

Faculty of Information Technology

Master of Computing

Reducing Test Power for Embedded Memories

Prepared By

Ahmed Awad

Supervised By

Dr.Abdellatif Abu-Issa

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF

 MASTER OF COMPUTING

BIRZEIT

June, 2011

I

Acknowledgement

I would like to acknowledge and extend my heartfelt gratitude to all those who

helped and supported me to complete my thesis. I’m deeply indebted to my supervisor

Dr.Abdellatif Abu-Issa for his help, support and continuous encourage for me. Also,

special thanks to the committee of my master thesis defense, Dr.Emad Hamadeh and

Dr.Khaled Faraj for their comments to have a high quality thesis. I want also to thank

Dr.Said Hamdoui from Delft University in Netherlands for his guidance during

working on conference papers. Most special thanks to my father and mother for their

support and constant prayers and my family and all my friends who love and

encourage me. Thank you all.

II

Table of Contents

List of Figures ... IV

List of Tables .. V

List of Abbreviations ... VI

Abstract .. VII

 VIII ... المستخلص

Chapter 1: Introduction .. 1

1.1 SRAM Structure and Functionality ... 2

1.2 SRAM Fault Models ... 6

1.3 Memory Testing Concepts ... 9

1.4 Memory Testing Algorithms ..12

1.5 Power Dissipation in SRAM Testing ..15

1.6 Motivation for SRAM Test Power Reduction ...17

1.7 Thesis Organization ..18

Chapter 2: Related Work ...19

2.1 Single Bit Change (SBC) in Address Decoder ...19

2.2 Minimizing Test Power Through Reduction of Pre-Charge Activity21

2.3 March Tests Sequence Reordering Using Genetic Algorithm22

2.4 Generating Low Power March Tests Using Particle Swarm Optimization ..23

2.5 Skew Scheme ...25

2.6 Power Constrained Embedded Memory BISTArchitecture26

2.7 Contribution of The Work Presented In This Thesis28

Chapter 3: Low Power Zero-One Testing ..29

3.1 Overview ...29

3.2 MBIST Architecture and Address Generators ..30

3.2.1 Bit-Swapping Lfsr (BS-LFSR) ..31

3.2.2 Dual Speed Lfsr (DS-LFSR) ...32

3.2.3 Bipartite LFSR ..33

3.3 Detecting Stuck-At Fault Patterns ...34

3.4 Simulations and Experimental Results ...35

3.4.1 Code Description ...36

3.4.2 MBIST Simulation ...36

3.4.3 Address Generators Simulations and Results ...37

3.4.4 Testing Patterns Simulations and Results ..39

3.5 Summary ...40

Chapter 4: Low Power March Tests ..41

4.1 Overview ...41

4.2 Modified March C- Algorithm ...42

4.3 Implementation ..44

4.4 Fault Coverage ...45

4.5 Experimental Results ..47

III

4.5.1 Power Estimation ...47

4.5.2 Simulation Results ...47

4.6 Summary ...49

Chapter 5: Low Power Schemes For Parallel Testing of Embedded Memories .50

5.1 Overview ...50

5.2 One-Stage Scheme ..51

5.3 Multi-Stage Scheme ..53

5.4 MBIST Implementation ..56

5.5 Experimental Setup and Simulation Results ...57

5.6 Summary ...59

Chapter 6: Conclusions and Future Work ...60

6.1 Conclusions ..60

6.2 Future Work ..61

References ...62

Appendix A ...67

Appendix B ...69

Appendix C ...70

Appendix D ...71

IV

List of Figures

Figure 1.1: Memory Pyramid .. 3

Figure 1.2: Increased number of SRAMs in SoC .. 3

Figure 1.3: 6T SRAM cell .. 4

Figure 1.4: SRAM Connections .. 5

Figure 1.5: SRAM cell during Read 1 Operation ... 5

Figure 1.6: SRAM cell during Write 0 Operation .. 7

Figure 1.7: Stuck-at 0 cell State Diagram ... 7

Figure 1.8: Address Decoder Fault ... 7

Figure 1.9: Transition Fault State Diagram .. 7

Figure 1.10: Coupling Fault State Diagram .. 9

Figure 1.11: Memory Testing Pattern .. 10

Figure 1.12: MBIST Architecture ... 11

Figure 1.13: 3-bit LFSR ... 12

Figure 1.14: Symbols Used in Memory Testing Algorithms 13

Figure 1.15: Zero-One Algorithm .. 14

Figure 1.16: March C- Algorithm .. 14

Figure 1.17: First two Elements of March C- ... 15

Figure 1.18: CMOS Logic .. 15

Figure 2.1: Modified Pre-charging Circuitry .. 22

Figure 2.2: Switching Activity in March C- Algorithm .. 22

Figure 2.3: PSO Particle Structure .. 24

Figure 2.4: Applying element M1 of March C- on two SRAMs 25

Figure 2.5: Skew Scheme ... 26

Figure 2.6: Power-Constrained MBIST Architecture ... 27

Figure 2.7: Wrapper Address Generator ... 27

Figure 3.1: Used MBIST Architecture... 31

Figure 3.2: BS-LFSR .. 31

Figure 3.3: DS-LFSR .. 32

Figure 3.4: Intermediate Pattern Generation in Bipartite LFSR 33

Figure 3.5: Bipartite LFSR Architecture .. 33

Figure 3.6: Fault Free Memory Simulation ... 37

Figure 4.1: March C- Algorithm .. 42

Figure 4.2: Modified March C- Algorithm .. 43

Figure 4.3: Tri-State Buffers for 4-bit word ... 45

Figure 4.4: Transitions of two vertically neighbored cells in March C- 46

Figure 4.5: States of two vertically Neighbored Cells in Modified March C- 46

Figure 4.6: States of two horizontally neighbored cells in Modified March C- 46

Figure 4.7: Expanded March C- Algorithm ... 47

Figure 4.8: States of two vertically neighbored cells in Expanded Test 47

Figure 4.9: Transitions of two horizontally neighbored even cells in Expanded Test 48

Figure 5.1: One-Stage Scheme .. 51

Figure 5.2: Two-Stage Clustering .. 53

Figure 5.3: Multi-Stage Scheme .. 55

Figure 5.4: Architecture of Low Routing MBIST ... 56

Figure B.1: Crossover Operation ... 69

Figure D.1: Maximal Length LFSR ... 71

V

List of Tables

Table 2.1: SBC in Address Decoder ... 20

Table 2.2: New Generated March Tests using Genetic Algorithm 23

Table 2.3: New March Tests Based on PSO Scheme ... 25

Table 3.1: Normal and BS- LFSR Vectors .. 32

Table 3.2: Switching Activity for Address Generators with Seed “1111….1” 38

Table 3.3: Switching Activity for Address Generators with Seed “0101…..01” 38

Table 3.4: Address and Data Bus Switching Activities for Different Patterns 39

Table 4.1: Power results of normal, modified and expanded March C- Tests 49

Table 5.1: Used Memory Configurations .. 57

Table 5.2: Peak Power and Testing Time for Different Schemes 58

Table 5.3: Combining One-Stage Scheme with Modified March C- Algorithm 59

Table A.1: Fault Primitives .. 67

Table A.2:Some March Tests with their Fault Coverages ... 68

Table D.1: Maximal Length LFSRs... 71

VI

List of Abbreviations

 1T : One Transistor Technology

 6T : Six Transistor Technology

 ATE : Automatic Test Equipment

 BIST : Built-in Self Test

 BL : Bit Line

 BLB : Bit Line Complement

 BS-LFSR : Bit-Swapping LFSR

 CMOS : Complementary Metal Oxide Semiconductor

 CUT : Circuit Under Testing

 DRAM : Dynamic Random Access Memory

 DRDF : Deceptive Read Destructive Fault

 DS-LFSR : Dual-Speed LFSR

 IRF : Incorrect Read Fault

 LFSR : Linear Feedback Shift Register

 MBIST : Memory Built-in Self Test

 MUT : Memory Under Testing

 NOP : Number Of Operations

 PSO : Particle Swarm Optimization

 RDF : Read Destructive Fault

 RES : Read Equivalent Stress

 SA : Switching Activity

 SAIF : Switching Activity Interoperation Function

 SBC : Single Bit Change

 SoC : System on Chip

 SRAM : Static Random Access Memory

 TPG : Test Pattern Generator

 VLSI : Very Large Scale Integration

 WDF : Write Disturb Fault

 WL : Word Line

VII

Abstract

With the increased number of embedded memories in mobile devices,

minimizing the test power becomes a serious concern, especially when parallel testing

is applied. Battery will be lost and the entire System on Chip (SoC) is subjected to be

damaged if the consumed power exceeds the power constraint of the chip.

 This dissertation proposes a number of techniques to address these challenges

during memory testing. The first technique is based on using low power Linear

Feedback Shift Register (LFSR) as an address generator when applying Zero-One

algorithm during Memory Built-in Self Test (MBIST), and then, re-order the test so

that total switching activity in address decoder and write driver is minimized. The

obtained results show that up to 60% reduction in switching activity can be achieved

during testing large size memories with negligible overhead in hardware area.

 Another technique that aims to reduce average and peak power during March

tests is proposed. In this technique, the word of the Memory Under Testing (MUT) is

divided into two clusters so that write operation is applied just to one cluster.

Obtained results show that around 42% reduction in peak power and around 35%

reduction in average power can be achieved using the proposed technique with the

same fault coverage and testing time of original tests.

 Finally, a new scheme is proposed to manage parallel testing of large number

of embedded memories in SoC. This scheme is based on grouping different memories

into clusters based on their word lengths and scheduling read and write operations in

such a way that the consumed power is optimal. Simulation results of case-of-study

show that up to 60% reduction in peak power can be achieved in case of parallel

testing at a cost of only one additional clock cycle in testing time

VIII

 انًسرخهص

يغ انرضاٚذ انًسرًش فٙ ػذد انزاكشاخ انًسرؼًهح فٙ الأجٓضج انًرُمهح، ذمهٛم انمذسج انًسرٓهكح ػُذ فذص ْزِ

طالح انثطاسٚح سٕف . انزاكشاخ أصثخ ذذذٚا ْايا، خصٕصا ػُذ ذطثٛك انفذص انًرٕاص٘ ػهٗ ْزِ انزاكشاخ

 تكايهّ يؼشض نهرهف فٙ دال ذجأصخ انمذسج انًسرٓهكح انذذ جذسرُضف ٔانُظاو ػهٗ انمطؼح الإنكرشَٔٙ

 .انًسًٕح

ذؼرًذ انطشٚمح الأٔنٗ . ذؼشض ْزِ انشسانح ػذدا يٍ انطشق نًٕاجٓح يشكهح انمذسج انًسرٓهكح أثُاء فذط انزاكشج

ٔادذ فٙ فذص انزاكشج، ثى ذمٕو ْزِ -ػهٗ اسرؼًال يٕنذ نهؼُأٍٚ رٔ طالح لهٛهح أثُاء اسرؼًال طشٚمح صفش

ٔلذ أثثرد انُرائج . انطشٚمح ػهٗ إػادج ذشذٛة انفذص تطشٚمح ذمهم انرغٛشاخ فٙ انمٛى انشلًٛح إنٗ انذذ الأدَٗ

يٍ انمذسج انًسرؼًهح تاسرخذاو ْزِ انطشٚمح يغ صٚادج لا ذزكش فٙ انًسادح فٙ انمطؼح % 60ًٚكٍ دفظ دٕانٙ

 .جالانكرشَٔٙ

ذؼرًذ انطشٚمح انثاَٛح ػهٗ ذمهٛم انمذسج انًرٕسطح ٔانمذسج انمصٕٖ إثُاء اسرؼًال انفذص انشايم نهزاكشج نكشف

ٚرى رنك تٕاسطح ذمسٛى انخلاٚا فٙ كم ػُٕاٌ فٙ انزاكشج كم يجًٕػرٍٛ، ٔيٍ ثى انمٛاو . إَٔاع كثٛشج يٍ الأػطاب

يٍ % 42ٔلذ أثثرد انُرائج اَّ ًٚكٍ دفظ دٕانٙ . تؼًهٛح انكراتح فمط ػهٗ يجٕػح ٔادذج يٍ ذهك انًجًٕػاخ

يٍ انمذسج انًرٕسطح تاسرخذاو ْزِ انطشٚمح يغ كشف َفس الإَٔاع يٍ الأخطاء % 32انمذسج انمصٕٖ ٔدٕانٙ

 ٔفٙ َفس صيٍ انفذص

. ٔأخٛشا، ذمٕو انطشٚمح انثانثح ػهٗ ذمهٛم انمذسج انمصٕٖ انًسرٓهكح ػُذ فذص ػذد كثٛش يٍ انزاكشاخ تانرٕاص٘

ٔذمٕو ْزِ انطشٚمح ػهٗ ذٕصٚغ انزاكشاخ فٙ يجًٕػاخ تُاء ػهٗ أدجايٓى ٔيٍ ثى جذٔنح ػًهٛاخ انمشاءج

يٍ انمذسج % 60انُرائج أثثرد أَّ ًٚكٍ دفظ أكثش يٍ . ٔانكراتح تطشٚمح ذمهم انمذسج انمصٕٖ إنٗ انذذ الأدَٗ

. انمصٕٖ يغ صٚادج يًٓهح فٙ ٔلد انفذص

1

Introduction

 With the advances in Very Large Scale Integration (VLSI) technology, more

and more contents are integrated together in System on Chip (SoC).Semiconductor

embedded memories can be considered as the densest circuitry and it is expected that

in 2014, embedded memories will occupy around 94% of silicon area in the SoC [1].

Due to their high density and intensive access, embedded memories are more likely to

be affected by manufacturing faults rather than other components in the chip. Hence,

memories have to be tested effectively [2].

Due to its high speed and reliability, Static Random Access Memory (SRAM)

is more commonly used in different applications such as digital cameras and mobile

phones, for this reason, many techniques were developed for testing embedded

SRAMs [3]. The increased number of embedded memories in SoC makes testing

process more complex in terms of time and power [4]. Testing power plays an

important role in evaluating the effectiveness of the test. If the power consumed

exceeds the accepted power constraint, then the chip is subjected to structural

degradation and may be damaged [5].

This thesis addresses the problem of power consumption during testing SRAM

for the existence of manufacturing faults. It studies the existing algorithms for

memory testing and provides an enhancement for some of those techniques so that

testing power is reduced with the same fault coverage and within an accepted testing

time. The main objectives of this dissertation are:

1. To reduce testing power of Zero-One algorithm that is used for testing

embedded memories of personal applications such as digital cameras.

2

2. To reduce testing power of March tests that are used for intensive testing of

embedded memories used in critical fields such as military applications.

3. To reduce peak power when parallel testing is applied for a large number of

embedded memories in SoC.

