nothing“ is the empty set. Consequently,
the empty class is a subclass of all classes. In SROIQ, the universal and empty classes
correspond to the Top (T) and Bottom (L) concepts, respectively. These two predefined OWL
2 classes are not currently defined in the ORM notation. We propose to express these two
classes using the regular ORM object-type notation as show in Fig. 4.5. Note that this
proposed graphical representation was not evaluated in the survey because of its intuitiveness.
That is, the representation of these two predefined OWL2 classes is no different than the

representation of any other OWL2 class; all OWL2 classes are mapped in ORM as object-
types.

Proposed ORM Proposed ORM

Notation: Notation: @
srolq | T SRoIQ | 1

owL2 | owl:Thing owL2 | Owl :Nothing

() (b)
Figure 4.5: Thing and Nothing Classes
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4.7 Universal and Empty Object/Data Properties
OWL 2 provides two built-in object/data properties with predefined semantics: (i)

owl :topObjectProperty/ owl :topDataProperty (Universal Property), (i)
owl :bottomObjectProperty/ owl:bottomDataProperty (Empty Property). The
universal object property connects all possible pairs of object-type instances (individuals)
while the universal data property connects all possible object-type instances (individuals) with
all values (literals). On the contrary, the empty property neither connects any pair of object-
type instances (individuals) nor connects any object-type instance (individual) with a value
(literal). Unlike other variants of Description Logic, SROIQ does support Universal and
Empty roles. These predefined OWL 2 properties are not currently defined in ORM. We
propose to express these notations using the regular ORM role notation as show in Fig. 4.6.
Note that this proposed graphical representation was not evaluated in the survey because of its
intuitiveness. That is, the representation of these predefined OWL2 properties is no different
than the representation of any other OWL2 property; all OWL2 properties are mapped as
ORM roles.

Proposed ORM | TopObject Proposed ORM | BottomObject
Notation: TopData Notation: BottomData
SROIQ | Universal Role U Empty Role
owL2 | owl:topobjectProperty, owLz | oWl :bottomObjectProperty,
owl :topDataProperty owl :bottomDataProperty
(a) (b)

Figure 4.6: Top and Bottom Object/Data Properties

4.8 Class Assertions

The ClassAssertion axiom of OWL2 allows one to state that an individual is an instance of a
particular class [MPPQ9]. In SROIQ, this is done in the assertion component, i.e., the ABox
which contains instantiations of the axioms specified in the TBox. In ORM, we propose to use
the notation depicted in Fig. 4.7. This notation provides the user the flexibility to show/hide
the instances of a particular class. In our implementation of this notation in DogmaModeler
(discussed in chapter 6), clicking on the (») symbol at the bottom of the ellipse
expands/collapses the set of instances. The user specifies how many instances he/she prefers to

be shown.
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Proposed ORM Notation: Q

Dima
Tony
ORM

sroiq | {ai, @, ..., an}
OWL2 | <ClassAssertion>
&n <Class IRI="#Student"/>

& <NamedIndividual IRI="#Dima"/>
a, </ClassAssertion>
ORM <ClassAssertion>
sroiq | {ai, @y, ..., an} <Class IRI="#Student"/>
- <NamedIndividual IRI="#Tony"/>
owL2( <ClassAssertion> </ClassAssertion> Y
<Class IRI="#A"/>
<NamedIndividual IRI="#al"/>
</ClassAssertion>
<ClassAssertion>

<Class IRI="#A"/>
<NamedIndividual IRI="#a2"/>
</ClassAssertion>

(a) (b)

Figure 4.7: Class Assertions
4.9 Individual Equality

The OWL2 individual equality axiom Samelndividual states that all of the individuals
constrained by this rule are equal to each other. In SROIQ, this axiom is expressed in the
assertion component, i.e., the ABox, using the notation of ‘=" between individuals. In ORM,
we propose to use the notation of (&) to express individual equality. This notation is used
between class instances as shown in Fig. 4.8.

Proposed ORM Notation: @

ORM a,

sroiq | {a.}={as}

OWL2 | <Samelndividual>
<NamedIndividual IRI="#a,"/>
<Namedlndividual IRI="#a5"'"/>

</Samelndividual>

Figure 4.8: Individual Equality
4.10 Individual Inequality

The OWL 2 individual inequality axiom DifferentIindividuals states that all of the individuals
constrained by this rule are different from each other. In SROIQ, this axiom is expressed in the

assertion component, i.e., the ABox, using the notation of ‘#’ between individuals. In ORM,
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we propose to use the notation of (&) to express individual inequality. This notation is used

between class instances as shown in Fig. 4.9.

Proposed ORM Notation:

®

ORM

a,

srolq | fai}# {as}

owL2| <Differentindividuals>
<NamedIndividual IRI="#a,"/>
<NamedIndividual IRI="#a3"/>

</Differentindividuals>

Figure 4.9: Individual Inequality

4.11 Property Assertions

4.11.1 Positive Object/Data Property Assertion

The OWL2 Object/DataPropertyAssertion states that the individuals or individuals and

values constrained by this rule are related to each other by the specified object or data

property. In SROIQ, this axiom is expressed in the assertion component, i.e., the RBox, using

the notation of “+’ between individuals or individuals and values. In ORM, we propose to use

the notation of (+) to express the relation between individuals. This notation is used between

class instances that are related with each others as shown in Fig. 4.10.

ORM

SROIQ
owL2

™ ®
ra(a,b)

< ObjectPropertyAssertion>
<ObjectProperty IRI="#r, "'/>
<NamedIndividual IRI="#a"/>
<NamedIndividual IRI="#b"/>
< /0bjectPropertyAssertion>
<ObjectHsvalue>
<ObjectProperty IRI="#r, ""/>
<NamedIndividual IRI="#b"/>
< /0ObjectHasValue>

ORM

SROIQ
owlL2

Mira + HY02
(ereny—owne ] )

Owns(Mira,HY02)

< ObjectPropertyAssertion>
<ObjectProperty IRI="#0wns "/>
<NamedIndividual IRI="#Mira"/>
<NamedIndividual IRI="#HY02"/>
< /0bjectPropertyAssertion>
< ObjectHsValue>
<ObjectProperty IRI="#0wns "/>
<Namedindividual IRI="#HY02"/>
< /0ObjectHasValue>

(@)

()

Figure 4.10: Positive Object Property Assertion

4.11.2 Negative Object/Data Property Assertion

The OWL2 NegativeObject/DataPropertyAssertion states that the individuals or individuals

and values constrained by this rule are not related to each other by the specified object or data
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property. In SROIQ, this axiom is expressed in the assertion component, i.e., the RBox, using
the notation of *-” between individuals or individuals and values. In ORM, we propose to use
the notation of (-) to express the relation between individuals. This notation is used between
class instances that are not related with each others as shown in Fig. 4.11.

a-b Mira -HY02
) O:=="C) o |(person)—fown] 1 o)

SROIQ | -ry(a,b) )
X i ) SROIQ [ -Owns(Mira,HY02)
OWL2 | <NegativeObjectPropertyAssertion>

<ObjectProperty IRI="#r, "/> owL2 | < Nega1_:ive0bj ectPropertyAssertion>
<NamedIndividual IRI="#a"/> <ObjectProperty IRI="#0wns "/>
<NamedIndividual IRI="#b"/> <NamedIndividual IRI="#Mira"/>
< /NegativeObjectPropertyAssertiorp <NamedIndividual IRI="#HY02"/>
< /NegativeObjectPropertyAssertion>
(a) (b)

Figure 4.11: Negative Object Property Assertion

4.12 Reflexive (ref)

This constraint states that an object can participate in a relation with himself. For example, a
‘person’ can love himself (he can play the role of ‘loves’ with himself). Reflexive is not used
in ORM, Where it can be an extension to ORM notations as we want to reflect the semantic of
OWL 2 into ORM. Fig. 4.12.a depicts the general case extension of this constraint using
ORM, where this notation is selected according to similar notations of ring constraints shown
in Fig. 3.16.

4.13 Transitive (tra)

A relation R is transitive over its population if f Vx,y,z [R(x,y) AR(y,z) - R(x,z)]. For
example, if a Person X is FrindOf Person Y and Y is FriendOf Z, then X is FriendOf Z.
Transitive does not exist in ORM, Where it can be an extension to ORM notations as we want
to reflect the semantic of OWL 2 into ORM. Fig. 4.12.b depicts the general case extension of
this constraint using ORM, where this notation is selected according to similar notations of

ring constraints shown in Fig. 3.16.

ONTEYY ()
Tra(ry)
Oref . Or:Ref(R) tra . !

<ReflexiveObjectProperty> <TransitiveObjectProperty>

<ObjectProperty IRI="#r1"/> <ObjectProperty IRI="#r,"/>
</ReflexiveObjectProperty> </TransitiveObjectProperty>
(a) (b)

Figure 4.12: Extended Ring Constraints
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4.14 Non Notational Expressions

In the previous subsections, we have introduced our proposed graphical extension of ORM.
However, this extension does not cover all OWL 2 expressions graphically. The OWL 2
expressions not expressed graphically can be put into two categories; (i) Datatypes, Facets,

and Data Range Expressions, and (ii) Annotations.

OWL 2 introduces many built in datatypes in addition to the “Number” and “String” datatypes
defined in ORM, such as Real, Rational, Double, Float, Boolean, Binary, etc. In addition, it
introduces the so-called “Facets”, borrowed from XML Schema Datatypes, which are simply a
group of restrictions used to specify new user-defined datatypes. For example, one can define
a new datatype for a person’s age, called personage, by constraining the datatype Integer to
values between 0 and 150 (inclusive) using the mininclusive facet. Furthermore, OWL 2
supports advanced uses of datatypes, called Data Range Expressions, which include
expressions similar to those used with OWL 2 Classes such as complement, union and
intersection. For example, assuming we have already defined a datatype called minorAge, we
can define the datatype majorAge by complementing the datatype minorAge and then
intersecting it with the datatype personAge. All OWL 2 Datatypes, Facets, and Data Range
Expressions are not expressed graphically. Instead, we introduce the “Datatypes Guided
Editor” which aids the user in specifying datatypes and defining new datatypes and data range
expressions. Fig. 4.13.a depicts a simplified Datatypes Guided Editor as implemented in our

DogmaModeler tool.

The last category of our non-notational expressions is OWL2’s “Annotations”. In OWL 2,
annotations are used to describe parts of the OWL 2 ontology or the ontology itself. For
example, an annotation can be simply a human-readable comment on an axiom of an ontology.
E.g., one can add the following comment on the subtype relation between Man and Person:
“This subtype relation states that every man is a person”. Other annotation properties include:
Label, SeeAlso, Versioninfo, etc. Annotations can be specified using the “Annotations Guided
Editor”. Fig. 4.13.b depicts a snapshot of our implemented annotations editor part of
DogmaModeler.
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ORM Diagram | GRM-ML | Pseudo NL | DIG | owL | owe2| ORM Diagram | ORM-ML | Pseudo ML | DIG | owL | owLz|
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Obje

ct Instance

Properties % Object Instance Properties Pg

Defirition | Mutiingual | Values Data Type | Instances | Annotations Definiton | Multlingual | Values | Data Type | Instances | Annotations
Define a data type:  New Data Type Please select annotation property: | Comment A Comment: This subtype relation states

Please select the Data Range Expreasion; |Complement v | This subtype relation states. that every man
n.

is # persor

Data Range Complement Expression |

Complementof | Positive Integer ¥
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49“ e Delete J
ok Cancel o ]
(a) (b)

Figure 4.13: The Datatypes and Annotations Guided Editors of DogmaModeler

An illustration of full representation for mapping OWL 2 into ORM is shown in Appendix B.
4.15 Use Case

One of the most important use cases of the extended ORM notation introduced above is the
case of integration. Consider, for example, the case of ontology integration in Fig. 4.14. The
figure depicts two sample ontologies expressed in ORM; the first ontology (Ontology-1)
represents a part of the organization (non-natural person) ontology specifying, in particular,
the Company and the Local Government Unit entities. The second ontology represents another
part of the organization ontology, namely, the Association entity. Note that these two sample
ontologies are based on the Palestinian Legal Person Ontology [DJF11] and thus are in
harmony with the Palestinian law. However, what is depicted in Figure 4.14 is not a complete
ontology and is only meant to be a sample demonstration of the usefulness of the newly

proposed ORM notations.

NaturalPerson (2 Organization )« P NonNaturalPerson
Company LocalGovUnit ® Association ) .
isAdvocatet E s CN e - 1, A I I U (g e————— o N
TargetGroup )}
NonProfit \ | | feewsesOn e
Company
i n
ShareholdingCompany LocalNGO
P74857R @\
137563H \
Ontology-1 | Ontology-2

Figure 4.14: Use Case of the extended ORM notations.
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Let us look at the usage of the new ORM notations in Ontology-1. In this ontology, the new
notation is used in two places; (i) to express the class ‘Natural Person’ as the complement of
the ‘Organization’ entity and (ii) to express two assertions of the ‘Shareholding Company’
entity. In Ontology-2, we also use class assertions to represent two ‘LocalNGO’ instances. For
the purpose of integrating the two ontologies the following newly introduced notations are
used:

i) Equivalent Classes, expressed as a double-headed arrow between ‘Organization’ and
‘Non-Natural Person’ entities, to express the fact that both entities are equivalent.

il) Disjoint Classes, expressed using the notation of “®” between ‘LocalGovUnit’ and

‘Association’ to express the fact that both entities are disjoint.

iii) Intersection of Class Expressions, used to introduce a new entity, namely, the ‘Non
Profit Company’ which includes all shareholding companies that are also registered as
local NGOs. Note that, this type of companies does exist in Palestine; it includes
private limited-liability companies that provide services to the society but whose profit

is not allowed to be distributed among the partners.

iv) Individual Equality, expressed using the notation of (& ) between the shareholding
company (P74857R) and the Local NGO (JC9394). This means that the two identifiers
refer to the same real-world entity. Notice the usage of the Individual Equality here for
Entity Resolution/ Disambiguation: a much-used process to match different identifiers

from different heterogeneous information systems that refer to the same entity.

v) Individual Inequality, expressed using the notation of (&) and is used to state that the
two instances constrained by this rule are not the same. In our example, this expression
is also used for entity disambiguation by stating that that shareholding company
(L37563H) and the local NGO (NM8976) refer to different real-world organizations.

The complete mapping of the ORM diagram in Fig. 4.14 into OWL2 is provided in Appendix
A-2.
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Chapter Five

Evaluation

5.1 Introduction

Evaluation is divided into two parts. For the first part of evaluation we discuss the evaluation
of our work of mapping/formalizing ORM into OWL 2/SROIQ. In particular, we briefly
discuss the means by which we evaluated our work and give some clarifying examples. For
this evaluation, the last version (version 2) of RacerPro 2'* was used as a description logic
reasoning tool, especially because of its support of OWL 2. RacerPro provides an interface to
query and reason about knowledge bases. A knowledge base in RacerPro consists of a T-Box
and an A-Box. For each of the formalized ORM notations, its OWL 2 mapping was inserted
into the RacerPro system in the T-Box of a Knowledge Base. After that, the knowledge base
was populated with several A-Box assertions in ordered to perform various kinds of tests and

queries over it.

For the second part, we evaluate our proposed ORM extension via a survey that was made to
choose the most appropriate graphical notations. This survey involved practitioners in the
fields of ORM and OWL 2.

5.2 Evaluation Process for mapping ORM into OWL 2

For each mapping work, tests were done to be sure of the correctness of the mapped OWL 2

construct. These tests include consistency, coherency, and instance checks in addition to

* http://www.racersystems.com/products/racerpro/users-guide-1-9-2-beta.pdf
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several other checks depending on the individual construct to be tested. The consistency test
checks whether the given Assertion Box is consistent with respect to the Terminology Box. An
A-Box A is consistent with a T-Box T iff A-Box has a model w.r.t. T-Box. Otherwise, the A-
Box is called inconsistent. Coherency (also called Satisfiability) can be divided into three
tests: Concept Coherency, T-Box Coherency, and Ontology Coherency. Checking the
satisfiability (coherency) of a concept C in a T-Box T means to check whether there exists a
model | of T such that C' = ¢. This is usually done by checking this concept for any possible
contradictions in the T-Box. If the concept C is involved in a contradiction, this means that it
cannot be satisfied. For the T-Box coherency; a T-Box T is said to be incoherent iff there exists
an unsatisfiable concept in T. Similarly, an ontology O is incoherent iff its T-Box is
incoherent. The Instance Retrieval test simply finds all individuals (instances) mentioned in an
A-Box that are instances of a certain concept C. Different kinds of queries supported by the
new query language (nRQL) of RacerPro 2.0 were used to retrieve the instances of classes
within the needed ontology (instance checking) to check the correctness of the ontology and
consequently the mapping itself. It is worth noting here that all A-Box tests and queries are
written in NRQL (The New RacerPro Query Language), a query language for the RacerPro
system that is capable of querying description logics, RDF(s), and OWL.

All possible cases of instance checking are taken into consideration to evaluate mapping
correctness. In what follows, we illustrate the evaluation of mapping ORM into OWL 2 for

each mapped construct.

5.2.1 Binary Relation (Rule 1):

A general case of Binary Relation is plotted and mapped into OWL 2 functional syntax (Fig.
5.1) consisting of two classes (objects) Person and Vehicle, and two relations Drives and
DrivenBy. The instances that are inserted for classes Person and Vehicle are shown in Fig. 5.1.
As an evaluation process, all possible cases of tests are taken into consideration to prove the

correctness of the mapping as follows:

i) The domain of relation Drives which is expected to be class Person is checked and the

right expected answer (Person) is obtained.
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i) The range of Drives which is expected to be class Vehicle is checked and the right

expected answer (Vehicle) is obtained.

iii) Using the same way, the domain and range for relation DrivenBy which are expected
to be Vehicle and Person respectively are checked and the right expected answers

(Vehicle and Person) are obtained.

iv) The inverse of role Drives which is expected to be DrivenBy is checked and the right

expected answer (DrivenBy) is obtained.

V) Instances of classes Person and Vehicle are retrieved and the right expected instances

are obtained.

vi) Each instance of class Person which is related to the other instance of class Vehicle by
the role Drives is retrieved and the right expected answer is obtained. The same is done
for the role DrivenBy and the right expected answer is obtained. That was done to

make sure that Drives is the inverse role of DrivenBy and vice versa.

All the preceding mentioned cases are shown in Figure 5.1.

OWL 2 Functional Syntax Checked : :
Declaration(NamedIndividual(:p11)) | Example @
ClassAssertion(:Person :p11)
Declaration(Namedindividual(:;p12)) | Type of Test nRQL query Result
ClassAssertion(:Person :p12) Domain (role-domain [#Drives|) :Person
Declaratlon(NamedInd|V|duaI(:p13)) (role-domain [#DrivenBy|) | :Vehicle
ClassAssertion(:Person :p13) . —
Declaration(NamedIndividual(:v11)) | Range (role-range |#Dr!ves|) ‘Vehicle
ClassAssertion(:Vehicle :v11) (role-range {#DrivenBy|) | :Person
gleC'artlon(Na(m\sd#)dIW'd;g')(wlz)) Inverse (role-inverse [#Drives]) :DrivenBy
assAssertion(:Vehicle :v : :
Declaration(Namedindividual(:v13)) Retrieve !Derson (retrieve(?x)(?x #Person)) | :pl3, :p12, :p11
ClassAssertion(:Vehicle :v13) ?”dt Vehicle (retrieve(?x)(?x #Vehicle)) | :v13, :v12,:vil
nstances
Retrieve related | (retrieve (?x ?y) (?x ?y (:p11, :v11),(:p12, :v12),(:p13,
Instances #Drives)) :v13)
(retrieve(?x?y)(?x?y (:v11, :p11),(:v12, :p12),
#DrivenBY)) (:v13, :p13)

Figure 5.1: Tests performed on OWL 2 mapping of ORM binary role notation (Rule 1)
5.2.2 Unary Relation (Rule 2):

An example (Figure 5.2) in OWL 2 is created to formalize the Unary Relation of ORM. The

example contains a class named Person and a data property named smokes with Boolean
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range, then we asserted two instances for class Person related by data property smokes where
one of these instances set to be true by assigning "1" to it and the other set to false by
assigning "0" to it . When we retrieve the instances (Table 5.1) of property smokes, it gives us
the population of class person which plays data property range of type Boolean.

OWL 2 Functional Syntax Checked
Declaration(Class(:Person)) Example @
Declaration(DataProperty(:smokes))

SubDataPropertyOf(:smokes owl:topDataProperty) Type of Test | nRQL query Result
DataPropertyRange(:smokes xsd:boolean) Retrieve (retrieve(?x(datatype- (((:ahmad)
Declaration(Namedindividual(:ahmad)) Instances fillers(f#smokes|?x)))(?x | ((:datatype-fillers
ClassAssertion(:Person :ahmad) (some [#smokes]))) (:smokes))
DataPropertyAssertion(:smokes :ahmad "1""xsd:boolean) (#T)))(((:sahar)
Declaration(NamedIndividual(:sahar)) ((:datatype-fillers
ClassAssertion(:Person :sahar) (:smokes))(#T))))
DataPropertyAssertion(:smokes :sahar "0"xsd:boolean)

DifferentIndividuals(:sahar :ahmad) Consistency (abox-consistent? True
DataPropertyAssertion(:smokes :ahmad "1""xsd:boolean) | Check file://unaryrelation.owl)
DataPropertyAssertion(:smokes :sahar "0"xsd:boolean)

Figure 5.2: Tests performed on OWL 2 mapping of ORM unary role notation (Rule 2)
5.2.3 Subtype (Rule 3):

The OWL 2 file which is mapped from ORM is loaded into RacerPro 2.0. The file includes
two classes Man and Person (where Man is a SubClass of Person) is created (Figure 5.3).
Instances for both classes are inserted. Two types of tests were performed, namely, concept
subsumption and instance retrieval. In short, the tests we have done on the subtype relation can
be summarized as follows. After inserting the OWL 2 mapping of the ORM in Fig. 5.3 asa T-
Box in a knowledge base, we entered a set of assertions into the A-Box. These assertions
were: one assertion of the object-type Person (i.e., Mira) and two assertions of the object-type
Male (Issa and Abbas). Two concept consumption tests were performed; the first to check
whether the object-type Male subsumes Person, resulting in “True’, as expected. The second
verified whether Person subsumes Male, resulting in Nil (False), also as expected. When we
retrieved the instances of Person, all instances of Male (Issa and Ahmad) appeared in the
result set in addition to the instance of Person (Mira); a result which we expected because of

the subtype relation.

All possible cases for ontology checking are taken into consideration to evaluate mapping

correctness as follows:




53

i) Concept subsumption is checked where class Person subsumes class Man and the

expected result (which is true) is obtained. The inverse is done where does class Male

subsumes class Person and the expected result (which is false) is obtained.

i) The instances of class Person are retrieved and the expected results are the instances

already asserted for class Person (super class) in addition to the instances of class Male

(subclass). These results are obtained.

iii) The instances of class Male are retrieved and those are expected to be only the

instances assigned to class Male and this result is obtained.

OWL 2 Functional Syntax

SubClassOf(:Male :Person)
Declaration(NamedIndividual(:1ssa))
Declaration(NamedIndividual(:ahmad))
Declaration(NamedIndividual(:Mira))
ClassAssertion(:Male :Issa)
ClassAssertion(:Male :Ahmad)
ClassAssertion(:Person :Mira)

Checked Example

Type of Test nRQL query Result
Concept Subsumption  |?(concept-subsumes? [#Person| | #Male|) |True
?(concept-subsumes?[#Male| | #Person|) | Nil (i.e., False)
Retrieve Instances ?(retrieve(?x) (?x #Person)) Mira, Issa, Ahmad
?(retrieve(?x) (?x #Male)) Issa, Ahmad

Figure 5.3: Tests performed on OWL 2 mapping of ORM subtype role notation (Rule 3)

5.2.4 Total Constraint (Rule 4):

An example (Fig. 5.4) that contains class Person which is equivalent to class Man or Female is

created. Instances for the three classes are asserted.

For Total Constraint, all possible cases (Fig. 5.4) are taken into consideration as follows:

1) Checking if class Person (super class) is equivalent to the union of classes Male and

Female, and the expected result which is true is obtained.

i) The instances of class Person are retrieved and those are expected to be the already

assigned instances for Person in addition to instances of class Male or Female. The

expected result is obtained.

iii) The instances of subclasses Male and Female are expected to be just the instances

assigned to each class and the result is as expected.
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OWL 2 Functional Syntax
Declaration(Class(:Male))
Declaration(Class(:Person))
EquivalentClasses(:Person
ObjectUnionOf(:Female :Male))
Declaration(Class(:Female))
Declaration(NamedIndividual(:ahmad))
ClassAssertion(:Male :ahmad)
Declaration(NamedIndividual(:issa))
ClassAssertion(:Person :issa)
Declaration(NamedIndividual(:wafa))
ClassAssertion(:Female :wafa)

Checked @

Example 5

Type of Test | nRQL query Result
Concept- (concept-equivalent? True
Equivalence [#Person|(or [#Male| [#Female())

Retrieve (retrieve(?x)(?x #Male)) (((:ahmad)))
Instances (retrieve(?x)(?x #Female)) (((:wafa)))

(retrieve(?x)(?x #Person))

(((:issa))((:ahmad))((:wafa)))

Figure 5.4: Tests performed on OWL 2 mapping of ORM total constraint (Rule 4)

5.2.5 Exclusive Constraint (Rule 5):

An example (Figure 5.5) that contains classes Male and Female which are disjointed is

created. The same instance is created for both classes. For Exclusive Constraint, the cases

(Fig. 5.5) are :

i) Disjoint is checked between classes Male and Female and the result is true as expected

true.

i) The equivalence of class Person to the union of classes Male and Female is checked

and the result is false as expected.

iii) The instance ahmad (as an example) is assigned to both classes Male and Female,

where in this assignment the Abox consistency is violated to ensure that classes Male

and Female are disjoint. The result is as expected inconsistent Abox.

OWL 2 Functional Syntax

Declaration(Class(:Male))
Declaration(Class(:Female))
Declaration(Class(:Person))
SubClassOf(:Male :Person)
SubClassOf(:Female :Person)
DisjointClasses(:Male :Female)
Declaration(NamedIndividual(:ahmad))
ClassAssertion(:Male :ahmad)
ClassAssertion(:Female :ahmad)
Declaration(NamedIndividual(:wafa))
ClassAssertion(:Female :wafa)

Checked @
Example 4{""
Type of Test nRQL query Result
Concept-Disjoint | ?(concept-disjoint? [#Male| [#Female|) True
Concept- ?(concept-equivalent? [#Person|(or [#Male| Nil
Equivalence [#Femalel))
Consistency ? (abox-consistent? file:// /disjointclasses.owl) True
Check (with assertions that do not violate the constraint)
? (abox-consistent? file://disjointclasses.owl) Nil
(with assertions that do violate the constraint)

Figure 5.5: Tests performed on OWL 2 mapping of ORM exclusive constraint (Rule 5)
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5.2.6 Role Mandatory (Rule 6):

To represent the ORM Role Mandatory constraint in OWL 2, we use the construct
“ObjectSomeValuesFrom” that represents the extensional quantifier in SROIQ. Example of
section 5.2.8 (Figure 5.7) includes the representation of Role Mandatory constraint. The
relation “OwnedBY” is populated by relating the instances of class “Company” to that of class
“Vehicle”. When checking the consistency of ABoxX, the result was that the ABox is consistent

as the constraint Mandatory (represented by “ObjectSomeValuesFrom”) is achieved.

5.2.7 Disjunctive Mandatory (Rule 7):

An example (Figure 5.6) that contains the classes and relations of Rule 7. Instances (created to
prove the correctness of formalization) are asserted and related by OwnedByC and OwnedByP
roles. When we check the coherency of TBox and consistency of ABox using RacerPro 2.0, it
gives us true for both checks. The result is as expected since the inserted instances comply
with the restriction " Disjunctive Mandatory " resulted that each instance of object-type “A”

must play at least one of the constrained roles.

