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Abstract

The main goal of this thesis is to study some methods for solving some
rational difference equations. We study the solution of rational difference
equations basing on some approaches and methods that were studied for
some other rational equations.

We mainly study the solution of three difference equations.

The first that we study in this thesis is the rational equation

a + B, + YTy

=0,1,.. 0.1
B, 1 Cro s n=20,1, (0.0.1)

Lptl =

where the parameters o, 3, v, B, C and the initial conditions x_g, ..., z_1, xg
are positive real numbers, k = {1,2,3,...}.

The second equation that has been studied is

az,, + br,_i

nil = .0.2
Tntl A—f—BZL‘n_k (00 )

where a, b, A, B are all positive real numbers, £ > 1 is a positive integer, and
the initial conditions x_x, x_j11, ..., Tg are nonnegative real numbers.

Finally, we study the equation

A B
+ ;
Tn—k Tn—3k

(0.0.3)

Tn =

where = 3141, T_3k12,-.-, To € (0,00), A,B>0and k € {1,2,3,4,...}.
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Chapter 1

Introduction

This thesis mainly consists of two parts. The first part is a theoretical
background of difference equations. The second part deals with some dif-
ference equations basing on some methods that have been used in solving
some worked on difference equations.

Part one includes chapters 2 and 3, where part two includes chapters 4,
5 and 6.

Chapter 2 deals with first order difference equations. We focus on equilib-
rium points and their stability, cobweb diagrams, periodic points and cycles.

In chapter 3, we present the theory of higher order difference equations.
We mainly deals with both linear homogeneous difference equations with
constant coefficients and the higher order scalar difference equations. We
discuss the linearization of nonlinear difference equations and the local and
global stability theorems of higher order scalar difference equations.

The equation

o+ an + VYLn—-1

=0,1,... 1.0.1
Bz, + Cx,_1 " T ( )

Tp41 =

was studied by El-Afifi in [20]. In chapter 4, we study the equilibrium points
and the local and global stability of the solution of the equation
a+ BTy + YTn i

1 = , =0,1,.. 1.0.2
Tnt1 Bz, + Cx,_s " ( )
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where the parameters «, 3,7, B, C' and the initial conditions x_g,...,x_1, g
are positive real numbers, k = {1,2,3,...}.

Chapter 5 discusses the equation

ax,, + br,_i

where a, b, A, B are all positive real numbers, k£ > 1 is a positive integer, and
the initial conditions x_j,_gi1, ..., o are nonnegative real numbers taking
on referee what was been worked on the equation

ax,, + bx,_i

il = 1.04
Tntl A+ Bz, ( )
in [22] by Yan, Li and Zhao.
Chapter 6 deals with the equation
A B
Ty = + (1.0.5)

)
Tn—k Tn—3k

where z_g3541, T_sgie,..., To € (0,00), A,B > 0 and k € {1,2,3,4,...}.
which was studied in [4] by Douraki, Deghghan and Razzaghi.

The last section of the chapter 3 till 6 is a numerical discussion for the
solution of each of our three equations. In this section a comparison between
numerical solutions and the theoretical solution that we studied for each
equation. All numerical solution was hold on MATLAB 6.5. All MATLAB
codes are included in the thesis.



Part 1

Theory of Difference Equations



Chapter 2

Dynamics of First Order
Difference Equations

2.1 Introduction

Difference equations are as differential equations in Calculus. Difference
equations usually describe the evolution of certain phenomena. In differ-
ence equations the term x(n+1) is related to the term x(n) and the relation
is expressed in the difference equation

z(n+1) = f(z(n)) (2.1.1)
Starting with the initial point xy, we can generate the sequence
zo, f (o), [ (f (20)), f(f (f(20))), ...
As f*(zo) = f(f(z0)) = z2 and f*(zo) = f(f(f(20))) = 3, then in

general f"(zg) = z,. Thus we can have,
z(n+1) = [ (wo) = fIf"(0)] = f(x(n))

This iterative procedure is an example of a discrete dynamical system.
The simplest case of the linear difference equation is

z(n+1) = ax(n) (2.1.2)

where x(ng) = x9, n > ng > 0.