This chapter introduces the main concepts about SRAM testing and

manufacturing faults. Then it addresses memory testing patterns and the main sources

for power dissipation during testing. Finally, the motivation of this dissertation and its

general organization are summarized.

1.1 SRAM Structure and Functionality

SRAM is a volatile memory that is used to store binary values in computer

systems. It stores each bit effectively using a latching circuit which is made of

transistors. It loses its data when its power supply is turned off [6].

SRAM is faster than Dynamic Random Access Memory (DRAM) since no

refreshment is required for its functionality. Actually, SRAM was found to reduce the

gap in speed between Microprocessor Unit (MU) and the main memory in which

DRAM is used. Thus, SRAM is used in the cache memory of computer. More than

one level of cache may be required [7]. Figure 1.1 shows the memory pyramid which

proves that memory was the driving factor behind the rapid development in

Complementary Metal Oxide Semiconductor (CMOS) technology [8].

SRAM consumes less power than DRAM since DRAM refresh current is

much higher than SRAM standby current. Also, it is more reliable than DRAM. Due

to those advantages, SRAM is commonly used as an embedded memory in small and

portable devices such as mobile phones and digital cameras. Also it is widely used in

the buffers of routers and switches in the network. LCD screens and printers use

SRAM to hold image that has to be displayed or printed [9].

The main disadvantage of SRAM is its high cost and the large area it occupies

in SoC .Thus, large number of small SRAM memories is used in SoC instead of using

large size ones .According to Moores’ Law, the number of components on chip

doubles every 18 months. Thus, the number of embedded SRAMs in SoC increases

rapidly with time. Figure 1.2 shows how the number of SRAMs in SoC increases if

compared with other logic on chip [11].

3

 Figure 1.1: Memory Pyramid [10]

 Figure 1.2: Increased number of SRAMs in SoC [11]

 SRAM consists of a number of cells; each cell stores a binary value. There are

several technologies for SRAM cells. To reduce the area occupied by embedded

memories, one transistor (1T) technology, in which the cell consists of one transistor

surrounded by intelligent control circuitry, was found and recently some companies

have started to use this technology in the design of SoC [12]. However, six

transistors (6T) SRAM cell is still the dominant technology used due to its reliability

and stability and it is still considered in researches of test power, hence, it will be

considered in this dissertation. As shown in figure 1.3, 6T cell consists of 4 transistors

that forms two crossed coupled inverters to store the binary value. Two access

transistors (Q5 and Q6) connect or disconnect the cell to the bit lines (BL, BLB). [13].

 Usually, SRAM consists of a number of locations, according to the number of

cells in each location; SRAM can be classified in two main types [14]:

1. Bit Oriented SRAM which contains only one cell in each memory location.

2. Word Oriented SRAM: In which each location contains a number of cells

based on the word length. For example, if the word is 8 bit, then each memory

4

location contains 8 cells. Most of the memories used in SoC are word oriented

ones with word lengths vary between 32-512 bits and 640bits in some cases

such as video applications [15].

 Figure 1.3: 6T SRAM cell [13]

 SRAM is accessed by applying read and write operations on its cells. In case

of read operation, the current value of the cell is retrieved whereas a new value is

applied to this cell during write operation. Usually, address decoder is used to select

the memory location that will be accessed. Then, the word line for that location is

asserted so that the required cell is connected to the bit lines through access

transistors. A control signal is used to determine whether the operation applied is read

or write. In case of write operation, the value in the data bus is written to the cell.

Some peripheral devices are required such as write driver which pulls down one of the

bit lines so that the value in the data bus to be written is applied on the bit lines, and

the sense amplifier that amplifies the small analog differential voltage developed on

the bit lines by read operation to full swing digital output [13]. Figure 1.4 shows

SRAM with its peripheral devices.

 To apply a read operation, both bit lines are first pre-charged to Vdd. Then,

the word line for the word that has to be accessed is asserted. By this way, the gate of

the two access transistors (Q5 and Q6) is connected to logic 1. Consequently, both

access transistors are ON and connect the cell to the two bit lines. If the cell contains

logic 1, BL remains in its pre-charging level while BLB is discharged through

transistors Q5 and Q1 that form a voltage divider whose output is no longer 0 and it is

connected to the input of inverter Q2-Q4. In general 0+∆V should not exceed the

switching threshold of the inverter Q2-Q4. Figure 1.5 illustrates a simplified model of

6T cell during read 1 operation. If the cell contains 0, BL will be discharged through

5

transistors Q6 and Q2 while BLB will remain in its pre-charging level, then the same

operations will be applied [11].

 Figure 1.4: SRAM Connections [11]

 In case of write operation, both bit lines are pre-charged to Vdd, then, one of

those bit lines is pulled down through the strong write driver so that the value that has

to be written is applied on both bit lines. In general, during write operation, the bit

lines are driven by strong write driver to ensure overriding the current value that the

cell holds. Thus, the write current is much higher than read current. Figure 1.6 shows

a simplified model for SRAM cell when write 0 operation is applied [11].

 Figure 1.5: SRAM Cell during Read 1 Operation [11]

6

 Figure 1.6: SRAM Cell during Write 0 Operation [11]

1.2 SRAM Fault Models

A fault model is a description about how the components of a faulty circuit

will behave [16]. Due to the high density and intensive access of embedded SRAM

instances in SoC, they are more likely to be affected by manufacturing faults that may

affect the functionality of the system. The number of memory faults is more than that

for any other component in SoC, for this reason several fault models were dedicated

in order to detect these faults. [17]

SRAM faults can be classified in two main categories:

A. Single –cell Fault: A fault that involves only one cell in the memory, this

includes the following faults:

1. Stuck-At fault: It is the most common type of faults in SRAM cells. In

this fault, the cell value is stuck-at 0 or stuck-at 1 so that it cannot be

overwritten by the complementary value. Typically, memories of

personal devices such as mobile phones are tested mainly for this type

of faults. Stuck-at faults can be caused by several reasons, such as

short circuits in the connections and transistor defects. Figure 1.7

shows the state diagram of a stuck-at 0 cell. W0 and W1 represents

write 0 and write 1 operation respectively while R means a read

operation. S represents the current value of the cell [18].

2. Stuck open fault: In this type of faults, the cell cannot be accessed due

to open word line or open bit line [19].

3. Address decoder fault: This type of faults can be classified under the

stuck-at faults since one of the nodes in the address decoder may stuck

7

at 0 or 1 leading to accessing wrong address, no address, or multiple

addresses. Figure 1.8 illustrates this type of faults [20].

 Figure 1.7: Stuck-at 0 cell State Diagram [18]

 Figure 1.8: Address Decoder Fault [20]

4 Transition fault: In this type of faults, if the cell moves from one state

to another, it cannot move back to the pervious state. For example, if 1 was

written to a cell that contains 0, then 0 was written again, the cell state will

remain 1. This type of faults can be caused by the absence of access

transistors. Figure 1.9 shows the state diagram of this type of faults [18].

 Figure 1.9: Transition Fault State Diagram [18]

5. Write Disturb Fault (WDF): In this fault, a non transition write

operation will cause the cell to go into erroneous state. For example, if a

cell contains 0 and 0 was written to it, then its state will be 1 [21].

8

6. Read Destructive Fault (RDF): The read operation in this fault will

cause the cell to go into erroneous state. The result of read operation will

be wrong [21]

7. Deceptive Read Destructive Fault (DRDF): This type of fault is the

same as RDF but it is more difficult to detect since read operation result

will be correct but the state of the cell will be wrong after this read

operation [21].

8. Incorrect Read Fault (IRF): In this fault, the state of the cell will

not be changed during the read operation, but the read result will be wrong

[21].

B. Two-Cell Fault: A fault that involves two cells. This includes the following

types of faults [22]:

1. Inversion coupling fault: In this type of faults, if the value of a

cell is changed, then its neighbor will go into erroneous state.

Usually the first cell is called aggressor cell whereas the

affected cell is called victim cell. This fault could be

symmetric; in which the victim cell state will go from high to

low or from low to high following the aggressor cell transitions

or it could be asymmetric so that the victim cell moves into one

transition only. Also this fault could be one-way, in which the

fault is sensitized by high to low or low to high transition or

two-way which is sensitized in both transitions in the aggressor

cell. Figure 1.10 shows the state diagram for a pair of cells with

inversion coupling fault.

2. State coupling fault: Within this fault, the state of the aggressor

cell will cause the victim cell to be affected by any of the

previously mentioned single-cell faults. For example, if the

aggressor cell state is 0, then the victim cell may be affected by

transition fault.

C. Other faults: There are other types of faults such as delay related faults,

stability faults and data retention faults. These types of faults are usually

ignored in normal applications but have to be detected in applications that

contain critical data in which memory has to be intensively accessed [23].

9

 Figure 1.10: Coupling Fault State Diagram [18]

1.3 Memory Testing Concepts

SRAM has to be tested for the existence of manufacturing faults since these

faults will affect the functionality of the memory. Testing phase means applying a set

of patterns generated from a Test Pattern Generator (TPG) to the Memory Under

Testing (MUT) and then comparing the obtained result with the expected result in

case of fault free memory. Testing pattern consists of three parts as shown in figure

1.11 [24]:

1. The address that has to be accessed.

2. The data that will be written in case of write operation.

3. The control signal that determines whether a read or write operation has to be

applied.

10

TPG MUT

Address

Data

Read/Write

Figure 1.11: Memory Testing Pattern

 Usually testing is performed either during manufacturing or during

application. In general, testing is classified in two types:

1. External Testing: In this type of testing, an external instrumentation is used for

generating testing patterns that are applied to the MUT. The equipment used is

called Automatic Test Equipment (ATE). The main problem with this type of

testing is its cost which is proportional to the number of pins of the MUT.

Another disadvantage is the large testing time required since the SoC consists

of hundreds of embedded memories that will be tested sequentially using a

single ATE [25].

2. Built-in Self Test (BIST): this type is the most commonly used in testing

memories. In Memory BIST (MBIST), a TPG is built in the chip that contains

the MUT so that the memory is tested without any communication with the

external world. BIST was found to overcome the problems of the external

testing such as the high cost and the testing time. By using BIST, multiple

embedded memories in SoC can be tested in parallel so that testing time is

reduced. Figure 1.12 shows the main components of MBIST [26] which are:

1. BIST engine that generates the pattern (address, data, and control) that will be

applied to MUT.

2. MUT that has to be tested for faults.

3. Comparator that is used to compare the results read from MUT with the

expected result so that a pass/fail indication is generated.

11

4. Multiplexers whose selection line is the testing mode signal to determine

whether the system is in the testing mode or in the normal mode. If the system

is in the testing mode, then the pattern generated by the BIST engine will be

applied to the memory, otherwise, the data coming from microprocessor will

be the input of memory.

Figure 1.12: MBIST Architecture [18]

 BIST engine consists of two parts which are: the address generator and

the controller. The address generator generates the address that has to be accessed.

Usually a counter is used as an address generator, but this will result in large overhead

in the hardware area, thus, Linear Feedback Shift Register (LFSR) is sometimes

used instead of the counter due to its low overhead in the hardware area [27]. LFSR is

a register that consists of a number of flip flops and an XOR gate that is located based

on the characteristic polynomial. It can be considered as a source of binary

pseudorandom test sequences that can be used in testing combinational circuits and

also as an address generator in memory testing. LFSR can be maximal length if it

generates all the possible testing vectors (except the 0’s vector since it blocks the

LFSR). Figure 1.13 shows 3-bit LFSR with characteristic polynomial

12

p(x) = x
3

+ x + 1. Usually LFSR starts generating the addresses with a seed value, for

example, if the seed for the LFSR shown in figure 1.13 is 111, then the sequence of

addresses generated will be {111,011,101,010,001,100,110.111}. A simple circuit can

be added to generate the 000 address [28].

 Figure 1.13: 3-bit LFSR

 The controller in BIST engine is responsible for generating data and control

signals that will be applied on the memory location generated by address generator.

Usually the controller is based on finite state machine while generating its patterns

[29].

 BIST schemes are classified in two main types [28]:

1. Test per clock, in which BIST engine generates a pattern to be applied to the

Circuit Under Testing (CUT) per clock.

2. Test per scan, in which the storage elements in the CUT are transformed into

scan cells that are connected to each other forming a scan chain. Then, the

testing vectors and responses are shifted through this chain. Usually this

scheme is used for testing complex sequential circuits since it doesn’t require

large overhead area, but it results in large testing time.

 Usually in memory testing, test per clock scheme is used due to its low testing

time and there is no need for forming scan chains in testing memories since memory

structure is the same for all memories.

1.4 Memory Testing Algorithms

 Many algorithms were developed for testing memory. Fault coverage, which

is defined as the number of detected faults divided by total number of faults, was

considered as the superior factor in evaluating any memory testing algorithm. With

13

the increased number of embedded memories in the SoC, testing time became

another important factor in testing. To reduce the testing time, parallel testing can be

considered as a good solution, but this will result in excessive test power since

multiple memory instances will be tested simultaneously. Hence, the power consumed

during the testing mode could be much higher than that in the normal mode since in

the testing mode multiple memories will be tested concurrently whereas some

memories will be idle during the functional mode [30].

 A memory testing algorithm consists of a sequence of read and write

operations that will be applied on a sequence of addresses in the memory. In each read

operation, the results read from MUT are compared with the expected read result to

detect any faults in memory [31]. The following provides a brief description about the

most commonly used memory testing algorithms. Figure 1.14 defines the symbols

used in all memory testing algorithms:

 Figure 1.14: Symbols Used in Memory Testing Algorithms

1. Zero-One algorithm: This algorithm is used to detect only stuck-at

faults in MUT. It is commonly used in personal and portable devices

such as mobile phones. Also it is used when embedded memories of

those devices are being tested during the application not only during

manufacturing. As shown in figure 1.15, simply a 0 is written to all

memory addresses, then it is read from those locations in order to

detect stuck-at 1 cells. Then, 1 is written to all memory locations then

it is read in order to detect stuck-at 0 cells. Note that the testing time of

this algorithm is 4n where n is the number of addresses of the MUT.

Thus, this algorithm belongs to O(n) testing algorithms [18]

W0-Write 0

W1-Write 1

R0-Read 0

R1-Read 1

↑-Increasing order of addressing

↓- Decreasing order of addressing

↕- Any order of addressing

14

 Figure 1.15: Zero-One Algorithm

2. March Tests: It was proven that March tests are superior to other

memory testing algorithms due to their high fault coverage and low

testing time. In general, March algorithms are O(n) tests. They were

found in order to detect coupling faults and other types of faults. A

March test consists of a number of March elements, each element

consists of a sequence of operations that will be applied on all memory

addresses based on the given addressing order in the algorithm.