OWL 2 Functional Syntax Checked
Declaration(Class(:OwnedBy.Company)) Example
EquivalentClasses(:OwnedBy.Company
ObjectSomeValuesFrom(:OwnedByC :Company))
Declaration(Class(:OwnedBy.Person))
EquivalentClasses(:OwnedBy.Person
ObjectSomeValuesFrom(:OwnedByP :Person))

EquivalentClasses(:Vehicle Type of Test | nRQL query Result
ObjectUnionOf(:OwnedBy.Company :OwnedBy.Person)) | Coherency 2 (tbox-coherence? True
ObjectPropertyDomain(:OwnedBYyC :Vehicle) Check file://disjunctivemandatory.owl)
ClassAssertion(:Company :jts.com) Consistency | ? (abox-consistent? True
ClassAssertion(:Person :mira) Check file://disjunctivemandatory.owl)

ClassAssertion(:Vehicle :HY130)
ObjectPropertyAssertion(:OwnedByP :HY130 :mira)
ObjectPropertyAssertion(:OwnedByC :HY130 :jts.com)

Figure 5.6: Tests performed on OWL 2 mapping of ORM disjunctive mandatory constraint
(Rule 7)

5.2.8 Role Uniqueness (Rule 8):

An example (Figure 5.7) contains classes Company and Vehicle which are related by the
relation OwnedBY is created. The role OwnedBY is constrained Role Uniqueness. An Instance
to prove the correctness of formalization is asserted and related by the relation OwnedBy.
When we check the coherency of TBox and consistency of ABox using RacerPro 2.0, it gives

us true for both checks. The result is as expected since the inserted instances comply with the
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restriction "max cardinality of 1" that constraints the role OwnedBy related to the class
Vehicle to relate a one instance in the domain to maximum one instance in the range. But
when we make an instance like “jts.com” in our example to be related to two instances
“MAZ230” and “eng” by the object type property OwnedBy (restricted for the domain
“Company” and the range “Vehicle” in our example). The restriction is achieved by using max
cardinality of one. Relating one instance of the domain to two instances of the range by object
type property “OwnedBy” violates the constraint max cardinality of one. The result is
inconsistency of ABox. In the example mentioned above, we use the construct
DifferentIndividuals to differentiate between the instances used semantically, where OWL 2
does not support Unique Name Assumption (UNA) [SWMO04], which means that using
different names for individuals does not mean that these individuals are different.

OWL 2 Functional Syntax Checked «—>
Declaration(Class(:Vehicle)) Example @
Declaration(Class(:Vehicle))
EquivalentClasses(:Vehicle ObjectMaxCardinality(1

:OwnedBy :Company)) Type of Test | nRQL query Result
EquivalentClasses(: Company Consistency | ? (abox-consistent? file:// True
ObjectSomeValuesFrom(:Owns :Vehicle)) Check uniqueness.owl)
Declaration(ObjectProperty(:OwnedBy)) (with assertions that do not violate
ObjectPropertyDomain(:OwnedBY :Vehicle) the constraint)
ObjectPropertyRange(:OwnedBy :Company) ? (abox-consistent? Nill
Declaration(NamedIndividual(:HY130)) file://disjointclasses.owl)
ClassAssertion(:Vehicle :HY130) (with assertions that do violate the
Declaration(Namedindividual(:MAZ230)) constraint)

ClassAssertion(:Vehicle :MAZ230)
Declaration(NamedIndividual(:jts.com))
ClassAssertion(:Company :jts.com)
ObjectPropertyAssertion(:OwnedByY :HY130 :bis.com)
DifferentIndividuals(:MAZ230 :HY130)
DifferentIndividuals(:bis.com :HY130)
DifferentIndividuals(:jts.com :MAZ230)
ObjectPropertyAssertion(:OwnedBy :HY130 :jts.com)
ObjectPropertyAssertion(:OwnedBy :MAZ230 :jts.com)

Figure 5.7: Tests performed on OWL 2 mapping of ORM role uniqueness and mandatory
constraints (Rule 5)

5.2.9 Role Frequency Constraints (Rule 9):

The same methodology is used as in (5.2.8) to evaluate the correctness of Role Frequency
Constraints’ mapping. The example in the previous section is modified to represent this rule
(Role Frequency Constraints), where this example contains classes “Company” and “Vehicle”

related by the relation “Owns”. The role “Owns” is played by the object-type “Company” for a
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number of occurrences between 2 and 3. This is achieved by restricting “Owns” to play
“Vehicle” between 2 and 3 occurrences using the qualified number restrictions of OWL 2
ObjectMinCardinality and ObjectMaxCardinality constructs. We instantiate “Company” with
“ccs.com” and “Vehicle” with four different instances. Relating “ccs.com” with the four
instances of “Vehicle” violating the restriction on object property “Owns”. When checking the
consistency of ABox using Racer reasoned, the reasoned gives inconsistent ABox. This
violating of used constraint and the result of inconsistency proves the correctness of using
owl:maxQualifiedCardinality to map the max occurrence “m” of Role Frequency Constraints
(ORM notation).

5.2.10 Value Constraint (Rule 10):

The same general format is used as in Fig. 3.9 to create a complete example which is loaded
into RacerPro 2.0. The inserted values for data property range rB are X;, X, and Xs. The cases
(Fig 5.8) which are used to prove the correctness of Value Constraint formalizing are as

follows:
i) The values of data property range are retrieved and the result is as expected.

i) One of the assigned values for data type property range is retrieved and the result is

true as expected.

iii) A value which is not one of the assigned values for data type range is retrieved and the
result is as expected. The result of retrieving this value is an error with a message
"Undefined value" that assures that the values of data property range are only those

values specified by DataOneOf construct.

Type of check nRQL query Result

Retrieve values (retrieve(?x)(?x #rB)) | (((:X3))((:X2)) ((:X1)))

Retrieve Check (retrieve() (:X1 #rB)) | True

(retrieve() (:X4 #rB)) | (ERROR"Undefined value [#X4| in ABox |[file://VValue.owl|")

Figure 5.8: Cases of queries for checking value constraint correctness (Rule 10)
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5.2.11 Subset Role (Rule 11):

An example (Figure 5.9) in OWL 2 that contains classes Person, Vehicle, DrivingLicense,
AuthorizedWith.DrivingLicense and Drives.Vehicle, in addition to roles AuthorizedWith and
Drives is created. Instances are inserted for classes Person, Vehicle, DrivingLicense. Also
instances are inserted for object properties AuthorizedWith and Drives. All these insertions are
made to apply instance checking to this ontology to prove the correctness of this ontology that

represents the formalizing (formalizing subset role constraint of ORM using OWL 2).

OWL 2 Functional Syntax Checked

Declaration(Class(:Drives.Vehicle)) Example AuthorizedWith/
EquivalentClasses(:Drives.Vehicle [ ]
ObjectSomeValuesFrom(:Drives :Vehicle))

SubClassOf(:drives.Person :owns.Person)
Declaration(Class(:AuthorizedWith.DrivingLicense))

EquivalentClasses(:AuthorizedWith.DrivingLicense
ObjectSomeValuesFrom(:AuthorizedWith Type of nRQL query Result
:DrivingLicense)) Test

ObjectPropertyDomain(:Drives :Person)
ObjectPropertyRange(:Drives :Vehicle)
ObjectPropertyDomain(:AuthorizedWith :Person)

Retrieve (retrieve(?x)(?x#Drives. | (:sahar)
Instances Vehicle))

ObjectPropertyRange(: AuthorizedWith :DrivingLicense)
ClassAssertion(:Person :jawad)

ClassAssertion(:.Person :sahar)
ClassAssertion(:DrivingLicense :LC2011)
ClassAssertion(:Vehicle :HY130)
ObjectPropertyAssertion(: AuthorizedWith :jawad :LC2011)
ObjectPropertyAssertion(:Drives :sahar :HY130)

(retrieve(?x)(?x ((:jawad)
#AuthorizedWith.Drivi | (:sahar))
ngLicense))

Figure 5.9: Tests performed on OWL 2 mapping of ORM role subset constraint (Rule 11)
The cases for checking the correctness of formalizing as illustrated in Fig. 5.9 are:

i) The equivalent class Drives.Vehicle is checked to be a subset of equivalent class

AuthorizedWith.DrivingLicense and the result is true as expected.

i) The inserted instance sahar (as an example) to class Person is set to play role ‘Drives’
and it is checked if it also plays role ‘AuthorizedWith’ and the result is true as

expected.

5.2.12 Subset Binary Role (Rule 12):

An example is created and loaded into RacerPro 2.0 by using its RacerPorter interface. The

example includes classes Person and Car, in addition to object properties owns and drives
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where the role drives is a subset of the role owns. An instance named ahmad is asserted to

class Person and plays the role drives for the instance honda200 of class Car and it is checked

if it is at the same time plays the role owns and the result is true as expected (Fig. 5.10).

OWL 2 Functional Syntax

SubObjectPropertyOf(: AffiliatedWith :WorksFor)
SubObjectPropertyOf(: AffiliatedBy :Employes)
InverseObjectProperties(:WorksFor :Employes)
ObjectPropertyDomain(:WorksFor :Person)
ObjectPropertyRange(:ownedBY :Person)
InverseObjectProperties(: AffiliatedWith : AffiliatedBy)
ObjectPropertyDomain(:AffiliatedWith :Person)
ObjectPropertyRange(:WorksFor :Company)
ClassAssertion(:Person :ahmad)
ObjectPropertyAssertion(:WorksFor :ahmad :jts.com)
ClassAssertion(:Person :bassam)
ClassAssertion(:Company :jts.com)
ClassAssertion(:Company :bsi.com)
ObjectPropertyAssertion(: AffiliatedWith :bassam :bis.com)

Checked
Example

WorksFor

I @

AffiliatedWith/

Type of
Test

nRQL query

Result

Retrieve
Instances

(retrieve (?x ?y) (?x | ((:bassam) (:bis.com))
?y #AffiliatedWith))

?y #WorksFo

(retrieve (?x ?y) (?x | (((:ahmad) (:jts.com))

r)) ((:bassam)
(:bis.com)))

Figure 5.10: Tests performed on OWL 2 mapping of ORM binary role constraint (Rule 12)

5.2.13 Equality Role (Rule 13):

An example (Figure 5.11) is created which demonstrates an equality between the equivalent

classes expressions HasOfficeWith.Room and HasOfficeln.Building and one instances are

inserted for each equivalent class expression. After testing the instances of the two class

expressions, each class expression contains both instances as a result of role equality.

EquivalentClasses(:HasOfficeWith.Room
ObjectSomeValuesFrom(:HasOfficeWith :Room))
Declaration(Class(:HasOfficeln.Building))
EquivalentClasses(:HasOfficeln.Building
ObjectSomeValuesFrom(:HasOfficeln :Building))

OWL 2 Functional Syntax Checked
Declaration(Class(:HasOfficeWith.Room)) Example

HasOffice With/

)

A
HasOfficeInl Building

ObjectPropertyDomain(:HasOfficeWith :Person) Type of
ObjectPropertyRange(:HasOfficeWith :Room) Test

nRQL query

Result

ObjectPropertyDomain(:HasOfficeln :Person)

:HasOfficeln.Building)
ClassAssertion(:HasOfficeWith.Room :rajee)
ClassAssertion(:Person :rajee)

ClassAssertion(:Person :zaher)
ObjectPropertyAssertion(:HasOfficeWith :rajee :R101)
ObjectPropertyAssertion(:HasOfficeln :zaher :IT)
ClassAssertion(:HasOfficeln.Building :zaher)

ObjectPropertyRange(:HasOfficeln :Building) Retrieve
EquivalentClasses(:HasOfficeWith.Room Instances

(retrieve(?x)(?x

#HasOfficeWith.Room))

((:rajee) (:zaher))

(retrieve(?x)(?x

#HasOfficeln.Building))

((:rajee) (:zaher))

Figure 5.11: Tests performed on OWL 2 mapping of ORM equality role constraint (Rule 13)
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5.2.14 Equality Binary Role (Rule 14):

An example (Fig. 5.12) is used for the purpose of mapping correctness. This example is
written in OWL 2 functional syntax. The example includes classes Vehicle and Person, in
addition to object properties Owns (inverse of OwnedBy) and Drives (inverse of DrivenBy)
and these roles are set to be equivalent to each other. Instances for classes Person and Vehicle,
which are related by drives relation, are inserted.

For this rule (Equality Binary Role), all possible cases (Fig. 5.12) are taken into consideration

as follows:

i) The instances of class Person and their consequences of instances of class Vehicle,
which are related by the role Owns, are retrieved and, as expected, they are the same as
the instances of class Person and their consequences of class Vehicle playing the role

Drives.

i) The inverse case is done where the instances of class Vehicle and their consequences
of instances for class Person related by the role drives and owns are retrieved and the

result is as expected.

OWL 2 Functional Syntax Checked

InverseObjectProperties(:drivenBy :drives) Example Owns
ObjectPropertyDomain(:drivenBy :Vehicle) ’y
ObjectPropertyRange(:drivenBy :Person) @ @
EquivalentObjectProperties(:drives :owns) - r
ObjectPropertyDomain(:drives :Person) Drives
ObjectPropertyRange(:drives :Vehicle)

InverseObjectProperties(:owns :ownedBy) Type of Test | nRQL query Result
ObjectPropertyDomain(:ownedBy :Vehicle) Retrieve (retrieve (?x ?y) (?x?y | (((:ahmad) (:honda200))
ObjectPropertyRange(:ownedBy :Person) Instances #drives)) ((:sahar) (:volvo100)))
SE}iﬁiﬁISBiﬁigin'gi'(”év‘%”s”ﬁﬁfi?e”)) (retrieve (?x ?y) (? ?y | (((ahmad) (:honda200))
CIassAssertion('Persoﬁ 'ahmz;ld) #owps)) ((isahar) (:volvo100)))
CIassAssertion(;VehicIe. :honda200) (ret_r o (X)) | (i) (@noe L)
ClassAssertion(:Vehicle :volvo100) #drlyenBy)) ((sanar) (:volvo100)))
ClassAssertion(:Person :sahar) (retrieve (?x ?y) (?x?y | (((:honda200) (:ahmad))
ObjectPropertyAssertion(:drives :ahmad #ownedBy)) ((:volvo100) (:sahar)))
:honda200)

ObjectPropertyAssertion(:drives :sahar :volvo100)

Figure 5.12: Tests performed on OWL 2 mapping of ORM equality binary role constraint
(Rule 14)
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5.2.15 Exclusion Role (Rule 15):

An example in OWL 2 that contains classes Vehicle, Company, Person, OwnedBy.Company
and OwnedBy.Person, in addition to roles OwnedByC and OwnedByYyP. Instances are inserted
for classes Vehicle, Company and Person. Also, instances are inserted for object properties
OwnedByC and OwnedByP. All these insertions are made to apply instance checking to this
ontology to prove the correctness of this ontology that represents the mapping (mapping

Exclusive Role from ORM into OWL 2). For Exclusive Role the cases are:

i) The equivalent class OwnedBy.Company is checked to be equivalent to the

complement of equivalent class OwnedBy.Person and the result is true as expected.

i) Consistency check is performed without violating exclusion constraint and the result is

as expected consistent Abox with Thox.

iii) The inserted instance jts.com to class Company is set to play both roles OwnedByC
and OwnedByp to vaiolate the exclusion constraint and the result Abox is expected to
be inconsistent as a result of role exclusion and the result is as expected (inconsistent
AboX).

OWL 2 Functional Syntax Checked
|OwnedBy

Declaration(Class(:OwnedBy.Company)) Example Q6
EquivalentClasses(:OwnedBy.Company >87 @
IOwnedBy

ObjectComplementOf(:OwnedBy.Person))
EquivalentClasses(:OwnedBy.Company
ObjectSomeValuesFrom(:OwnedByC

Owns

:Company)) Type of nRQL quer Result
Declaration(Class(:OwnedBy.Person)) -I-th QL query
ST PR ORI |27 Al Concept- (concept-equivalent? [#OwnedBy.Company| | True

ObjectSomeValuesFrom(:OwnedByP :Person))

ObjectPropertyDomain(:OwnedBYyC :Vehicle) SeuivEEmEs | (e RonTetE Perail)

ObjectPropertyDomain(:OwnedByP :Vehicle)

ClassAssertion(:Person :mira) Consistency | ? (abox-consistent? file:// True
ClassAssertion(:Company :jts.com) Check exclusionrole.owl) _
ClassAssertion(:Vehicle :HY130) (with assertions that do not violate the
ObjectPropertyAssertion(:0wnedByC :HY 130 ? (abox-consistent? file://exclusionrole.owl) | Nill
:jts.com) (with assertions that do violate the
ObjectPropertyAssertion(:OwnedByP :HY 130 constraint)

:mira)

Figure 5.13: Tests performed on OWL 2 mapping of ORM exclusion role constraint (Rule 15)
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5.2.16 Exclusion Binary Role (Rule 16):

An example is created and loaded into RacerPro 2.0 by using its RacerPorter interface. The
example includes classes Person and Car, in addition to object properties owns and drives. An
instance named ahmad is asserted to class Person and plays the role drives for the instance
honda200 of class Car and at the same time this instance ( ahmad) plays the role owns for the
same instance honda200 of class Car. This assertion is expected to give inconsistency for
Abox and this result is obtained as expected (inconsistent Abox). The result of inconsistency
of ABox with TBox proves the mapping of Exclusion Binary Relation using OWL 2 construct
(DisjointObjectProperties).

OWL 2 Functional Syntax Checked _—
InverseObjectProperties(:Owns :OwnedBY) Example
ObjectPropertyDomain(:Owns :Person) @ (039 @
ObjectPropertyRange(:Owns :Vehicle)
InverseObjectProperties(:WantsToBuy :BoughtBy)
ObjectPropertyDomain(:OwnedBY :Vehicle) WantsToBuy/
ObjectPropertyRange(:OwnedBY :Person) Type of nRQL query Result
ObjectPropertyDomain(:WantsToBuy :Person) Test
ggiggtg;8nggiﬁg}n\(’\/gg‘Lzaﬁg;yv\e/ﬁ ihcll(;lf ) Retrieve (retrieve (?x ?y) (?x ?y #0Owns)) ((:ahmad)(:
ObjectPropertyRange(:BoughtBy :Person) Instances i honda200))
DisjointObjectProperties(:0wns :WantsToBuy) (retrieve (?x ?y) (?x %y ((-ahmad)
ClassAssertion(;Person :ahmad) #WantsToBuy)) (:honda200
ClassAssertion(;Vehicle :honda200) Consistency | ? (abox-consistent? file:// True
ObjectPropertyAssertion(:Owns :ahmad :honda200) | Check exclusionbinary.owl)
ObjectPropertyAssertion(:WantsToBuy :ahmad (with assertions that do not violate
:honda200) the constraint)

? (abox-consistent? Nill

file://exclusionbinary.owl)

(with assertions that do violate the

constraint)

Figure 5.14: Tests performed on OWL 2 mapping of ORM exclusion binary role constraint
(Rule 16)

5.2.17 Symmetric Ring Constraint (Rule 17):

For Symmetric Ring Constraint, we assign an instance ahmad (Fig. 5.15) for the class Person
that plays the role Likes for the instance issa, which is also assigned to class Person. We
retrieve the instances related by the role likes and the result is as expected ahmad likes issa and

issa likes ahmad and this achieves the symmetric constraint.
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OWL 2 Functional Syntax

Declaration(Class(:Person))
Declaration(ObjectProperty(:isLikedBy))
InverseObjectProperties(:isLikedBy :likes)
Declaration(ObjectProperty(:likes))
InverseObjectProperties(:isLikedBy :likes)
SymmetricObjectProperty(:likes)
ObjectPropertyDomain(:likes :Person)
ObjectPropertyRange(:likes :Person)
Declaration(NamedIndividual(:ahmad))
ClassAssertion(:Person :ahmad)
ObjectPropertyAssertion(:likes :ahmad :issa)
Declaration(NamedIndividual(:issa))
ClassAssertion(:Person :issa)

Checked
Example @

oom| |

' Likes/
Type of nRQL query Result
Test
Retrieve ?(retrieve(?x?y)(?x?y (((:ahmad) (:issa))
Instances | #likes)) ((:issa) (:ahmad)))

Figure 5.15: Tests performed on OWL 2 mapping of ORM symmetric ring constraint (Rule

17)

5.2.18 Asymmetric Ring Constraint (Rule 18):

For Asymmetric Constraint, an instance ahmad is asserted for the class Person and plays the

role ParentOf for an instance issa, and at the same time the symmetric relation is created

where issa is made to play the role ParentOf for the instance ahmad (Fig. 5.16). When

checking the consistency for the Abox, it is as expected inconsistent and this is true where the

role ParentOf is defined as Asymmetric and as in the example ahmad is parent of issa, then

issa cannot be parent of ahmad.

OWL 2 Functional Syntax
Declaration(Class(:Person))
Declaration(ObjectProperty(:SonOf))
InverseObjectProperties(:Son :ParentOf)
Declaration(ObjectProperty(:ParentOf))
AsymmetricObjectProperty(:ParentOf)
ObjectPropertyDomain(:ParentOf :Person)
ObjectPropertyRange(:ParentOf :Person)
Declaration(NamedIndividual(:ahmad))
ClassAssertion(:Person :ahmad)
ObjectPropertyAssertion(:ParentOf :ahmad
;issa)
Declaration(NamedIndividual(:issa))
ClassAssertion(:Person :issa)
ObjectPropertyAssertion(:ParentOf :issa
:ahmad)

Checked
Example
Type of nRQL query Result
Test
Retrieve ?(retrieve(?x?y)(?x?y #ParentOf)) (((:ahmad)
Instances (issa))
((:issa)
(:ahmad)))
Consistency | ? (abox-consistent? file:// asymmetric.owl) | True
Check (with assertions that do not violate the
constraint)
? (abox-consistent? file://asymmetric.owl) | Nill

(with assertions that do violate the
constraint)

Figure 5.16: Tests performed on OWL 2 mapping of ORM asymmetric ring constraint (Rule

18)
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5.2.19 Irreflexive Ring Constraint (Rule 19):

For Irreflexive Constraint, an instance mira of class Person is made to play the role SisterOf
for instance maya which does not violate the irreflexive constraint and Abox is consistent.
Also instance mira is set to play the role SisterOf for itself (Fig. 5.17). When checking the
consistency for Abox, it gives us inconsistent Abox as expected, which is true since the role

SisterOf is defined as irreflexive.

OWL 2 Functional Syntax Checked

Declaration(Class(:Person)) Example

Declaration(ObjectProperty(:SisterOf))

InverseObjectProperties(:SisterOf : SisterOf)

Declaration(ObjectProperty(:SisterOf)) - -

IrreflexiveObjectProperty(:SisterOf) SHIETE)

ObjectPropertyDomain(:likes :Person) Type of nRQL query Result

ObjectPropertyRange(:likes :Person) Test

Declaration(NamedIndividual(:mira)) Retrieve ?(retrieve(?x?y)(?x?y #SisterOf)) (((:mira)

ClassAssertion(:Person :maya) Instances (:maya))

Declaration(NamedIndividual(:maya)) ((:mira)

ClassAssertion(:Person :maya) (:mira)))

ObjectPropertyAssertion(:SisterOf :mira Consistency | ? (abox-consistent? file:// irreflexive.owl) True

‘maya) Check (with assertions that do not violate the

ObjectPropertyAssertion(:SisterOf :mira constraint)

:mira) ? (abox-consistent? file://irreflexive.owl) Nill
(with assertions that do violate the constraint)

Figure 5.17: Tests performed on OWL 2 mapping of ORM irreflexive ring constraint (Rule
18)

5.2.20 Syntatic Sugar for ORM/OWL 2
5.2.20.1 Identity Constraint

An example in OWL 2 that contains a class named Person with a defined construct HasKey
named issn is created (Fig. 5.18). Different instances ahmad and ayser are asserted for the
class Person and populated by the data type property issn to the same instance 12345 of type
integer. This population of the relation (issn) makes the ABox inconsistent with TBox. The
inconsistency of ABox proves that the Haskey construct works as intended from the
perspective of machine logic. Here we use Pellet 2.2.2* reasoner which supports OWL 2 and

HasKey construct.

5 http://clarkparsia.com/pellet/


http://clarkparsia.com/pellet/
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OWL 2 Functional Syntax Checked

Declaration(Class(:Person)) Example l’(iesgsr%n
Declaration(DataProperty(:issn))

Declaration(NamedIndividual(:ahmad))

ClassAssertion(:Person :ahmad) Type. i nRQt querjy iz
DataPropertyAssertion(:issn :ahmad "12345"Mxsd:integer) | Consistensy | Pellet Consistency Yes
Declaration(Namedindividual(:aysar)) Check c:/ hasKey.owl)
ClassAssertion(:Person :aysar) (with assertions that do not
DataPropertyAssertion(:issn :aysar "12345" xsd:integer) violate the constraint)
DifferentIndividuals(:aysar :ahmad) Pellet Consistency No
DataPropertyAssertion(:issn :ahmad "12345"xsd:integer) c:/ hasKey.owl)
DataPropertyAssertion(:issn :aysar "12345" xsd:integer) (with assertions that do violate
HasKey(:Person () (:issn)) the constraint)

Figure 5.18: Tests performed on OWL 2 mapping of ORM identity constraint
5.2.20.2 Total and Exclusive Constraints

An example as shown in Figure 5.18, in OWL 2 is created. That contains a class named
Vehicle as a super type and other two classes named PrivateCar and VanCar as a subtypes for
the class Vehicle. This example is created to prove the correctness of disjoint union
formalizing. When retrieving the instances of class Vehicle, it gives us the union of instances
of subclasses PrivateCar and VanCar, and this achieves unionOf between subclasses. The
instances are made different from each other where OWL 2 does not support unique name
assumption. After asserting the same individual mercedes100 to class VanCar, where this
instance is already asserted to class Private Car, this assertion violates the disjoitness between
classes VanCar and PrivateCar. The result of checking the consistency of ABox is nil (ABox

is inconsistent) and this result is as expected.

OWL 2 Functional Syntax Checked
DisjointUnion(:Vehicle :VanCar :PrivateCar) Example
Declaration(NamedIndividual(:boral00))
ClassAssertion(:Vehicle :boral00)
ClassAssertion(:VanCar :hondal00)
ClassAssertion(:VanCar :mazda200)
ClassAssertion(:PrivateCar :mercedes100)

ClassAssertion(:PrivateCar :toyota200)

ClassAssertion(:VanCar : mercedes100) -FI{—ZtF;?e?/]; Test ?r?t(rgi(le_vg(lii;y(?x F(?‘i)li)lrtaIOO)) (Chonda100))
Differentindividuals(:hondal00 :boral00) Instances #Vehicle)‘) ’ (('.mazdaZOO)).
Differentindividuals(:mazda200 :boral00) ( ('.mercedeleO))
Differentindividuals(:mercedes100 :boral00) ” 200
Differentindividuals(:toyota200 :bora100) ((‘toyota200)))
DifferentIndividuals(:mazda200 :hondal100) Consistency | ? (abox-consistent? True
DifferentIndividuals(:mercedes100 :hondal00) | Check file:// asymmetric.owl)
DifferentIndividuals(:toyota200 :honda100) (with assertions that do
DifferentIndividuals(:mercedes100 :mazda200) not violate the
DifferentIndividuals(:toyota200 :mazda200) constraint)
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DifferentIndividuals(:toyota200 :mercedes100) ? (abox-consistent? Nill
file://asymmetric.owl)
(with assertions that do
violate the constraint)

Figure 5.19: Tests performed on OWL 2 mapping of ORM total and exclusive constraints

Although the tests performed on the OWL 2 mappings of the ORM constructs cannot be
theoretically complete, they cover most of the ground (i.e., they are comprehensive). In fact, in
our tests we focused on using the boundary analysis techniques of software testing, where we
tested boundary or limit conditions of the constraints. An example of such tests is the
consistency check performed on the exclusive constraint as discussed in section 5.2.5. Note
that the exclusive constraint means that the population of the subtypes constrained by this rule
is pairwise distinct (i.e., no assertion can be the instance of two classes). The limit of this
constraint can be simply checked by trying to violate the constraint and then checking the
consistency of the A-Box. Consider, as another example, the role frequency constraint.
Consider an object-type A that is restricted to play a role with 3-5 occurrences only (e.g., a
teacher that is restricted to teach between 2-4 courses). Testing the limits of such constraint
requires testing the minimum occurrence restriction (i.e., 2) in addition to the maximum

occurrence restriction (i.e., 4).