This equation is called the linear first-order homogeneous difference equa-
tion.
and the linear first-order nonhomogeneous difference equation is given by

z(n+1)=ax(n)+b (2.1.3)

where x(ng) = x9, n > ng > 0.
We assumed in Eq. 2.1.2 and Eq. 2.1.3 that a,b # 0.

2.2 The Equilibrium Points

The notion of equilibrium point is very used in the dynamics of any physical
System.

Definition 2.1. A point T is said to be an equilibrium point of (2.1.1) if it
is a fized point of f; i.e.; f(z) = Z.

Example: Take the difference equation
z(n+1) =2*n) —z(n) +1

So, f(z) = 2> — x + 1, and by letting T = 7 — Z + 1, we can conclude
that this equation has only one equilibrium point z = 1.

Graphically, an equilibrium point is the x-coordinate of the point where
the graph of f intersects the diagonal line y = z.

Example: The equation
z(n+1) =2%(n)

has three equilibrium points as we can see from Figure 2.2, and they are
z=-1,0,1.

One of the one main objectives in the study of a dynamical system is to
analyze the behavior of its solutions near an equilibrium point. This study
is called the stability theory.

Definition 2.2. Let & be an equilibrium point of Eq.2.1.1. Then the equilib-
rium point T s called



28+ y= K2t
al
y=x
= 15 i
1 -
[NE=R S q
D 1 1 1 1 1 1 1 1 1

Figure 2.2: The equilibrium points of z(n + 1) = z3(n)
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1. locally stable if for every e > 0 there exists 6 > 0 such that for xq with
|z — Z| < 6, we have |x,, — Z| < € for alln >0,

2. locally asymptotically stable if it is locally stable and if there exists v > 0

such that for xo with |xg — Z| < v, we have lim, T, = T.
3. a global attractor if for any xq, we have lim,_ .z, = T.

4. globally asymptotically stable if T is locally stable and T is a global
attractor.

Example: Consider the first order difference equation
1
z(n+1) = §x(n) -1

then the fixed point of the function f(x) = %x — 1 is the point z = —2, hence
the equilibrium point of our difference equation is ¥ = —2. If we take our
initial condition for the equation x(0) = 1, then as it is obvious from Figure
2.3, we can say that £ = —2 is a stable point, furthermore it is asymptotically

stable.

Figure 2.3: The Stability of z = —2 of z(n+ 1) = 1z(n) — 1

11



Example: Consider the difference equation
z(n+1) = z(n)?

The equilibrium points are z = 0,z = 1. It is obvious from Figure 2.4

-*
45f .
s i
35k .
3 L |
E s} .
=
.*.
2 L |
156+ + .
.*.
1% #
05 \\
D 1 1 1 1
] 1 2 3 4 g

Figure 2.4: The Stability of =1 of x(n + 1) = z(n)?

that £ = 1 is unstable equilibrium point.

2.2.1 The Cobweb Diagram

The cobweb diagram is a graphical method for analyzing the stability of the
equilibrium point.We may draw the graph of f in the (x(n),x(n+1)) plane.
As we choose our initial point z(, then we can find x; from the graph. This
could be done by drawing a vertical line from the point xy, then find where
it will intersect the graph, draw then a horizontal line now from the point
(20, 1) on the graph to meet the diagonal y = z, a vertical line from this
point (x1,21) will intersect the graph in the point (z1,zs). By continuing
this procedure we can find x(n) for all n > 0.

For our first example, we will draw the cobweb diagram around the equi-
librium point z = 0 by taking z¢, = 0.6.

12



Cobweb diagram

=X
0ar T/ R

06 /
0.4r /

02t /Q;__Q_-

0.2t /
04} / A

06}

RIS /

Figure 2.5: Stability of # = 0 ofz(n + 1) = z*(n)

As we can see from Figure 2.5, we can say that x is asymptotically stable.