Usually these tests are used for testing embedded memories in critical

applications such as military applications and others so that the

memory has to be intensively tested. One of the commonly used March

tests is March C- algorithm which can detect stuck-at faults, transition

faults, and inversion coupling faults. Figure 1.16 illustrates March C-

algorithm and its main elements (M0, M1 …,M5) [32].

 Figure 1.16: March C- Algorithm

 March C- algorithm contains increasing and decreasing orders of addresses in

order to detect the coupling faults when the aggressor cell address is greater than the

address of the victim cell (a > v) and when the aggressor cell address is lower than the

victim cell address (a < v). Other March tests were developed in order to increase the

fault coverage. For example, March C- algorithm cannot detect DRDFs, thus, March

SS was found to detect this type and also other types of faults. Other March

algorithms were found to detect and identify the location of the faults, such as March

DSS. Those algorithms are called diagnosis March Tests [33]. More about March

tests can be found in appendix A.

 Zero-One and March algorithms are not the only algorithms developed for

memory testing, other algorithms were found such as Walking 1/0 and GALPAT.

Those algorithms have a good fault coverage but their complexity are O(n
2
) and

O(n
3/2

) respectively. Thus, a large testing time is needed [33].

↕ (W0), ↕ (R0), ↕ (W1), ↕ (R1),

↕ (W0);↑ (R0 , W1); ↑ (R1 ,W0);↓(R0,W1); ↓(R1,W0); ↕ (R0)

 5 M4 M3 M2 M1 M0M

15

 Memory testing algorithms are implemented as a finite state machine which is

executed by the controller in the BIST engine [29]. Figure 1.17 shows a finite state

machine implementing the first two elements in March C- algorithm.

Figure 1.17: First two Elements of March C- [29]

1.5 Power Dissipation in SRAM Testing

 Before considering power dissipation during SRAM testing, the following

terminology has to be considered [28]:

1. Average Power: The total energy consumed divided by testing time.

2. Instantaneous Power: The power dissipated at any instant of time.

3. Peak Power: The maximum instantaneous power.

In CMOS technology, power dissipation can be classified in two types [30]:

1. Static power dissipation which is caused by leakage current. In general,

leakage current increases when more and more transistors are squeezed onto a chip

since when the transistor becomes smaller, the insulating layer becomes thinner

causing more and more leakage current. In general, in CMOS technology, static

power is low if compared with other technologies.

2. Dynamic power dissipation which is caused by charging and discharging of

load capacitance (CL) of the transistors. Figure 1.18 shows the general model of

CMOS node. When a transition from low to high occurs, then the capacitor will be

charged to Vdd with charge Q= CLVdd. So the energy consumed= QVdd= CL(Vdd)
2
.

Since the load capacitor will save (1/2) CL(Vdd)
2
. The other half will be dissipated as

16

heat in the pull up network (P). In case of discharging, the load capacitor will

discharge all the energy that is has and this energy cannot enter the ground rail since

Q.Vdd=Q.0=0. Thus, (1/2) CL(Vdd)
2
 will be dissipated as heat in the pull down

network (N). By this way, in any node, the dynamic power dissipated can be defined

in (1.1).

𝑷𝒅𝒚𝒏 = ((𝟏/𝟐) ∗ 𝑪𝑳 ∗ 𝑽𝒅𝒅𝟐 ∗ 𝑵)/𝑻 (𝟏. 𝟏)

 Where CL is the load capacitance of the transistor and Vdd is the biasing voltage, N

is the total number of transitions in the node, and T is the testing time. Usually any

transition is called Switching Activity (SA). Note that power dissipation is the same

for up and down transitions if assuming the same sizing of P and N transistors. [30].

Figure 1.18: CMOS Logic [30]

 Dynamic power is the dominant source of power dissipation when testing

embedded SRAM. Thus, it is the power considered in this dissertation. Actually,

dynamic power dissipation during SRAM testing is caused by three main factors [34]:

1. High Switching activities in address decoder and data bus.

2. Power dissipated in peripheral devices such as sense amplifier.

3. Power dissipated in memory array.

 The power consumed in memory array forms the major part of power

dissipation during testing. It is caused by read and write operations applied on

memory cells. Write current is much higher than the read current since the value of

the cell has to be overwritten with new value. Therefore, the voltage swing in write

operation is set to Vdd. If write operation has to be performed on one cell in a word,

the other cells in this word perform read operations whose results are neglected. These

unnecessary read operations are called Read Equivalent Stress (RES).) Read and write

drawn currents are represented in (1.2) and (1.3) respectively [35].

17

𝑰𝒅𝒅𝒂(𝒓) = [𝒎 ∗ 𝑰𝒅𝒄(𝒓) ∗ 𝑫𝒕 + 𝒎 ∗ 𝑪𝒅 ∗ 𝑫𝑽(𝒓)] ∗ 𝒇 (𝟏. 𝟐)

𝑰𝒅𝒅𝒂(𝒘) = {𝒑 ∗ [𝑰𝒅𝒄(𝒘) ∗ 𝑫𝒕 + 𝑪𝒅 ∗ 𝑫𝑽(𝒘)] + (𝒎 − 𝒑) ∗ [𝑰𝒅𝒄(𝒓) ∗ 𝑫𝒕 + 𝑪𝒅

∗ 𝑫𝑽(𝒓)]} ∗ 𝒇 (𝟏. 𝟑)

Where m is word length, Idc(r) and Idc(w) represent the DC current on the bit lines

during read and write operations respectively, Dt is the assertion period of WL, Cd is

the capacitance of the bit line, p is the number of memory on which write operation

will be applied, DV(r) and DV(w) represent the voltage swing of the read and write

operations respectively, and f is the operation frequency. Note that in general m=p;

however, for Bit/byte-Write Enable memories these parameters may be different. It is

obvious that when a write operation is performed on a cell in a word, the other cells

perform RES whose results will be neglected

1.6 Motivation for SRAM Test Power Reduction

 SRAM testing entails excessive average power dissipation due to the large

number of switching activities in address decoder and data bus in addition to the

sequence of read and write operations applied during testing. Excessive average

power means more heat which will increase the temperature of the chip;

consequently, the chip may be damaged [30].

 When parallel testing is performed on a number of embedded memories in

SoC, there will be concurrent write operations that will result in excessive peak

power. If peak power exceeds the power constraint, then the chip may be damaged.

Excessive peak power will cause more noise that will erroneously change the logic

value of nodes in the chip; hence, the system functionality will be impacted [30].

 Although many algorithms were developed for SRAM testing, maximizing

the fault coverage was the superior purpose of most of them, and only few of those

algorithms focus on reducing the testing power which plays an important role in

evaluating the effectiveness of the test. The limited number of techniques in reducing

the testing power of SRAM was the main motivation of this dissertation.

18

1.7 Thesis Organization

 This thesis aims to reduce testing power of Zero-One algorithm which is used

for testing embedded SRAMs of personal devices, and to reduce the average and peak

power of March tests which are used for intensive testing of embedded SRAMs used

in critical applications. The last objective is to reduce the peak power when multiple

embedded SRAMs in SoC are being tested in parallel.

 In chapter 2, literature on previous work is summarized. This chapter will

describe the previous algorithms developed for reducing SRAM testing power and

how this dissertation contributes the previous work.

 Chapter 3 of this thesis provides an enhancement on Zero-One algorithm to

reduce the switching activity in the address decoder by using low power address

generators, and reduces the switching activity in the data bus by reordering the

algorithm. March tests, which are the most commonly used are modified in chapter 4

so that both the average and peak powers are reduced.

 In chapter 5, a new scheme is proposed in order to reduce the peak power

when large number of embedded SRAMs in SoC has to be tested in parallel. Finally,

chapter 6 concludes this dissertation and describes the future work.

19

Related Work

Due to the large number of faults in embedded SRAMs in SoC, many

algorithms were developed in order to detect, and in some cases diagnose, these

faults. Most of these algorithms focus on maximizing the fault coverage and reducing

testing time. The increased complexity in VLSI technology results in more and more

embedded memories in SoC, which has resulted in high power consumption in the

chip .Testing power forms a major part of this power dissipation. Nevertheless, only

few techniques were dedicated in order to reduce memory testing power.

The main motivation behind reducing testing power of embedded memories is

that the power consumed during testing could be twice that in the functional mode

since during testing multiple memories will be tested in parallel whereas some

memories will be idle in the functional mode [30].

Some techniques in the literature focus on reducing the switching activity

during testing in order to reduce the average power while others deal with reducing

peak power when multiple embedded memories are being tested in parallel.

Maintaining the same fault coverage and low overhead in the hardware area was a

challenge in these techniques.

This chapter presents a short survey about previous works in reducing testing

power of embedded memories and their shortcomings. Then it reveals the contribution

of the work presented in this dissertation.

2.1 Single Bit Change (SBC) in Address Decoder

One of the main sources of power dissipation during testing is high switching

activity in address bus since all memory locations have to be tested for faults. Thus,

20

reducing these signal activities will reduce testing power effectively. By this way,

original memory testing algorithms have to be reordered so that the switching activity

in address bus lines is minimized while retaining the same fault coverage. This is

done by using SBC or gray code addressing to ensure that between two successive

clock cycles, there will be only one transition. For example, if the MUT has 2 bit

address bus, then the sequence of addresses generated during testing will be {00, 01,

11, 10} [30]. Table 2.1 shows how some memory testing algorithms can be modified

in order to minimize the switching activity in address decoder. The symbol ↕s denotes

SBC in the addresses generated during testing.

Table 2.1: SBC in Address Decoder [30]

It is clear in table 2.1 that Zero-One memory testing algorithm was modified

so that the switching activity in address decoder is minimized. This is done by using

SBC in the addresses generated and by applying all operations (W0, R0, W1, R1) on

each address then moving to the next address instead of applying each operation to all

addresses then re-generating all addresses to apply the next operation. Actually,

original Zero-One test will cause generating the address sequence four times while

they are generated only once in the low power version of this test.

The main drawback of SBC technique is that a modified counter is required in

order to generate the required gray code. Actually using normal and gray code

counters results in large overhead in the hardware area. In Zero-One testing algorithm,

the order of addresses generated is not important, for this reason, it is preferred to use

address generators with low hardware area instead of using counters since SoC

contains a number of BIST engines and using counter as an address generator for each

of those engines will make it costly for BIST in terms of hardware area.

21

2.2 Minimizing Test Power through Reduction of Pre-charge
Activity

Before applying read and write operations in SRAM, the bit lines (BL, BLB)

have to be pre-charged to Vdd to ensure applying a correct operation. The pre-

charging circuitries are used for pre-charging and equalizing the high capacitive bit

lines. It was proven that the pre-charging circuitry forms around 70% of the power

consumed in SRAM [36]

A good methodology is to exploit the predictability of the sequence of

addresses generated during testing in order to reduce testing power. Actually, during

the functional mode, the next address that has to be accessed cannot be predicted

whereas it is known during testing. Hence, all pre-charging circuits for all cells need

to remain active in the normal mode whereas during testing mode, just the pre-

charging circuits of the cells that have to be accessed will be activated while others

can be deactivated [36].

Reducing the pre-charging activity during testing can be implemented by

modifying the pre-charging control circuitry in a way that allows choosing a specific

cell to be pre-charged. As shown in figure 2.1, a new element has to be added for each

column for controlling the pre-charging circuit. This element consists of a multiplexer

(which is implemented by two transistors and one inverter) and a NAND gate. The

multiplexer has LPtest signal as a selection line in order allow selection between the

normal mode and the testing mode. When LPtest signal is activated, then based on the

addressing sequence (which is assumed to be word line after word line access), the

signal CSj’ of column j drives the pre-charging circuitry of the next column j+1 while

other cells in the same column are not pre-charged. NAND gate is used to allow the

functional mode for a cell when it is selected for read and write operations during

testing. Experimental results show that around 50% power reduction was achieved

using this technique [36].

The main drawback of this technique is that it supposes word line after word

line selection in addressing which is not used by all testing algorithms. .In many

testing algorithms, read and write operations are applied in parallel to all cells within

the same word in order to reduce the testing time. Thus, all pre-charging circuits have

to be activated.

22

Figure 2.1: Modified Pre-charging Circuitry [36]

2.3 March Tests Sequence Reordering using Genetic Algorithm

Since March tests are the most commonly used for intensive testing of

embedded memories, it is important to reduce their testing power. Switching activity

during testing is the dominant source of power dissipation when applying March tests.

This is related to the number of transitions during write operations. For example, in

March C- algorithm, the number of transitions is 4 as shown in figure 2.3.

 Figure 2.2: Switching Activity in March C- Algorithm

One of the used techniques to reduce the switching activity in March tests is to

reorder these tests based on genetic algorithm which is usually used for optimization.

This algorithm can be used for optimizing between the fault coverage and testing

power. For this reason, a cost function was defined based on the fault coverage and

test power so that the fault coverage part is maximized, whereas the test power is

minimized. The used cost function is represented in (2.1) [37] .

𝑪𝒐𝒔𝒕 𝑻 = 𝑾𝟏 ∗ (𝑻𝑷(𝑻)/𝑻𝑷𝒎𝒊𝒏) + 𝑾𝟐 ∗ (𝑭𝑪𝒎𝒂𝒙/𝑭𝑪(𝑻)) (2.1)

Where T is a March test that has a fault coverage FC(T) and test power TP(T), TPmin

and FCmax represents the minimum test power and maximum fault coverage

respectively. W1 and W2 represent the weights assigned to test power and fault

↕ (W0);↑ (R0 , W1); ↑ (R1 ,W0);↓(R0,W1); ↓(R1,W0); ↕ (R0)

23

coverage. In general the cost for any March test T has to be minimized. The fitness

function (F (T)) required for genetic algorithm is 1/Cost(T).

Genetic algorithm is based on starting with initial population, and then a

number of genetic operations are applied to generate new populations. Periodically,

the fitness function is calculated for each population generated so that population with

the maximum fitness function is selected. The initial population for a given March test

is the sequence of write operations, for example, the initial population for March C-

test is the set {W0, W1, W0, W1, W0}. More about genetic algorithm can be found in

appendix B.

This algorithm was applied on March B, March SS and March DSS (which is

used for diagnosis) algorithms. Table 2.2 shows the old and newly generated low

power March tests based on genetic algorithm.

Table 2.2: New Generated March Tests using Genetic Algorithm [37]

This technique reduces the testing power effectively in March test, but it

performs this on individual memory whereas usually a large number of embedded

memories have to be tested in parallel resulting in large peak power that may damage

the chip.