5.3 Evaluation Process of extending ORM for Complete representation of OWL 2

Our work of extending the ORM notation to cover all OWL 2 constructs was evaluated by
means of a survey. Each construct of the eleven additional constructs added to the ORM
notation was represented by three different graphical notations after extensive analysis of the
graphical notations currently used in ORM and the rationale behind them. The three new
proposed notations were chosen to comply with the existing ORM graphical notations. The
available choices for the graphical representation were then put in a form of a survey shown in
appendix c. The survey was revised by two computer engineers working at the Palestinian e-
government academy and the Ministry of Telecom and IT involved in the development of the
Palestinian Interoperability Framework “Zinnar” who developed related ontologies in ORM,
one of the master of computing students who works at the SINA institute at Birzeit university
who studied object role modeling, description logic and web ontology language through some
of the master courses and the supervisor of the this thesis who is an expert in ORM,

description logics and OWL 2.
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Workshops were held to explain the broader scope of the research, the motivation behind
extending ORM, and the rationale behind each possible graphical representation. Thirty one
ORM and OWL practitioners participated in the workshops and survey process, twenty one of
these practitioners who conducted a workshop where master students of computing at Birzeit
university who studied the course of knowledge engineering taught by Dr.Mustafa Jarrar. The
workshop participants were at the end of the knowledge engineering course (the course was at
fall 2011 semester) after they had studied object role modeling, description logics and web
ontology language. The students participated in the workshop had developed several modeling
cases and projects using object role modeling and web ontology language. Through the
workshop an explanation for students about the objectives and related information of this
thesis was conducted, also an explanation about the extending of ORM and the new proposed
graphical notations was introduced, in addition to a clarification about each construct of OWL
2 and its three new proposed graphical notations. A discussion concerning the ORM extension
was held by the thesis author, thesis supervisor and workshop students. At the end of
workshop discussion these practitioners were asked to determine their preferred graphical
representation for each construct (by filling the survey). Also the practitioners were asked to
add a new proposed graphical notation other than the already three specified ones if they were
willing to do so from their own perspective. The results of the survey were then analyzed and
the final notations were determined with the highest percent of selection. Ten of the
practitioners were conducted individually. Some of these ten survey fillers were practitioners
in ORM who developed the stationers ORM modeling cases for the Palestinian e-government
project, others were students of master of computing at Birzeit university who studied the
course of knowledge engineering that includes related surveyed subjects.

5.3.1 Equivalent Classes:

Equivalent Classes as an OWL 2 construct means that two or more classes constrained with
the construct Equivalent Classes are semantically equivalent to each other. In ORM there are
no notations that implement the equivalence between two or more objects. The proposed
notations to represent Equivalent Classes in ORM are shown in Figure 5.20; also the usage of

using each proposed notation is shown in the same figure. Of the 31 knowledgeable persons
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surveyed, ten preferred notation (a), five preferred notation (b) and sixteen preferred notation
(c). According to the survey result the graphical notation (c) was preferred by 16 of the 31

experts who participated in the evaluation survey (52%). So this graphical notation was used.

(c)

+—>

.\’

52%

Figure 5.20 Surveyed notations and their percent results for ORM in their symbol and usage
shapes to represent OWL 2 construct of Equivalent Classes

5.3.2 Disjoint Classes:

To represent Disjoint Classes construct of OWL 2 in ORM, three notations are suggested as
shown in Figure 5.21 according to usually used symbols that logically indicate the semantic of
disjoint, also the usage of using each proposed notation is shown in the same figure. Of 31
experts surveyed 20 preferred the ® symbol to represent the Disjoint Classes construct, three
preferred the symbol shown in (b) and eight preferred symbol (c). According to the survey
result the graphical notation (a) was preferred by 20 of the 31 practitioners who participated in

the evaluation survey (64%). So this graphical notation is used.

64% 10% 16%

Figure 5.21 Surveyed notations and their percent results for ORM in their symbol and usage
shapes to represent OWL 2 construct of Disjoint Classes
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5.3.3 Intersection of Class Expressions

Intersection of classes construct of OWL 2 is an expression states that the intersection between
classes contains the individuals that are members of each class belongs to intersected classes.
ObjectintersectionOf construct for classes is not represented in ORM. A symbol of
intersection () is proposed to be used for representing the expression of classes' intersection
in three different ways as shown in Fig. 5.22. As shown in Fig. 5.22, we represent anonymous
class (class with no name) just to show that we have an expression of intersection of classes,
which is virtually equivalent to the anonymous class. In implementation we do show the
anonymous class graphically. The proposed graphic notation of the circle with the symbol
attached in different ways within the ellipse represents intersected equivalent class. This
proposed graphical notation represents the expression of classes’ intersection. The same thing
in principle is applied for class complement. Of 31 practitioners surveyed four preferred
notation (a), 18 preferred notation (b) and nine preferred notation (c). According to the survey
result the graphical notation (b) was preferred by 18 of the 31 experts who participated in the
evaluation survey (58%). So this graphical notation is used-

(b) (c)

n .
A_Intersection

A_Intersection

58% 29%

Figure 5.22 Surveyed notations and their percent results for ORM in their symbol and usage
shapes to represent OWL 2 construct of Intersected Classes

5.3.4 Class Complement

The Complement of Class expression is not represented in ORM which states that the
complement class contains all individuals that are not members of the intended class. The
three notations that are proposed to represent the expression of class' complement are shown in
Fig. 5.23. The symbol not (=) is proposed to be used for representing the complement of class
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expression as shown in the Fig. 5.23 of 31 practitioners surveyed six preferred notation (a), 14
preferred notations (b) and eleven preferred notation (c). According to the survey result the
graphical notation (b) was preferred by 14 of the 31 experts who participated in the evaluation

survey (45%). So this graphical notation is used in the implementation.

(a) (b) (c)

o | S
CBD | G | G
O

19% 45% 36%

Figure 5.23 Surveyed notations and their percent results for ORM in their symbol and usage
shapes to represent OWL 2 construct of Class Complement

5.3.5 Class Assertions

Class Assertions is not formally represented in ORM. The three notations that are proposed to
represent class assertions are shown in Fig. 5.24.a. The symbol (» ) is proposed to be used to
enable the class assertions as shown in Fig. 5.24. Of 31 practitioners surveyed nine preferred
notation (a), four preferred notation (b) and fifteen preferred notation (c). According to the
result of the survey the graphical notation (c) was preferred by 15 of the 31 practitioners who
participated in the evaluation survey (48%). So this graphical notation is used in the
implementation. Three proposed notations for the appearance of individuals are shown in Fig.
5.23.b. The graphical appearance of individuals is planned to be allowed for four of them, if
there is more than four individuals they will be shown within separate window. Of 31
practitioners surveyed 17 preferred notation (a), eight preferred notation (b) and six preferred
notation (c). According to the survey result the graphical notation (a) was preferred by 17 of

the 31 experts who participated in the evaluation survey (55%).
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(a) (b) (c)
O | | @
48% 13% 39%

(@)

55%

19%

(b)

Figure 5.24 Surveyed notations and their percent results for ORM to represent OWL 2
construct of Class Assertions

5.3.6 Individual Equality

Individual Equality states that if we have two instances or more that are related by Individual
Equality (OWL 2 Construct), then these instances are the same. The three notations that are
proposed to represent Individual Equality are shown in Fig. 5.25.a. Of 31 practitioners
surveyed 24 preferred notation in (a), six preferred notation (b) and one preferred notations (c).
According to the survey result the graphical notation (a) was preferred by 24 of the 31 experts
who participated in the evaluation survey (77.5%). So this graphical notation is used in the

implementation.

77.5% 19.5% 3% 71% 10%

(a) (b)
Figure 5.25 Surveyed notations and their percent results for ORM to represent OWL 2
construct of (a) Individual Equality and (b) Individual Inequality

5.3.7 Individual Inequality

Individual Inequality states that if we have two instances or more that are related by Individual
Inequality (OWL 2 Construct), then these instances are different from each other. The three
notations that are proposed to represent Individual Inequality are shown in Fig. 5.25.b. Of 31
practitioners surveyed six preferred notation in (a), 22 preferred notations (b) and three
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preferred notation (c). According to the survey result of the graphical notation (b) was
preferred by 22 of the 31 experts who participated in the evaluation survey (71%). So this

graphical notation is used in the implementation.

5.3.8 Positive Object/Data Property Assertion

The three notations that are proposed to represent Positive Object Property Assertion are
shown in Fig. 5.26. Of 31 practitioners surveyed 19 preferred notation in (a), eight preferred
notation (b) and four preferred notation (c). According to the survey result the graphical
notation (a) was preferred by 19 of the 31 practitioners who participated in the evaluation

survey (61%). So this graphical notation is used in the implementation.

(a) (b) (c)

61% 26% 13%

Figure 5.26 Surveyed notations and their percent results for ORM to represent OWL 2
construct of Positive Object Property Assertion

5.3.9 Negative Object/Data Property Assertion

The three notations that are proposed to represent Negative Object Property Assertion are
shown in Fig. 5.27. Of 31 experts surveyed 21 preferred notation in (a), seven preferred
notation (b) and three preferred notation (c). According to the survey result the graphical
notation (a) was preferred by 19 of the 31 practitioners who participated in the evaluation

survey (68%). So this graphical notation is used in the implementation.

(a) (b) (c)

68% 23% 9%

Figure 5.27 Surveyed notations and their percent results for ORM to represent OWL 2
construct of Negative Object Property Assertion
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5.3.10 Reflexive Ring Constraint:

The notation for reflexive constraint is set as that for ring constraints using the word “ref” to
indicate the reflexive constraint. This notation was not surveyed because we used exactly the
same pattern used in ORM for ring constraints and so as for transitive constraint.

5.3.11 Transitive Ring Constraint:

The notation for reflexive constraint is set as that for ring constraints using the word “tra” to

indicate the reflexive constraint.

Table 5.1 summarizes all the graphical representation choices and the results of the survey.

Construct Name Representation (1) | Representation (2) | Representation (3)
1 | Equivalent Classes @ @
32% 16% 52%
2 | Disjoint Classes ® @ @
64% 10% 16%
3 | Intersection of Class @
Expressions ? @
58% 29%
13%
4 | Class Complement ? @ @
45% 36%
19%
5 | Class Assertions (before) ’“
® ."
48% 13% 39%
Class Assertions (after) o
55% 26% 19%

6 | Individual Equality
3%

~
-
<
>
=
©
ul

5%
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Individual Inequality

71%

10%

Positive Property Assertion

a+ b
[ 1|

|

61%

a @b
[fa T ]

|

26%

Negative Property
Assertion

a-b
[fa[ |

|

68%

a®b
[fa T ]

|

23%
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Chapter Six

Implementation of Mapping between ORM and OWL 2

6.1 Introduction

This chapter provides an overview of the extension of DogmaModeler tool to hold the
mapping between ORM and OWL 2. DogmaMaodeler was developed as a modeling tool using
the programming language Java within the integrated development environment Java Beans.
DogmaModeler is used as a tool for ontology engineering, where it enables ontology builders
to build ontologies that are characterized by both usability and reusability, and by easily using
ORM graphical notations [JDMO03]. DogmaModeler and its extension can be downloaded
from'®. Using the extended DogmaModeler, the person can graphically build an ontology
using graphical representation of objects, relations and constraints on the user-interface for
both building and editing the required ontology. The DogmaModeler tool will automatically
create the equivalent OWL 2 file that represents the graphically-built ontology using ORM.
The mapped OWL 2 file can be checked for correctness (like consistency and coherency

checking) using the Hermit reasoner, which is integrated into DogmaModeler.

6.2 DogmaModeler

The work presented in this thesis is implemented as an extension to DogmaModeler.
DogmaModeler is an ontology modeling tool based on ORM. DogmaModeler allows
modeling, browsing, and managing ontologies. This tool allows one to build his Ontology

18 http://www.jarrar.info/Dogmamodeler/
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using the ORM paradigm and then validate his Ontology using integrated Description Logic
reasoning services. In its original implementation, DogmaModeler supported the mapping of
built ORM ontologies into three notations: ORM-ML (ORM Markup Language), Pseudo
Natural Language, and DIG (Description Logic Interface). These mappings allow the ontology
to be easily exchanged and understood by domain experts, accessed and processed
automatically by application, and validated using Description Logic reasoning services.
Originally, ORM diagrams built in DogmaModeler were mapped automatically to DIG; a
description logic interface (XML-based language). The DIG mappings of the ORM models
were then validated using a Description Logic reasoning server (such as Racer, Fact++, etc)

which acted as a background reasoning engine.

In fact, DogmaModeler integrates reasoning services (such as Racer, Fact++, etc) as
background reasoning engines. This allows one to validate his/her ontology, for any possible
contradiction or inconsistency. The following is a brief description of the three mappings of

ORM that DogmaModeler originally support:

(i) ORM Markup Language (ORM-ML) [JO5]. It is an XML-based language to markup
conceptual diagrams, thus allowing the ontology that is built in ORM to be accessed
and processed at run-time of applications.

(i) Pseudo Natural Language. Through utilizing ORM’s verbalization capabilities,
DogmaModeler supports verbalization of ontologies into pseudo natural language,
allowing for easy exchange and understanding of the ontologies by domain experts.

(iii) Description Logic Interface (DIG). It is an XML-based language supported by several
description logic reasoners (such as Racer, Fact++, etc), which allows for the
validation of ontologies built in ORM.

6.3 Extending DogmaModeler

Our implemented extension of DogmaModeler is twofold:
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i) We implemented the OWL 2 mapping of ORM presented in this paper, such that the
ORM diagrams currently built in DogmaModeler are automatically mapped to OWL 2

and then validated using the Hermit reasoning tool.

i) We implemented our newly proposed ORM notations with its OWL 2 mapping.

By doing so, one can now build his OWL 2 ontology graphically using ORM and its mapping
into OWL 2 is automatically generated and then validated using description logic reasoning.
As we mentioned before the idea behind the implementation of our work is enabling ontology

building by the intended person using the graphical oriented paradigm.

The DogmaModeler tool is now extended to become an environment for authoring OWL 2
ontologies graphically using ORM. That is, one now builds his OWL 2 ontology graphically
using ORM and then DogmaModeler generates the OWL 2 code automatically. This code can
then be validated easily using description logic reasoning via the integrated “HermIT”

reasoning tool.

For the first part of implementation, we extend DogmaModeler to automatically map ORM
into OWL 2 constructs depending on ORM markup language [DJMO02, JO5] (which is
automatically generated according to equivalent ORM graphical notations). Figure 6.1.a shows
a snapshot of DogmaModeler outputs, which illustrates an ORM graphical notation example
with reasoning results indicating that the built example of ORM is consistent and there is no
unsatisfiable concepts. Figure 6.1.b, shows the mapping result of OWL 2 for the example

illustrated in Figure 6.1.a.

Fig. 6.2 depicts a modification for ORM diagram of Fig 6.1.a which is built using
DogmaModeler. The first window (Fig. 6.2.a) shows the diagram and its validation (by means
of logical reasoning) using the integrated HermIT reasoning server while the second window
shows the OWL 2 mapping of the diagram. Note that the results of the reasoning state that the
class ‘ownedBy.Company’ is unsatisfiable due to the contradiction between the exclusion and

mandatory constraints.
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m DogmaModeler EI@\E

File Edit %ew OntologyBase Commitments WYalidator Tools Windows Help

I \

(@) ORM built and validated in DogmaModeler
Figure 6.1: A Snapshot of an ORM diagram built in DogmaModeler, its mapping to OWL 2,
and its validation.
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(a) ORM built and validated in DogmaModeler

(b) OWL 2 mapping of the ORM in (a)

Figure 6.2: A Snapshot represent modified ORM diagram of Figure 6.1, built in
DogmaModeler, its mapping to OWL 2, and its validation.

For the second part of implementation, that illustrates the extending of ORM notations to

represent those of OWL 2 not represented by original ORM notations. We extended

DogmaModeler by adding the new proposed ORM notations which are illustrate in chapter 4.

These extended notations are integrated with the family of ORM notations holed by

DogmaModeler with the full functionality of mapping. The mapping of these new proposed
ORM notations is done to both ORM Markup Language and OWL 2. We proposed the new

equivalent constructs for ORMML to hold the extended ORM notations, but here our

significance concern is mapping the extended ORM notations into OWL 2 that is actually

implemented.
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As a result of implementation we are mainly concerned with enabling one to graphically build
his/her ontology using extended ORM that fully represents of OWL 2. OWL 2 (recommended
web ontology language from W3C) contains the majority of constructs to be used for building
any needed ontology supported by many reasoners for checking the correctness of built
ontology. This extension of ORM constructs is included in the extended DogmaModeler tool,
which will enable one to build his ontology graphically without writing OWL 2 syntax and
DogmaModeler will automatically convert this ontology to OWL 2 representation file. The
resulting file of OWL 2 can be used easily for ontology modeling purposes. One can
interactively model the needed ontology using DogmaModeler and after every graphical
modeling step she/he will be fed back about his/her progress. The incremental ontology

building can be checked continuously for correctness.

Fig. 6.3 shows the use case of Fig. 4.9 (section 4.15) built in DogmaModeler. The first
window (Fig. 6.3) contains the ORM diagram. Note that this diagram contains our proposed
extension of the ORM notation. The results of the validation using logical reasoning show that
the ORM model is consistent and there are not unsatisfiable concepts. The second window
(Fig. 6.5.a) shows the OWL mapping of the ORM diagram. Notice the mapping of the newly
added ORM notations into OWL 2.

0 DogmaModeler I T - TR oG

|| File Edit View OntologyBase Commitments Validator Tools Windows Help

4 ORM Diagram | oRM-ML | Pseudo NL| DIG | OWL | owL2 ]

MA] of e |Blelelx] 1] |Ele| BlEE B8l ool ]| = = -l ElElEl:|

NonNaturalPersos

Organization

NaturalPerson

areHoldingCompan LocalNGO

PT48STR &=~~~ —~—~~~~=Fr- "~~~ 7

L37S63H - — — — — - — « - @_,,,___—— NME&STE

ReasonerName: HermiT ..‘_I '
=

Consistent: true

There are no unsatisfiable dasses j '

Figure 6.3: ORM use case of Figure 4.9 using DogmaModeler with new proposed ORM
notations.
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Fig. 6.4 shows another ORM example created using DogmaModeler. The figure depicts three
sample ontologies for ministry of labor, health ministry and transportation ministry expressed
in ORM; these sample ontologies are integrated with each other using some of the new
proposed ORM notations illustrated below. Note that these three sample ontologies are
proposed for Palestinian ministries. However, what is depicted in Figure 6.4 is not a complete
ontology and is only meant to be a sample demonstration of the usefulness of the newly
proposed ORM notations. Fig. 6.5.b shows the equivalent OWL 2 constructs (in OWL/XML

syntax) of new proposed ORM notations that are illustrated in Fig. 6.4.

D DagmaModeler T v - - =&

File Edit View Ontology Base Commitments Validator Tools Windows Help

4 Diagramll ORM-ML | Pseudo ML | DIG | OWL | owL2 |

gle|el-| 1] |z|o| OlEEE BlEle|olo]-|w|a] [o ~]-|?|e|al- SISk

NotNaturalPerson
(o)

kAl <

Figure 6.4: ORM example using DogmaModeler with new proposed ORM notations

Figure 6.4 contains new proposed ORM graphical notations. These notations are illustrated in

what follows:

e Equivalent Classes is depicted as “«<” between the equivalent classes

PrivateWorker and Employee.

e Disjoint Classes is depicted as “@” between the disjoint classes Government and
Company.
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e Intersection of Class Expressions is depicted as “@” between the intersected
classes Patient and PublicWorker and the proposed equivalent class PatientWorker.

e Class Complement is depicted as “@” connected to the intended class
NaturalPerson and the proposed equivalent class NotNaturalPerson which is
equivalent the complement of class NaturalPerson.

e Individual Equality is depicted as “®©” between the same individuals Mira and
Maya which are instances asserted as instances into the class Employee.

e Individual Inequality is depicted as “@” between the different individuals Sonata

and Verna.
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Figure 6.5 OWL 2 constructs (in OWL/XML syntax) of new proposed ORM notations that
are illustrated in (a) Figure 6.3 and (b) Figure 6.4.
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Chapter Seven

Conclusion and Recommendations for Future Work

7.1 Conclusion

The ever increase of the need to develop various applications that depend on ontology
pressures the need to build ontology without time and effort consuming. It is more easily for
people to perform conceptual modeling graphically. OWL 2 which is the recommended Web
Ontology Language needs proficiency and using it to build the needed ontology is time and
effort consuming. It is worth to find a way to build ontology graphically and at the same time
using OWL 2. ORM which is rich of graphical notations and characterized by high

expressivity is used as a conceptual modeling tool in a graphical context.

The mapping and automation of this mapping between ORM and OWL 2 are the main theme
of this thesis. We mapped nineteen (out of twenty nine) ORM constructs. The ORM constructs
that depend on n-arity cannot be mapped into SROIQ/OWL 2 constructs according to the fact
that OWL 2 supports only binary relations. Where these nineteen constructs represent the
most commonly used constructs in ORM. At the same time, those constructs are supported by
SROIQ Description Logic; which means that OWL 2 output we have mapped is characterized
by its ability of decidability. Although the mapping from ORM into OWL 2 is done
theoretically using SROIQ Description Logic, which leads to the verification of mapping
correctness, we do evaluate this mapping (from ORM into OWL 2). The evaluation here

which is done practically using RacerPro reasoner is done to assure practically the correctness
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of mapping. This evaluation of mapping from ORM into OWL 2 is done by examining each
mapped construct as a complete OWL 2 file (the file is loaded into RacerPro 2.0 reasoner)

using different reasoning services such as consistency, coherency and instance checking.

In the second part of this research, we extend ORM for complete representation of OWL 2 .
We do proposed new notations of ORM to completely represent OWL 2 by ORM notations, in
addition of using non-notational expressions. The proposed notations for extending ORM are
selected according to an evaluation process. The evaluation process depends in a survey
fulfilled by practitioners in both ORM and OWL.

DogmaModeler as a modeling tool based on ORM is extended to include the new proposed
notations of ORM with the already existing notations that are mapped into OWL 2. As a result
one can use ORM as an interface of OWL 2 to build him/her ontology graphically, where the
built ontology is automatically mapped into OWL 2 using the extended DogmaModeler to
perform this mapping (between ORM and OWL 2). Once the mapped OWL 2 file from
extended ORM is generated, we can reason about the ontology represented in OWL 2 using
Hermit reasoner that supports OWL 2 to check the correctness of the built ontology. It is
important to note here that the extended ORM is not merely a graphical notation for the
visualization of ontologies. It is a methodology that guides the ontology engineer to design and
represent an ontology using the different constructs and rules it provides. ORM facilitates the
process of engineering the ontology through its verbalization capabilities which allow the

involvement of domain experts in the modeling process.

As a result of this thesis work we have developed an expressive and methodological graphical
notation for OWL 2, which allows people to author OWL 2 ontologies graphically. To
summarize, we develop our thesis work through two main phases : (i) mapping the graphical
notations of ORM to SROIQ/OWL 2 following the semantics of OWL 2 (ii) extending the
ORM graphical notation to cover all OWL 2 constructs not currently covered by ORM. OWL
2 is the W3C-recommended ontology language for authoring ontologies. However, it does not
provide any methodological or graphical means to engineer ontologies. On the other hand,
ORM is a graphical methodological notation used for conceptual modeling. By mapping
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between ORM and OWL 2, one can now engineer OWL 2 ontologies graphically using ORM
and then map them automatically to OWL 2.

7.2 Recommendations for Future Work

Future directions of our research will involve extending DogmaModeler to allow user-friendly
debugging and reasoning that helps the user find the cause of the problem and directions on how to

solve it. Note that this is not an implementation issue; it rather needs theoretical research on reasoning
problems. In addition, we plan to perform full mapping of ORM into SROIQ/OWL 2, by
extending OWL 2 and the underpinning description logic to hold the uncovered notations of
ORM. This will include investigating an extension of the SROIQ Description Logic and the

development of a new reasoning engine to support complete reasoning of ORM.
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Appendix A-1

1. <?xml version="1.0"?> 60. <ObjectProperty IRI="#0wnedByC"/>

2. <Ontology xmlIns="http://www.w3.0org/../owl#" 61 <Class IRI="#Car"/>

3. xml :base=""http://www.dogma.org/Ontology.owl"” 62. </ObjectPropertyDomain>

4. xmiIns:rdfs="http://www._.w3.0org/../rdf- 63. <ObjectPropertyDomain>

schema#" 64.

5. xmIns:xsd="http://www.w3.0rg/2001/XMLSchema# 65. <ObjectPropertyDomain>

i 66. <ObjectProperty IRI="#0wnedByP"/>
6. xmins:rdf="http://www.w3.0org/../22-rdf- 67. <Class IRI="#Car"/>

syntax-ns#" 68. </ObjectPropertyDomain>

7. xmIns:xml=http://www.w3.0rg/ . ./namespace 69.

8. 70. <ObjectPropertyDomain>

9. <Declaration> 71. <ObjectProperty IRI="#WorksFor'/>
10. <Class IRI="#Car"/> 72. <Class IRI="#Person"/>

11. </Declaration> 73. </ObjectPropertyDomain>

12. <Declaration> 74.

13. <Class IRI="#Company"'/> 75. <ObjectPropertyRange>

14. </Declaration> 76. <ObjectProperty

15. <Declaration> IRI="#AffiliatedWith"/>

16. <Class IRI="#Female"/> 77. <Class IRI="#Company"'/>

17. </Declaration> 78. </ObjectPropertyRange>

18. <Declaration> 79.

19. <Class IRI="#Male"/> 80. <ObjectPropertyRange>

20. </Declaration> 81. <ObjectProperty IRI="#0wnedByC"/>
21. <Declaration> 82. <Class IRI="#Company"'/>

22. <Class IRI="#0wnedByC.Company"''/> 83. </ObjectPropertyRange>

23. </Declaration> 84.

24._ <Declaration> 85. <ObjectPropertyRange>

25. <Class IRI="#0wnedByP.Person'/> 86. <ObjectProperty IRI="#0wnedByP"/>
26. </Declaration> 87. <Class IRI="#Person"/>

27. <Declaration> 88. </ObjectPropertyRange>

28. <Class IRI="#Person"/> 89.

29. </Declaration> 90. <ObjectPropertyRange>

30. <Declaration> 91. <ObjectProperty IRI="#WorksFor'/>
31 <ObjectProperty IRI="#AffiliatedWith"/> 92. <Class IRI="#Company"'/>

32. </Declaration> 93. </ObjectPropertyRange>

33. <Declaration> 94.

34. <ObjectProperty IRI="#Employs'/> 95. <EquivalentClasses>

35. </Declaration> 96. <Class IRI="#0wnedByC.Company"'/>
36. <Declaration> 97. <ObjectSomeValuesFrom>

37. <ObjectProperty IRI="#0wnedByC"/> 98. <ObjectProperty IRI="#0wnedByC"/>
38. </Declaration> 99. <Class IRI="#Company"'/>

39. <Declaration> 100 </ObjectSomeValuesFrom>

40 <ObjectProperty IRI="#0wnedByP"/> 101. </EquivalentClasses>

41. </Declaration> 102.

42 . <Declaration> 103. <EquivalentClasses>

43 <ObjectProperty IRI="#WorksFor"/> 104 <Class IRI="#0wnedByP.Person'/>
44 _ </Declaration> 105 <ObjectSomeValuesFrom>

45. <Declaration> 106 <ObjectProperty IRI="#0wnedByP"/>
46. <DataProperty IRI="#hasGender"/> 107 <Class IRI="#Person"/>

47 . </Declaration> 108 </ObjectSomeValuesFrom>

48. 109. </EquivalentClasses>

49. <InverseObjectProperties> 110.