Lets now examine the equilibrium point £ = —1 for the same equation
using the cobweb diagram by taking zy = —1.05.

From Figure 2.6, it is obvious that £ = —1 is unstable.

2.3 Periodic Points

It is important for studying any dynamical system is to study its periodicity.
As an example, the motion of a pendulum is periodic.

Definition 2.3. Let b be in the domain of f. Then:

1. b is called a periodic point of f if for some positive integer k, f¥(b) = b.
b is called a k-periodic point of f and it is a fized point for the function
fr
The periodic orbit of b, O(b) = {b, f(b), f2(b), ...., f¥=1(b)} and its often
called a k-orbit.

13



Cobweb diagram

ost
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A5t ,
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- 25 /
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S

35 e

4l //

a5t

25 4 3 2

Figure 2.6: Stability of = —1 of x(n + 1) = z*(n)

2. b is called eventually k-periodic if for some positive integer m, f™(b) is
a k-periodic point; in other words fm™*(b) = f™(b).

We can find the k-periodic point of such a function by finding the point
for which the diagonal y = x intersects the graph of f*(z) and then finding
the x-coordinate of such a point.

Example: Take the equation
z(n+1) = 2%(n)

Then f(x) = 2%, As we want to find the 2-periodic points, we must find
().

We know that f%(z) = f(f(z)) = f(z*) = 2*. We will plot f? and see

where will it intersect y = .

As we see from the figure, the 2-periodic points of our equation are 0 and

14



#n+l)

Figure 2.7: 2-periodic points of z(n + 1) = z*(n)
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Chapter 3

Difference Equations of Higher
Order

3.1 Theory of Linear Difference Equations

The general form of a kth-order nonhomogeneous linear difference equation
is
y(n+ k) +pi(n)y(n+k—1)+ ...+ pr(n)y(n) = g(n) (3.1.1)

where p;(n) and g(n) are real valued functions defined for n > ng and
pr(n) # 0 for all n > ny.

If g(n) is zero, then the equation is said to be kth-order homogeneous
difference equation.

The general form of the kth-order homogeneous difference equation is

yn+k)+pi(n)yin+k—1)+ ... + pr(n)y(n) =0 (3.1.2)

The sequence {y, }n is said to be a solution of Eq. 3.1.1 if it satisfies the
equation.If we specify our initial conditions of the equation, that is led us to
the initial value problem

yn+k)+pi(n)yin+k—1)+ ...+ pr(n)y(n) = g(n) (3.1.3)
y(ng) = ag,y(no +1) = ay, ..., y(ng + k — 1) = ag_q, (3.1.4)

where q; are real numbers.
Example: Consider the 2nd order nonhomogeneous difference equation

yin+2)=2y(n+1)+3y(n)+5

16



where y(0) = 1,y(1) = 2, then we can find y(2),y(3):

y(2) =2y(1) + 3y(0) + 5 = 12.
y(3) = 2y(2) + 3y(1) + 5 = 35.
and by the same method we can get y(4),y(5),.....

So , if we have the initial conditions , then we can find the whole solution
of our difference equation.

Theorem 3.1. [1] The initial value problem (3.1.3) and (3.1.4) have a
unique solution y(n).

Definition 3.1. The functions fi(n), fa(n),...., fr(n) are said to be linearly
dependent for n > ng if there are nonzero constants aq, as, ...., a, such that

ar fi(n) + azsfo(n) + ...... +a,fr(n)=0

The negation of linear dependence is linear independence. Then, the set of
functions fi(n), fo(n),...f-(n) are said to be linearly independent if wherever

Cllfl (n) + a2f2(n) + . -+ arfr(n) =0
for all n > ng, then we must have a; = as = .... = a, = 0.

Definition 3.2. A set of k linearly independent solutions of (3.1.2) is called
the fundamental set of solutions.