2.4 Generating Low Power March Tests using Particle Swarm
Optimization

This technique is similar to the one described in the previous section. It aims

to generate low power March tests with low power and high fault coverage using

Particle Swarm Optimization (PSO) scheme. Actually PSO is a population based

stochastic scheme which is used to find a solution and then finding the optima through

iterations. As in genetic algorithm, new populations are generated from some initial

population by applying a number of operations. Then, the one with the maximum

24

fitness function is selected as optima. Usually, each particle consists of a sequence of

read and write operations. Figure 2.4 illustrates the structure of PSO particle. The

fitness function at kth generation of particle Pi equals to W1* (Fraction of faults

covered) + W2*(Maximum power consumed by any particle till generation k)/ (Power

consumed by the March test of particle Pi in generation k) +W3*(Maximum number

of continuous writes in any particle till generation k)/ (Number of contiguous writes

for the March test of particle Pi in generation k) [38].

Figure 2.3: PSO Particle Structure [38]

The initial population in PSO scheme is generated by taking the Number Of

Operations (NOP) of the March test as an input, then based on random variables, new

particles are generated randomly. The fitness function is calculated for each of them.

New particles are then generated using an operation called flip and the fitness

function is calculated periodically. The particle with the best fitness function is

selected as optima. More about PSO scheme can be found in appendix C.

Table 2.3 shows the newly generated March tests based on PSO scheme and

their fault coverage and average power. It is obvious that this scheme is based mainly

on the number of operations in the March test.

This algorithm reduces the testing power effectively through generating those

low power March tests. But as in genetic algorithm, when a large number of

embedded memories has to be tested simultaneously, then concurrent write operations

will result in high peak power that may exceed the power constraint of the chip.

Another drawback is that both this and genetic algorithm consider bit-oriented SRAM

in their applications whereas most of the commonly used memories are word-oriented

ones.

25

Table 2.3: New March Tests Based on PSO Scheme [38]

2.5 Skew Scheme

A SoC consists of a large number of embedded memories that have to be

tested in parallel. When a memory testing algorithm, such as March C-, is applied on

those memories, there will be concurrent write operations that will cause huge peak

power that may damage the chip if it exceeds the power constraint. Figure 2.5

illustrates applying element M1 (R0,W1) in March C- algorithm on two SRAMs

being tested in parallel. (r0,w1)0 means that these operations will be applied on cell 0.

So write operation will be applied on two cells concurrently. If the SoC consists of

100 memories, then 100 concurrent write operations will be applied during parallel

testing which is dangerous to the cell due to the high current of write operation if

compared with read operation.

Figure 2.4: Applying element M1 of March C- on two SRAMs

The skew scheme was found in order to provide a good management for

parallel testing of embedded memories. This is done by adding one clock cycle skew

when testing two embedded memories to ensure that there will be no concurrent write

operations. Figure 2.6 illustrates applying skew algorithm when element M1 of March

26

C- algorithm is applied on two SRAMs being tested in parallel. Let P(R) and P(W)

denotes read power and write power respectively. In case of parallel testing without

any skew, as shown in figure 2.5, peak power will 2*P(W) whereas it will be

P(R)+P(W) when skew algorithm is applied as shown in figure 2.6. It is important to

remember that always P(R) < P(W) [39].

Figure 2.5: Skew Scheme [39]

In general, If N identical memories have to be tested in parallel, and grouped

into two clusters such that the memories in each cluster will be tested in parallel,

then, scheduling read and write operations as shown in Figure 2.6 will result in a peak

power reduction from N*P(W) to (N/2)* (P(W)+P(R)).

The main advantage of skew scheme is that it reduces the peak power

effectively with just one additional clock cycle in the testing time. Nevertheless, if the

power constraint of the chip is low, then skew scheme may be insufficient in reducing

peak power since the memories in each cluster will be tested in parallel and may

exceed this constraint.

2.6 Power Constrained Embedded Memory BIST Architecture

A good architecture was developed for MBIST in order to reduce the testing

power and routing in connections. As shown in figure 2.7, this architecture consists of

three main parts [40]:

1. MBIST controller in which the test program is stored and it starts the test after

receiving a special command from upper level controller.

2. Low power MBIST wrapper which can be considered as the test pattern

generator for the MUT and it is triggered by the controller to apply patterns.

27

3. Interconnections between controller and wrappers which is serial in order to

reduce the routing complexity.

Figure 2.6: Power-Constrained MBIST Architecture [40]

Usually, MBIST controller sends commands to different wrappers that start

applying testing patterns on the memories that have to be tested. Each wrapper uses

gray code address generator in order to reduce the signal activities during testing. This

generator can be up or down gray code counter. Each wrapper can be used to apply

patterns on a single memory. Figure 2.8 illustrates the structure of address generator

used in wrapper [40].

This architecture doesn’t provide a management of parallel testing, since

although the switching activity is reduced, parallel testing will result in abrupt

increase in the peak power.

Figure 2.7: Wrapper Address Generator [40]

28

2.7 Contribution of the Work Presented in this Thesis

This dissertation introduces a number of techniques for reducing testing power

of embedded SRAMs in SoC. These techniques aim to enhance some of the

algorithms described in this chapter to overcome their drawbacks.

In chapter 3, low power and low hardware area address generator is suggested

in order to be used for Zero-One algorithm which is used for testing personal devices.

So the switching activity in the address decoder is reduced with little overhead in

hardware area. Then, the test is reordered so that the write drivers switching activity is

reduced.

In chapter 4, an enhancement is applied on March tests for word oriented

memories in order to reduce their peak and average power. Finally, a management of

parallel testing of embedded memories is proposed in chapter 5. This is done by

applying a new scheme which improves the skew scheme effectively.

The work presented in chapters 4 and 5 was accepted for publication in the

IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT 2011) that will be held in 3-5 October, 2011 in

Vancouver, Canada. Another paper about the contribution presented in chapter 3 is

prepared to be submitted for another conference.

29

Low Power Zero-One Testing

3.1 Overview

Stuck- at faults can be considered as the most common types of faults in

SRAM cells. Usually, embedded memories of personal and mobile devices such as

mobile phones and digital cameras are tested mainly for this type of faults. Actually,

this is done during manufacturing and even in on-line testing, in which memory is

tested when it is used in the application [18].

As mentioned in chapter 1, Zero-One algorithm is used for detecting stuck-at

faults. This algorithm needs to be enhanced in order to reduce the power consumed

during testing since power is a crucial factor for mobile devices especially if on-line

testing is being applied.

This chapter introduces an enhancement of Zero-One algorithm in order to

reduce the power consumed during testing. This enhancement consists of two main

parts:

1. Selecting a low power address generator to reduce the switching activity in

address decoder.

2. Reordering the Zero-One pattern so that total switching activity is minimized.

Section 3.2 describes the used MBIST architecture and address generators.

Section 3.3 reorders Zero-One testing pattern so that total switching activity is

minimized. Section 3.4 reports and analyzes obtained results while section 3.5

concludes this chapter.

30

3.2 MBIST Architecture and Address Generators

In MBIST, the BIST engine generates a number of testing vectors that are

applied on MUT. Each vector consists of address that has to be accessed, data

background that has to be written, and control signal to determine whether a read or a

write operation has to be applied. Figure 3.1 shows the design for MBIST used in this

chapter. Basically, the BIST engine (controller) provides mr and mw signal for read

and write operations respectively. It also generates the address that has to be accessed

and the data that will be written to MUT in case of write operation. If the operation is

read, then the expected data to be read will be sent to the comparator that compares

between this data with the output of MUT after read operation. The Mux has the test

signal as its selection line in order to determine whether the system is in the functional

mode or in the testing mode. In general, if the system is in the testing mode, then the

patterns sent by BIST controller will be applied to the memory while the data coming

from microprocessor will be applied if the system is in the normal mode. Finally, the

comparator compares in parallel the data read from memory with the expected data; if

these values are different, then the test fail signal will be activated indicating that the

MUT is faulty. The test continues until the test end signal is activated by the BIST

controller. More about building MBIST systems can be found in [41].

One of the possible enhancements for Zero-One pattern is to exploit the fact

that during testing, the order of addresses generated is not important. For this reason,

a low power and lower hardware area address generator has to be used. Since using a

counter entails a large overhead in the hardware area, LFSR is usually used for this

purpose [28]. As described in section 1.3, with a little hardware area and with the

appropriate selection of XOR gate location, LFSR can generate all the possible

addresses except the zero’s address which can be generated using a simple circuit.

This will not affect the fault coverage since all locations will be generated and tested.

Although LFSR occupies a low hardware area, there is a low correlation

between the addresses generated. This causes a high switching activity in the address

decoder which increases the heat dissipated during testing. Thus, other types of LFSR

were developed in order to reduce the switching activity in the vectors generated.

These LFSRs are used for testing combinational and sequential circuits, but they were

not used for testing memories. Hence, these LFSRs were implemented, simulated, and

then compared with each others in terms of their switching activity in order to find the

31

best one to be used as an address generator when testing SRAMs for stuck-at faults.

The following sections provide a brief description about these types of LFSR.

CNTRL

MUT

Comp

MUX

Address
Mw

Mr

clk

test

Test fail

Data out

Test end

Mr

Mw

Address

Data

Comp Enable

Expected

Data

Figure 3.1: Used MBIST Architecture

3.2.1 Bit-Swapping LFSR (BS-LFSR)

In this type, the LFSR structure is modified to apply swapping between the

neighboring bits. The last bit is the selection line for the swapping process. If the last

bit is 0, then swapping is performed between neighboring flip flops, otherwise,

nothing is changed. As shown in figure 3.2, just a number of multiplexers have to be

used to allow swapping. For example, if a 3-bit LFSR has to be used, then the

generated vectors using normal LFSR (such as the one shown in figure 1.11) and BS-

LFSR are shown in table 3.1. So each vector generated by normal LFSR is checked to

see whether it has to be swapped or not. It was proven that BS-LFSR reduces the

switching activity in the inputs of the CUT about 25% [42].

Figure 3.2: BS-LFSR [42]

32

Table 3.1: Normal and BS- LFSR Vectors

Original Vector Swapped Vector

111 111

011 011

101 101

010 101

001 001

100 010

110 110

111 111

3.2.2 Dual Speed LFSR (DS-LFSR)

 This LFSR is commonly used in testing since it reduces the switching

activity effectively. Instead of using one LFSR, two LFSRs are used: slow speed

LFSR and normal speed LFSR. The slow-speed LFSR is driven by a slow clock

whose speed is a fraction of the clock that drives the normal-speed LFSR. Figure 3.3

illustrate this type of LFSR. When the normal-speed LFSR finishes all its vectors, the

slow-speed LFSR clock is triggered [43].

Figure 3.3: DS-LFSR [43]

 The main feature of DS-LFSR is that it reduces the frequency of transitions

in the circuit inputs that are driven by the slow-speed LFSR. So the total number of

switching activities is reduced.

33

3.2.3 Bipartite LFSR

 This LFSR is based on reducing the switching activity between two

consecutive patterns through combining the second half of the current vector with the

first half of the next vector into an intermediate vector. As shown in figure 3.4, the

switching activity is divided into two stages [44].

Figure 3.4: Intermediate Pattern Generation in Bipartite LFSR [44]

 Bipartite LFSR can be implemented simply by dividing the LFSR into two

halves so that when one half is working, the other half is idle. Actually two enable

signals are required (en1, en2) as shown in figure 3.5. When en1en2=10, then the first

half is working while when en1en2=01, then the second half is working. An

intermediate flip flop is added to store the value of n/2th flip flop when the first half is

active and sends it value to (n/2+1)th flip flop when the second half becomes active

[44].

Figure 3.5: Bipartite LFSR Architecture [44]

 Bipartite LFSR reduces instantaneous power, but for average power, it will

be the same if all vectors are generated since it only divides the switching activity in

two parts (for example from 10 to 7 and 3 as shown in figure 3.4). Another

disadvantage is that if this generator was used for the same testing time of normal

LFSR, then some addresses will be duplicated while others will not be generated, and

this will affect the fault coverage of the test.

34

3.3 Detecting Stuck-at Fault Patterns

 In order to detect stuck-at faults, Zero-One pattern writes zero to all

memory locations, then it reads zero from all these locations so that stuck-at one cells

are detected. After that, one is written to all cells and then read to detect stuck-at zero

cells. As mentioned in section 2.1, this pattern causes a high switching activity in the

address decoder since all addresses will be generated four times and in case LFSR is

being used, there will be huge switching activity, thus, the technique proposed in

section 2.1 suggests to modify Zero-One pattern from {↕(W0); ↕(R0); ↕(W1); ↕(R1)}

to {↕(W0,R0,W1,R1)}, so that all operations are applied on one cell then moving to

the next cell. This will reduce the switching activity in the address decoder since the

addresses will be generated just one time. To make it easier, the original Zero-One

pattern will be called pattern 1 while the later one will be called pattern 2. Switching

activity of pattern 1 (SAp1) can be represented in (3.1)

 𝑺𝑨𝒑𝟏 = 𝟒 ∗ 𝑺𝑨𝒂𝒅𝒅 + 𝒑 (3.1)

Where SAadd is the address decoder switching activity and p is the word length of the

MUT. Although pattern 2 reduces the switching activity in the address decoder, it

entails a problem in the switching activity in the data bus since most of the memories

used in reality are word oriented memories. For example, if the word length of the

MUT is 8bits, then using pattern 2 will result in huge switching activity in the data

bus since when each location has to be accessed, such as the second location, the data

bus will have 16 transitions (111111110000000011111111). Higher word lengths

will result in higher switching activities. Switching activity of pattern 2 (SAp2) is

represented by (3.2)

 𝑺𝑨𝒑𝟐 = 𝑺𝑨𝒂𝒅𝒅 + 𝒑 ∗ (𝟐𝑵 − 𝟏) (3.2)

Where N is the number of memory locations (words) in the MUT. Note that in each

word, there will be 2p transitions from ones to zeros and then from zeros to ones

except the first location which contains p transitions from zeros to ones (if it is

initially assumed to contain zeros). It is obvious that pattern 2 has a bad impact on

data bus switching activity since it is proportional to the word length and the number

of locations in the MUT.

. To reduce switching activity, there should be some optimization between the

address bus switching activity and data bus switching activity. First of all, the lowest

power address generator has to be selected, and then, a suitable pattern has to be

35

applied so that there is no excessive power consumed either in the address decoder or

in the data bus. By this way, Zero-One pattern can be modified to be {↕(W0,R0);

↕(W1,R1)} and let this pattern called pattern 3. So when applying this pattern, the

data bus will contain one switching activity in each of its lines whereas the test goes

through the addresses two times. Switching activity of pattern 3 (SAp3) is represented

by (3.3).

 𝑺𝑨𝒑𝟑 = 𝟐 ∗ 𝑺𝑨𝒂𝒅𝒅 + 𝒑 (3.3)

 It is clear that pattern 3 is better than pattern 1 since the addresses are

generated two times; also it is better than pattern 2 since it doesn’t have a linear

relationship with the word length of MUT. Thus, using pattern 3 with low power

address generator will reduce the testing power of Zero-One pattern effectively. Note

that the fault coverage is the same for all patterns since all addresses will be generated

and tested.