50. <ObjectProperty IRI="#Employs'/> 111. <EquivalentClasses>

51. <ObjectProperty IRI="#WorksFor"/> 112 <Class IRI="#Car"/>

52. </InverseObjectProperties> 113 <ObjectUnionOf>

53. 114 <Class IRI="#0wnedByC.Company"'/>
54. <ObjectPropertyDomain> 115 <Class IRI="#0wnedByP.Person'/>
55. <ObjectProperty IRI="#AffiliatedWith"/> 116 </ObjectUnion0Of>

56. <Class IRI="#Person"/> 117. </EquivalentClasses>

57. </ObjectPropertyDomain> 118.

58. 119. <EquivalentClasses>

59. 120 <Class IRI="#0wnedByC.Company"'/>



121.
122.
123.
124.
125.
126.
127.
128.
129.
130.

<ObjectComplementOf>
<Class IRI="#0wnedByP _.Person"/>
</ObjectComplementOf>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI="#Person'/>
<DataSomeValuesFrom>
<DataProperty IRI="#hasGender"/>
<Datatype

abbreviatedIRI=""xsd:string"/>

131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.

</DataSomeValuesFrom>
</EquivalentClasses>

<SubClassOf>
<Class IRI="#Female"/>
<Class IRI="#Person'/>
</SubClassOf>

<SubClassOf>
<Class IRI="#Male"/>
<Class IRI="#Person'/>
</SubClassOf>

<DisjointUnion>
<Class IRI="#Person'/>
<Class IRI="#Female"/>
<Class IRI="#Male"/>
</DisjointUnion>
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149 . <SubObjectPropertyOf>

150. <ObjectProperty IRI="#WorksFor"/>

151. <ObjectProperty

IRI="#AfFiliatedWith"/>

152. </SubObjectPropertyOf>

153.

154. <EquivalentClasses>

155. <Class IRI="#Person"/>

156. <DataMaxCardinal ity

cardinality="1">

157. <DataProperty IRI="#HasGender"/>

158. <Datatype

abbreviatedIRI="xsd:string"/>

159. </DataMaxCardinality>

160. </EquivalentClasses>

161.

162 . <DataPropertyDomain>

163. <DataProperty IRI="#HasGender"/>

164. <Class IRI="#Person"/>

165. </DataPropertyDomain>

166.

52. <DataPropertyRange>

53. <DataProperty IRI="#HasGender"/>

54. <DataOneOf>

55. <Literal
datatypelRI="&xsd;string"> M
</Literal>

56. <Literal
datatypelRI="&xsd;string"> F
</Literal>

57. </DataOneOf>

167. </DataPropertyRange>

168.

169. </Ontology>

Figure A-1. A maped OWL 2 (OWL/XML) for ORM schema of Figure 2.1
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A WN P

a1

<?xml version="1.0"7?>

<Ontology xmlIns="http://www.w3.0rg/../owl#"
xml :base=""http://www.dogma.org/Ontology.owl"
xmiIns:rdfs="http://www._.w3.0org/../rdf-
schema#"

53.
54.

55.

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema# 56 .

xmIns:rdf="http://www.w3.0org/../22-rdf-
syntax-ns#"
xmIns:xml=http://www.w3.0rg/ . ./namespace
<Declaration>

<Class
abbreviatedIRI="dmO:LocalGovUnit"/>

. </Declaration>
. <Declaration>

<Class
abbreviatedIRI=""dmO:Organization"/>

. </Declaration>
. <Declaration>

<Class abbreviatedIRI="dm0:Company"''/>

. </Declaration>
. <Declaration>

<Class abbreviatedIRI="dm0O:Association"/>

. </Declaration>
. <Declaration>

<Class abbreviatedIRI="dm0:TargetGroup"/>

. </Declaration>
. <Declaration>

<Class abbreviatedIRI="dmO:LocalNGO"/>

. </Declaration>
. <Declaration>

<Class abbreviatedIRI="dm0:Address"/>

. </Declaration>
. <Declaration>
. <Class

abbreviatedIRI="dmO:ShareHoldingCompany"'/>

. </Declaration>
. <Declaration>

<Class
abbreviatedIRI=""dmO:NonNaturalPerson'/>

. </Declaration>
. <Declaration>

<Class
abbreviatedIRI="dmO:NonProfitCompany"/>

. </Declaration>

: <SubClassO0f>

<Class
abbreviatedIRI="dmO:LocalGovUnit'/>

<Class
abbreviatedIRI="dmO:0rganization"/>

. </SubClassOf>

. <SubClassOf>

<Class abbreviatedIRI=""dm0:Company"''/>
<Class
abbreviatedIRI="dmO:0rganization"/>

. </SubClassOf>

: <SubClassOf>

<Class
abbreviatedIR1="dm0: ShareHoldingCompany"/>
<Class abbreviatedIRI=""dm0:Company"''/>

_ </SubClassOf>

57.
58.
59.
60.

72.

99.

100.
101.
102.

<SubClassOf>
<Class
abbreviatedIRI="dmO:Association'/>
<Class
abbreviatedIRI="dmO:NonNaturalPerson'/>
</SubClassOf>

<SubClassOf>
<Class abbreviatedIRI="dmO:LocalNGO"/>
<Class
abbreviatedIRI="dm0O:Association'/>

. </SubClassOf>

. <SubClassOf>

<Class
abbreviatedIRI=""dm0:NonProfitCompany"/>
<Class abbreviatedIRI="dm0:Company"/>

. </SubClass0Of>

. <EquivalentClasses>

<Class
abbreviatedIRI="dm0O:0Organization'/>

<Class
abbreviatedIRI="dmO:NonNaturalPerson"/>

. </EquivalentClasses>

. <DisjointClasses>
<Class
abbreviatedIRI="dm0O:LocalGovUnit"/>
<Class
abbreviatedIRI=""dm0O:Association'/>
. </DisjointClasses>
. <EquivalentClasses>
<Class

abbreviatedIRI="dmO:NonProfitCompany'/>
<ObjectlntersectionOf>
<Class abbreviatedIRI="dmO:LocalNGO"/>
<Class
abbreviatedIRI="dm0:ShareHoldingCompany"''/>
</ObjectintersectionOf>

. </EquivalentClasses>

. <EquivalentClasses>

<Class
abbreviatedIRI=""dmO:NaturalPerson'/>
<ObjectComplementOf>
<Class
abbreviatedIRI="dm0O:0Organization'/>
</ObjectComplementOf>

. </EquivalentClasses>

. <Declaration>

<DataProperty
abbreviatedIRI="dm0:FocusesOnTargetGroup'/>

. </Declaration>

. <DataPropertyDomain>

<DataProperty
abbreviatedIRI="dm0:FocusesOnTargetGroup'/>
<Class
abbreviatedIRI=""dm0O:Association"/>
</ObjectPropertyDomain>



103. <DataPropertyRange>

104. <ObjectProperty
abbreviatedIRI=""dm0:FocusesOnTargetGroup"/
>

105. <Datatype

abbreviatedIRI="xsd:string"/>
106. </DataPropertyRange>
107.
108. <Declaration>
109. <ObjectProperty
abbreviatedIRI="dmO:LocatedIn"/>
110. </Declaration>
111. <Declaration>
112. <ObjectProperty
abbreviatedIRI="dmO:LocatedInlnverse"/>
113. </Declaration>

114.
115. <InverseObjectProperties>
116. <ObjectProperty

abbreviatedIRI="dmO:LocatedIn"/>

117. <ObjectProperty
abbreviatedIRI="dmO:LocatedInlnverse'/>

118. </InverseObjectProperties>

119.

120. <ObjectPropertyDomain>

121. <ObjectProperty
abbreviatedIRI="dmO:LocatedIn"/>

122. <Class
abbreviatedIRI="dmO:NonNaturalPerson"/>

123. </ObjectPropertyDomain>

124.
125. <ObjectPropertyDomain>
126. <ObjectProperty

abbreviatedIRI="dmO:LocatedInlnverse'/>

127. <Class abbreviatedIRI="dm0O:Address"/>

128. </ObjectPropertyDomain>

129.

130. <ObjectPropertyRange>

131. <ObjectProperty
abbreviatedIRI="dmO:LocatedIn"/>

132. <Class abbreviatedIRI="dmO:Address"/>

133. </ObjectPropertyRange>

134.

135. <ObjectPropertyRange>

136. <ObjectProperty
abbreviatedIRI="dmO:LocatedInlnverse'/>

137. <Class
abbreviatedIRI="dmO:NonNaturalPerson"/>

138. </ObjectPropertyRange>

139.
140. <Declaration>
141. <ObjectProperty

abbreviatedIRI="dm0: IsAdvocatedOf"/>
142. </Declaration>
143. <Declaration>
144. <ObjectProperty
abbreviatedIRI="dm0:HasAdvocate"/>
145. </Declaration>
146.
147 . <InverseObjectProperties>
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148. <ObjectProperty
abbreviatedIRI=""dm0: IsAdvocatedOf' />
149. <ObjectProperty
abbreviatedIRI="dm0O:HasAdvocate'/>
150. </InverseObjectProperties>

151.
152. <ObjectPropertyDomain>
153. <ObjectProperty

abbreviatedIRI=""dm0: IsAdvocatedOf'/>
154. <Class

abbreviatedIRI="dmO:NaturalPerson"/>
155. </ObjectPropertyDomain>

156.
157. <ObjectPropertyDomain>
158. <ObjectProperty

abbreviatedIRI=""dm0:HasAdvocate"/>

159. <Class abbreviatedIRI="dmO:Company"/>

160. </ObjectPropertyDomain>

161.

162. <ObjectPropertyRange>

163. <ObjectProperty
abbreviatedIRI="dmO: IsAdvocatedOf'/>

164. <Class abbreviatedIRI="dm0:Company"/>

165. </ObjectPropertyRange>

166.

167. <ObjectPropertyRange>

168. <ObjectProperty
abbreviatedIRI=""dm0:HasAdvocate"/>

169. <Class
abbreviatedIRI="dmO:NaturalPerson'/>

170. </ObjectPropertyRange>

171.

172. <DisjointClasses>

173. <Class
abbreviatedIRI="dmO:LocalGovUnit"/>

174. <Class abbreviatedIRI="dm0:Company"/>

175. </DisjointClasses>

176.

177. <EquivalentClasses>

178. <Class abbreviatedIRI="dm0:Company"/>

179. <ObjectSomeValuesFrom>

180. <ObjectProperty
abbreviatedIRI="dmO:HasAdvocate"/>

181. abbreviatedIRI=""dmO:NaturalPerson'/>

182. </ObjectSomeValuesFrom>

183. </EquivalentClasses>

184.

185. <EquivalentClasses>

186. <Class abbreviatedIRI="dm0:
NonNaturalPerson'/>

187. <ObjectSomeValuesFrom>

188. <ObjectProperty
abbreviatedIRI=""dmO:LocatedIn"/>

189. <Class
abbreviatedIRI=""dmO:Address"/>

190. </ObjectSomeValuesFrom>

191. </EquivalentClasses>

192.

193. </Ontology>

Figure A-2. A complete mapping of ORM into OWL 2 (OWL/XML) for ORM schema (Use
Case) that shows the new proposed notations of Figure 4.14
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Table B. Summary of mapping for OWL 2 constructs and axioms into ORM. All constructs

and axioms of OWL 2 are

(www.w3.org/TR/owl2-quick-reference/)

listed according to the quick reference of OWL 2

OWL 2 Feature |

Functional Syntax

| RDF Syntax

ORM Notation

Class Expressions

1.1 |Predefined and Named Classes

1.1.1 |named class AN AN
1.1.2 |universal class owl:Thing owl:Thing
1.1.3 |empty class owl:Nothing owl:Nothing

1.2 |Boolean Connectives and Enumeration of Individuals

1.2.1 |Intersection

ObjectintersectionOf(A; ... An)

_:x rdf:type owl:Class.

_:x owl:intersectionOf (A; ... An).

1.2.2 |Union

ObjectUnionOf(A; ... An)

_:x rdf:type owl:Class.
_:x owl:unionOf (A; ... Ap).

1.2.3 |Complement

ObjectComplementOf(A)

_:x rdf:type owl:Class.
_:x owl:complementOf A.

1.2.4 |Enumeration

ObjectOneOf(X; ... Xn)

_:x rdf:type owl:Class.
_:x owl:oneOf (X3 ... Xn ).

1.3 |Object Property Restrictions

1.3.1 |Universal

ObjectAllValuesFrom(ra B)

_:x rdf:type owl:Restriction.
_:x owl:onProperty ra.
_:x owl:allValuesFrom B

1.3.2 |Exsistential

ObjectSomeValuesFrom(ra B)

_:x rdf:type owl:Restriction.
_:x owl:onProperty ra.
_:x owl:someValuesFrom B
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1.3.3

Individual value

ObjectHasValue(ra b)

_:x rdf:type owl:Restriction.
_:x owl:onProperty ra.
_:x owl:hasValue b.

-
+
IU—

1.3.4

Local reflexivity

ObjectHasSelf(r;)

_:x rdf:type owl:Restriction.
_:x owl:onProperty r;.

_:x owl:hasSelf "true"xsd:boolean. Oself
[ ] ]
1.3.5 |exact cardinality ObjectExactCardinality(n ra) | _:x rdf:itype owl:Restriction.
_:x owl:onProperty ra. n-n
__:x owl:cardinality n. B N
1.3.6 |qualified exact ObjectExactCardinality(n ra B) |_:x rdf:type owl:Restriction. nn
cardinality |_:x owl:onProperty ra. ° T °
_:x owl:qualifiedCardinality n.
_:x owl:onClass B.
1.3.7 |maximum ObjectMaxCardinality(m ra)  |_:x rdf:type owl:Restriction.
cardinality _:x owl:onProperty P. <:m
_:x owl:maxCardinality n s BT I
1.3.8 |qualified ObjectMaxCardinality(m ra B) |_:x rdf:type owl:Restriction. <=m
maximum _:x owl:onProperty ra. ° Al ] a
cardinality _:x owl:maxQualifiedCardinality n.
_:x owl:onClass B.
1.3.9 |minimum ObjectMinCardinality(n ra) _:x rdf:type owl:Restriction.
cardinality _:x owl:0nProperty ra,. >:"
_:x owl:minCardinality n. s BTSN I
1.3.1 |qualified ObjectMinCardinality(n ra B) [_:x rdf:type owl:Restriction. sen
0 |minimum _:x owl:onProperty ra. ° (A ] a
cardinality _:x owl:minQualifiedCardinality n.
_:x owl:onClass B.
1.4 |Data Property Restrictions
1.4.1 |Universal DataAllValuesFrom(ra.B D) | :x rdf:type owl:Restriction. A . B
_:x owl:onProperty ra.B. A
_:x owl:allValuesFrom D.
1.4.2 |Existential DataSomeValuesFrom(ra.B D) |_:x rdf:itype owl:Restriction. LTI
[ra T ] )
_:x owl:onProperty ra.B. ° £ Moo’
_:x owl:someValuesFrom D.
1.4.3 |literal value DataHasValue(ra.B v) _:x rdf:type owl:Restriction. .
_:x owl:onProperty ra.B. ° T —B~ Sy
_:x owl:hasValue v. t.--t
1.4.4 |exact cardinality DataExactCardinality(n ra.B) | _:x rdf:type owl:Restriction.

_:x owl:onProperty ra.B.
_:x owl:cardinality n.

1.4.5 |qualified exact DataExactCardinality(n ra.B D) |_:x rdf:type owl:Restriction. nn
cardinality _:x owl:onProperty ra.B. A A B
_:x owl:qualifiedCardinality n.
_:x owl:onDataRange D.
1.4.6 |maximum DataMaxCardinality(m ra.B)  |_:x rdf:type owl:Restriction. <=m .
cardinality _:x owl:onProperty ra.B. ° T :, ,
_:x owl:maxCardinality m. s
1.4.7 |qualified DataMaxCardinality(m ra.B D) [_:x rdf:type owl:Restriction. <m .
maximum _:x owl:onProperty ra.B. ° e :, B
cardinality _:x owl:maxQualifiedCardinality m. et

_:x owl:onDataRange D.
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1.4.8 |minimum DataMinCardinality(n ra.B) _:x rdf:type owl:Restriction. s=n

cardinality _:x owl:onProperty ra.B. A A B
_:x owl:minCardinality n.

1.4.9 |qualified DataMinCardinality(n ra.B D) | _:x rdf:type owl:Restriction. >=n .
minimum _:x owl:onProperty ra.B. ° T 1+ B }
cardinality __:x owl:minQualifiedCardinality n. Dt

_:x owl:onDataRange D.

1.5 |Restrictions Using n-ary Data Range
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n-ary universal

DataAllValuesFrom(r; ... r, D")

_:x rdf:type owl:Restriction.
_:x owl:onProperties (ry ... In).
_:x owl:allValuesFrom D".

Non-notational Expression

1.5.2

n-ary existential

DataSomeValuesFrom(r; ... r, D")

_:x rdf:type owl:Restriction.
_:x owl:onProperties (r ... Iy).
|_:x owl:someValuesFrom D",

Non-notational Expression

2 Properties
2.1 |Object Property Expressions
2.1.1 [Named object A A
property ° L] °
2.1.2 |universal object owl:topObjectProperty owl:topObjectProperty —
pObject
oroperty
2.1.3 |empty object owl:bottomObjectProperty owl:bottomObjectProperty
property
2.1.4 |inverse property ObjectinverseOf(rg) :X owl:inverseOf rg °
B s (B )
2.2 |Data Property Expressions
2.2.1 |named data ra.B ra.B TN
property 0 L] e /
2.2.2 |universal data owl:topDataProperty owl:topDataProperty =
pData
— [[TopData_]
2.2.3 |empty data owl:bottomDataProperty owl:bottomDataProperty
property
3 Individuals & Literals
3.1 |Named individual a a e
3.2 [anonymous _a _a e _a
individual
3.3 [literal (datatype "abc" DN "abc" DN
value) Non-notational Expression
4 Data Ranges
4.1 |Data Range Expressions
4.1.1 [named datatype DN DN
4.1.2 |data range DataComplementOf(D) __:x rdf:type rdfs:Datatype. Non-notational Expression
complement _:x owl:datatypeComplementOf D.
4.1.3 |data range DatalntersectionOf(D;...D,)  [_:x rdf:itype rdfs:Datatype.
intersection _:x owl:intersectionOf (D;...Dy).
4.1.4 |data range union DataUnionOf(D;...Dp) _:x rdf:type rdfs:Datatype.
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_:x owl:unionOf (D;...Dy).

4.1.5

literal

DataOneOf(v; ... Vy)

_:x rdf:type rdfs:Datatype.

enumeration | :x owl:0neOf (V1 ... Vy). { Y}-E—'L'\’ vi'}
{ )
4.1.6 |datatype DatatypeRestriction(DN f; v; ... f,|_:x rdf:type rdfs:Datatype. oy
restriction Vn) _:x owl:onDatatype DN. o CT ] :-B\,\
_:x owl:withRestrictions (_:X; ... _iXp). =
X fiv.  j=1..n
=V Set by the properties
5 Axioms
5.1 |Class Expression Axioms
5.1.1 [Subclass SubClassOf(B A) B rdfs:subClassOf A.
5.1.2 |equivalent EquivalentClasses(A; ... An)  |A; owl:equivalentClass Aj;. j=1...n-1 “ -
classes 0 @ o
5.1.3 [(disjoint classes DisjointClasses(A; Az) A, owl:disjointWith A,. o o
R
5.1.4 |pairwise disjoint DisjointClasses(A; ... An) _:x rdf:type owl:AllDisjointClasses.
classes _:x owl:members (A; ... Ap). ¢
&
5.1.5 [(disjoint union DisjointUnionOf(A A; ... Ay)  |A owl:disjointUnionOf (A; ... Aq).
5.2 |Object Property Axioms
5.2.1 |subproperty SubObjectPropertyOf(s r) s rdfs:subPropertyOf r
r
[r [ |
S
5.2.2 |property chain SubObjectPropertyOf(ObjectProp |P owl:propertyChainAxiom (P; ... Py). T
inclusion ertyChain(P; ... Py) P)
OO N = Y
5.2.3 ty d i ObjectP tyD i A dfs:d in A.
property domain jectPropertyDomain(ra A)  |ra rdfs:domain o T °
5.2.4 |property range ObjectPropertyRange(ra B ra rdfs:range B.
property rang ] pertyRange(ra B)  [ra g °m-¢
5.2.5 |equivalent EquivalentObjectProperties(r; ... [r; owl:equivalentProperty rj.1. j=1...n-
properties 'n) 1 “{m] “:|...
A 4
A 4
5.2.6 |disjoint properties| DisjointObjectProperties(s r) |s owl:propertyDisjointWith r. ;l
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5.2.7 |pairwise disjoint | DisjointObjectProperties(r; ... r,) |_:x rdf:type owl:AlIDisjointProperties.

properties _:x owl:members (r; ... Iy).
5.2.8 |inverse InverseObjectProperties(ra rs) |ra owl:inverseOf rg.

properties
5.2.9 [functional FunctionalObjectProperty(ra) [ra rdf:itype owl:FunctionalProperty. «—>

property
5.2.1 |inverse functional|lnverseFunctionalObjectProperty(|ra rdf:type +——>

0 property ra) owl:InverseFunctionalProperty. o I T

5.2.1 [reflexive property ReflexiveObjectProperty(r;)  |r; rdf:type owl:ReflexiveProperty.

5.2.1 |irreflexive IrreflexiveObjectProperty(r;) |1 rdf:type owl:IrreflexiveProperty.

2 property

5.2.1 [symmetric SymmetricObjectProperty(r;) |1 rdf:itype owl:SymmetricProperty. °
3 property

5.2.1 [asymmetric AsymmetricObjectProperty(r;) |r, rdf:type owl:AsymmetricProperty. °
4 property

5.2.1 [transitive TransitiveObjectProperty(r;) |1 rdf:itype owl:TransitiveProperty. o
5 property
ows

5.3 |Data Property Axioms

5.3.1 |subproperty SubDataPropertyOf(sC rB) sC rdfs:subPropertyOf rB.

5.3.2 |property domain |DataPropertyDomain(raB A) raB rdfs:domain A.

5.3.3 |property range  |DataPropertyRange(raB D) raB rdfs:range D.

5.3.4 |equivalent EquivalentDataProperties(riA; ... rAn) [rj owl:equivalentProperty fj;.
properties j=1...n-1
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5.3.5

disjoint properties

DisjointDataProperties(sC rB)

sC owl:propertyDisjointWith rB.

5.3.6 |pairwise disjoint [DisjointDataProperties(riA; ... r/An) | rdfitype
properties owl:AllDisjointProperties.
|_:x owl:members (r1A; ... A, ).
5.3.7 [functional FunctionalDataProperty(ra) ra rdf:type
property owl:FunctionalProperty.

5.4 |Datatype Definitions
5.4.1 |datatype DatatypeDefinition(DN D) DN owl:equivalentClass D.
definition
5.5 |Assertions
5.5.1 (individual Samelndividual(a; ... an) a; owl:sameAs aj.1. j=1...n-1
equality
5.5.2 |individual Differentindividuals(a; a) a; owl:differentFrom a,.
inequality -
_a'z
a
5.5.3 [pairwise Differentindividuals(a; ... an) |_:x rdf:type owl:AllDifferent.
individual |_:x owl:members (a; ... an).
inequality
5.5.4 |class assertion [ClassAssertion(C a) a rdf:type C.
5.5.5 |positive object  |ObjectPropertyAssertion(raab) |_:x rdf:type
property owl:PropertyAssertion.
assertion |_:x owl:sourcelndividual a.
| :x owl:assertionProperty ra.
|_:x owl:targetindividual b.
5.5.6 [positive data DataPropertyAssertion(ra.B a v) |_:x rdf:type .
property owl:PropertyAssertion. o raT 1+ B 0
assertion |_:x owl:sourcelndividual a. Se--t
| :x owl:assertionProperty ra.B.
|_:x owl:targetValue v.
5.5.7 |negative object |NegativeObjectPropertyAssertion(ra a |_:x rdf:itype S
property b) owl:NegativePropertyAssertion. o CRT ] °
assertion |_:x owl:sourcelndividual a.
|_:x owl:assertionProperty ra.
|_:x owl:targetindividual b.
5.5.8 |negative data NegativeDataPropertyAssertion(raB a | _:x rdf:itype .

property
assertion

V)

|_:x owl:sourcelndividual a.
|_:x owl:assertionProperty raB.
|_:x owl:targetValue v.

owl:NegativePropertyAssertion.
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http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Advanced_Use_of_Datatypes
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Advanced_Use_of_Datatypes
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Datatype_Definitions
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_SameIndividual
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_SameIndividual
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Individual_Equality
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_DifferentIndividuals
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_DifferentIndividuals
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Individual_Inequality
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Individual_Inequality
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ClassAssertion
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Class_Assertions
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Positive_Object_Property_Assertions
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_DataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_DataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_DataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Positive_Data_Property_Assertions
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Negative_Object_Property_Assertions
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeDataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeDataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_NegativeDataPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Negative_Object_Property_Assertions
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5.6 |[Keys
5.6.1 [Key HasKey(A () (key) ) C owl:hasKey (key).
6 Declarations
6.1 |class Declaration( Class( AN ) ) AN rdf:type owl:Class.
6.2 |datatype Declaration( Datatype( DN ) ) DN rdf:type rdfs:Datatype. o D 'N"
6.3 |object property [Declaration( ObjectProperty(raN ) ) raN rdf:type owl:ObjectProperty.
[N T ]
6.4 |data property Declaration( DataProperty(raNB ) ) raNB rdf:type T .
owl:DatatypeProperty. i LA \_B__, !
6.5 [|annotation Declaration( AnnotationProperty( ANT |[ANT rdf:type Non-notational Expression
property ) owl:AnnotationProperty.
6.6 |named individual [Declaration( Namedindividual( a ) ) a rdf:type owl:Namedindividual. X

*

AN is a class name. A, B and C are class expressions. r and s are object property expressions. DN is a
datatype name. D is a datatype. rB is a data property expression. a is an individual. _:a is an anonymous
individual. _:x is a blank node. v is a literal. n is a non negative integer. (x;...X,) are RDF List.



http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Keys
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Keys
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#Entity_Declarations
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Entity_Declarations_and_Typing
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Appendix C

The following Survey was designed to evaluate extending ORM notations for representation
of uncovered OWL 2 constructs by ORM. This survey was filled by 31 practitioners in ORM
and OWL. Three notations for each OWL 2 construct were proposed. Each notation with the
highest percentage selection is chosen to represent the intended OWL 2 construct.

Birzeit University
Faculty of Graduate Studies
Master Program in Scientific Computing

Evaluation Survey For :
Extending ORM Constructs for OWL 2 Constructs

Prepared by : Rami Hodrob
Supervised by : Dr. Mustafa Jarrar




Introduction & Background

Ontology is receiving an increasing interest in many application areas such
as data integration, semantic web, knowledge engineering and enhanced
information retrieval, etc. This led the World Wide Web Consortium
(W3C) to recommend Ontology Web Language (OWL) to be used for
ontology building.

OWL 2 as a recommended web ontology language from the W3C which
contains the majority of constructs to be used for building any needed
ontology. At the same time, OWL 2 is supported by many reasoners for the
purpose of reasoning to check the correctness of the built ontology.

However, building an ontology graphically is easier and more intuitive
than any other methodology. ORM is a modeling tool which is rich of
graphical notations and is easy to be used. However, to use ORM as an
interface for OWL 2, it (ORM) needs to be extended to include constructs
of OWL 2 that are not currently represented by ORM.

One of the main purposes of our research is to enable building ontologies
in an easier and more intuitive manner, graphically, using the extended
ORM that formalizes all constructs of OWL 2.

About this Survey

* This survey aims to collect data from ORM/OWL practitioners
to be used to evaluate the extending of the Object Role
Modeling (ORM) graphical notations for Web ontology
Language (OWL 2) constructs that are not represented in
ORM.