3.4 Simulations and Experimental Results

 To evaluate the proposed patterns and address generators, MBIST architecture

shown in figure 3.1 was programmed using VHDL, then it was simulated using Xilinx

ISE Design Suite [45].This tool is very powerful in simulations and it contains a

power analyzer. Five address generators were used in the system, and then the

switching activity was calculated in the address decoder when using each of these

generators. Thereafter, patterns 1, 2 and 3 were programmed and total switching

activity was calculated in order to select the best pattern with the best address

generator.

3.4.1 Code Description

 To build the used MBIST system, behavioral model with VHDL was used to

build each of the components in the system and integrate them together. Four

components were build and then they were connected with each other using port map,

these components are:

1. TPG that generates the pattern that will be applied to the MUT. This

component consists of two sub components: address generator that

generates the address and the controller. The controller is a finite state

machine that implements the testing algorithm; it triggers other

36

components such as the address generator and comparator. For

example, if pattern 2 has to be implemented, it triggers the address

generator, and then sends four operations (W0, R0, W1, and R1). In

each read operation it activates the comparator enable signal and sends

the expected data to be read to the comparator. When the test is

finished, it activates test end signal.

2. Multiplexer that has the test signal (which is input in the system and set to 1

before start simulation) as its selection line. When the test signal is activated,

the output of this component is the pattern sent from the TPG.

3. MUT which is implemented as 1D*1D array. If the control signal is read,

then the value stored in the address is the output of the memory while the

input data is written to the address in case of write operation.

4. Comparator that compares between the output of the memory and the

expected data sent from the TPG. If the values are different, the test fail

signal is activated.

After building the system, different address generators can be used by

implementing each of them in the address generator component. Different patterns

can be implemented by modifying the controller component such as the time to

trigger the address generators and the sequence of operations. To increase the

usability of the code, a package was used to set input values, such as memory size,

seed of LFSR and others. Reset signal for LFSR has to be triggered in the beginning

of the test.

3.4.2 MBIST Simulation

 Figure 3.6 shows the simulation of MBIST system shown in figure 3.1. In this

figure, a fault free memory was simulated with a 3-bit normal LFSR as an address

generator. Pattern 2 was used so that all read and write operations are applied on one

memory address before proceeding to the next address. After simulation, SAIF

(Switching Activity Interoperation Function) command in the simulator was used to

generate XML file that contains the switching activity in each signal in the system.

37

Figure 3.6: Fault Free Memory Simulation

3.4.3 Address Generators Simulations and Results

To find address generator with the least switching activity, five maximal

length address generators were used in the system and compared in their switching

activities. These generators are: LFSR, BS-LFSR, DS-LFSR, bipartite LFSR, and DS-

LFSR with BS-LFSR for its slow and normal generators. The generators were

programmed so that the zero address is generated after generating all other addresses.

Tables 3.2 and 3.3 show the switching activity in each of these address generators and

the saving percentage for each of them if compared with normal LFSR. Two seeds

were used: the first one is “111…11” whose results are in table 3.2 while the other

seed is “010101….01” whose results are in table 3.3. The switching activity shown in

the tables represents the number of transitions (from high to low and from low to

high) which is proportional to dynamic power dissipation as proven in section 1.6.

More about maximal length LFSR can be found in appendix D.

 It is obvious that normal LFSR causes high switching activity in the address

decoder due to the low correlation in the addresses generated since it is a pseudo

random generator. The main advantage of this generator is its low overhead in the

hardware area. BS-LFSR reduces the switching activity effectively if compared with

normal LFSR due to swapping process of neighboring flip flops. BS-LFSR generates

all the addresses that the normal LFSR generates, also the switching activity is the

same even if the seed changes since BS-LFSR is based on generating addresses using

normal LFSR and then applying swapping process.

38

 Table 3.2: Switching Activity for Address Generators with Seed “1111….1”

Address

Bus Length

(bits)

Testing

Time (ns)

LFSR (SA) BS-LFSR

(SA)

Saving

%

DS-LFSR

(SA)

Saving

%

Bipartite

LFSR (SA)

Saving

%

BS & DS

LFSR (SA)

Saving%

5 128 85 69 19 70 18 45 47 64 25

10 4096 5130 4106 20 2904 43 2462 52 2376 54

15 131072 245775 188431 23 133324 46 121659 50 108652 56

20 4194304 10485780 8126484 22 5266450 50 5238247 50 4216850 60

25 134217688 419430211 318767107 24 218202082 48 209716053 50 167889901 60

30 152976488 516276423 454130346 12 286869408 44 286733465 44 219941228 57

Table 3.3: Switching Activity for Address Generators with Seed “0101…..01”

Address

Bus

Length

(bits)

Testing Time

(ns)

LFSR (SA) BS-LFSR

(SA)

Saving

%

DS-LFSR

(SA)

Saving

%

Bipartite

LFSR (SA)

Saving

%

BS & DS

LFSR (SA)

Saving%

5 128 85 69 19 55 35 48 44 57 33

10 4096 5130 4106 20 2643 48 2428 53 2315 55

15 131072 245775 188431 23 131524 46 121693 50 107626 56

20 4194304 10485780 8126484 22 5250055 50 5239003 50 4199893 60

25 134217688 419430211 318767107 24 218128300 48 209749569 50 167881672 60

30 152976488 516276423 454130346 12 286469208 44 277195287 46 219921231 57

 It could be found that DS-LFSR is more efficient in reducing the switching

activity than the BS-LFSR. Actually with large address spaces DS-LFSR is preferred

to be used since the frequency of transitions is reduced in the lines connected to the

slow speed LFSR. Nevertheless, this generator requires synchronization between the

slow and normal clocks.

 Bipartite LFSR has low switching activity as shown in the results. The main

problem related to this generator is that it reduces the instantaneous power not the

average power. Some addresses may be redundant since it generates intermediate

vectors that may appear more than one time in the sequence. To cover all memory

locations, more testing time is required and in this case the total switching activity

will be the same as normal LFSR.

 DS-LFSR with BS-LFSR for its low and normal generators has the least

switching activity in address decoder among other generators since swapping process

is applied for both slow and normal generators outputs and also the frequency of

transitions is reduced in the lines connected to the slow speed generator. This

39

combination has also low overhead in the hardware area. For this reason, this

generator is recommended to be used when SRAM has to be tested for stuck-at faults.

3.4.4 Testing Patterns Simulations and Results

 The three patterns (1, 2, 3) described in section 3.3 were applied when

simulating the system. Table 3.4 shows the switching activity in addresses bus and

data bus when applying these patterns. In this simulation, DS-LFSR with BS-LFSR

for its slow and normal parts was used as an address generator since it has the least

switching activity in the address decoder. Word oriented SRAM was considered in

this test with 16-bit for each memory location.

Table 3.4: Address and Data Bus Switching Activities for Different Patterns

 Table 3.4 clearly shows that pattern 1 is the worst since it causes huge

switching activity in the address decoder since it generates the address sequence four

times. The second pattern is more efficient than the first one if bit oriented memory

was considered, but most of the memories used in reality are word oriented ones.

Therefore, this pattern will cause huge switching activity in the data bus since the

number of transitions increases with the size of MUT.

 Pattern 3 could be considered as the best one among others. The address

decoder switching activity is accepted since the sequence of addresses is generated

two times and it is low for data bus since the data background changes only one time

during the test. Hence, this pattern is recommended to be used when testing word

oriented SRAMs for stuck-at faults. This pattern is applicable for all sizes of

memories, either the ones with small address space and wide word lengths or the ones

with small word length and large address spaces.

Address Bus Length

(Bit)

Pattern 1 Pattern 2 Pattern 3

 Address Bus

(SA)

Data Bus

(SA)

Address Bus

(SA)

Data Bus

(SA)

Address

Bus (SA)

Data Bus

(SA)

5 256 16 64 992 128 16

10 9504 16 2376 32736 4752 16

15 434608 16 108652 1048544 217304 16

20 16867400 16 4216850 33554400 8433700 16

25 671559604 16 167889901 1073741712 335779802 16

30 879764912 16 219941228 5040920480 439882456 16

40

3.5 Summary

 In this chapter, a number of techniques were proposed in order to reduce

power consumption when SRAM has to be tested for stuck-at faults. Results show

that using a combination of BS and DS LFSRs will result in low switching activity in

the address decoder and in low overhead in the hardware area. The testing pattern

plays an important role in power dissipation. When choosing a testing pattern, the

switching activity in both address and data buses should be taken into consideration. It

was proven that optimal switching activity can be obtained by using the pattern

{↕(W0,R0); ↕(W1,R1)} with DS-LFSR that has slow and normal BS-LFSRs as an

address generator. Fault coverage will not be affected since all addresses will be

generated and tested for stuck-at faults.

41

Low Power March Tests

4.1 Overview

When SRAM has to be intensively tested, several types of tests have to be

applied on it during the testing phase after manufacturing. In each test, several types

of faults have to be detected within an accepted testing time. Maximizing the fault

coverage and reducing the testing time was considered as the main purpose for any

testing algorithm.

Due to their high fault coverage and accepted testing time, March tests with

complexity O(n) were considered as the superior for other tests. Many March tests

were developed in order to detect more faults such as March C- which was found to

detect coupling faults, March SS that detects more faults such as WDFs, and DRDFs,

March DSS which is used for fault diagnosis. [46].

Since March tests are widely used during manufacturing, testing power has to

be reduced. As described in chapter 2, several algorithms were used in order to

generate new March tests with low power such as genetic algorithm and PSO scheme.

Nevertheless, these algorithms consider bit oriented memories in their tests whereas

most of the memories used in reality are word oriented ones.

In this chapter, March tests are modified so that peak and average power

during testing word oriented memories are reduced. Since it is commonly used, March

C- algorithm will be considered and modified based on the proposed algorithm which

is applicable to be used with other March tests. March C- algorithm is shown in figure

4.1

42

Section 4.2 proposes the algorithm that will be used in reducing power of

March C- algorithm. Section 4.3, shows how this algorithm can be implemented.

Section 4.4 deals with the fault coverage of modified March C- and how it could to be

maximized. Section 4.5 reports experimental results and section 4.6 concludes this

chapter.

 Figure 4.1: March C- Algorithm

4.2 Modified March C- Algorithm

March C- algorithm consists of a sequence of write and read operations that

are applied to MUT. As described in section 1.5, write operation consumes much

more current than read operation to override the current value of the cell. Usually

when a word-oriented memory is being tested, the data background (i.e., the data that

will be written to MUT which belongs to {0,1}) is written to all bits in the word.

Thus, in equation (1.5), the values of m and p will be the same, so the write current

(Idda(w)) equation will be:

 𝑰𝒅𝒅𝒂 𝒘 = 𝒑 ∗ 𝑰𝒅𝒄 𝒘 ∗ 𝑫𝒕 + 𝑪𝒅 ∗ 𝑫𝑽 𝒘 ∗ 𝒇 (4.1)

Where p is the word length of MUT, Idc(w) is the DC current on the bit lines during

write operation, Dt is the assertion period of WL, Cd is the capacitance of bit lines,

DV(w) is the voltage swing during write operation and f is the operation frequency.

(4.1) clearly shows that the write current is proportional to the word length of

the MUT. For example, if the word length is 512 bit, then write operation will be

applied to all these bits resulting in high peak power that may damage the

MUT.

One of the possible solutions to reduce peak power of a March test is to divide

the word of MUT into two clusters so that write operation is applied to one of these

clusters. By this way, the power consumed during write operation will be reduced

since the number of cells that will be written simultaneously is reduced. So write

operation will be performed on the cells of the first cluster while cells of the second

cluster will perform RES operations whose values will be neglected.

This idea can be applied on March C- algorithm by dividing SRAM into two

clusters so that even cells belong to one cluster whereas odd cells belong to the other

↕ (W0);↑ (R0 , W1); ↑ (R1 ,W0);↓(R0,W1); ↓(R1,W0); ↕ (R0)

43

cluster. When write operation is applied on one cluster, cells of the other cluster are

disconnected from their data bus. Figure 4.2 illustrates Modified March C-

Algorithm.

Figure 4.2: Modified March C- Algorithm

W0x means zero will be written to all even cells in the word (0,2,4,….)

whereas odd cells will be disconnected from the data bus. On the other hand, Wx0

means zero will be written to all odd cells (1,3,5,…). So the algorithm starts with

writing 0 to all memory words; in each word, write operation is applied first to even

cells, then it is applied to odd cells. After that, 0 is read from all locations and 1 is

written to all odd cells in each word. In the third element, 01 is read from all locations

and 1 is written to all even cells. With decreased order of addresses, the fourth

element reads 1 from all locations and then writes 0 to all odd cells. 10 is read from

all locations during the fifth element and 0 is written to all even cells. Finally, read 0

operation is applied to all cells.

When applying original March C- algorithm on memory, the peak power

(Peakoriginal) can be represented in (4.2):

 𝑷𝒆𝒂𝒌𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 = 𝑷 𝑾 ∗ 𝒑 (4.2)

Where P(W) represents the power of write operation and p is the word length of

MUT. When modified March C algorithm will be applied, the peak power

(Peakmodified) can be represented in (4.3)

 𝑷𝒆𝒂𝒌𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 = (𝒑/𝟐) ∗ (𝑷 𝑾 + 𝑷(𝑹)) (4.3)

Where P(R) represents the power of read operation. Note that when write operation is

applied on one cluster, the cells of other cluster perform read operations. Always P(R)

is less than P(W) and theoretically if P(R) << P(W), then 50% reduction can be

achieved in peak power.

 Average power is proportional to the number of operations applied during

testing. Average power can be defined as the total power consumed due to read and

write operations divided by the total number of operations. For original March C-

algorithm, the average power (Avgoriginal), when considering one word can be

represented in (4.4). It is important to note that March C- algorithm consists of 5 read

operations and other 5 write operations.

↕(W0x,Wx0);↑(R0,Wx1);↑(R01,W1x);↓(R1,Wx0); ↓(R10,W0x);↕(R0)

44

 𝑨𝒗𝒈𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 = (𝟓𝒑 ∗ 𝑷 𝑹 + 𝑷 𝑾)/𝟏𝟎 (4.4)

 Where p is the word length of MUT and 10 is the total number of operations in

March C- algorithm. Each operation will be applied to all cells in the word, thus, in

(4.4), each operation is multiplied by p. If modified March C- algorithm is applied on

one word, the average power (Avgmodified) can be represented in (4.5). Note that

modified March C- algorithm consists of 6 write operations and 5 read operations.

𝑨𝒗𝒈𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 = (𝟓𝒑 ∗ 𝑷 𝑹 + 𝟔 ∗ (𝒑/𝟐) ∗ [𝑷 𝑾 + 𝑷 𝑹])/𝟏𝟏 (4.5)

 Average power of the modified March C- algorithm consists of three parts: the

first part is the power consumed during read operations which is applied to all cells in

the word. The second part is the power consumed during write operations which is

applied to just one cluster at any moment of time. The last part is the read equivalent

stress operations that are applied to the idle cluster during write operation. Since

usually P(R) <P(W), the weight of write power will reduce effectively since this

operation will be applied to half of the cells in the word. If P(R) << P(W), then

average power reduction will be significant.

4.3 Implementation

To implement Modified March C-algorithm, tri-state buffer could be used in

order to disconnect unwanted cells during the write operation. Figure 4.3 illustrates

the connections between the data bus and 4-bit word. If the mode signal (M) is 0, then

the data background will be written to even cells (0, 2), whereas, it will be written to

odd cells (1, 3) when mode signal is 1. MComp is the complement of signal M. D0,

D1, D2 and D3 are the data bus lines.

4.4 Fault Coverage

March C- algorithm was found mainly in order to detect coupling faults in

addition to transition and stuck-at faults. As shown in figure 4.1, this algorithm

contains two modes in moving from one address to the next one: Increasing (↑) and

decreasing (↓). Using two orders is necessary in order to detect coupling faults in two

cases:

1. When the aggressor cell address is higher than the victim cell address.

2. When the aggressor cell address is lower than the victim cell address.

45

ENB

ENB

ENB

ENB

0 1 2 3

MComp

D0

M

D1

MComp

D2

M

D3

 Figure 4.3: Tri-State Buffers for 4-bit Word

This algorithm considers a bit-oriented SRAM so the coupling faults exist

between two vertically neighbored cells. Figure 4.4 illustrates the state diagram of two

cells in the same column when March C- algorithm is applied. Both cells start with

state 00

In modified March C- algorithm, stuck at faults will be detected since each

write 0 and write1 operations are followed by reads and they will be applied on each

cell. Also, transition faults will be detected as well since each cell will go from 0 to 1

and from 1 to 0. For coupling faults, in order to ensure the same fault coverage of

March C- algorithm, each neighboring cells should go through the same transitions

shown in figure 4.4. Figure 4.5 illustrates the state diagram of vertically neighbored

even cells when modified March C- algorithm is applied.

In the state diagram shown in figure 4.5, it is obvious that some transitions that

are available in normal March C- algorithm are missing, such as {00 01,0111}

and others. Actually this indicates that some cases in coupling faults are missing when

modified March C- algorithm is applied. Nevertheless, the new algorithm increases

the fault coverage in the rows, so if a word-oriented SRAM is being tested, some

coupling faults between horizontally neighbored cells will be detected while normal

March C- test detects coupling faults between only two vertically neighbored cells.

Hence, totally, the missing fault coverage in coupling faults between cells in the same

46

column was substituted with coupling faults detected between cells within the same

rows. Figure 4.6 shows the state diagram of two horizontally neighbored cells when a

modified March C- test is applied. Note that the transitions in two horizontally

neighboring cells are just 001100 when normal March C- algorithm is applied.

10 00

10

11

0100

01

11

Figure 4.4: Transitions of two vertically neighbored cells in March C-

10

11

00

10

Figure 4.5: States of two vertically Neighbored Cells in Modified March C-

10

11

00

01

Figure 4.6: States of two horizontally neighbored cells in Modified March C-

To maximize the fault coverage so that coupling faults are detected in all rows

and columns, the algorithm has to be expanded as shown in figure 4.7. This

Expanded algorithm reduces peak power as in modified March C- algorithm, but it

47

has an average power which exceeds slightly the average power of normal March C-

algorithm due to RES operations as shown in (4.6).

 Figure 4.7: Expanded March C- Algorithm

𝑨𝒗𝒈𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅 = (𝟗𝒑 ∗ 𝑷 𝑹 + 𝟏𝟎 ∗ (𝒑/𝟐) ∗ [𝑷 𝑾 + 𝑷 𝑹])/𝟏𝟗 (4.6)

Where Avgexpanded represents the average power of expanded March C- algorithm, p is

the word length of MUT, P(R) and P(W) represent read and write power respectively .

The total number of operations in this test is 19. It is important to note that RES

operations form additional power dissipation if compared with normal March C- test

but it is not significant since read operation power less than that of write operation

and it will be neglected if P(R)<<P(W).

Figures 4.8 and 4.9 show the state diagrams of two vertically and two

horizontally neighboring cells respectively when expanded test is applied. It is clear

that all transitions included in normal March C- algorithm are found in the expanded

test which means that coupling faults will be detected in all rows and columns.

10 00

10

11

0100

01

11

Figure 4.8: States of two vertically neighbored cells in Expanded Test

4.5 Experimental Results

To evaluate the proposed algorithms, peak and average powers were

calculated for March C-, modified March C- and the expanded algorithm. Different

↕(W0x,Wx0);↑(R0,Wx1);↑(R01,W1x); ↑ (R1,Wx0); ↑(R10,W0x);↓(R0,W1x);

↓(R10,Wx1); ↓(R1,W0x), ↓(R01,Wx0), ↕(R0)

48

MUT configurations were used. C under Linux was used in calculating the power of

these algorithms.

01 00

01

11

1000

10

11

Figure 4.9: Transitions of two horizontally neighbored even cells in Expanded Test

4.5.1Power Estimation

 A number of simulations were performed in Cadence Virtuoso Spectre lab to

estimate power dissipation during read and write operations. With considering 6T

SRAM modeled in 90nm technology with a voltage supply of 1V, read and write

powers were estimated to be 72.27µW and 481µW respectively. UMC library was

used in the experiments with assuming the widths of transistors (Q3, Q4), (Q1,Q2)

and (Q5,Q6) shown in figure 1.3 to be the same. The used transistor models were

P_10 SP and N_10 SP from the UMC 90 nm library. Those obtained results of read

and write powers were used in power calculations in this dissertation [47].

4.5.2Simulation Results

Table 4.1 shows average and peak power for Normal, modified and expanded

March C- tests. Results clearly show that reducing number of cells in the word on

which write operation is applied will effectively reduce peak power. Average power is

also reduced in case of modified algorithm since the weight of write operation is

reduced. In expanded test, average power is closed to that for normal March C-

algorithm and it is slightly larger due to read equivalent stress operations. Expanded

algorithm peak power is equivalent to that of modified March C- test since write

49

operation is applied to one cluster only. If the fault coverage has to be maximized,

expanded March C- algorithm is recommended to be used with taking into

consideration that it entails more testing time.

Table 4.1: Power results of normal, modified and expanded March C- Tests

MUT Configuration Normal March C- Modified March C- Expanded March C-

 Average
Power (mW)

Peak Power
(mW)

Average
Power (mW)

Peak Power
(mW)

Average
Power (mW)

Peak
Power(mW)

32x32 9.85232 15.3920 5.87974 8.85232 9.9132 8.85232

64x64 18.0420 30.7840 11.7595 17.7046 18.3240 17.7046

64x128 35.2093 61.5680 23.5190 35.4093 35.3128 35.4093

64x256 71.8186 123.1360 47.0736 70.8186 71.9922 70.8186

128x512 142.1253 246.2720 94.0758 141.637 142.3427 141.637

4.6 Summary

In this chapter, a new algorithm was proposed to reduce peak and average

power consumed when March tests are applied on MUT. The algorithm is based on

dividing the word of MUT into two clusters so that write operation is applied on one

cluster only. March C- algorithm was modified based on the new algorithm which is

applicable to be used with other tests. To maximize the fault coverage, the proposed

scheme was expanded. Results show that peak and average power were reduced

effectively when March C- algorithm was modified.

50

Low Power Schemes for Parallel Testing of Embedded Memories

5.1 Overview

SoC contains a large number of embedded memories with different

configurations. Some applications contain memories with wide data words and small

address lengths while others contain small data words [48].

Most of low power techniques of SRAM testing focus on reducing the test

power of each individual memory and doesn’t take into consideration that hundreds of

embedded memories will be tested simultaneously resulting in high peak power that

may damage the chip if it exceeds the power constraint.

It was proven in section 4.2 that the write current is proportional to the word

length of MUT since the data background is written to all bits in the word during

write operation. If N memories need to be tested in parallel, it should be taken into

consideration that this group contains memories with small word lengths and others

with wide word lengths. Thus, dividing those N memories into two clusters, as

described in skew scheme in section 2.5, without taking into consideration this factor,

may result into large peak power since wide word memories may be in the same

cluster and they will be tested in parallel.

In this chapter, two approaches for parallel memory testing at low power

consumption will be discussed; One-stage approach, wherein only two clusters of

memories are considered at a time, and Multi-stage approach, wherein multi memory

clusters are generated in order to prevent exceeding power constraint. Choosing

appropriate clustering when MBIST engine has to be used may impact the placement

and the routing of the chip. Hence, an appropriate architecture has to be selected.

51

Section 5.2 proposes One-Stage scheme whereas Multi-stage scheme is

proposed in section 5.3. Appropriate MBIST architecture to avoid routing problem is

described in section 5.4. Section 5.5 reports simulation results. Finally, conclusions

are proposed in section 5.6.

5.2 One-Stage Scheme

One-Stage scheme, as shown in figure 5.1, is based first on grouping the to-be-

tested memories in parallel into two clusters; the assumption is that the total power

consumed will not exceed the power constraint; otherwise, Multi-stage scheme

(section 5.3) has to be used.

One-Stage Scheme groups the memories into two clusters so that maximal

balancing is achieved between those clusters in terms of word size of memories. For

example, if there are M memories having word length Wm and N memories having

word length Wn, then, these memories are distributed in two clusters so that each

cluster will consist of M/2 + N/2 memories.

 After the clustering phase, One-Stage scheme tests the two groups in parallel.

It is worth nothing that the testing of the second cluster starts one clock cycle later

than the testing of the first cluster as shown in figure 5.1. The reason behind this is the

appropriate scheduling of test operations. The purpose is to have write operations

applied to memory instances of one cluster and read operations simultaneously

applied to the second cluster. In this way, the consumed power will be optimal.

Figure 5.1: One-Stage Scheme

/*One-Stage Scheme */

begin

1 W={W1,W2,.....,Wn} // Set Of Word Lengths.

2 M=Mw1 U Mw2 U........U Mwn // Set Of memories where

Mwi is the set of memories having the word length wi

3 for i=1,2,....,n

4 Add Mwi/2 to Cluster C1

5 Add Mwi/2 to Cluster C2

6 end Loop

7 Start Testing Cluster C1

8 Wait For One clock cycle

9 Start Testing cluster C2

end

52

Let W denotes the set of word lengths in the SoC so that

W={W1,W2, …,Wn}, and let Mw1 memories have word length W1, Mw2 have word

length W2 and so on. If parallel testing is applied on those memories, the peak power

(Peakparallel) can be represented in (5.1).

𝑷𝒆𝒂𝒌𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 = 𝑴𝒘𝒊 ∗ 𝑾𝒊 ∗ 𝑷 𝑾

𝒏

𝒊=𝟏

 (𝟓. 𝟏)

Where P(W) represents the power of write operation. This equation clearly shows that

when parallel testing is applied to a set of memories, there will be concurrent write

operations, and each write operation is applied to the entire word, thus, peak power is

the summation of all these simultaneous write operation powers applied on all

memories.

 When skew scheme is applied, memories are divided into two clusters without

considering their word lengths. The main problem related to this scheme is when wide

word memories are concentrated in one cluster resulting in large peak power that may

damage the chip. Hence, One-Stage scheme ensures that maximal balancing is

achieved in the word lengths of memories when they are distributed among clusters.

After clustering, write operation will be applied on memories in the first cluster while

read operation is applied on memories in the second cluster .Peak power of One-Stage

scheme (Peakone-stage) can be represented in equation (5.2).

𝑷𝒆𝒂𝒌𝒐𝒏𝒆−𝒔𝒕𝒂𝒈𝒆 = (𝑴𝒘𝒊/𝟐) ∗ 𝑾𝒊 ∗ 𝑷(𝑾) + (𝑴𝒘𝒊/𝟐) ∗ 𝑾𝒊 ∗ 𝑷(𝑹)

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 (𝟓. 𝟐)

Where P(R) represents the read power operation. With some simplifications, this

equation can be re-written as shown in (5.3)

𝑷𝒆𝒂𝒌𝒐𝒏𝒆−𝒔𝒕𝒂𝒈𝒆 = (𝟏/𝟐) ∗ 𝑴𝒘𝒊 ∗ 𝑾𝒊 ∗ [𝑷 𝑾 + 𝑷(𝑹)

𝒏

𝒊=𝟏

] (𝟓. 𝟑)

As shown in (5.3), write operation is applied to half of the cells while read

operation is applied to the other half. It is important to remember that always P(R) is

less than P(W) and theoretically if P(R) << P(W) then 50% reduction in peak power

can be achieved in One-Stage scheme if compared with parallel testing.

53

5.3 Multi-Stage Scheme

One-Stage scheme reduces peak power effectively with just one additional

clock cycle in parallel testing time. Nevertheless, if the chip contains large number of

embedded memories with wide word widths, then this scheme may also exceed the

power constraint, hence, more than one stage of clustering may be required. In

general, power constraint is the chairman in selecting the appropriate scheme.

If multi-stage scheme has to be applied on embedded memories, those

memories will be grouped in two clusters as done in one-stage scheme. After that,

each cluster will be divided into two other clusters and so on. Figure 5.2 illustrates

two-stage clustering process. More clustering may be required according to the power

constraint of the chip. If M memories have word length Wm and N memories have

word length Wn, then by applying two-stage clustering, four clusters will be obtained

{C11, C12, C21, C22} and each of them contains M/4+N/4 memories. After the

clustering phase, clusters are grouped into pairs which are called testing units. The

clusters of any testing unit such as C11, C12 are tested in parallel with one clock

cycle skew between them. The testing units are tested sequentially. Consequently,

peak power will be reduced to the half while the testing time will be doubled. Hence,

some optimization is required.

Set of Memories

C12

C11

C21

C22

C2

C1

Figure 5.2: Two-Stage Clustering

54

Figure 5.3 illustrates Multi-Stage Scheme. This scheme consists of three

phases:

1. Clustering Phase: In this phase, embedded memories in SoC are grouped into

clusters so that maximal balancing is achieved in word lengths of memories.

First, two clusters are generated and the expected peak power of applying

One-Stage scheme is calculated. If it exceeds power constraint, then more

clustering is applied. The expected peak power is calculated periodically for

each testing unit. When this expected power becomes less than power

constraint, clustering phase stops.

2. Movement Phase: After clustering phase, memories with maximal address

bus length are moved to one testing unit in order to reduce the testing time.