» Each slide of the following slides contains a construct of OWL
2 and its suggested representation in ORM.

 The survey participants are expected to select the most
appropriate ORM representation of the OWL 2 constructs
presented in the following slides based on their intuition and
experience.

e This survey is done for the purpose of research in partial
fulfillment of requirement for the degree of master of scientific
computing - Faculty of Graduate Studies - Birzeit University.
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OWL2 Construct: Equivalent Classes

If you want to say that class A,, class A,, and class A, are equivalent to each other,
which notation you prefer?
Your preference is:

Comments:

OWL2 Construct: Disjoint Classes

If you want to say that class A,, class A,, and class A, are disjoint (i.e., NOT equivalent to
each other), which notation you prefer?
Your preference is:

Comments:
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OWL2 Construct: Intersection of Classes

If you want to say that class A is result of the intersection of class A;, class A,, and class A,,

which notation you prefer?
Your preference is:

Comments:

OWL2 Construct: Class Complement

If you want to represent the complement of class A, which notation you prefer?

Your preference is:

Comments:
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OWL2 Construct: Class Assertions

If you want to say the m1, m2, m9 are instances of Man, which notation of the following
you prefer?
Your preference is: ____

e e T
m, m my
m, m, mz
m, M, 8

m My
m, 4

This means that the class contains four instances as a maximum number to be shown
and we can clickon icon p and assert or visualize the needed instances for the
class Man.

Comments:

OWL2 Construct: Class Assertions

If you want to assert an individual (a) to be a member of the population of class Man,
which notation you prefer?
Your preference is:

The user can click on icon p and assert or visualize the instances for the class
Man.

Comments:
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OWL2 Construct: Individual Equality

If you want to say that instance m2 is same as instance m3, which notation of the following
you prefer?
Your preference is:

m, m,
m, m, m,
9 m, e m, ms
m, m, m,

Comments:

10

OWL2 Construct: Individual Inequality

If you want to say that instance m2 is different from instance m3, which notation of the
following you prefer?
Your preferenceis: ____

Comments:

11

107



OWL2 Construct: Positive Object Property Assertion

If you want to say that an instance a of class A,is related to an instance b of class B, by the
role (object property) r,, which notation you prefer?
Your preference is:

mira + HY03 mira @) HY03

Comments:

12

OWL2 Construct: Negative Object Property Assertion

If you want to say that an instance a of class A,is not related to an instance b of class B, by
the role (object property) r,, which notation you prefer?
Your preference is:

rpira- HYO03 miraOHYOS

Comments:

13
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Publications

The followings are the two articles which were conducted for this research. The first paper
includes the initial and primitive results of mapping ORM into OWL 2, appeared first in
[HJ10]. The second article includes revising, extending, evaluating, and implementing of
mapping between ORM and OWL 2 to enable authoring an ontology graphically and was

submitted to Data and Knowledge Engineering Journal, Elsevier.



Mapping ORM into OWL 2

Rami Hodrob
Arab American University, Jenin, Palestine
Birzeit University, Palestine

rhodrob@aauj.edu

Abstract: The goal of this article is to map between Object Role
Modeling (ORM) and Ontology Web Language 2 (OWL 2 DL).
This mapping allows one to graphically develop his/her ontology
using the ORM notation, while the ORM is automatically
translated into OWL 2 DL. We map the most commonly used
rules of ORM into OWL 2 DL which have the ability of
decidability. DogmaModeler is extended to perform automatically
this mapping (ORM into OWL 2 DL). Mapping technique is
assessed using desirable reasoning methodology which depends
on RacerPro2 reasoner .

Keywords: Ontology, Object Role Modeling, Web Ontology
Language 2 (OWL 2 DL), SHOIN Description Logic.

1. Introduction and Motivation

Ontology is receiving an increasing interest in many application
areas such as data integration, semantic web, knowledge
engineering and enhanced information retrieval, etc [5]. This led
World Wide Web Consortium (W3C) to recommend Ontology
Web Language (Owl) [14]. It is difficult for IT people to build an
ontology .At the other hand building ontology is time consuming.
One who builds ontology needs good knowledge in formal logic.
Building an ontology using graphical notation tool is easier than
other available techniques, even for non-IT specialists such as
Object Role Modeling (ORM). ORM is a conceptual modeling
language used in ontology engineering [13]. It encompasses a
group of constraints that can comprehensively represent an
ontology using rich graphical notation [7,8]. On the other hand,
OWL 2 DL [16] is relatively a non user friendly language to be
used by even IT specialists.

In our research, we map between ORM and OWL 2 DL. In this
way (mapping) we exploit the benefits of both ORM and OWL 2.
The benefits of ORM are i) it is true conceptual modeling
independent of application; ii) it is a very user-friendly
methodology; iii) it is more expressive than other techniques such
as ER and UML [11,2,6]; iv) it is easy to reason about [10]; v) it
is used in ontology standards and for expressing business rules
[1]. In the other hand the benefits of OWL 2 are i) it is the
recommended ontology web language [17]; ii) it is used to publish
and share ontologies on the Web semantically; iii) it is used to
construct a structure to share information standards for both
human and machine consumption; iv) Automatic reasoning can be
done against ontologies represented in OWL 2 to check
consistency and coherency of these ontologies.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided hat
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISWSA’10, June 14-16, 2010, Amman, Jordan.
Copyright 2010 ACM 978-1-4503-0475-7/09/2010...$10.00.

Mustafa Jarrar
Birzeit University, Palestine

mjarrar@birzeit.edu

That is a good motivation to combine ORM and OWL 2. This
way we can build our ontology in ORM which is very close to
natural language and easy to understand and use. In other words,
we can build a system that uses ORM as interface for OWL 2.

We extend DogmaModeler [4] tool to implement our mapping
(ORM into OWL 2) work. Another goal for the mapping is to
extend ORM to represent notations that are not supported in ORM
and available in OWL 2 like equivalent classes, data types,
transitive closure, intersection and union between relations.

As a related work, the mapping from ORM to SHOIN/OWL
description logic has been implemented [11]. SHOIN is chosen to
compromise both its ability of expressiveness and decidability.
Each rule of ORM which is supported by SHOIN is mapped to
SHOIN. Twenty two cases of ORM constructs are mapped. The
purpose of this research [11] also is to use ORM as a technique
and expressive notation for ontology engineering. Although in this
research [11] mapping ORM into SHOIN is achieved, but
mapping ORM into OWL is not achieved, where in our research
mapping ORM into OWL 2 DL is achieved and is implemented
automatically. Some other related work to our ontology modeling
considered using UML as front-end to visualize and edit
ontologies [2] without semantics as we do in our work, in addition
the mentioned related work does not map to OWL 2 DL or even
to OWL 1.

The rest of the paper is structured as follows. Section 2 briefly
describes ORM background. Section 3 describes OWL 2 DL.
Section 4 describes the mapping between ORM and OWL 2.
Section 5 implements the mapping. Section 6 evaluates the
mapping, and finally Section 7 concludes our work and states
future work.

2. ORM Background

ORM is a fact-oriented modeling methodology independent from
implementation-oriented procedures. This independence leads to a
satisfactory modeling process [11]. ORM makes it easy to
simplify the representative schema using either natural language
or graphical notations to represent facts in their simple or
elementary shapes. In addition, we can populate the diagrams by
examples to measure the correctness of the design [7,8]. We have
several tools based on ORM like Microsoft's Visio Modeler™,
DogmaModeler and Norma. The knowledge of using ORM can be
acquired easily and in a short period of time from non-IT
specialists [11,13].

ORM can be fairly used to adopt the conceptual modeling
techniques for building the needed ontology [6,13]. By using a
graphical notation of ORM, we can express and treat many rules
like mandatory, uniqueness, identity, exclusion, implications,
frequency occurrences, subsetting, subtyping, equality, and others
[7]. Many rules of ORM and their graphic representations are
explained (see section 4).



3. OWL 2 DL

Ontology Web Language (OWL) is a knowledge representation
language [20] used to publish and share ontologies on the Web
and is endorsed by the W3C Consortium.

OWL 2 Web Ontology Language, is an ontology language for the
semantic web (extended of OWL 1, empowered by new features
and supported by several semantic reasoners such as RacerPro 2
and FaCT++). This ontology language includes formally defined
meaning. On 27 October 2009, OWL 2 was recommended by
W3C Consortium as a standard of ontology representation on the
Web [17].Classes, properties, individuals, and data values are
provided by OWL 2 and stored semantically on the WEB. OWL 2
ontologies are primary exchanged as RDF documents, where
these ontologies can be used with information written in RDF.
OWL 2 elements are identified by Internationalized Resource
Identifiers (IRIs). It extends OWL 1 which uses Uniform
Resource Identifiers (URIs) [16,20]. Every IRI must be absolute
to be published internationally. OWL 2 increases expressive
language power for properties.

The new features of OWL 2 are i) syntactic sugar to make some
statements easier. ii) new constructs that increase expressivity. iii)
extended support for datatypes; iv) simple metamodeling
capabilities; v) extended annotation capabilities. OWL 2 is
serialized by XML to structurally specify it.

4. Mapping between ORM and OWL 2

Since we concentrate on the ability of expressivity and
decidability for our mapping results(SHOIN achieves this Ability
[11]), we will use SHOIN Description Logic (which is the most
common in ontology engineering [11]) as a reference to map from
ORM into OWL 2 DL. First, we formally formalize the ORM
construct into SHOIN Description Logic and then we represent
this model in OWL 2. Our scope of conversion is every construct
of ORM .

4.1 Use Case

In order to recognize the ORM graphical notations, and Mapping
between ORM, SHOIN and OWL 2 refer to Figure 1, and the
explanation that follows.

At

[Grives_[Griventy
--

Figure 1. Example of an ORM Schema

In Figure 1, object-types are represented as ellipses, and relations
as rectangles, where one or more role form each ORM relation.

Binary relation (Drives/DrivenBy) in SHOIN is as (Person &

VDrives.Vehicle, Vehicle = ¥DrivenBy.Person, DrivenBy E
Drives”). This relation is represented in OWL 2 DL as shown in
the OWL/XML syntax below. Object-type in ORM is declared as
Class (Person and Vehicle) construct in OWL 2. Each role of the
relation in ORM is declared as objectProperty (Drives and
DrivenBy) construct in OWL 2.

<Declaration>

<Class IRI="#Person"/>

W<
Declaration>
<ObjectPropertyIRI="#DrivenBy"/>
</Declaration>
<InverseObjectProperties>
<ObjectProperty IRI="#DrivenBy"/>
<ObjectProperty IRI="#Drives"/>
</InverseObjectProperties>
<ObjectPropertyDomain>
<ObjectProperty IRI="#Drives"/>
<Class IRI="#Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty IRI="#Drives"/>
<Class IRI="#Vehicle"/>
</ObjectPropertyRange>
In the following we explain each rule in ORM, its formalization
in SHOIN and its representation in OWL 2 (rules represented in

figure 1):
a. Subsumption is represented in SHOIN as (VanCar E Vehicle,

PrivateCar & Vehicle). In OWL 2 subClassOf construct is used to
represent this rule as
<SubClassOf>
<Class IRI="#PrivateCar"/>
<Class IRI="#Vehicle"/>
</SubClassOf>
<SubClassOf>
<Class IRI="#VanCar"/>
<Class IRI="#Vehicle"/>
</SubClassOf>

b. Mandatory is depicted as a dot ¢ on the line. In SHOIN is

(Person £ JHas.Country). In OWL 2 ObjectSomeValuesFrom
construct which is equivalent to the extensional quantifier(3) is
used to represent Mandatory in ORM which is more elegant than
using minCardinality construct to restrict the population of Person
to at least have one Country as
<ObjectPropertyRange>
<ObjectProperty IRI="#Has"/>
<ObjectSomeValuesFrom>
<ObjectProperty abbreviatedIRI="owl:topObjectProperty"/>
<Class IRI="#Country"/>
</ObjectSomeValuesFrom>
</ObjectPropertyRange>
c. Total constraint is depicted as a dot (*) between the two

subtypes. In SHOIN it is (Vehicle =VanCartPrivateCar).OWL2,
ObjectUnionOf construct is used to represent this rule.

d. Exclusive Constraint is depicted as ® between the two
subtypes. In SHOIN it is (VanCar [ PrivateCar=L1). In OWL 2
DisjointClasses expressions is used. We use DisjointUnion
construct to map both Total Constraint and Exclusive as
</DisjointUnion>
<Class IRI="#Vehicle"/>
<Class IRI="#PrivateCar"/>
<Class IRI="#VanCar"/>
</DisjointUnion>
e. Subset Constraint is depicted as an arrow — between the roles
Drives and AuthorizedWith, which means that the object role
Drives is a subset of object role AuthorizedWith.

(Drives.Vehicle= AuthorizedWith.DrivingLicence). In OWL 2, to
represent this rule we consider Drives. Person as a class using
equivelentClass construct in OWL2. This construct is subClassOf
the equivelantClass (AuthorizedWith.Person) as shown below

<EquivalentClasses>
<Class IRI="#AutorizedWith.Person"/>



<ObjectAllValuesFrom>
<ObjectProperty IRI="#AuthorizedWith"/>
<Class IRI="#Person"/>
</ObjectAllValuesFrom>
</EquivalentClasses>
<EquivalentClasses>

<Class IRI="#Drives.Person"/>
<ObjectAllValuesFrom>
<ObjectProperty IRI="#Drives"/>
<Class IRI="#Person"/>
</ObjectAllValuesFrom>
</EquivalentClasses>
<SubClassOf>

<Class IRI="#Drives.Person"/>
<Class IRI="#AutorizedWith.Person>
</SubClassOf>

f. EqualityConstraint is depicted as a double-headed arrow«>
(Owns=Drives). Representation in OWL 2 is done using
EquivalentObjectProperties as

<EquivalentObjectProperties>
<ObjectProperty IRI="#Drives"/>
<ObjectProperty IRI="#Owns"/>

</EquivalentObjectProperties>

g. Role uniqueness is depicted by an arrow <> spanning along

single role of binary relation. In SHOIN ( Person ¢
<1Has.Country). In OWL 2 we use FunctionalObjectProperty (
range is exactly one (for domain population of property)) which is
more elegant than using maxCardinality (restricted by integer 1)
construct. It is represented as
<FunctionalObjectProperty>
<ObjectProperty IRI="#Has"/>
</FunctionalObjectProperty>

Verbalization of ORM rules

ORM diagrams can be read easily by domain experts, and rules

can be automatically verbalized into pseudo natural language

sentences as the following:

» Each Person Has at least one Country. (Mandatory)

» Each Vehicle can not be a VanCar and a PrivateCar at the same
time. (Exclusive)

» Each Vehicle must be, at least, VanCar or PrivateCar. (Totality)

» If a Person Drives a Vehicle then that Person AuthorizedWith a
DrivingLicence. (Subset)

» If a Person Owns a Vehicle this Person is also Drives that
Vehicle, and vice versa. (Equality)

» Each Person must Has at most one Country. (External
uniqueness)

This verbalization simplifies the communication with non-IT

specialists and allows them to better recognize, validate, or build

ORM diagrams.

A complete list of ORM rules and mapping work in general cases
is explained in the following.

4.2 Object-Types and relations:
4.2.1 Unary relationship
See the first column in Table 1.

4.2.2 Binary relationship
The mapping is as stated in the example in section 4.1 (general
case is shown in Table 1 right side).

4.2.3 N-ary relationships where n>2
It is not considered (not supported by SHOIN).

Table 1. Relationships (Unary and Binary) are represented in ORM, SHOIN and OWL 2 DL

<Declaration>
<DataProperty IRI="#r1"/> </Declaration>
<SubDataPropertyOf>
<DataProperty IRI="#r1"/>
<DataProperty
abbreviatedIRI="owl:topDataProperty"/>
</SubDataPropertyOf>
<DataPropertyDomain>
<DataProperty IRI="#r1"/>
<Class IRI="#A"/>
</DataPropertyDomain>
<DataPropertyRange>
<DataProperty IRI="#r1"/>
<Datatype abbreviatedIRI="xsd:boolean"/>
</DataPropertyRange>

OWL 2

ORM a1 GDO—IZ—<AD
SHOIN A £ Vr1.Bolean A1C Vr1.A2, A2 V2. A1, r2c vr1™
<Declaration> <InverseObjectProperties>
<Class IRI="#A"/> <ObjectProperty IRI="#r2"/>
</Declaration> <ObjectProperty IRI="#r1"/>

</InverseObjectProperties>
<ObjectPropertyDomain>
<ObjectProperty IRI="#r1"/>
<Class IRI="#A1"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>
<ObjectProperty IRI="#r2"/>
<Class IRI="#A2"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty IRI="#r1"/>
<Class IRI="#A2"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty IRI="#r2"/>
<Class IRI="#A1"/>
</ObjectPropertyRange>

4.3 Subtypes
ORM uses proper subtype [8,11]. See the example in section 4.1
and Table 2 (first column).

4.4 Total constraint
General case of mapping is shown in Table 2 (middle column).

4.5 Exclusive constraint
The general case of mapping is in Table 2 (last column).



Table 2. Subtype, Total Constraint and Exclusive Constraint (declaration of classes is not included)

A A '
ORM f )
3 &
& GoB)-(Ap SIS
SHOIN BcA AVATtA2 ...tAN (Ai u 4j = L) for each i€{l1...n-1}jefi+1...n}
. <SubClassOf>
<SubClassOf> <ObjectUnionOf> <DisjointClasses>
<Class IRI="#B"/> <Class IRI="#A1"/> <Class IRI="#A1"/>
OWL 2 <Class IRI="#A"/> <Class IRI="#An"/> <Class IRI="#A2"/>

</SubClassOf>

</ObjectUnionOf>
<Class IRI="#A"/> <Class IRI="#An"/>
</SubClassOf> </DisjointClasses>

4.6 Mandatory Constraints
4.6.1 Role mandatory

The mapping is as stated in the example in section 4.1 (see the

first column in Table 3).

4.6.2 Disjunctive Mandatory

The disjunctive mandatory constraint is as stated in middle
column of table 3, means that each instance of object-type A must
play the role of at least one of the constraints role rl....rn. The
representation of this in OWL2 is shown in Table 3 (middle
column).

Table 3 Mandatory Constraints and Role Frequency Constraint (Classes and ObjectProperties are not declared)

-

ATTHCAD — —
ORM D oL &-TilR A
SNEOAD
SHOIN A1C3r1.A2 Av3rtA1 ...t3m.An AIvV=n<mriA2tL
</ObjectPropertyRange> <ObjectPropertyRange> <ObjectPropertyRange>
<ObjectPropertyRange> <ObjectProperty IRI="#r1"/> <ObjectProperty IRI="#r1"/>
<ObjectProperty IRI="#r1"/> <ObjectSomeValuesFrom> <ObjectMinCardinality cardinality="n">
<ObjectSomeValuesFrom> <ObjectProperty IRI="#r1"/> <ObjectProperty IRI="#r1"/>
OWL 2 <ObjectProperty <Class IRI="#A1"/> <Class IRI="#A2"/>
IRI="#r1"/> </ObjectSomeValuesFrom> </ObjectMinCardinality>

<Class IRI="#A2"/>
</ObjectSomeValuesFrom>
</ObjectPropertyRange>

</ObjectPropertyRange>
<ObjectMaxCardinality cardinality="m">

4.7 Role Uniqueness
Refer to Subsection 4.1.

4.8 Frequency Constraints
4.8.1 Role Frequency Constraint

Role Frequency in ORM means that role rl is played by the

Can not be formalized in description logic [4] and so it is not
considered in OWL 2.

4.9 Value Constraints
The value constraint in ORM points to the possible set of values
that an object-type can be populated with (Table 4 last column).

object A2 number of occurrences (see Table 3 last column).

4.8.2 Multiple-role Frequency Constraint

4.10 Subset Constraints
Stated in the example in section 4.1 (Table 4 (first two

columns)).
Table 4 Subset Constraint (Role and Binary) and Value Constraint (String Type)
r B {r’1 ]
ORM o (xixzxe
o 13
SHOIN s.Cc rB scr A1EZ STRING A= {x1,...xn}




<EquivalentClasses>
<Class IRI="#r.A"/>
<ObjectAllValuesFrom>
<ObjectProperty IRI="#r"/>
<Class IRI="#A"/>

<SubObjectPropertyOf>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>
</SubObjectPropertyOf>

<EquivalentClasses>
<Class IRI="#A"/>
<DataAllValuesFrom>
<DataProperty
abbreviatedIRI="owl:topDataProperty"/>
<Datatype abbreviatedIRI="xsd:string"/>

</ObjectAllValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.A"/>
<ObjectAllValuesFrom>
<ObjectProperty IRI="#s"/>
<Class IRI="#A"/>
</ObjectAllValuesFrom>
</EquivalentClasses>
<SubClassOf>
<Class IRI="#s.A"/>
<Class IRI="#r.A"/>
</SubClassOf>

OWL 2

</DataAllValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#A"/>
<ObjectOneOf>
<Namedindividual IRI="#X1"/>

<Namedindividual IRI="#Xn"/>
</ObjectOneOf>
</EquivalentClasses>

4.11 Equality Constraint
It is similar to subset constraint. In OWL 2, we use
(EquivalentObjectProperties) construct to represent it.

4.12 Exclusion Constraint
It is similar to subset constraint. In OWL 2, we use
(DisjointObjectProperties) construct to represent it.

4.13 Ring Constraints

OWL 2 supports Reflexive, Irreflexive, and Asymmetric object
properties as new features in addition to Symmetric and
Transitive that are supported by OWL 1 (equivalent constructs
are used in ORM).

5. Implementation

We implement our mapping using DogmaModeler.
DogmaModeler is a modeling tool used to represent and reason
for ontology and other related applications based on ORM. We
have extend DogmaModeler (Java is used as a programming
language for coding) to automatically map ORM into OWL 2
DL constructs depending on ORM markup language [3,12]
(which is automatically generated according to equivalent ORM
graphical notations). Figure 2 shows a snap shot of
DogmaModeler outputs, where the left screen shows the ORM
graphical notation containing subtypes and exclusive constraint.
The right screen shows a complete OWL 2 file output that
represents the ORM graphical notation.
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Figure 2. Implemented example using DogmaModeler (ORM graphical notation and OWL 2 DL).
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Figure 3. RacerPro 2 outputs for consistent, coherent, and instance retrieval checks.

6. Evaluation

For the evaluation part, every construct of OWL 2 mapped from
ORM is loaded as a complete file to the RacerPro 2 [18] that
supports OWL 2. We have many checks (such as consistency and
coherent checks) concerning reasoning techniques [15] used to
validate the ontology represented in OWL 2. RacerPro 2 checks
the coherence of TBos. If it is coherent, it will give t (which
means true). If not, it will give NIL. Another check done by
RacerPro is the consistency of ABox to check if it is as a model
consistent with TBox. If so, the reasoner will give t (true).
Another way of reasoning using RacerPro2 is creating queries
using the New RacerPro  Query Language-nRQL[19], by
populating the TBox of knowledge base. Then, we check the
consistency of knowledge base. We load the OWL 2 file (shown
in Figure 2 left side) into the RacerPro 2. When we check the
coherence of TBox, it gives us NIL (see Figure 3 left side)
because of the contradiction between Exclusive constraint and
PhDStudent subtype Class. When we insert individuals into the
knowledge base for classes Student, Employee and PhD_Student,
and checked the consistency of ABox with TBox, it gives us NIL
because of the contradiction mentioned above. After populating
the classes Student, Employee and PhD Student and applying
nRQL for individual retrieval, RacerPro 2 gives us that the
knowledge base was incoherent and there is no valid model for
the class Person (Fig 3 middle screen). Where we exclude the
exclusive constraint and check the consistency of ABox, it gives
us a valid model for Person, and ABox is consistent (see figure 3
right side) with the TBox (axioms represented in OWL 2 (see
figure 2 right side)). This output of check (instance retrieval)
proves the correctness of mapping Exclusive construct of ORM
(represented in graphical notation (figure 2 left side) into OWL 2
construct (DisjointClasses which is represented in Figure 2 right
side).

7. Conclusion and Future Work

The mapping and automation of this mapping from ORM into
OWL 2 are the main theme of this paper. We do map twenty two
(out of twenty nine) ORM constructs. Where these 22 constructs
represent the most commonly used constructs in ORM. At the
same time, those constructs are supported by SHOIN Description
Logic; which means the OWL 2 output we have mapped
characterized by its ability of decidability.  Through the
evaluation process, we illustrated the correctness of our mapping.
The importance is not in the mapping itself, but in the outcome
because of the existence of a large number of applications that
depend on it. OWL 2 new features inspired the mapping of some
ORM constructs that were not supported by OWL 1 such as

DisjointUnion, Ring Constraints (Reflexive, Irreflexive, and
Asymmetric Object Properties) and others.
Some of the OWL 2 constructs are not supported by ORM such as

equivalent class, etc. We plan to work on that in the future.
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Abstract

The immense need for well engineered ontologies is growing rapidly, as the need for ontologies is increasing in many application
areas such as data integration, the semantic web, knowledge engineering, enhanced information retrieval, among others. Due to
the central role ontologies are playing, the World Wide Web Consortium (W3C) developed the Web Ontology Language (OWL)
as a language to author ontologies. Although OWL is a great specification language like many other ontology languages, it
focuses on “how” rather than “what” to represent. That is, it does not provide methodological means for ontology engineering.
One in fact is required to understand the logical foundation underpinning OWL to build an ontology, which makes it difficult for
domain experts to get involved in ontology building, or at least, in the review and validation phases. For an ontology language to
be easily understood by domain experts it must be close to the natural language they speak and the ‘logic’ they use. Also, it
should have a graphical notation to enable simple and conceptual modeling. The expressive, methodological, and graphical
capabilities of Object-Role Modeling (ORM), which is a conceptual modeling language, make it a good candidate for use in
ontology engineering. In this paper, we (i) map all ORM constructs to OWL 2 using SROIQ Description Logic and, on the other
hand, we (ii) extend the ORM notation to cover all OWL 2 constructs not currently covered by ORM. By doing so, we combine
the strengths of both ORM and the W3C-recommended OWL 2 Web Ontology Language. This creates a framework that allows
one to author and engineer OWL 2 ontologies graphically using ORM.

Keywords: Ontologies; Conceptual Modeling; Semantic Web; Object Role Modeling (ORM); OWL 2 Web Ontology Language;
Description Logic.

1 Introduction and Motivation

Ontology engineering is one of the major challenges that brought the attention of the research community in the last
decade. This is especially due to the growing need for well-engineered ontologies for many application areas such as
data integration, the semantic web, knowledge engineering, enhanced information retrieval, among others. Due to
the central role ontologies play in realizing the vision of the semantic web, the World Wide Web Consortium (W3C)
developed the Web Ontology Language (OWL) among its semantic web technology stack, as a language to author
ontologies for the semantic web. OWL is based on Description Logic. In particular, the older version of OWL is
based on SHOIN description Logic while the newest version (OWL 2) is based on SROIQ.

However, like other ontology languages, using OWL to engineer ontologies is a difficult task as it does not provide a
practical and methodological means for ontology engineering. In addition, one is required to understand the logical
foundation underpinning OWL, which is very difficult for domain experts. In fact, the limitations of OWL and other
similar languages are not that they lack expressiveness or logical foundations, but their suitability for being used by
subject matter experts. For an ontology language to be easily understood by domain experts, it should at least meet
the following two requirements [1] : (i) It must be close to the natural language the experts speak and the ‘logic’
they use. (ii) The language should have a graphical notation to enable simple and conceptual modeling. What we
mean by ‘graphical notation’ here is not merely visualization but a graphical language that allows for ontology
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construction using notations for concepts, relations, and rules. In other words, such language should guide domain
experts to think conceptually while building, modifying, and validating an ontology.