For example, if two testing units contain memories with 32, 64 and 128

memory locations, then if they are tested sequentially, the testing time will be

128N+1 for each of them, where N is the number of operations in the applied

testing algorithm and one is added for skew. Totally, the testing time will be

(128N+1)*2. To reduce this testing time, memories with 128 locations are

moved to one testing unit so that the testing time will be

(128N+1) + (64N+1). After each movement, expected peak power in each

testing unit is calculated and compared with the power constraint.

3. Testing Phase: Finally, when expected peak power becomes closer to the

power constraint of chip, movement phase stops and testing units are tested

sequentially. In each unit, the two clusters are tested with one clock cycle

skew between them to satisfy the scheduling described in section 5.2

It is clear that the power constraint of the chip is the key factor in Multi-stage

scheme. The expected peak power (which is the peak power of applying One-Stage

scheme on a testing unit) has to be calculated and compared periodically with power

constraint to decide whether to perform more stages or not. Generally, the peak power

of Multi-Stage scheme (Peakmulti-stage) can be represented in (5.4).

55

𝑷𝒆𝒂𝒌𝒎𝒖𝒍𝒕𝒊−𝒔𝒕𝒂𝒈𝒆 = (𝟏/𝑲) ∗ 𝑴𝒘𝒊 ∗ 𝑾𝒊 ∗ [𝑷 𝑾 + 𝑷(𝑹)

𝒏

𝒊=𝟏

] (𝟓. 𝟒)

Where K is the total number of clusters generated, Mwi is the number of memories

having word length Wi, P(W) and P(R) represent the power of write and read

operations respectively. The main problem of this scheme is related to the testing time

since the testing units are tested sequentially. Testing time of Multi-Stage scheme (T)

can be represented in (5.5) when considering n testing units. It is important to

remember that each testing unit consists of two clusters that will be tested in parallel

with one clock cycle skew between them.

𝑻 = (𝑴𝒂𝒙𝒂𝒅𝒅𝒊 ∗ 𝑵 + 𝟏)

𝒏

𝒊=𝟏

 (𝟓. 𝟓)

Where Maxaddi represents the number of locations in the memory that has the largest

address space in testing unit number i, N is the number of operations in the March test

applied and 1 is added for skew. To reduce this testing time, movement phase is

applied to add the memories with largest address spaces in one testing unit. Power

constraint should be calculated to ensure keeping the peak power below the power

constraint of the chip.

Figure 5.3: Multi-Stage Scheme

/*Multi-Stage Scheme */

begin

1 M={M1,M2,.....,Mn} //Set Of Memories

2 W={W1,W2,.....,Wn} //Set of Word Lengths

3 A={A1,A2,.....,An} //Set of Address Lengths

4 Define PowerConstraint,PeakPower;

5 Define upperlimit=Powerconstraint-somevalue;

6 while(peakpower>PowerConstraint)

7 Divide_Into_clusters_With_Balancing(M,W);

8 Calculate_Expected_Peak_Power_For_One-Stage-

Scheme_For_One_Testing_Unit();

9 endLoop

10 while (PeakPower<upperlimit)

11 find_max_address_For_Each_Testing_Unit(A,testingUnit);

12 Move_Memories();

13 Calculate_Expected_Peak_Power_For_One-Stage-

Scheme_For_One_Testing_Unit();

14 endLoop

15 for each Testing Unit

16 Start_Testing_With_Skew();

17 endLoop;

end

56

5.4 MBIST Implementation

One of the important issues for the proposed schemes is the architecture that

has to be used. If all memory cores in one cluster are connected to one BIST engine,

then, this will increase the routing of the system. Thus, BIST engine may become a

hot spot. Usually, routing is proportional to the wiring and placement in design [49].

To avoid this serious problem, proposed schemes can be implemented using the

architecture shown in figure 5.4. In this architecture, each MUT is connected to a

TPG and usually multiple TPGs share one sequencer and they are divided into several

groups based on the power constraint. So this feature will be useful since memories

will be distributed into groups based on their word lengths as described in the

proposed schemes. Usually, in this architecture, memory cores within the same group

are tested in parallel so two groups can be tested in parallel with one clock cycle skew

between them. This can be done by the appropriate configuration of controller. It was

proven that this architecture minimizes routing area overhead by positioning the TPG

near each memory, also this is achieved by using serial interface between controller

and sequencer, and between sequencer and TPGs [50].

Figure 5.4: Architecture of Low Routing MBIST [50]

In this architecture, the testing pattern (such as element M1 in March C-) is

sent from controller to the sequencer. The sequencer generates a command using a

register and sends it to other TPGs. Usually the group ID is defined in the command

57

in order to determine which group will be tested. After that, results are obtained from

each MUT and compared with the expected results in the controller.

5.5 Experimental Setup and Simulation Results

Usually embedded memories that are used in different applications have word

lengths vary from 32-512 and 640 bits in some cases. For this reason, different

memory configurations were used in order to evaluate the proposed schemes. Various

numbers of memory cores were used. Table 5.1 shows the memory configurations

and their numbers for the tests used in this section. For example, in test 1, the used

SoC contains 100 memory cores; 40 of them are 32x32, 20 of them are 64x64, 20

memory cores have the size 64x128, and the other 20 cores have the sizes 128x512

and 128x640.

Table 5.1: Used Memory Configurations

 To apply the proposed schemes, 10 tests were performed. In each test, four

schemes were used in order to test the memory configurations shown in table 5.1.

These schemes are: Parallel, skew, One-Stage and Multi-Stage schemes. For example,

in test 1, 100 memories were tested based on each scheme. Normal March test (in

which each read and write operation is applied to the entire word) was considered in

testing. Table 5.2 shows the obtained results. Peak power and testing time were

calculated for each test and the saving percentage in peak power was calculated if

each of the schemes is compared with parallel testing. C under Linux was used in

simulating each of the schemes and power values described in section 4.5.1 were used

in this section. In table 5.2, N refers to the number of operations in the March test. For

example N=10 for March C- algorithm.

Test Core.No Used Memory Configurations

 32x32 64x64 64x128 64x256 128x512 128x640

1 100 40 20 20 0 10 10

2 200 40 40 40 40 20 20

3 300 60 60 60 60 40 20

4 400 100 100 50 50 50 50

5 500 100 100 100 100 50 50

6 600 200 100 50 50 100 100

7 700 200 100 100 100 100 100

8 800 200 100 100 150 150 100

9 900 150 150 150 150 150 150

10 1000 200 200 200 200 100 100

58

Table 5.2: Peak Power and Testing Time for Different Schemes

Results in table 5.2 show that parallel testing for multiple memory instances in

SoC results in abrupt increase in the peak power that will exceed the power constraint

and may damage the chip. Skew scheme reduces peak power effectively with only

one additional clock cycle. The skew scheme was implemented by dividing memory

instances in two clusters. The memory instances were added in those clusters

randomly without taking into consideration their word lengths. One-Stage Scheme is

more efficient in reducing the peak power. The obtained results prove that distributing

memories based on their word lengths is a good enhancement of the skew scheme

since those memory instances with wide word widths that form the major part of

power dissipation during testing are not concentrated in one cluster. The saving

percentage in this scheme is 42% if it is compared with parallel testing. Multi-stage

scheme takes into consideration both the peak power and the testing time. But power

constraint is the key factor in this algorithm. Results show that using multi-stage

scheme will reduce the peak power effectively but this will increase the testing time

as well. In general, using Multi-stage scheme will be useful in applications wherein

the testing time is not critical.

To achieve more peak power saving, Modified March C- algorithm was

combined with One-Stage scheme and applied on the same tests shown in Table 5.1.

Results in table 5.3 show that combining this algorithm with One-Stage scheme will

result in power saving up to 60% if compared with the parallel testing with negligible

cost in the testing time.

Test Parallel Skew One-Stage Scheme Multi-Stage Scheme

 Power

(mW)

Time

(Cycles)

Power

(mW)

Time

(Cycles)

% Power

(mW)

Time

(Cycles)

% Power

(mW)

Time

(Cycles)

%

1 6156.80 128N 5327.03 128N+1 13 3540.93 128N+1 42 2124.56 192N+`2 65

2 20317.44 128N 17701.57 128N+1 12 11685.06 128N+1 42 6373.67 192N+2 68

3 29860.48 128N 25936.67 128N+1 13 17173.50 128N+1 42 9206.41 192N+2 69

4 41558.40 128N 37634.59 128N+1 9 23901.26 128N+1 42 15934.176 192N+2 61

5 50793.60 128N 44253.92 128N+1 12 29212.66 128N+1 42 15934.18 192N+2 68

6 70803.20 128N 65571.46 128N+1 7 40720.67 128N+1 42 31868.35 192N+2 54

7 80038.40 128N 72190.78 128N+1 9 46032.06 128N+1 42 `31868.352 192N+2 60

8 `98508.80 128N 88045.31 128N+1 11 56654.84 128N+1 42 38950.20 192N+2 60

9 117748.80 128N 104015.47 128N+1 11 67720.25 128N+1 42 47802.53 192N+2 59

10 101587.20 128N 88507.84 128N+1 12 58425.31 128N+1 42 31868 192N+2 68

59

Table 5.3: Combining One-Stage Scheme with Modified March C- Algorithm

5.6 Summary

In this chapter, a new scheme was proposed to reduce peak power when

parallel testing is applied to multiple embedded memories in SoC. This scheme is

based on grouping memories in clusters based on their word lengths and scheduling

read and write operations. Thereafter, the scheme was generalized in Multi-Stage

scheme to be applicable for applications with low power constraint. Finally, it was

proven that very good reduction in peak power was achieved when the proposed

scheme is combined with modified March C- algorithm. To avoid routing overhead, a

good architecture was selected from literature to be suitable for MBIST

implementation.

Test One-Stage Scheme with

Normal Mach C-

One-Stage Scheme with

Modified March C-

 Peak(mW) Saving (%) Peak(mW) Saving(%)

1 3540.93 42 2232.9920 63

2 11685.06 42 7368.8736 63

3 17173.50 42 10830.0112 63

4 23901.26 42 15072.6960 63

5 29212.66 42 18422.1840 63

6 40720.67 42 25679.4080 63

7 46032.06 42 29028.8960 63

8 56654.84 42 35727.8720 63

9 67720.25 42 42705.9720 63

10 58425.31 42 36844.3680 63

60

Conclusions and Future Work

6.1 Conclusions

Testing power is a principal contributor for power dissipation of embedded

SRAMs in SoC. High switching activities and simultaneous write operations during

parallel testing are the main sources of this power dissipation. It was proven that

power consumed during testing could be twice the power consumed during the

functional mode. Although many techniques were developed for memory testing, only

few of these techniques dedicated for reducing testing power.

This dissertation proposed a number of techniques to reduce testing power of

embedded memories. These techniques target different categories of applications.

For on-line testing and personal devices which are tested for stuck-at faults,

Zero-One algorithm was enhanced so that the switching activity during testing is

minimized. This is done by reducing switching activity while address decoders are

accessed. Then, the test was reordered so that the switching activity while accessing

write drivers is reduced. Results show that applying the pattern {↕(W0,R0);

↕(W1,R1)} will cause the least switching activity in data bus and using DS-LFSR

with BS-LFSRs for its slow and normal parts has the least switching activity in

address decoder. These results were introduced in chapter 3.

When memory has to be intensively tested, it goes through different tests.

March algorithms are commonly used in such a test. It is infeasible to use LFSR as an

address generators for March tests since the order of addresses generated should be

taken into consideration. Chapter 4 proposes an enhancement on March tests to

reduce peak and average power. This is done by dividing the word of MUT into two

clusters so that write is applied to one cluster at any moment of time. The idea behind

61

this approach is the fact that write power is proportional to the word length of MU”T.

By this way, modified March C- algorithm was proposed. It is important to note that

dividing word into clusters is applicable for other tests. Finally, to maximize the fault

coverage, Modified March C- algorithm was expanded. The main disadvantage of

such expansion is the large testing time.

Usually when parallel testing is applied to a number of memories in SoC,

simultaneous write operations result in high peak power that may damage the chip if

exceeds power constraint. Hence, a good management of parallel testing was

proposed in chapter 5. The proposed One-Stage scheme is based on grouping

memories in two clusters so that maximal balancing is achieved in their word lengths,

then, read and write operations are scheduled so that concurrent write operations

between clusters are avoided. This scheme was then generalized into Multi-Stage

scheme to cover applications with low power constraint. In general, power constraint

is the chairman in selecting the appropriate scheme. When One-Stage scheme was

combined with Modified March C- algorithm, up to 60% reduction in peak power was

achieved with negligible cost in the testing time.

6.2 Future Work

One of the possible future works on this dissertation is to find a low power and

low hardware area address generator which is suitable to be used with March tests.

Using this generator with low power March tests, such as those generated by genetic

algorithm or PSO scheme, will reduce dynamic power dissipation effectively.

Another future work is to modify SRAM cell so that read equivalent stress

operations are not applied. In such a case, modified March tests will result in 50%

reduction in peak power.

62

References
[1] Semiconductor Industry Association, “International technology roadmap for

semiconductors (ITRS), 2005 edition”, Dec. 2005.

[2] N. Noor, Y. Yusof, and A. Sparon, “Low Area FSM-Based Memory BIST for

Synchronous SRAM, proceeding of the international colloquium of Signal Processing

and Its application, 2009, pp. 409-412.

[3] A. Kokrady, C. Ravikumar, and N. Chandrachoodan, “Layout-Aware and

Programmable Memory BIST Synthesis for Nanoscale System-on-Chip Designs”,

proceeding of the Asian Test Symposium (ATS), 2008, pp.351-356.

[4] C. Hsu, and T. Chen, “Built-in Self Test Design for Fault Detection and Fault

Diagnosis in SRAM-Based FPGA”, Instrumentation and Measurement, IEEE

Transactions, 2009, pp. 2300 - 2315

[5] A .Abu-Issa and S. Quigley, “LT-PRPG: Power Minimization Technique for Test-

Per-Scan BIST”, proceeding International Conference on Design & Technology of

Integrated Systems in Nanoscale Era, 2008, pp.1-5

[6] R. Rajsuman, "Design and Test of Large Embedded Memories: An Overview",

IEEE Design and Test of Computers, May 2001, pp. 16-27.

[7] P. Athe, and S.Dasgupta, “A comparative Study of 6T, 8T and 9T decanano

SRAM cell”, proceeding the IEEE symposium on Industrial Electronics and

Applications, 2009, pp.889-894.

[8] F. Duan,, R. Castagnetti, R. Venkatraman O. Kobozeva , and S. Ramesh,

“Design and Use of memory-specific Test Structures to ensure SRAM Yield and

Manufacturability, proceedings fourth international symposium on Quality

Electronics Design, 2003, pp. 119-124.