Object-Role Modeling (ORM) is a conceptual modeling approach that has been in use since the early 1970s in
database modeling, and has recently become popular in ontology engineering. Its expressive, methodological and
graphical capabilities make it indeed one of the best candidates for building ontologies. Specifically, what
distinguish ORM as a conceptual modeling approach are its simplicity, intuitiveness, stability, and verbalization
capabilities, among many others. ORM simplifies the modeling process by using natural language, intuitive
diagrams, and examples, and by examining information in terms of simple elementary facts and expressing them in
terms of objects and roles [2].

Compared to other graphical modeling notations such as Entity Relationship (ER) or the Unified Modeling
Language (UML), ORM is a stable modeling notation. This is due to the fact that ORM makes no use of attributes
(i.e., attribute-free). All facts are represented in terms of concepts (object-types or value-types) playing roles [2].
This makes ORM not impacted by changes that cause attributes to be remodeled as object-types or relationships.
Also, one of ORM’s strongest features is its verbalization capabilities; ORM diagrams can be automatically
verbalized into pseudo natural language (see the example in section 3.1). The verbalization capability of ORM
simplifies the communication with subject matter experts and allows them to better understand, validate, and build
ORM diagrams. It is also important to note that ORM’s verbalization techniques have been adopted in the business
rules community and have become an Object Management Group (OMG) standard.

For ORM to be used as an Ontology Engineering methodology, the underlying semantics of the notation must be
formally specified (using logic). Formalization of ORM using First Order Logic was done comprehensively by
Halpin in [2, 3]. In addition, because FOL is not decidable (does not enable automatic reasoning), ORM was
formalized in previous work [1, 4, 5] using less complex logic languages that allows for automatic reasoning,
namely, DLR;4 Description logic [5] and SHOIN/OWL description logic [1, 4]. This extensive work on the
formalization of ORM has indeed played an important role in laying the foundation for using ORM in ontology
engineering.

In order to fully establish ORM as a practical and methodological means for ontology engineering, we propose to
combine the strengths of both ORM and the W3C-recommended OWL 2 Web Ontology Language. In short, we
propose to map all ORM constructs to OWL 2 using SROIQ Description Logic and, on the other hand, extend the
ORM notation to cover all OWL 2 constructs not currently covered by ORM. By doing so, we exploit the
advantages of both ORM as an intuitive graphical approach for conceptual modeling and OWL 2 as a standard
W3C-recommended language for authoring ontologies. This creates a framework that allows one to author OWL 2
ontologies graphically using ORM. The original contributions of this paper can be summarized as follows:

M The mapping of ORM to OWL 2 and its formalization using SROIQ Description Logic that underpins
OWL 2. This mapping is presented in this paper in 19 rules.

(i) Extending the ORM notation by introducing new ORM-inspired graphical notations to cover all OWL
2 constructs not currently covered by ORM.

(iii) Evaluating our mapping/formalization by loading the OWL 2 mapping of every ORM construct into
RacerPro 2.0 reasoner. Different reasoning methods like consistency, coherency and special instance
checking were used to validate the correctness of our mapping/formalization.

(iv) Evaluating our new ORM extension by means of a survey conducted with more than 30 ORM
practitioners.

(V) Implementation: We have extended DogmaModeler (an ORM-based ontology modeling tool) to
implement (a) our mapping (generating OWL 2 from ORM diagrams) and (b) the new ORM extension.
Also, we have integrated the Hermit reasoning tool into DogmaModeler so that the correctness of the
built ontology can be checked by methods of logical reasoning.



It is important to note here that the main purpose of this paper is to develop an expressive and methodological
graphical notation for OWL 2, which allows people to author OWL 2 ontologies graphically. This is presented in
this paper in two parts. In the first part, we investigate all ORM constructs by mapping/formalizing them into OWL
2 and its underpinning SROIQ Description Logic. In the second part, we investigate OWL 2 constructs that do not
have equivalent graphical notations in ORM and develop ORM-inspired graphical notations for them. By doing so,
we have developed an ORM-based graphical notation that expresses OWL 2 completely. Because of this, all of our
work in this paper is based on the semantics of OWL 2 not on ORM’s semantics as we have done in previous work
[1, 4, 5], where our focus was rather on ORM itself. That is, in this paper the semantics of some ORM constructs are
altered to adapt them to the semantics of OWL 2. A more detailed discussion on this issue is provided in section 2.

The remainder of this paper is organized as follows. In section 2, we discuss related work. Section 3 provides
background information about ORM, SROIQ Description Logic, and OWL 2. In section 4, we provide the mapping
of ORM to OWL 2 using SROIQ Description Logic in addition to the evaluation of the mapping. Section 5
discusses the extension of ORM graphical notation for a complete representation of OWL 2. In the same section, we
also briefly summarize the evaluation of the newly proposed ORM extension. Section 6 presents the implementation
of our work as an extension to DogmaModeler. Section 7 concludes our discussion and provides directions for
future work.

2 Related Work

As discussed previously, our work revolves around establishing ORM as a practical and methodological means for
ontology engineering by combining its strengths with those of the OWL 2 Web Ontology Language. There are
several approaches and tools similar to our work, which aim to use graphical notations such as UML and ER for
ontology modeling. Also, in particular, some of them aim to model OWL ontologies graphically. Some of these
approaches and tools consider the problem of ontology modeling a problem of visualization, thus ignoring the
underpinning semantics. However, some efforts exist to develop formal semantics (i.e., formalize) UML and ER.
In this section, we briefly discuss these efforts and compare them to our approach.

Many efforts exist to use UML or UML-based notations for graphical representation of ontologies. Kogut et al, in [6],
propose using UML as an ontology visualization and editing tool. Although their goal is to visualize and edit
ontologies, they did not consider the underpinning semantics. Their work does not also provide any type of mapping of
the graphical notation (i.e., UML) into OWL. Brockmans et al, in [7], introduced a UML-based notation for the
visualization of OWL ontologies by developing a UML profile. In such approach, OWL is visualized based on the
UML profiles of the Ontology Definition Metamodel (ODM). ODM defines a set of UML metamodels and profiles for
the development of RDF and OWL. These UML profiles adapt UML notations to provide a suitable visual
representation of RDF and OWL ontologies. This representation of ontologies using ODM enables one to only
visualize the ontology but does not capture its semantics. This is due to the challenges of developing well-formed and
usable UML models with equivalent semantics in OWL [8]. However, in [9], Kendall et al presented some potential
extensions to the UML profiles of ODM to address some of the requirements of OWL 2. It is important to also note that
UML itself is a very basic notation; as will be demonstrated later, ORM is much more expressive as it allows for at
least 19 types of rules to be expressed graphically, while UML supports only types of cardinality rules [2].

Many ontology editing tools are available such as TopBraid?, Protégé [10], NeOn [11], and GrOWL [8]. These tools
are used to author ontologies by enabling the creation of classes, object properties and various constraints. TopBraid
is a commercial modeling tool for developing ontologies for the semantic web, where one can compose and edit
RDF (Resource Description Framework) and OWL. On the other hand, Protégé is a free, open source ontology
editor based on Java. It allows the user to build and edit OWL and RDF ontologies in addition to visualizing classes,
properties, and rules. NeOn is an open source tool that provides an ontology engineering environment based on
Eclipse Integrated Development Environment (IDE). It includes many plug-ins that support many ontology
engineering activities and provides a means for visualizing the ontology as it is being built. GrOWL is also a tool for
visualizing and editing OWL ontologies with advanced browsing and navigation tools. Many other similar tools and
frameworks are available such as, IBM Integrated Ontology Development Toolkit [12], SWOOP [13], and DERI
Ontology Management Environment (DOME)® among many others. Although all of these tools allow a graphical

2 http://www.topguadrant.com/products/TB_Composer.html
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representation of the ontology, this representation is merely a visualization (i.e., not authoring) that ignores the
underpinning semantics, in contrast to our proposed ORM ontology engineering paradigm.

We have found the most decent work in formalizing UML in [14] and ER in [15]. These two formalization efforts
have studied the First Order Logic (FOL) semantics of UML and ER and mapped them into DLR;¢y Description
Logic. It is worth noting here that the ICOM tool was one of the first tools to enable automated reasoning with
conceptual modeling. ICOM [16] supports ontology modeling using a graphical notation that is a mix of UML and
ER notations. ICOM is integrated with a description logic reasoning server that acts as a background inference
engine to enable automatic reasoning. This automatic reasoning is done by mapping the graphical notations into DIG
Description Logic Interface. In our methodology, we use ORM as a graphical and methodological approach to
engineer and model ontologies while automated reasoning is performed by mapping the ontology to the W3C-
recommended OWL 2 Web Ontology Language.

In previous work [1, 4, 5], we have investigated the ORM notation by formalizing it using both DLR;4 description
logic [5] and SHOIN description logic [1, 4]. The main purpose of this formalization was to enable automated
reasoning on the formal properties of ORM diagrams, such as detecting constraint contradictions and implications.
Thus, in our study of ORM, we used the native semantics of ORM and expressed them in DLR;4; and SHOIN
Description Logics. However, in the mapping/formalization performed in this paper, we have altered the native
semantics of ORM to adapt them to those of OWL 2 (i.e., we have used the semantics of OWL 2 not of ORM). In
other words, we have expressed the semantics of OWL 2 graphically using the ORM notation, without employing
the semantics of ORM. For example, ORM subtypes are proper subtypes. We say that B is a proper subtype of A if
and only if the population of B is always a subset of the population of A, and A # B. This implies that the subtype
relationship is acyclic; hence, loops are illegal in ORM. However, such loops, according to the semantics of OWL 2,
are allowed, which means that the classes involved in the loop are equivalent. Another example is that, according to
ORM semantics, it is not allowed for an object-type to be a subtype of two different object-types, unless these two
supertypes have a common supertype. However, such a multiple inheritance is allowed according to the semantics of
OWL 2.

The important difference between ORM and OWL 2 semantics is that ORM adopts a closed world assumption while
OWL 2 follows an open world assumption. A closed world assumption states that any statement that is not known to
be true or false is false. On the contrary, an open world assumption states that, unless the truth-value of a statement
is explicitly determined, it is unknown. For instance, originally, ORM assumes that any two object-types are
disjoint, without the need to state it explicitly (closed world assumption). Here, we follow OWL 2’s open world
assumption where any two object-types are not known whether they are disjoint or not, except if stated explicitly.
The same applies, for example, to instances (assertions), where OWL 2 semantics states that any two instances are
not considered different (unequal) or equal unless it is explicitly stated (open world assumption). In short, in this
paper, we don’t present or follow ORM semantics, but rather use the ORM graphical notation to depict OWL 2
constructs using OWL 2 semantics.

3 Background

In this section, we shed the light on three fundamental related topics that are important to be introduced before
delving into the details of our work, namely, Object-Role Modeling (ORM), SROIQ Description Logic, and OWL 2
Web Ontology Language. The following subsections provide a brief discussion on the topics with a clarifying
example on the Object-Role Modeling approach (ORM).

3.1 Object-Role Modeling (ORM)

ORM is a conceptual modeling approach that allows the semantics of a Universe of Discourse (UoD) to be modeled
at a highly conceptual level and in a graphical manner. As mentioned earlier, ORM has been used commercially for
more than thirty years as a database modeling methodology and has been recently becoming popular not only for
ontology engineering but also as a graphical notation in other areas such as modeling of business rules, XML
schemes, data warehouses, requirements engineering, web forms, among others. ORM has an expressive and stable
graphical notation. It supports not only n-ary relations and reification, but also provides a fairly comprehensive
treatment of many ‘practical’ and ‘standard’ business rules and constraint types such as mandatory, uniqueness,
identity, exclusion, frequency occurrences, subsetting, subtyping, equality, and many others [17].



ORM makes it easy to simplify the presented conceptual model using both natural language (via its verbalization
capabilities) and graphical notations to present facts in their simple or elementary forms. In addition, ORM diagrams
can be populated by examples to measure the correctness of the design [2]. Practical use cases have shown that skills
and know-how of using ORM can be acquired easily and in a short period of time even by non-IT specialists[5, 18].
Moreover, several modeling tools support ORM notation such as: Microsoft Visio, DogmaModeler, and Norma.

The example in Fig. 1.a below depicts a sample ORM diagram including several rules and constraints that ORM is
capable of expressing graphically. Note the three basic constructs of ORM; object-types, value-types, and roles
(forming relations). Object-types are represented as solid-line ellipses, value-types are presented as dashed-line
ellipses and relations as rectangles, where one or more ORM roles form each ORM relation. For example, the
relation (WorksFor/Employs) in Fig. 1.a is a binary relation (i.e., composed of the two roles: WorksFor and
Employs).

Fig. 1b shows the verbalization of the ORM rules presented graphically in Fig. 1a. One of the most powerful
features of ORM is its verbalization capability in which ORM diagrams can be automatically verbalized into pseudo
natural sentences. In other words, all rules in a given ORM diagram can be translated into fixed syntax sentences [5,
19]. For example, the Mandatory constraint (*) between ‘Person’ and ‘hasGender’ is verbalized by rule-1 in Fig.1b
as “Each Person Has at least one Gender”. Similarly, the role uniqueness constraint (<) is verbalized by rule 2,
Subtype (—) by rule 3, subset (1) by rule 6, (®) and (®) between subtypes by rules 4 and 5, and between roles by
rules 7 and 8. The value constraint ({*“M’,’F’} on Gender) is verbalized by rule 9. These verbalizations are generated
automatically by our DogmaModeler tool through using verbalization templates parameterized over a given ORM
diagram. For more discussion on ORM verbalization, we encourage the reader to refer to [19], which shows how
DogmaModeler enables verbalization in 11 different human languages. The main purpose of this verbalization is to
simplify the communication with non-IT specialists and to allow them to better validate and build ontology models.

. Each Person Has at least one Gender. (Mandatory)
. Each Person Has at most one Gender. (Role uniqueness)
. Each Man is a Person. Each Woman is a Person. (Subtype)

WorksFor/Employs

AW N P

(Exclusive)
. Each Person must be, at least, Man or Woman. (Totality)

o

WorksFor that Company. (Subset)

. Each Person cannot be a Man and a Woman at the same time.

6. If a Person is AffiliatedWith a Company then this Person

7. Same Car cannot be OwnedBy by Person and OwnedBy a

Company at the same time. (Exclusion)

8. Each Car should be OwnedBy by Person or OwnedBy a

Company, or both. (Disjunctive Mandatory)
9. A Gender can only be one of {M,F}. (Value Constraint)

(b)
Figure 1: Sample ORM Diagram along with the verbalization of its rules.

3.2 SROIQ Description Logic

Description logics are a family of knowledge representation formalisms. Description logics are decidable fragments
of first-order logic, associated with a set of automatic reasoning procedures. The basic primitives of a description
logic are the notion of a concept and the notion of a relationship. Complex concept and relationship expressions can
be built from atomic concepts and relationships. For example, one can define HumanMother as

HumanMother E Female [1 3 HasChild. Person. The expressiveness of a description logic is characterized by
the set of constructors it offers.

SROIQ Description Logic compromises both features of expressivity and decidability. SROIQ is an extension of
SHOIN which is the underlying description logic of OWL-DL. However, the rise of the Semantic Web increased
the need for a more featured and expressive Description Logic to author ontologies. As a result of this increasing
demand, SROIQ was introduced with many new features (especially regarding expressivity) which led to adopting
SROIQ as the underpinning logic for OWL 2.

A Description Logic knowledge base is composed of two components: a TBox and an ABox. The TBox contains
intensional knowledge in the form of a terminology and is built through declarations that describe general properties



of concepts. The ABox contains extensional knowledge which is also called assertional knowledge. It is knowledge
that is specific to the individuals of the domain of discourse (knowledge specific to the instances) [15].

SROIQ syntax can be defined as follows. If C and D are concepts and R is a binary relation (also called role), then
(c D), (C UD), (=C), (VR.C),and (R. C) are also concepts. If R is simple (i.e., neither transitive nor has any
transitive sub-relations), then (< nR) and (= nR) are also concepts, where n is a non-negative integer. For € and D
(possibly complex) concepts, C = D is called general concept inclusion. SROIQ also allows hierarchy of roles

(R £ S), transitivity of roles (R,), and inverse of roles (S & R™). In fact, SROIQ allows everything SHOIN
allows, in addition to the following [20]:

i) Disjoint roles: most description logics do not support disjoint roles and this makes them unbalanced.
SROIQ is said to be balanced because it allows the expressivity of disjoint between roles. For example,
the roles brother and father should be declared as being disjoint.

i) Reflexive, irreflexive and antisymmetric roles: these constraints are useful when using ABox to
represent individuals. E.g., the role loves should be declared as being reflexive (one can love himself),
and the role hasSibling should be declared as being irreflexive (one cannot be the sibling of himself).

iii)  Negated role assertion: Although most Abox formalisms allow for only positive role assertions, SROIQ
allows for negated roles assertions as well. For example, such statements can be found in a SROIQ Abox:
(Rami, Tony): mknows, which means that Rami does not know Tony.

iv)  Role inclusion axioms: these roles are of the form Ro S C R and S o R T R. For example, given the
following two axiom (1) owns o hasPart & owns, and (2) the fact that each car contains an engine
Car E 3JhasPart. Engine. This implies that an owner of a car is also an owner of an engine, i.e., the
following subsumption is implied: 3owns. Car = Jowns. Engine.

V) Universal role U.

vi)  Local reflexivity of the form FR. Self. For example, the following expresses the fact that somebody
loves himself/herself: Fikes.Self.

vii)  SROIQ also provides what is referred to as Rbox which contains all statements concerning roles.

3.3 OWL 2 Web Ontology Language
The W3C-recommended OWL Web Ontology Language is a knowledge representation language used to publish
and share ontologies on the web. While the underpinning description logic of OWL is SHOIN, OWL 2 (the new
version of OWL) is based on SROIQ description logic. Roughly speaking, one can often view OWL 2 as SROIQ
description logic written in other syntaxes such as XML, RDF/XML, etc. Among OWL 2 basic constructs are:
Class (corresponds to a “‘concept’ in SROIQ and called ‘object-type’ in ORM), Property (corresponds to a SROIQ
‘relationship’ or an ORM °‘role”), and Object (corresponds to an individual/assertion). It is also worth mentioning
here that OWL 2 is supported by several semantic reasoners such as RacerPro 2, Hermit, Pellet and FaCT++. The
following is a summarization of the new additional features that distinguish OWL 2 from its OWL predecessor, as
put by the World Wide Web Consortium (W3C):

(i)  Syntactic sugar to make some statements easier to express.

(i)  New constructs that increase expressivity.

(iii)  Extended support for datatypes.

(iv)  Simple metamodeling capabilities.

(v)  Extended annotation capabilities.

4 Mapping ORM to SROIQ/OWL 2

In this section, we present the formalization of all ORM constructs using SROIQ description logic and their
mappings to OWL 2. Before delving into the details of the formalization/mapping, we first present a use case where
we map the sample ORM diagram in Fig. 1.a into OWL 2. The diagram is repeated in Fig. 3 along with a part of its
SROIQ/OWL 2 mapping. The complete OWL 2 mapping is provided in Appendix A.

The basic ORM constructs are mapped to OWL 2 as follows. An object-type is mapped as a Class in OWL 2
whereas an ORM role is mapped as an ObjectProperty/DataProperty. Before mapping the ORM rules and
constraints to OWL 2, one must first declare the object-types and roles in OWL 2. Fig. 2 depicts the declarations of
the object-types Person and Company and the ORM relation WorksFor/Employs of Fig. 3.a. The complete
declarations of the ORM diagram are provided in Appendix A.



1. <Declaration> 7. <Declaration>
2. <Class IRI="#Person"/> 8. <ObjectProperty IRI="#Employs'/>
3. </Declaration> 9. </Declaration>
4. <Declaration> 10. <Declaration>
5. <Class IRI="#Company'/> 11. <ObjectProperty IRI="#WorksFor'/>
6. </Declaration> 12. </Declaration>

Figure 2: OWL 2 declarations of Classes and Object Properties

The diagram in Fig. 3.a contains 9 rules which we map into SROIQ/OWL 2 in Fig. 3.b below. These rules are: (1)
Subsumption (subtype), (2) Mandatory, (3) Role Uniqueness, (4) Total Constraint, (5) Exclusive Constraint, (6)
Subset Constraint, (7) Disjunctive Mandatory (inclusive-or), (8)Exclusion, and (9)Value Constraint.

WorksFor/Employs

M, F}
( Gender )
S Affiliated With/
() The ORM diagram in Fig. 1.a
Subtype: Man = Person, Woman = Person 39. <EquivalentClasses>
1. <SubClassO0f> 40. <Class IRI="#0wnedByP.Person'/>
2. <Class IRI="#Woman"/> 41. <ObjectSomeValuesFrom>
3. <Class IRI="#Person"/> 42. <ObjectProperty IRI="#0wnedByP"/>
4. </SubClassOf> 43. <Class IRI="#Person"/>
5. <SubClassOf> 44 . </0ObjectSomeValuesFrom>
6. <Class IRI="#Man"/> 45. </EquivalentClasses>
7. <Class IRI="#Person"/> 46.
8. </SubClassOf> 47. <EquivalentClasses>
48. <Class IRI="#Car"/>
Mandatory: P_erson C JHas. Gender 49. <ObjectUnionOf>
9.  <EquivalentClasses> 50. <Class IRI="#0wnedByC.Company"/>
10. <Clas§ IRI='I'#Person"/> 51. <Class IRI="#0wnedByP.Person"/>
11. <DataSomeValuesFrom> 52. </ObjectUnion0f>
12. <DataProperty IRI="#hasGender"/> 53. </EquivalentClasses>
13. <Datatype abbreviatedIRI="xsd:string"/>
14. </DataSomeValuesFrom> Exclusion: OwnedBy.Person = — OwnedBy. Company
15. </EquivalentClasses> 54_ <EquivalentClasses>
. 55. <Class IRI="#0wnedByC.Company"/>
Role Unlquen_ess: Person C < 1Has. Gender 56. <ObjectAllvaluesFrom>
i?- <qu:Va|eTgf|az§es> , 57. <ObjectProperty IRI="#0wnedByC"/>
- <Class ="#pPerson"/> 58. <Class IRI="#Company"/>
18. <DataMaxCardinality cardinality="1"> 59. </ObjectA Va|uespﬁomz
19. <DataProperty IRI="#hasGender"/> 60. </EquivalentClasses>
20. <Datatype abbreviatedIRI="xsd:string"/> 61.
21. </DataMaxCardinality> 62. <EquivalentClasses>
22. </EquivalentClasses> 63. <Class IRI="#0wnedByP.Person"/>
. s 64. <ObjectAl lValuesFrom>
Total and Exclusive Constraints: Person = ManYYoman, 65. <ObjectProperty IRI="#0wnedByP"/>
23.  <DisiointuUnions Manju¥omanSth 66. <Class IRI="#Person"/>
24' l%{g;g Ig:gn#Person"/> 67. </ObjectAllValuesFrom>
- - . < i >
25. <Class IRI="#Woman"/> gg /EquivalentClasses
gg' </SFI?S§ ;5'? #Ean /> 70. <EquivalentClasses>
- Ul @m0 71. <Class IRI="#0wnedByC.Company"'/>
. . - 72. <ObjectComplementOf>
Subset: AffiliatedWith & WorksFor - -
28. <SubObjectPropertyOf> 73. <C!ass IRI="#0wnedByP.Person*/>
29. <ObjectProperty IRI="#AFfiliatedWith'/> 74.  </ObjectComplementOf>
30. <ObjectProperty IRI="#NorksFor"/> 75. </EquivalentClasses>

e AT O Value Constraint: Gender = STRING, Gender = {M, F}

76. <DataPropertyRange>
77. <DataProperty IRI="#hasGender"/>
78. <DataOneOf>

Disjunctive Mandatory: Car = 30wnedBy. Person LI
3OwnedBy. Company
32. <EquivalentClasses>

—n " 79. <Literal datatypelRI="&xsd;string"> M </Literal>
33. <ClI IR1=""#0 dByC.C /> - - -
34. <0b?2§t30meVa|ﬁ2§Frﬁm> S 80. <Literal datatypelRI="&xsd;string"> F </Literal>
35. <ObjectProperty IRI="#0wnedByC"/> 81. </DataOneof>
36. <Class IRI="#Company"/> 82. </DataPropertyRange>
37. </ObjectSomeValuesFrom>

38. </EquivalentClasses>




(b) The SROIQ/OWL 2 mapping of the ORM rules in (a)
Figure 3: The ORM diagram of Fig. 1.a and the mapping of its rules to SROIQ/OWL 2

Subsumption (subtype) is depicted as an arrow (—) in ORM. In our example, this arrow is seen in two places:
between Man and Person, and between Woman and Person. This means that all instances of Man (all males) form a
subset of the population of Person (all persons). This is also true for the object-type Woman. In OWL 2, SubClassOf
construct is used to represent this rule (lines 1-8, Fig. 3.b).

Mandatory is depicted as a dot (e) on the line connecting Person object-type with hasGender role. This constraint
indicates that, in every interpretation of this schema, each instance of the object-type Person must have at least one
Gender. This rule is mapped in OWL 2 in lines 9-15, Fig. 3.b.

Role Uniqueness is depicted by an arrow <> spanning along the role hasGender. In OWL 2, we map this rule as
shown in lines 16-22 in Fig. 3.b. This constrains indicates that, in every interpretation of this schema, each instance
of the object-type Person must have at most one Gender.

Total and Exclusive Constraints are depicted as (®) and (®) between the Man and Woman subtypes. The Total
Constraint means that the population of Person is exactly the union of the populations of Man and Woman subtypes.
The exclusive constraint means that the intersection of the populations of Man and Woman is always empty. In our
example, we use DisjointUnion OWL 2 construct (lines 23-27, Fig. 3.b) which expresses both Total and Exclusive
constraints.

Subset Constraint is depicted in the ORM diagram in Fig. 3.a as an arrow (T) between the roles AffiliatedWith and
WorksFor; which means that the role AffiliatedWith is a subset of role WorksFor. That is, all Persons who are
affiliated with a Company must work for that company. This is written in SROIQ as: AffiliatedWith = WorksFor.
Representation in OWL 2 is done using SubObjectPropertyOf (lines 28-31, Fig. 3.b)

Disjunctive Mandatory (inclusive-or), is depicted as (®) between two or more roles, illustrating that the disjunction
of these roles is mandatory for members. In our example, each instance of object-type Car must be owned by at least
a Person or a Company or both. This is written in SROIQ description logic as: Car = 30wnedBy. Person L
J0wnedBy. Company). This rule is mapped in OWL 2 in lines 32-53.

Exclusion, is represented as (®) between the roles it connects (in Fig. 3.a, it connects between the two ‘OwnedBYy’
roles of object-type Car). It means that each member of the population cannot play both roles constrained by
exclusion. In the example, no car can be owned by a Person and a Company at the same time (OwnedBy. Person =
— OwnedBy. Company). Representation in OWL 2 is depicted in Fig 3.b (lines 54-75).

Value Constraint, is represented as {*M’,’F’} above the Gender dashed-line ellipse. This constraint indicates the
possible set of values that the value-type Gender can be populated with. Here, Gender can take any of the two
STRING values: ‘M’ and ‘F’. No other value is allowed. This constraint is mapped in OWL 2 in lines 76-82.

4.1 Roles and Relationships

4.1.1  Binary and N-ary relationships

ORM supports n-ary relationships, where n > 1. Each argument of a relationship in ORM is called a role. For
example, consider the binary ORM relationship WorksFor/Employs in Fig. 3.a which has two roles, namely,
WorksFor and Employs. However, SROIQ only supports binary relationships. Note that an ORM role is called a
relationship in SROIQ. Thus, a binary ORM relationship is represented by two SROIQ relationships (represent
ORM roles) in addition to an inverse axiom to state that both SROIQ relationships are inverse to each other. The
same is true for the OWL 2 mapping except that each ORM role is mapped into an OWL 2 ObjectProperty. Fig. 4.a
(Rule-1) depicts a binary ORM relationship, its formalization into SROIQ, and its mapping into OWL 2. Fig. 4.b
(Case-1) shows the general case of an ORM n-ary relationship, which cannot be represented in SROIQ/OWL 2. One



can refer to [5] for the representation of Case-1 using DLR;4 Description Logic. In this case, however, the n-ary
relationship can be converted to binary relationships and then mapped into SROIQ/OWL 2.

Rule-1 Rule-1’ T
\
w18 T 18
AE VB, BEVrgA rgE Vr, AC Vr.B,Bc LITERAL
<ObjectPropertyDomain> <DataPropertyDomain>
<ObjectProperty IRI="#r,"/> <ObjectProperty IRI="#r,B"/>
<Class IRI="#A"/> <Class IRI="#A"/>
</0ObjectPropertyDomain> </DataPropertyDomain> Case-1

<ObjectPropertyDomain>

<ObjectProperty IRI="#rg"/> <DataPropertyRange>
<Class IRI="#B"/> <DataProperty IRI="#r,B"/>

</ObjectPropertyDomain> <Datatype N2
<ObjectPropertyRange> abbreviatedIRI="rdfs:Literal"/>
<ObjectProperty IRI="#r,"/> </DataPropertyRange> [ ] [ ]
<Class IRI="#B"/>
</ObjectPropertyRange>
<ObjectPropertyRange> Cannot be represented in SROIQ/OWL2

<ObjectProperty IRI="#rg"/>
<Class IRI="#A"/>
</ObjectPropertyRange>
<InverseObjectProperties>
<ObjectProperty IRI="#r,"/>
<ObjectProperty IRI="#rg"/>
</InverseObjectProperties>

(@) (b)

Figure 4: Binary and N-ary relationships

The mapping of the binary ORM relation presented in Rule-1 represents the case where A and B (Fig. 4.a) are both
object-types (equivalent to OWL 2 classes). However, in the case where either A or B are ORM value-types, the
value-type is mapped into a “Literal” (the universal datatype) in OWL 2, or to any of its sub-datatypes. If, for
example, B is a value-type, as depicted in Rule-1’, the ORM role r, is mapped into an OWL 2 DataProperty with
datatype “Literal”. Notice that this DataProperty is called r,B; the concatenation of the names of both the ORM role
(ra) and the ORM value-type (B). Also note that we don’t need an additional inverse axiom, because in this case
only one DataProperty is needed to represent the ORM relation between an object-type and a value-type.

4.1.2  Unary Relationship

Although unary roles are allowed in ORM, they cannot be represented directly in SROIQ/OWL 2. The example
below (Fig. 5.a) shows an ORM unary relationship that means that a person may smoke; or in FOL [3]:

Vx (Smokes(x) — Person(x)). The population of this fact is either true or false. In order to map ORM unary roles
into SROIQ/OWL 2, we introduce a new class called BOOLEAN, which takes one of two values: {TRUE, FALSE}.
Each ORM unary fact is seen as a binary relationship in SROIQ/OWL 2, where the second concept is BOOLEAN.
Rule-2 in Fig. 5.b presents the general case mapping of ORM unary fact types to SROIQ/OWL 2.

fule-2
@ Person = YSmokes.BOOLEAN o AC Vr.Boolean
<Declaration> <Declaration>
<Class IRI="#Person"/> <Class IRI="#A"/>
</Declaration> </Declaration>
<Declaration> <Declaration>
<DataProperty IRI="#Smokes"/> <DamPr(_)perty IRI=""#r"/>
</Declaration> </Declaration>
<DataPropertyDomain> <DataPropertyDomain>
<DataProperty IRI="#Smokes"/> <DataPr0pe£lsy .IIRI: H#r'' />
<Class IRI="#Person"/> <Class IRI="#A"/>
</DataPropertyDomain> </DataPropertyDomain>
<DataPropertyRange> <DataPropertyRange>
<DataProperty IRI="#Smokes"/> <DataProperty IRI="#r"/>
<Datatype <Datatype
abbreviatedIRI="xsd:boolean'/> abbreviatedIRI="xsd:boolean"/>
</DataPropertyRange> </DataPropertyRange>
(@) (b)

Figure 5: Unary Relationship

4.2 Subtypes
ORM subtypes are proper subtypes. That is, as discussed earlier, we say that B is a proper subtype of A if and only if
the population of B is always a subset of the population of A4, and A # B, i.e., loops are illegal in ORM. However,



because the focus of this paper is to establish a graphical representation of OWL 2, we adopt the semantics of OWL
2, whose subtype relation, SubClassOf, is not a proper subtype (i.e., loops are allowed). Thus, for example, the
axiom “Woman is a Person” is written using OWL 2 semantics as: Woman E Person, without the need to add the
axiom (Person & Woman), as opposed to following ORM semantics. Rule-3 presents the mapping of the general
case of subtypes using SROIQ/OWL 2.

4.3 Total constraint

Total constraint (®) in ORM is equivalent to UnionOf construct in OWL 2. This rule means that the population of
the supertype is exactly the union of the population of all subtypes constrained by this rule. Rule-4 represents the
formalization of the general case.

4.4 Exclusive constraint

ORM exclusive constraint (®) is equivalent to DisjointClasses construct in OWL 2. It means that the population of
the subtypes constrained by this rule is pairwise distinct, i.e., the intersection of the population of each pair of the
subtypes must be empty. Rule-5 represents the formalization of the general case of the exclusive constraint.

Please note that in most of the examples and general case mappings in this paper, the OWL 2 declarations are
omitted due to space limitations.

Rule-3 0
BEA

<SubClassOf>
<Class IRI="#B"/>

ACAUA L. UA,

<Class IRI="#A"/>

<EquivalentClasses> <DisjointClasses>
RUCIeSE0> <Class IRI="#A"/> I oChass TRI—t#A />
<ObjectUnion0f> <Class IRI="#A,"/>
<Class IRI="#A,"/> .
<Class IRI="#A,""/> <Class IRI="#A,"/>

</DisjointClasses>

<Class IRI="#A,"/>
</ObjectUnionOf>
</EquivalentClasses>

(@) (b) (©

Figure 6: Formalization of ORM Subtype, Total Constraint and Exclusive Constraint.

4.5 Mandatory Constraints

45.1 Role mandatory

ORM'’s Role mandatory constraint is depicted as a dot on the line connecting a role with an object-type. Rule-6 of
Fig. 7.a presents the general case formalization of this rule. Each instance of the object-type A must be related to at
least one instance of object-type B by the relation r, /r5. In OWL 2, this rule is mapped using
ObjectSomeValuesFrom/ DataSomeValuesFrom constructs as shown in Fig. 7.a. ObjectSomeValuesFrom is used
when B is an object-type, whereas DataSomeValuesFrom is used when B is a value-type. OWL 2 MinCardinality
construct can also be used to restrict the population of A to at least relate with one instance of B. However, the usage
of ObjectSomeValuesFrom/ DataSomeValuesFrom is more elegant than MinCardinality.

452  Disjunctive Mandatory

The Disjunctive Mandatory constraint in ORM is used to constrain a set of two or more roles connected to the same
object-type. It means that each instance of the object-type must play at least one of the constrained roles. In the
general case presented in Fig. 7.b along with its formalization, each instance of object-type A must play at least one
of the constrained roles: (r1,...,7;,).
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Rule-6

° a AC3r,.B

<EquivalentClasses>
<Class IRI="#A"/>
<ObjectSomeValuesFrom>

ALCFr A L. L TFr,.An

<ObjectProperty IRI="#r,"/> <EquivalentClasses> <EquivalentClasses>
<Class IRI="#B"/> <Class IRI="#r;.A,"/> <ObjectUnion0f>
</0ObjectSomevValuesFrom> <ObjectSomeValuesFrom> <Class IRI="#r;.A;"/>
</EquivalentClasses> <ObjectProperty IRI="#r,"/>
<Class IRI="#A,"/> <Class IRI="#r,.A,'"/>
</0ObjectSomeValuesFrom> </ObjectUnionOf>
</EquivalentClasses> <Class IRI="#A"/>

</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#r,.A,"/>
<ObjectSomeValuesFrom>
<ObjectProperty IRI="#r,"/>
<Class IRI="#A,"/>
</0ObjectSomeValuesFrom>
</EquivalentClasses>

(@) (b)

Figure 7: Formalization of ORM Mandatory Constraints

4.6 Uniqueness Constraints

One can distinguish between three types of Uniqueness Constraints in ORM, namely, role uniqueness, predicate
uniqueness, and external uniqueness.

4.6.1 Role Uniqueness
Role uniqueness is represented by an arrow spanning a single role in a binary relationship. Rule-8 of Fig. 8.a
presents the general case formalization of this rule. This constraint means that each instance of an object-type

A plays the role r, with at most one instance of B. Role uniqueness is mapped to OWL 2 using the MaxCardinality
construct, restricted by “1’.

4.6.2 Predicate Uniqueness

This constraint is represented in ORM, as shown in Fig. 8.b, by an arrow spanning more than a role in an n-ary
relationship. In the example shown in Fig. 8.b, in any instance of this relation, both Student and Course must be
unique together, i.e., functional dependency. Although this constraint can be represented using First Order Logic
(FOL) [3] and DLR;4 Description Logic [5], it cannot be represented using SROIQ/OWL 2.

4.6.3  External Uniqueness

As shown in Fig. 8.c, ORM External Uniqueness constraint (denoted by ‘U’), applies to roles from different
relationships. The roles that participate in such a uniqueness constraint uniquely refer to an object-type. For example
(Fig. 8.c), the combination of (Author, Title, Edition) must be unique, i.e., different values of (Author, Title,
Edition) refer to different books. This constraint cannot be represented using SROIQ/OWL 2.

Case-3
Rule-8 o 5
<« Case} . 052 .
(O resins e
" [o [ To L Ihlisn
<EquivalentClasses> Cannot be represented in SROIQ/OWL2 Cannot be represented in SROIQ/OWL2
<Class IRI="#A"/> - =
Example WrittenBy/Writes
<ObjectMaxCardinality cardinality="1"> Example P Y @
<ObjectProperty IRI="#r,"/> --\
<Class IRI="#B"/> N
</ObjectMaxCardinal ity> - [ T < @
</EquivalentClasses> ..has ... in .. —\(J)

@) (b) ()

Figure 8: Uniqueness Constraints

4.7 Frequency Constraints
We distinguish between a frequency constraint that spans (1) a single role, which we call ‘Role Frequency’
constraint and (2) multiple roles, called ‘Multiple-Role Frequency’ constraint.
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4.7.1  Role Frequency Constraint

A frequency constraint (min-max) on a role is used to specify the number of occurrences that this role can be played
by its object-type. Fig. 9.a depicts the general case formalization of this rule. This constraint means that role 7, is
played by the object-type A for a number of occurrences between n and m. We map this constraint to OWL 2 by
using MinCardinality and MaxCardinality constructs.

4.7.2  Multiple-Role Frequency Constraint

A multiple-role frequency constraint spans more than one role (Fig. 9.b). This constraint means that, in the
population of the constrained relationship, the constrained roles must be played together by the related object-types
for a number of occurrences between n and m. Multiple-role frequency constraint cannot be formalized in
Description Logic and OWL 2 [1].

Rule-9

n-m
° A; F2sn o B L

<ObjectPropertyRange>
<ObjectProperty IRI="#r,"/>

Case-4
n-m

e
ENEN I A

Not supported in SROIQ/OWL2

<ObjectProperty IRI="#r,"/>
<Class IRI="#B"/>
</ObjectMinCardinality>
</ObjectPropertyRange
<ObjectPropertyRange>
<ObjectProperty IRI="#r,"/>
<ObjectMaxCardinality cardinality="m">

——
L] fu]

<ObjectProperty IRI="#r,"/>
<Class IRI="#B"/>
</ObjectMaxCardinality>
</ObjectPropertyRange>

(@)

Figure 9: Frequency Constraints

(b)

4.8 Value Constraint

The value constraint in ORM indicates the possible set of values (i.e., instances) that a value-type can be populated
with. A value constraint on a value-type A is denoted as a set of values {sy, s, ..., 5,,} depicted near a value-type.
Value constraints can be declared only on ORM value-types, which are depicted as dotted-line ellipses, and the
values should be well-typed, i.e., their data types should be either String such as {“hi’, ‘98’, “it’} or Number such as
{3,4,5}. Notice that quotes are used to distinguish string values from number values. It is worth noting that OWL 2
supports many data types besides integer and string; an advantage of OWL 2 over OWL (which only supports
integers and strings). OWL 2 enumeration class DataOneOf is used to map the value constraints (Fig. 10).

<Literal datatypelRI=
<Literal datatypelRI=

<Literal datatypelRI=
</DataOneOf>
</DataPropertyRange>

"&xsd;string"> x; </Literal>
"&xsd;string”> x, </Literal>

"&xsd;string"> x, </Literal>

Rule-10 %0, s %2} {x1, ..., Xn}
o Py N,
c T 1+ B 3} rBC STRING, rB={xy,...,x,} T B } rBENUMBER, rB={xy,..X,}
<DataPropertyRange> <DataPropertyRange>
<DataProperty IRI="#rB"/> <DataProperty IRI="#rB"/>
<DataOneOf> <DataOneOf>

<Literal datatypelRI="&xsd;int"> x; </Literal>
<Literal datatypelRI="&xsd;int"> x, </Literal>

<Literal datatypelRI="&xsd;int"> x, </Literal>
</DataOne0f>
</DataPropertyRange>

Figure 10: Value Constraints
4.9 Subset Constraint
The subset constraint (—) between two roles is used to restrict the population of these roles so as one is a subset of
the other. Fig. 11.a (Rule-11) depicts the general case mapping into SROIQ/OWL 2. It shows that all instances of A,
which plays the role‘s’, must also play the role ‘r’. Rule-12 formalizes the case of subset constraint between two
ORM relations: the set of tuples of the subsuming relation is a subset of the tuples of the subsumed relation.

ORM also allows subset constraints between tuples of roles (not necessarily contiguous) as shown in case-5, where
each i"™ and j" roles must have the same type. The population of the set of the j™ roles is a subset of the population
of the set of the i" roles. However, this last case cannot be represented in SROIQ/OWL 2.
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Rule-11

s.CC rB

<EquivalentClasses> <SubClassOf>
<Class IRI="#r_B"/> <Class IRI="#s.C"/>
<ObjectAl IValuesFrom> <Class IRI="#r.B"/>
<ObjectProperty IRI="#r"/> </SubClassOf>
<Class IRI="#B"/>
</ObjectAlIValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAl IValuesFrom>
<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>
</0ObjectAl l1ValuesFrom>

</EquivalentClasses>
(@)

Rule-12

it

L

<SubObjectPropertyOf>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

</SubObjectPropertyOf>

(b)

Figure 11: Subset Constraint

4.10 Equality Constraint

Case-5
Ro[ [raf _[ri _[ri] |
Ro [ [ra] __[ria] _[ric] |
Cannot be represented in SROIQ/OWL2

(©)

Similar to the subset constraint, the equality constraint (<) between roles and relations are mapped as shown in

rules 13 and 14, respectively.

<ObjectProperty IRI="#r"/> </EquivalentClasses>
<Class IRI="#B"/>
</0ObjectAl l1ValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAl IValuesFrom>
<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>
</ObjectAllIValuesFrom>

Rule-13
s.C=rB
<EquivalentClasses> <EquivalentClasses>
<Class IRI="#r.B"/> <Class IRI="#s.C"/>
<ObjectAl IValuesFrom> <Class IRI="#r.B"/>

[ ]

<EquivalentObjectProperties>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

</EquivalentObjectProperties>

Case-6
Ro[Ima]  _Jrf [ ]
Ro L[] _[ref [ |

Cannot be represented in SROIQ/OWL2

</EquivalentClasses>
(@)

(b)

Figure 12: Equality Constraint

4.11 Exclusion Constraint

(©)

Similar to the subset and equality constraints, the exclusion constraint (®) between roles and relations are mapped

as shown in rules 15 and 16, respectively.

Rule-15

s.CC-rB

<EquivalentClasses>
<Class IRI="#r.B"/>

<EquivalentClasses>

</0ObjectAl IValuesFrom>
</EquivalentClasses>
<EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectAl lValuesFrom>
<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>
</0ObjectAl IValuesFrom>
</EquivalentClasses>

</EquivalentClasses>

<Class IRI="#s.C"/>

<ObjectAl lValuesFrom> <ObjectComplementOf>
<ObjectProperty IRI="#r"/> <Class IRI="#r.B"/>
<Class IRI="#B"/> </0bjectComplementOf>

(@)

Rule-16

=

i

<DisjointObjectProperties>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

</DisjointObjectProperties>

Case-7
Ro [ [ra] __[re] _[r] |
&
Ry [L[ma] __[ria] __[ric] |
Cannot be represented in SROIQ/OWL2

(b)

Figure 13: Exclusion Constraint

4.12 Ring Constraints

(©

ORM allows ring constraints to be applied to a pair of roles (i.e., on binary relations) that are connected directly to
the same object-type, or indirectly via super types. Six types of ring constraints are supported by ORM.
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4,12.1 Symmetric (sym)
This constraint states that if a relation holds in one direction, it also holds on the other, e.g., ‘siblingOf” and
‘colleagueOf’. Fig. 14.a (Rule-17) depicts the general case formalization using SROIQ/OWL 2.

4.12.2 Asymmetric (as)

Asymmetric constraint is the opposite of the symmetric constraint. If a relation holds in one direction, it cannot hold
on the other, e.g., ‘wifeOf’ and *parentOf’. Fig. 14.b (Rule-18) depicts the general case formalization using
SROIQ/OWL 2.

4.12.3 Antisymmetric (ans)

The antisymmetric constraint is also an opposite of the symmetric constraint, but not exactly the same as asymmetric.
The difference is that all asymmetric relations must be irreflexive, which is not the case for antisymmetric. Fig. 14.c
shows an example of this constraint in addition to the general case formalization in SROIQ. Up to our knowledge, this
constraint cannot be expressed in OWL 2 because one cannot express role complement in OWL 2.

4.12.4  Irreflexive (ir)

The Irreflexive ring constraint states that an object cannot participate in a relation with himself. For example, a
person cannot be the “parent of” himself (i.e., cannot play the role of ‘ParentOf” with himself). However, for
instance, one can love himself, i.e., the ‘love’ relation is reflexive: a ring constraint supported by SROIQ/OWL 2 but
not by ORM (see section 5.8). Fig. 14.d (Rule-19) depicts the general case formalization using SROIQ/OWL 2.

4125 Acyclic (ac)

The acyclic constraint is a special case of the irreflexive constraint. For example, stating that the relation ‘ParentOf’
is acyclic means that a person cannot be directly (or indirectly through a chain) ‘ParentOf” himself. In ORM, this
constraint is preserved as a difficult constraint. “Because of their recursive nature, acyclic constraints maybe
expensive or even impossible to enforce in some database systems” [2]. Up to our knowledge, acyclicity with any
depth on binary relations cannot be represented in SROIQ/OWL 2 (see Fig. 14.¢).

4.12.6 Intransitive (it)

A relation R is intransitive over its population if f Vx,y,z [R(x,y) AR(y,z) = —~ R(x, z)]. For example, if a
Person X is FatherOf Person Y and Y is FatherOf Z, then it cannot be that X is FatherOF Z. See Fig. 14.f for the
general case formalization in SROIQ. However, as in the case of the antisymmetric constraint, this constraint cannot
be expressed in OWL 2 because one cannot express role complement in OWL 2.

Rule-18 Case-8

Asy(R) (Amount)
[ [ -rraymerd
GreaterOrEqual/
<SymmetricObjectProperty> <AsymmetricObjectProperty> R C (3R.Sel R
<ObjectProperty IRI="#R"/> <ObjectProperty IRI="#R"/> —( : f)Ll(—| i)
</SymmetricObjectProperty> </AsymmetricObjectProperty> Cannot be representedin OWL2.
(R: siblingOf) (R: parentOf) (R: GreaterOrEqual)

©

Case-10

sisterOf/ parentOf/
<IrreflexiveObjectProperty> . RoR = —R
<ObjectProperty IRI="#R"/> Not Supported in SROIQ/OWL2. == .
</1rreflexivetbjectProperty> Cannot be representedin OWL2.
(R: sisterOf) (R: fatherOf)
(d) (e) ()

Figure 14: Ring Constraints
4.13 Objectified Relations
An objectified relation in ORM is a relation that is regarded as an object-type, receives a new object-type name, and
is depicted as a rectangle around the relation. In the example in Fig. 15, each (Student, Course) enrollment is treated
as an object-type that scores a Grade. In addition to this axiom, it is assumed that there must be a uniqueness
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constraint spanning all roles of the objectified relation, although it is not explicitly stated in the diagram. Objectified
relations cannot be represented in SROIQ/OWL 2 as the additional uniqueness axiom cannot be represented in
SROIQ/OWL 2. Refer to [5] for the representation of objectified relations in DLR;q description logic.

Case-11 “Enrollment”

Gy H

enrollsin/enrolledBy

scores/scoredBy

Cannot be representedin SROIQ/OWL2.

Figure 15: Objectified Relations
4.14 Evaluation

In the previous subsections, we have presented all ORM constructs and their mappings into SROIQ/OWL 2. In
section 5, we extend the ORM graphical notation to represent the other OWL 2 constructs that are not originally
supported in ORM. However before presenting these new notations, we discuss the evaluation of our mappings of
ORM into SROIQ/OWL 2. In particular, we briefly discuss the means by which we evaluated our work and give
some clarifying examples. For this evaluation, the last version (version 2) of RacerPro was used as a description
logic reasoning tool, especially because of its support of OWL 2 and its user-friendly interface. RacerPro provides
an interface to query and reason about knowledge bases. A knowledge base in RacerPro consists of a T-Box and an
A-Box. For each of the formalized ORM notations, its OWL 2 mapping was inserted into the RacerPro system in the
T-Box of a Knowledge Base. After that, the knowledge base was populated with several A-Box assertions in ordered
to perform various kinds of tests and queries over it. These tests include consistency, coherency, and instance
retrieval, in addition to several other tests depending on the individual construct to be tested.

The consistency test checks whether the given A-Box is consistent with respect to the T-Box (i.e., A-Box Consistency).
An A-Box A is consistent with a T-Box T iff it has a model w.r.t. T. Otherwise, the A-Box is called inconsistent.
Coherency (also called Satisfiability) can be divided into: Concept Coherency and T-Box Coherency. Checking the
satisfiability (coherency) of a concept C in a T-Box T means to check whether there exists a model | of T such that C' =
¢. This is usually done by checking this concept for any possible contradictions in the T-Box. If the concept C is
involved in a contradiction, this means that it cannot be satisfied, i.e., cannot be instantiated. For the T-Box coherency;
a T-Box T is said to be incoherent iff there exists an unsatisfiable concept in T. The Instance Retrieval test simply finds
all individuals (instances) mentioned in an A-Box that are instances of a certain concept C.

As an example, Fig. 16 depicts parts of the tests performed on the mappings of the ORM subtype relation and
exclusive constraint, as a demonstration of the type of tests performed. The complete evaluation including all the
tests performed on each construct mapping can be found in the report [21].

Eh:;ksl‘: Checked Example ”’
" Qan > Qo> ™ ooy
Type of Test nRQL query Result Type of Test nRQL query Result
Concept ) ?(concept-subsumes? [#Person| | #Man|) True Concept-disjoint ?(concept-disjoint? | #Truck | | # Motorcycle|) True
subsumption  [?(concept-subsumes?[#Man| | #Person|) Nil (i.e., False) Concept-equivalence |?(concept-equivalent? | #Vehicle| Nil
Retrieve ?(retrieve(?x) (?x #Person)) Mira, Issa, (or [#Truck| | #Motorcycle]))
instances Abbas - - - ——
- Consistency check  |? (abox-consistent? file:// /disjointclasses.owl) True
Hretrieve(?x) (?x #Man)) Issa, Abbas (with assertions that do not violate the constraint)
? (abox-consistent? file:// /disjointclasses.owl) Nil
(with assertions that do violate the constraint)

(@) Tests performed on ORM subtype relation (b) Tests performed on ORM exclusive constraint

Figure 16: A sample demonstration of the tests performed on our mapped ORM constructs
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In the example in Fig. 16.a, two types of tests were performed, namely, concept subsumption and instance retrieval.
In short, the tests we have done on the subtype relation can be summarized as follows. After inserting the OWL 2
mapping of the ORM in Fig. 16.a as a T-Box in a knowledge base, we entered a set of assertions into the A-Box.
These assertions were: one assertion of the object-type Person (i.e., Mira) and two assertions of the object-type Man
(Issa and Abbas). Two concept consumption tests were performed; the first to check whether the object-type Man
subsumes Person, resulting in “True’, as expected. The second verified whether Person subsumes Man, resulting in
Nil (False), also as expected. When we retrieved the instances of Person, all instances of Man (Issa and Abbas)
appeared in the result set in addition to the instance of Person (Mira); a result which we expected because of the
subtype relation. It is worth noting here that all A-Box tests and queries were written in nRQL (The New RacerPro
Query Language), a query language for the RacerPro system that is capable of querying description logics, RDF(s),
and OWL.

In the example in Fig. 16.b, three types of tests were performed; concept disjoint, concept equivalence, and
consistency check. The first test (concept disjoint) simply verifies that the object-types Motorcycle and Truck are
indeed disjoint. The concept equivalence test checks whether the object-type Vehicle is equivalent to the union of
Vehicle and Motorcycle; a rule not implied by the disjoint constraint and thus resulted in Nil (False), as expected. In
the third test, we checked the consistency of the A-Box with respect to our OWL 2 mapping. At first, two instances
of Motorcycle object-type were inserted in the A-Box: a Kawasaki motorcycle and Harley-Davidson motorcycle.
For the Truck class, one instance was inserted, namely, the lveco Trakker. Checking the consistency of this A-Box
resulted in “True’ because there was no any violation of the exclusive constraint. On the other hand, when the
Kawasaki motorcycle instance was also declared as an instance of Truck (in addition of being an instance of
Motorcycle), the consistency test resulted in Nil, because the exclusive constraint was violated. This method of
checking the mapped ORM constraints by inserting assertions that violate the constraints has been used with all
constructs to test whether the constraints indeed ‘detect’ the violations.

Although the tests performed on the OWL 2 mappings of the ORM constructs cannot be theoretically complete, they
cover most of the ground (i.e., they are comprehensive). The main goal of this evaluation is to ensure that our
mappings are precisely supported by description logic reasoners as intended. In fact, in our tests we focused on
using the boundary analysis techniques known in software testing, where we tested boundary or limit conditions of
the constraints. An example of such tests is the consistency check performed on the exclusive constraint as discussed
above (Fig. 16.b). Note that the exclusive constraint means that the population of the subtypes constrained by this
rule is pairwise distinct (i.e., no assertion can be the instance of two classes). The boundary of this constraint can be
simply checked by trying to violate the constraint and then checking the consistency of the A-Box, as described
above. Consider, as another example, the role frequency constraint. Consider an object-type A that is restricted to
play a role with 3-5 occurrences only (e.g., a teacher that is restricted to teach between 3-5 courses). Testing the
limits of such constraint requires testing the minimum occurrence restriction (i.e., 3) in addition to the maximum
occurrence restriction (i.e., 5). For more details about all tests performed on the mappings of the ORM constructs,
we encourage the reader to refer to the report [21].

5 Extending ORM graphical notation for complete representation of OWL 2

In section 4 of this paper, we mapped all ORM constructs to SROIQ/OWL 2. This allows one to build his/her
ontology graphically using ORM and then generate/map it automatically into OWL 2. However, the current
graphical notations of ORM are not sufficient to represent all OWL 2 constructs (i.e., some OWL 2 constructs
cannot be represented graphically using ORM). In this section, we extend the ORM graphical notation to represent
the OWL 2 constructs not currently covered by ORM. The OWL 2 constructs we represent graphically are:
Equivalent Classes, Disjoint Classes, Intersection of Class Expressions, Class Complement, Universal and Empty
Classes, Universal and Empty Properties, Transitive Constraint, Reflexive Constraint, Class Assertions, Individual
Equality, and Individual Inequality. Other OWL 2 expressions, in specific those which deal with assertion
expressions, data types, and annotations, are all represented as ‘Non-notational Expressions’. That is, they are not
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represented using the ORM graphical notation. Instead they are expressed using specialized guided editors (see
section 5.12).