[9] R. Joshi, R. Williams; E. Nowak , K. Kim J. Beintner, T. Ludwig,; I. Aller, and

C. Chuang, “FinFET SRAM for high-performance low power applications”,

proceedings of the 34
th

 European conference on Solid-State Device Research, 2004,

pp.69-72

[10] X. Du and X. Zhang, “The impact of memory hierarchies on cluster computing”,

proceeding the 13
th

 international symposium on parallel and distributed processing,

1999, pp.61-69

 [11] A. Palove, and M. Sachdev, “CMOS SRAM Circuit Design and Parametric Test

in Nano-Scaled Technologies”, Springer Science and Business Media B.V, 2008

,pp.15-18

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=19

63

[12] B. Mohammad, S. Bijansky, A. Aziz and J. Abraham, “Adaptive SRAM

memory for Low Power and High Yield, IEEE International Conference on

Computer Design, 2008, pp.176-181.

[13] R. Keerthi.; and H.Chen, “Stability and Static Noise Margin Analysis of Low-

Power SRAM”, proceedings IEEE Instrumentation and Measurement Technology

Conference, 2008, pp.1681-1684

[14] V. Goor and I.Tilili, “ March Tests for word oriented memories, proceedings

IEEE Design, Automation and Test in Europe, 1998, pp.501-508

[15] R. Gibbins, et al. "Design and Test of a 9-Port SRAM for a 10Gb/s STS1

Switch", IEEE International Workshop on Memory Tech., Design and Testing,

pp. 83-87, 2002.

[16] M. Abramovici, M. Breuer and A.Friedman, “ Digital Systems Testing and

Testable Design”, Jaico Publishing House, 2006, pp.93-95

[17] N. Haron, S. Junos, and A. Abdul Aziz, “Modeling and Simulation of Microcode

Memory Built-in Self Test Architecture for Embedded Memories, proceedings of

International Symposium on Communication and Information Technology, 2007,

pp. 136- 139.

[18] R. Adams, “High Performance Memory Testing: Design Principles, Fault

Modeling and Self-Test, Kluwer Academic Publisher, 2003, pp. 104-139.

[19] X. Fan, W. Moore, C. Hoora and G. Gronthoud, “Stuck-open fault diagnosis with

Stuck-at Model”, proceedings European Test Symposium, 2005, pp. 182-187

[20] M. Niamat, M. Lalla, and J. Kim,” Testing Faults in SRAM Memory of Vertex-

4 FPGA”, proceeding the IEEE International Midwest Symposium, 2009, pp.965-970.

[21] V. Vardanian and Y.Zorian, “ A March-based fault location for static Random

Access Memories”, proceedings IEEE international Online Testing Workshop,

2002,pp.256-261

[22] S. Hamdoui, A. Goor and M. Rodgers, “March SS: A Test for all static simple

RAM Faults”, proceedings of the 2002 IEEE international Workshop on Memory

Technology, Design and Testing, 2002, pp.95 -100.

[23] D. Papakostas and A. Hatzopoulos, “Detection of time-delay Related faults using

Fourier Phase Components of Power Supply Current”, Electronic Letters, 2004,

pp. 7-8

64

[24] N. Haron, S. Junos, A. Abdul Razak, and M. Idris, “ Low Area FSM-Based

Memory BIST for Synchronous SRAM”, proceedings the 5
th

 international

Colloquium on Signal Processing & Its Applications, 2009, pp.409-412.

[25] H. Hashempour;, F. Meyer and F. Lombardi,” Analysis and Measurement of

fault coverage in a combined ATE and BIST environment”, proceedings IEEE

International Conference on Instrumentation and Measurement, 2004, pp.300-307

[26] Z.Zhang, Z, Wen and L. Chen, “BIST Approach for Testing Embedded Memory

Blocks in System-on-Chips”, IEEE International Conference on Testing and

Diagnosis, 2009, pp.1-3.

[27] W. Wang and K. Lee, “A Complete Memory Address Generator for scan Based

March Algorithms”, proceedings of the IEEE International Workshop on Memory

Technology, Design and Test, 2005, pp.83-88

[28] A. Abu-Issa, “Low Power High Fault Coverage Test Techniques for Digital

VLSI Circuits”, University of Birmingham, 2009, pp.3-5

[29] N. Haron, S. Junos, A. and Abdul Razak, “Modeling and Simulation of Finite

State Machine Memory Built-in Self Test Architecture for Embedded Memories”,

proceedings the Asia-Pacific Conference On Applied Electromagnetics”, 2007,

pp. 1-5

[30] L. Wang, C. Stroud, and N. Toubam “System On Chip Test

Acrhitectures”,Morgan Kaufmann Publishers, 2008, pp.308-339.

[31] W. Collier, “Testing Memory Models”, proceedings the 9
th

 International

Workshop on Microprocessor Test and Verification, 2008, pp.14-17

[32] Said Hamdoui, and Zaid Al-Ars, “Scan More with Memory Scan Test”,

proceedings of 4
th

 International DTIS conference, 2009, pp.204-209.

[33] S. Al-Harbi, F. Noor and F. Al-Turjman, “March DSS: A New Diagnosis March

Test for All Memory Simple Static Faults”, proceedings IEEE Transaction on

Computer Aided- Design of Integrated Circuits and Systems, 2007, pp.1713-1720

[34] R. David, “Random Testing of Digital Circuits”, Marcel Dekker Inc,

1998,pp.213- 220

[35] S. Singh , S. Azmi, N. Agrawal,.P. Phani, and A. Rout, “Architecture and

Design of a high Performance SRAM for SoC design”, proceedings of Design and

Automation Conference, 2002, pp.447-451

65

[36] L. Dilillo, P. Rosinger, and B. Al-Hashimi, “Minimizing Test Power in SRAM

through Reduction of Pre-charge Activity”, proceeding the Design, Automation, and

Test in Europe (DATE) conference,2006,pp.1-6

[37] C. Gayathri , N. Kayalvizhi , and M. Malligadevi” Generation Of New Match

Tests With Low Test Power And High Fault Coverage By Test Sequence Reordering

Using Genetic Algorithm”, International conference on Advances in Recent

Technologies in Communication and Computing (ARTCom),2009, pp.699-703.

[38] K. Kumar, S. Kaundinya, and S. Chattopadlhay, “Particle Swarm Optimization

Based Scheme for Low Power March Sequence Generation for Memory Testing”,

Asian Test Symposium (ATS), 2010, pp.401-406

[39] Y. Wu, and A. Ivanov, “Low Power SoC Memory BIST”, proceeding of the 21
st

IEEE international Symposium on Defect and Fault Tolerance in VLSI Systems,

2006, pp.197-205.

[40]B. Fang and N. Nicolici, “Power-Constraint Embedded Memory BIST

Architecture”, proceeding of the 18
th

 IEEE international Symposium on Defect and

Faul Tolerance in VLSI Systems (DFT’03), 2003, pp.451-458.

[41] M. Fischerova, T. Pikula, M. Simlastik, A. Bosio, D. Stefano, and G. d.Natale,

“A tool for teaching memory testing based on BIST”, proceedings the international

Baltic Electronic Conference, 2006, pp. 1-4

[42] A. Abu-Issa, and S. Quigley, “Bit-swapping LFSR for low-power BIST”,

Electronic Letters, 13 March, 2008, pp. 401-402

[43] S. Wang, and S. Gupta, “DS-LFSR: A BIST TPG for Low Switching Activity”,

IEEE Transactions On Computer-Aided Design of Integrated Circuits And Systems,

7,July, 2002, pp. 842-851

[44] M. Tehranipoor, M. Nourani, and N. Ahmed, “Low Transition LFSR for BIST-

Based Applications”, Proceedings of the 14
th

 Asian Test Symposium, 2005,

pp. 138-143

[45] http://www.xilinx.com/support/download, Xilinx Inc, Xilinx Design Suite

Version 12.1

[46] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto,”March Test

Generation Revealed”, proceedings IEEE Transactions on Computers, 2008,

pp. 1704-1713.

[47] Virtuoso® Analog Design Environment User Guide, Cadence Design System,

Product Version 5.1.41.

http://www.xilinx.com/support/download

66

[48] A. de Goor, G. Gaydadjiev, and S. Hamdioui, “Memory Testing with a RISC

Microcontroller, proceeding the Design, Automation, and Test in Europe (DATE)

conference, 2010.

[49] T. Chien, W. Chao, C. Li, Y. Chang, K. Laio, M. Chang, M. Tsai and C.

Tseng, “BIST Design Optimization for Large-Scale Embedded Memory Cores”,

ICCAD, 2009, pp.197-200

[50] L. Denq, and C. Wu, “A Hybrid BIST Scheme for Multiple Heterogeneous

Embedded Memories”, Asian Test Symposium (ATS), 2007, pp.349-354

67

Appendix A
March Tests

March test is a sequence of read and write operations that are applied to

Memory Under Testing (MUT) to detect different types of faults. Usually each March

test consists of a number of March elements. Each element is applied to all memory

locations. Usually a March test is delimited by { }, whereas each element is delimited

by (). Different elements are separated by semicolons. The addressing orders of a

March test could be increasing (↑), decreasing (↓) or don’t care (↕).

To represent the faults detected by a March test, a fault primitive is used.

Usually the fault primitive has the form <S/F/R> where S represents the operation that

sensitizes the fault, F represents the faulty value of the cell whereas R represents the

logical value if the applied operation is read. For example, if a cell has a transition

fault (when going from 0 to 1) then the fault primitive will be <0w1, 0,- >. In case of

faults involving two faults such as coupling faults, the fault primitive is represented

by <Sa;Sv/F/R> where Sa represents the operation or state of aggressor cell and other

parts for victim cell. Table A.1 shows a number of faults and their fault primitives. SF

represents state faults, TF means transition fault, WDF is write disturb fault. RDF is

read destructive fault, DRDF is deceptive read destructive fault and IRF is incorrect

read fault.

 Table A.1: Fault Primitives

Fault Fault Primitive

SF <1/0/->, <0/1/->

TF <0w1/0/->, <1w0/1/->

WDF <0w0/↑/->,<1w1/↓/->

RDF <r0/↑/1>,<r1/ ↓/0>

DRDF <r0/↑/0>,<r1/↓/1>

IRF <r0/0/1>,<r1/1/0>

Several March tests where developed in order to detect more faults in the

MUT. Table A.1 shows a number of March tests with their operations and fault

coverage where SAF represents stuck-at faults, AF means address decoder faults, TF

means transition Faults and CF is coupling faults. March C- algorithm was found

68

mainly to detect coupling faults which occurs due to bridging between two

neighboring cells.

Table A.2: Some March Tests with their Fault Coverage

69

Appendix B
Genetic Algorithm

Genetic algorithm is heuristic based algorithm which is used to find an optimal

solution for a problem. It belongs to Evolutionary Algorithm (EA) that was found

mainly for optimization.

Genetic algorithm starts with an initial population which is defined based on

the problem that has to be solved. Then, a number of operations are applied on this

population to generate more populations. A fitness function is defined and calculated

for each population. Usually, the population with higher fitness function is considered

better. The main operations applied on any population in genetic algorithm are:

1. Mutation which is used to generate new populations based on incremental

changes. So an incremental change is applied on a population and the new

population is accepted if it has a better fitness function

2. Crossover operation which combines two available populations in order to achieve

a better solution. Actually, this is the basic operation in genetic algorithm.

Genetic algorithm can be used in order to re-order March test sequences so

that the test power is minimized, this can be achieved as following:

1. Given a March test T, the initial population is found, which is the set of all

write operations in T.

2. Mutation and crossover operations are applied on the initial population to generate

new populations.

3. The switching activity of each newly generated population is calculated and also

the fault coverage which is determined by the types of fault that have to be detected.

The fitness function is calculated for each newly generated population, the one with

the maximum fitness function is selected.

 Figure B.1 illustrates the crossover operation applied within genetic algorithm

on the populations of a certain March test.

Figure B.1: Crossover Operation

70

Appendix C
Particle Swarm Optimization Scheme

Particle Swarm Optimization (PSO) is a computational method that is used to

optimize a problem using iteratively trying to improve a candidate solution. This

scheme is stochastic since it is based on randomly generated variables in generating

new populations.

PSO is based on generating a number of populations; each of them is called a

particle. A fitness function is calculated for each particle, then flip operation is

applied on each particle to generate new particles which are accepted if they have a

better fitness function. Finally, the particle with the best global fitness function is

selected as optima.

PSO scheme can be used in finding optimal March tests in terms of power and

fault coverage. To achieve this, any particle Pi consists of two sequences: Oi which

represents the operations (read and write) and Di which represents the directions. The

main operation used in PSO in order to generate other particles is flip operation which

decides whether a value in Oi or Di has to be flipped or not based on flipping

operator. Usually the flip operator requires flip sequences (FSL1 and FSL2) in order to

align the local corresponding values of local fitness function. By these sequences, a

bit is defined in order to determine whether flipping will happen or not. In general,

generation of new March tests based on PSO scheme can be done as following:

1. This scheme takes the number of operations (NoP) in March test as input.

2. A number of particles are generated randomly, each of them consists of NoP

operations which includes read and write operations. Usually random

generation of these particles is based on some random variables.

3. The fitness function is calculated for each particle.

4. Flip operation is performed and if the newly generated particle has a better

fitness function, then it is accepted. This operation is repeated for each

particle.

5. The global fitness function is obtained for all particles in order to select the

best March test.

71

Appendix D
Maximal Length LFSR

A maximal length Linear Feedback Shift Register (LFSR) generates all

possible testing vectors (except the zero’s vector) with 2
n
-1 clock cycles. This is

achieved by selecting the appropriate location of XOR gate. Usually the

characteristic polynomial is used to represent an LFSR and its XOR gate. Figure B.1

shows LFSR with the characteristic polynomial shown in equation (B.1):

 𝑃 𝑥 = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 (B.1)

Figure D.1: Maximal Length LFSR

Table D.1 shows the maximal length LFSRs for different sizes. For example,

if 9-bit LFSR has to be used, then XOR gates should be located in the inputs of flip

flop #9 and flip flop #4.

Table D.1: Maximal Length LFSRs

Degree (n) Polynomial

2,3,4,6,7,15,22 xn+x+1

5,11,21,29 xn+ x2+1

8,19 xn+ x6+ x5+x+1

9 xn+ x4+1

10,17,20,25,28 xn+ x3+1

12 xn+ x7+ x4+x3+x+1

13,24 xn+ x4+ x3+ x+1

14 xn+ x12+ x11+ x+1

16 xn+ x5+ x3+ x2+1

18 xn+ x7+1

23 xn+ x5+1

26,27 xn+ x8+ x7+x+1

30 xn+ x16+ x15+x+1