In order to appreciate the importance of our ORM extension, the reader is advised to glimpse the use case in Fig. 29
(section 5.13) taken from the real-world case of the Palestinian government ontology, before delving into the details
of the extension. The ORM-inspired graphical notations that we have developed for representing the OWL 2
construct graphically were evaluated by means of a survey that included 31 practitioners in the field of ORM and
OWL. After the evaluation process, final notations were chosen based on the results of the survey. Section 5.1-5.11
briefly discusses our proposed graphical notations.

5.1 Equivalent Classes

An Equivalent Class constraint in SROIQ/OWL 2 states that all classes constrained by this rule are semantically
equivalent to each other. This rule is expressed in OWL 2 using the EquivalentClasses construct and in
SROIQ description logic using the notation of ‘=". No notation is available in ORM for representing this construct,
because ORM proposes that there is no need for equivalent objects within the same modeling case. However,
because of the rapidly increasing usage of ontologies in data integration, the Equivalent Classes constraint is highly
needed. The proposed notation for representing this constraint using ORM is shown in Fig. 16 along with a
clarifying example. It’s worth mentioning here that this graphical notation was preferred by 16 of the 31
practitioners who participated in the evaluation survey (52%).

Proposed ORM Notation: ~ <—>»

NN TO B T &

srolq | Human =Individual = Person

sRolQ | A;=A=..= A,
OWL2| <EquivalentClasses>
OWL2| <EquivalentClasses> <Class IRI="#Human"/>
<Class IRI="#A1"/> <Class IRI="#Individual/>
<Class IRI="#A2"/> <Class IRI="#Person"/>

</EquivalentClasses>

<Class IRI="#An"/>
</EquivalentClasses>

(a) (b)

Figure 16: Equivalent Classes Constraint

5.2 Disjoint Classes

The population of all classes constrained by the Disjoint Classes constraint is pairwise distinct, i.e., the intersection
of the population of each pair of the constrained classes must be empty. This rule exists in ORM. However, it is
restricted to be used between subtypes that belong to the same supertype. As, in ORM, all objects within a modeling
case are assumed to be disjoint with each other. This rule is expressed in OWL 2 using the DisjointClasses
construct. For representing this constraint in ORM, we propose to use the notation of (®), as shown in Fig. 17. It’s
worth mentioning that, from the three suggested graphical notations in the survey, this graphical notation was
chosen by 20 of the 30 practitioners who participated in the evaluation survey (64%).
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Proposed ORM Notation:

ORM X ORM ®

SRoOIQ | Kid M Old N Young=_1
OWL2| <DisjointClasses>

SROIQ | A;MA,M..MA =L

OowL2| <DisjointClasses> <Class IRI="#Kid"/>
<Class IRI="#A1"/> <Class IRI="#01d"/>
<Class IRI="#A2"/> <Class IRI="#Young"/>

</DisjointClasses >

<Class IRI="#An"/>
</DisjointClasses >

(a) (b)

Figure 17: Disjoint Classes Constraint

5.3 Intersection of Class Expressions

The intersection of classes A and B is all the individuals (instances) of A that are also instances of B but no other
instances. This expression cannot be expressed currently in ORM. In OWL 2, ObjectIntersectionOf
expression is used to represent the intersection of classes, whereas the notation of ‘1’ is used for the SROIQ
representation, as shown in Fig. 18. In ORM, we propose to use the notation of ‘1’ inside a bubble located at the
edge of an ellipse (see Fig. 18). This bubble connects directly via lines to the classes to be intersected. Inside the
ellipse, the name of the class equivalent to the intersection expression is assigned. Note that the intersection bubble
can be connected directly to many classes: the classes which are being intersected. No other relations are allowed to
be connected through the bubble. However, the ellipse (which represents the equivalent class of the intersection
expression) can be connected via any relation to any other class.

Proposed ORM Notation: @ PersonStudentYoung_Intersection
®
@

SROIQ | PersonStudentYoung_Intersection = Person N Student M Young

ORM OWL2 | <EquivalentClasses>
- <Class IRI=*PersonStudentYoung_lIntersection”/>
SROIQ | A _Intersection=A; A, M..MA, <ObjectlIntersectionOf>
OWL2 | <EquivalentClasses> zg:::: :S::z;gzgﬂt/;>

<Class IRI=“A_Intersection”/>
<ObjectlIntersectionOf>
<Class IRI="#A1"/>
<Class IRI="#A2"/>

<Class IRI="#Young"/>
</ObjectlIntersectionOf >
</EquivalentClasses>

<(-3i::,1$s IRI=""#An"/>
</Objectlntersection0f>
</EquivalentClasses>

(@) (b)
Figure 18: Intersection of Class Expressions

5.4 Class Complement

The complement of class A refers to the population of the Universe of Discourse (UoD) that is not of A (i.e., the
instances outside of A). This expression cannot be expressed currently in ORM. In OWL 2,
ObjectComplementOT expression is used to represent class complement, whereas the notation of ‘=’ is used for
the SROIQ representation, as shown in Fig. 19. In ORM, similar to the Intersection of Class Expressions discussed
above, we propose to use the notation of ‘=’ inside a bubble located at the edge of an ellipse (see Fig. 19). This
bubble connects directly via a line to the class to be complemented. Inside the ellipse, the name of the class
equivalent to the complement expression is assigned. Note that the complement bubble can only be connected
directly to one class: the class which is being complemented. No other relations are allowed to be connected through
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the bubble. However, the ellipse (which represents the equivalent class of the complement expression) can be
connected via any relation to any other class.

Proposed ORM Notation: @ w

S,

@ ORM @
S . )
srola | NotAnimal = - Animal
ORM o owWL2 <Equivalentclasses>_
<Class IRI="“NotAnimal”/>
sroiq | NotA=-A <ObjectComp lementOf>
<Class IRI="#Animal"/>
owr2| <EquivalentClasses> </0ObjectComplementOf>
<Class IRI="NotA”/> </EquivalentClasses>
<ObjectComp lementOf>
<Class IRI="#A"/>
</0ObjectComplementOf>
</EquivalentClasses>
(a) (b)

Figure 19: Class Complement

5.5 Universal and Empty Classes

Two classes in OWL 2 are predefined, namely, the classes owl - Thing and owl :Nothing. Class owl :Thing
is referred to as the Universal Class while owl -Nothing is called the Empty Class. The extension of class

owl :Thing (i.e., its instances) is the set of all instances in the Universe of Discourse (UoD). Thus, all classes are
subclasses (i.e., subtypes) of this universal class. On the other hand, the extension of class owl :Nothing is the
empty set. Consequently, the empty class is a subclass of all classes. In SROIQ, the universal and empty classes
correspond to the Top (T) and Bottom (L) concepts, respectively. These two predefined OWL 2 classes are not
currently defined in the ORM notation. We propose to express these two classes using the regular ORM object-type
notation as show in Fig. 20. Our proposed representation of these two predefined OWL 2 classes is no different than
the representation of any other OWL 2 class; all OWL 2 classes are mapped in ORM as object-types.

Proposed ORM Proposed ORM

Notation: Notation: @
sroiq | T SRoIQ | 1|

owL2 | owl:Thing owL2 | Owl :Nothing

@ (b)

Figure 20: Universal and Empty Classes

5.6 Universal and Empty Properties

OWL 2 provides two built-in object/data properties with predefined semantics: (i) owll - topObjectProperty/
owl : topDataProperty (Universal Property), (ii) owl :bottomObjectProperty/

owl :bottomDataProperty (Empty Property). The universal object property connects all possible pairs of
object-type instances (individuals) while the universal data property connects all possible object-type instances
(individuals) with all values (literals). On the contrary, the empty property neither connects any pair of object-type
instances (individuals) nor connects any object-type instance (individual) with a value (literal). Unlike other variants
of Description Logic, SROIQ does support Universal and Empty roles. These predefined OWL 2 properties are not
currently defined in ORM. We propose to express these notations using the regular ORM role notation as show in
Fig. 21. Note that our proposed representation of these predefined OWL 2 properties is no different than the
representation of any other OWL 2 property; all OWL 2 properties are mapped as ORM roles.
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Proposed ORM |TopObjectProperty Proposed ORM |BottomObjectProperty
Notation: TopDataProperty Notation: BottomDataProperty
SROIQ | Universal Role U SROIQ | Empty Role
owL2 | owl:topobjectProperty, owL2 owl :bottomObjectProperty,
owl - topDataProperty owl :bottomDataProperty
(@ (b)

Figure 21: Universal and Empty Object/Data Properties

5.7 Transitive Constraint

A relation R is transitive over its population if f Vx,y,z [R(x,y) AR(y,z) = R(x,z)]. For example, if a Person X
is the ancestor of Person Y and Y is the ancestor of Z, then it implies that X is the ancestor Z. Although ORM
supports the intransitive ring constraint, it does not support the transitive constraint. As this constraint is a ring
constraint, we propose to express it graphically following exactly the same graphical representation of ORM'’s
native ring constraints (Fig. 22).

5.8 Reflexive Constraint

The reflexive constraint is a ring constraint that states that all objects participate in a relation with themselves via the
constraint relation. For example, stating that the relation “knows’ is reflexive means that every person knows
himself/herself. Because ORM currently does not support this constraint, we propose to express it graphically as
shown in Fig. 23, following exactly the same representation of ORM’s native ring constraints.

Proposed ORM Notation: °tra Proposed ORM Notation: °ref
°tra . °ref .
orm| M| | orm| LM [ |
sroiq | Tra(r;) sroiq [ Ref(ry)
OowL2| <TransitiveObjectProperty> OWL2| <ReflexiveObjectProperty>
<ObjectProperty IRI="#r,"/> <ObjectProperty IRI="#r1"/>
</TransitiveObjectProperty> </ReflexiveObjectProperty>
Figure 22: Transitive Constraint Figure 23: Reflexive Constraint

5.9 Class Assertions

The ClassAssertion axiom of OWL 2 allows one to state that an individual is an instance of a particular class.
In SROIQ, this is done in the assertion component, i.e., the A-Box which contains instantiations of the axioms
specified in the T-Box. In ORM, we propose to use the notation depicted in Fig. 24. This notation provides the user
the flexibility to show/hide the instances of a particular class. In our implementation of this notation in
DogmaModeler (discussed in section 6), clicking on the (») symbol at the bottom of the ellipse expands/collapses
the set of instances. The user specifies how many instances he/she prefers to be shown. If the number of instances is
more than that specified by the user, they are shown in a separate view.
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Proposed ORM Notation: Q

Dima
Tony

G G

ORM
sroiq | {'Dima’, “Tony’}
ORM OWL2| <ClassAssertion>
sroiq | a1, a2, ..., an} <Class IRI="#Student"/>
owL2| <ClassAssertion> </C:::Zi;2g;\i/;g:al IRI="#Dima"/>
e UABAINYS <ClassAssertion>

<NamedIndividual IRI="#a,"/> ol IR S

</ClassAssertion> <NamedIndividual IRI="#Tony"/>
S ~ </ClassAssertion>
<ClassAssertion>
<Class IRI="#A"/>
<NamedIndividual IRI="#a,"/>
</ClassAssertion>
(@) (b)

Figure 24: Class Assertions

5.10 Individual Equality

The OWL 2 individual equality axiom Same Individual states that all of the individuals constrained by this rule
are equal to each other. In SROIQ, this axiom is expressed in the assertion component, i.e., the A-Box, using the
notation of ‘=" between individuals. In ORM, we propose to use the notation of (& ) to express individual equality.
This notation is used between class instances as shown in Fig. 25.

5.11 Individual Inequality

The OWL 2 individual inequality axiom Di FferentiIndividuals states that all of the individuals constrained
by this rule are different from each other. In SROIQ, this axiom is expressed in the assertion component, i.e., the A-
Box, using the notation of ‘#” between individuals. In ORM, we propose to use the notation of (@ ) to express
individual inequality. This notation is used between class instances as shown in Fig. 26.

Proposed ORM Notation: @ Proposed ORM Notation: @

ORM a, ORM 2,
srolq [ {a;}={as} srolq | {a;}# {as}
owL2 | <Samelndividual> OwL2| <Differentlndividuals>

<NamedIndividual IRI="#a,"/>
<Namedindividual IRI="#a3"/>
</Samelndividual>

<Namedindividual IRI="#a,"/>
<Namedindividual IRI="#a3"/>
</Differentindividuals>

Figure 25: Individual Equality Figure 26: Individual Inequality

5.12 Non Notational Expressions

In the previous subsections, we have introduced our proposed graphical extension of ORM. However, this extension
does not cover all OWL 2 expressions graphically. The OWL 2 expressions not expressed graphically can be put
into three categories; (i) Assertions, (ii) Datatypes, Facets, and Data Range Expressions, and (iii) Annotations.

Of the OWL 2 assertion expressions, we have introduced a graphical notation to the following: Class Assertions,
Individual Equality, and Individual Inequality. However, no graphical representation was introduced to the Positive
Object/Data Property Assertion, or the Negative Object/Data Properly Assertion. A positive property assertion
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states that an individual (instance) is connected to another individual or value through a specific property. On the
contrary, a negative property assertion states that an individual (instance) is not connected to another individual or
value through a specific property. No graphical representation was introduced to these expressions because
expressing positive/negative property assertions graphically may hinder the readability of the ORM diagram.
Furthermore, these assertion expressions are not encountered frequently in practice. Thus, we introduce the
“Assertions Guided Editor”, which is specialized in representing these assertion expressions. Fig. 27 below depicts
snapshots of our Assertions Guided Editor as implemented in the DogmaModeler tool. For instance, to add
positive/negative property assertions to the relation WorksFor/Employs, one right-clicks this ORM relation, selects
Properties, and then chooses the Instances tab which opens the assertions editor (Fig. 27.b).

ORM Diagram | ORM-ML | Pseudo ML | DIG | owiL | ow2 | ORM Diagram | ORM-ML | Pseudo ML | DIG | owL | owL2|
Mal e (Elelel] 1] t=]o| SIEE BlEl=lolo|-|u|%| 2a] ~|-[elefo]-| 1] |=]] SIEEE El8e|o|s|-|u|a
Properties =

WorksFor/Employs

Definition | Multingual | Values | Data Type Instances | Annotations
Values: Positive: Tony WorksFor BZU
Object/Value Type 1: [Person  ¥| Assertion: |Tony ¥ Negative: Amjad WarksFor BZU
Negative: Rami WorksFor BZU
Positive: Rami WorksFor AAUJ
Object/Value Type 2: | Company | Assertion: | BZU bl Positive: Mustafa WorksFor BZU

M, F} Instances:
s ~

Background Color...

,
( Gender
L -

Type of Assertion: | Positive  ~
0 Delete

/| set Object Name

/| set Complement Name
& Car
B AddValue e

®  Add ValueComplement

Ok Cancel
#  Add Instance

(@) (b)
Figure 27: Assertions Guided Editor of DogmaModeler

OWL 2 introduces many built in datatypes in addition to the “Number” and “String” datatypes defined in ORM,
such as Real, Rational, Double, Float, Boolean, Binary, etc. In addition, it introduces the so-called “Facets”,
borrowed from the XML Schema Datatypes, which are simply a group of restrictions used to specify new user-
defined datatypes. For example, one can define a new datatype for a person’s age, called personAge, by constraining
the datatype Integer to values between 0 and 150 (inclusive) using the mininclusive facet. Furthermore, OWL 2
supports advanced uses of datatypes, called Data Range Expressions, which include expressions similar to those
used with OWL 2 Classes such as complement, union and intersection. For example, assuming we have already
defined a datatype called minorAge, we can define the datatype majorAge by complementing the datatype minorAge
and then intersecting it with the datatype personAge. All OWL 2 Datatypes, Facets, and Data Range Expressions are
not expressed graphically. Instead, we introduce the “Datatypes Guided Editor” which aids the user in specifying
datatypes and defining new datatypes and data range expressions. Fig. 28.a depicts a simplified Datatypes Guided
Editor as implemented in our DogmaModeler tool.

The last category of our non-notational expressions is OWL2’s “Annotations”. In OWL 2, annotations are used to
describe parts of the OWL 2 ontology or the ontology itself. For example, an annotation can be simply a human-
readable comment on an axiom of an ontology. E.g., one can add the following comment on the subtype relation
between Man and Person: “This subtype relation states that every man is a person”. Other annotation properties
include: Label, SeeAlso, VersionInfo, etc. Annotations can be specified using the “Annotations Guided Editor”. Fig.
28.b depicts a snapshot of our implemented annotations editor in DogmaMaodeler.

22
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Definition | Multlingual | values Data Type | Instances | Annotations
Define a data type:  New Data Type
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‘Save new Expression As
Ok Cancel
(a) Datatypes Guided Editor
ORM Diagram | ORM-ML | Pseudo NL | DIG | owL | owL2 |
ra| of-[Elefe] 1] el SIS Bl8le/olo] (w4
=

Chbject Instance Properties

Definition | Multiingual | Values | Data Type | Instances | Annotations |

Please select annotation property: | Comment b

This subtype relation states that every man
is @ person

Comment: This subtype relation states

Delete
ok Cancel

(b) Annotations Guided Editor

Figure 28: The Datatypes and Annotations Guided Editors of DogmaModeler

5.13 Use Case

One of the most important use cases of the extended ORM notation introduced above is the case of integration.
Consider, for example, the case of ontology integration in Fig. 29. The figure depicts two sample ontologies
expressed in ORM,; the first ontology (Ontology-1) represents a part of the organization (non-natural person)
ontology specifying, in particular, the Company and the Local Government Unit entities. The second ontology
represents another part of the organization ontology, namely, the Association entity. Note that these two sample
ontologies are based on the Palestinian Legal Person Ontology [22] and thus are in harmony with the Palestinian
law. However, what is depicted in Fig. 29 is not a complete ontology and is only meant to be a sample
demonstration of the usefulness of the newly proposed ORM notations.

NaturalPerson (T

isAdvocate asAdvocate

NN o pertainsTo/has

Ontology-1

Organization )«

) 4

Company LocalGovUnit 8

NonProfit
Company

ShareholdingCompany
(RegistrationNo)

P74857R
L37563H

\

NonNaturalPerson

Association

LocalNGO
RegistrationCode

Jc9394
NM8976

Ontology-2

Figure 29: Use Case of the extended ORM notation.
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Let us look at the usage of the new ORM notations in Ontology-1. In this ontology, the new notations are used in
two places; (i) to express the class ‘Natural Person’ as the complement of the ‘Organization’ entity and (ii) to
express two assertions of the ‘Shareholding Company’ entity. In Ontology-2, we also use class assertions to
represent two ‘LocalNGO’ instances. For the purpose of integrating the two ontologies the following newly
introduced notations are used:

() Equivalent Classes, expressed as a double-headed arrow between *Organization” and ‘Non-Natural
Person’ entities, to express the fact that both entities are equivalent.

(ii) Disjoint Classes, expressed using the notation of ‘@’ between ‘LocalGovUnit” and ‘Association’ to
express the fact that both entities are disjoint.

(iii) Intersection of Class Expressions, used to introduce a new entity, namely, the ‘Non Profit Company’

which includes all shareholding companies that are also registered as local NGOs. Note that this type
of companies does exist in Palestine; it includes private limited-liability shareholding companies that
provide services to the society but whose profit is not allowed to be distributed among the partners.

(iv) Individual Equality, expressed using the notation of () between the shareholding company
(P74857R) and the Local NGO (JC9394). This means that the two identifiers refer to the same real-
world entity. Notice the usage of the Individual Equality here for Entity Resolution/ Disambiguation: a
much-used process to match different identifiers from different heterogeneous information systems
that refer to the same entity.

(v) Individual Inequality, expressed using the notation of (@) and is used to state that the two instances
constrained by this rule are not the same. In our example, this expression is used for entity
disambiguation by stating that that shareholding company (L37563H) and the local NGO (NM8976)
refer to different real-world organizations.

5.14 Evaluation

Our work of extending the ORM notation to cover the OWL 2 constructs not currently covered by ORM was
evaluated by means of a survey. This survey was performed on 7 of the 11 newly proposed graphical notations,
namely, Equivalent Classes, Disjoint Classes, Intersection of Class Expressions, Class Complement, Class
Assertions, Individual Equality, and Individual Inequality. The four graphical notations not evaluated in this survey
are: Universal and Empty Classes, Universal and Empty Properties, Transitive Constraint, and Reflexive Constraint.
The Universal and Empty Classes and Properties of OWL 2 (sections 5.5 and 5.6) were represented graphically
using exactly the same ORM notations for classes and roles. This is due to the fact that an OWL 2 class is equivalent
to an ORM object-type and an OWL 2 property is equivalent to an ORM role. The same is true for both the
transitive and reflexive constraints (sections 5.7 and 5.8). Because both constraints can be seen as part of ORM’s
ring constraints, they are expressed graphically using exactly the same graphical representation of ORM’s ring
constraints. Due to that, the four graphical notations mentioned above were not considered in our evaluation process.

Each construct of the seven constructs under evaluation has been represented by three different graphical notations
after extensive analysis of the graphical notations currently used in ORM and the rationale behind them; so to follow
the same intuitiveness of ORM. The available choices for the graphical representation were then put in a form of a
survey, with several illustrative examples. Two workshops were held to explain the broader scope of the research,
the motivation behind extending ORM, and the rationale behind each possible graphical representation. Thirty one
ORM and OWL practitioners participated in the workshops (most of them are master students and e-government
engineers) and were asked to determine their preferred graphical representation for each construct (by filling the
survey). The results of the survey were then analyzed and the final notations were determined. Table 1 summarizes
all the graphical representation choices and the results of the survey. The reader may refer to the report [21] for more
details about the survey.

24



Table 1: Results of the evaluation survey of the ORM extension

Construct Name Representation (1) Representation (2)  Representation (3)

1 | Equivalent Classes

®
®
!

32% 16% 5206

2 | Disjoint Classes

(e
@ D
e
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580 29%

13%

4 | Class Complement
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5 | Class Assertions (before)
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6 Implementation: DogmaModeler Tool

The work presented in this paper is implemented as an extension to DogmaModeler. DogmaModeler was introduced
in previous work [17, 18] as a tool that allows modeling, browsing, and managing ontologies. The tool uses ORM as
a graphical notation for modeling ontologies. In its original implementation, DogmaModeler supported the mapping
of built ORM ontologies into three notations: ORM-ML (ORM Markup Language), Pseudo Natural Language, and
DIG (Description Logic Interface). These mappings allow the ontology to be easily exchanged and understood by
domain experts, accessed and processed automatically by application, and validated using Description Logic
reasoning services. In fact, DogmaModeler integrates reasoning services as background reasoning engines. This
allows one to validate his/her ontology for any possible contradiction or inconsistency. The following is a brief
description of the three mappings of ORM that DogmaModeler originally supported:

(i)  ORM Markup Language (ORM-ML). It is an XML-based language introduced in [17, 18], used to markup
conceptual diagrams, thus allowing the ontology that is built in ORM to be accessed and processed at run-
time of applications.

(i)  Pseudo Natural Language. Through utilizing ORM’s verbalization capabilities, DogmaModeler supports
verbalization of ontologies into pseudo natural language, allowing for easy exchange and understanding of
the ontologies by domain experts.
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(iii)  Description Logic Interface (DIG). It is an XML-based language supported by several description logic
reasoners (such as Racer, FaCT++, etc), which allows for the validation of ontologies built in ORM.

Our implemented extension of DogmaModeler is twofold:

(i) We implemented the OWL 2 mapping of ORM presented in this paper, such that the ORM diagrams built in
DogmaModeler are automatically mapped to OWL 2 and then validated using the “HermIT” reasoning tool.
“HermIT” was chosen because of its easy integration into DogmaModeler and its support of OWL 2.

(if) We implemented our newly proposed ORM extension with its OWL 2 mapping, in addition to the guided
editors of the non-notational expressions.

The DogmaModeler tool is now extended to become an environment for authoring OWL 2 ontologies graphically
using ORM. That is, one now builds his OWL 2 ontology graphically using ORM and then DogmaModeler
generates the OWL 2 code automatically. This code can then be validated easily using description logic reasoning
via the integrated “HermIT” reasoning tool.

Fig. 30 shows the use case of Fig. 29 built in DogmaMaodeler. The first window (Fig. 30.a) contains the ORM
diagram. Note that this diagram contains our proposed extension of the ORM notation. The results of the validation
using logical reasoning show that the ORM model is consistent and there are not unsatisfiable concepts. The second
window (Fig. 30.b) shows the OWL 2 mapping of the ORM diagram.

. - P — E——
DI DogmaModeler ’— b - P e e oir DwmuMww
File Edit View OntologyBase Commitments Validator Tools Windows Help e T e ]

= 4 ORM Diagram | ORMAML | PseudoNL | DIG | OWL OWLZ
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q Tel | Ak Response |
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r[a] |- [%lefs] | | :]=lo] BlEIE BIEs|ols| als| [ =] -|lelel ElolEl | |- ]
ytedIRI="dm0:LocalGovunit”/ >

tedlR]="dn0:Ascociaton”,

NaturaPerson
bbreviatedIRT = dmd:Organization’

‘eviatedIRl="dm0:NonNaturaPerson’/>

<[Equ
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brevistedIRL="dmD:LocANGO/>
Individual abbreviatedIRI="dm0:NM8976"/>
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Consistent: true Namedindvidual abbrevistediRI="dm0:L37563H />

There are no unsatisfible dasses ~ll

(a) ORM built and validated in DogmaModeler (b) OWL 2 mapping of the
ORMin (a)

Figure 30: An ORM diagram containing notations of the proposed ORM extension, built in DogmaMaodeler.

7  Conclusion and Future Work

In this paper, we have developed an expressive and methodological graphical notation for OWL 2, which allows
people to author OWL 2 ontologies graphically. This was done in two steps: (i) mapping the graphical notations of
ORM to SROIQ/OWL 2 following the semantics of OWL 2 (ii) extending the ORM graphical notation to cover all
OWL 2 constructs not currently covered by ORM. OWL 2 is the W3C-recommended ontology language for
authoring ontologies. However, it does not provide any methodological or graphical means to engineer ontologies.
On the other hand, ORM is a graphical methodological notation used for conceptual modeling. By mapping ORM to
OWL 2 and extending ORM to cover all OWL 2 constructs, one can now author OWL 2 ontologies graphically
using ORM and then map them automatically to OWL 2.

The work presented in this paper was evaluated as follows. The mapping of ORM into SROIQ/OWL 2 was
evaluated using the RacerPro 2.0 description logic reasoner; for every ORM construct, its OWL 2 mapping was
inserted into the RacerPro system and various kinds of tests were performed on it. On the other hand, our proposed
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extension of the ORM notation was evaluated by means of a survey that included more than 30 practitioners in the
field of ORM and OWL.

Our work of developing an expressive and methodological graphical notation for OWL 2 was implemented in the
DogmaModeler tool. This allows one to engineer OWL 2 ontologies graphically using ORM and then
DogmaModeler maps them automatically to their equivalent OWL 2 code. It is important to note here that ORM is
not merely a graphical notation for the visualization of ontologies. It is a methodology that guides the ontology
engineer to design and represent an ontology using the different constructs and rules it provides. ORM facilitates the
process of engineering the ontology through its verbalization capabilities which allow the involvement of domain
experts in the modeling process.

Future directions of our research will involve extending our DogmaModeler to allow user-friendly debugging and
reasoning. Currently, DogmaModeler uses the “HermIT” reasoning engine which only tells whether the ontology is
satisfiable and consistent or not. Thus, it is important to also provide debugging features that helps the user find the
cause of the problem and directions on how to solve it. Note that this is not an implementation issue; it rather needs
theoretical research on reasoning problems. In addition, our future work will involve building a reasoning service
that checks the consistency of RDF datasets (as A-Box) with the built ontology. Also, we will extend our
DogmaModeler verbalizer to include the extended ORM notation. This will include multilingual verbalization into
11 languages. Furthermore, we plan to extend DogmaModeler with the import feature of OWL 2 to allow the
modularization of ontologies.
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