Theorem 3.2. The Fundamental Theorem/[1]
If p(n) # 0 for all n > ng, then (3.1.2) has a fundamental set of solutions
forn > nyg.

Theorem 3.3. Superposition Principle/1]
If y1(n),ya(n), ..., yr(n) are solutions of (3.1.2), then also

y(n) = mln (n) + CLQZJQ(TL) =+ ... + aryr(n)
is a solution of (3.1.2), where ay,as, ....,a, are real numbers.

Example: Consider the third order homogeneous difference equation
z(n+3)+3zx(n+2) —4x(n+1) — 122(n) =0

17



where the functions 2", (—2)" and (—3)" form the fundamental set of solu-
tions of the equation.

We can verify that 2" is a solution by substituting z(n) = 2" in the
equation

2" 4 3(2"12) —4(2") —12(2") = 2"(8 4+ 12 -8 - 12) =0

also, we can prove it easily for the other two functions.
From superposition principle we can say that

z(n) = 12" + co(—2)" + c3(—3)"

where ¢1, co and c3 are real numbers.
is also a solution to the equation, and this can be proved easily.

3.1.1 Linear Homogeneous Equations with Constant
Coefficients

Consider kth-order difference equation
yn+k)+pyin+k—1)+pyn+k—2)+ ...+ py(n) =0 (3.1.5)

where pls are all real constants and py # 0.
Suppose that our solution is in the form of A\, where ) is either a real or
a complex number. Substituting in (3.1.5) we get

N p Nt 4 pe=0 (3.1.6)

This equation is called the characteristic equation of (3.1.5), and its roots
A are called the characteristic roots.

Example: Consider the 2nd order homogeneous difference equation
x(n+2)—4zx(n+1)+3z(n)=0
then its characteristic equation is
A —4X+3=0

then the characteristic roots are Ay = 1, Ay = 3.

18



We have two cases to take into consideration.

Case One: Distinct Roots
Suppose that our characteristic roots of (3.1.5) Ay, Ag, ....\; are distinct. The
fundamental set of solutions will be AT, A3, ...., A}, and the general solution
of (3.1.5) is given by

y(n) = S8 a;\! (3.1.7)

where {a;} are complex numbers.

Case Two: Repeated Roots

Suppose that the distinct characteristic roots are A1, Ao, ..., A, with multiplic-
ities my, mo, ....,m, with X7_;m; = k, respectively. In this case the general
solution of (3.1.5) is given by

y(n) = SI_ A (ai + ann + apn® + ... + @i, n™ ) (3.1.8)

where a,q, ....an,,—1 are complex numbers.

3.1.2 The Limiting Behavior of Solutions

Consider the second order homogeneous difference equation
y(n+2) +p1y(n+1) +pay(n) =0 (3.1.9)
then the characteristic equation of such an equation will be
M+ pid+p=0

The quadratic equation has two solutions A, Ay that break down into
three cases:

Case One : Two Real Roots and Distinct:

Suppose that i, Ay are the characteristic roots of the equation. If A\; and
Ay are distinct real roots then the general solution is given by

y(n) = a1 AT + ag Ay
Example:Consider the equation

x(n+2)=z(n+1)+x(n)

19



then the characteristic equation is
NM—-A-1=0
The solutions to this quadratic equation are

1+45
2

A

then the solution will be

145 1—-5

9 ) ‘|‘CL2( B

)TL

z(n) = ar(

If we assume that our initial conditions x(0)=x(1)=1 , the we can get
easily that our solution is

VB+1 1+v5,  V6—1 1-+5
N RV RN

Without loss of generality we can assume that the two distinct roots of
our equation satisfy
[Ar] > [As

and by so A; is called the dominant root and y;(n) the dominant solution.

The general solution could be written now as

A2,
o) = Ni(ar +as(2)")
1
It is obvious that the lim, . y(n) = lim,,_ a; A} since as :\\—j < 1, then
lim,, s i—f =

It is easy to conclude that
1. If |A1] > 1, then the solution y(n) will diverge.
2. If |\;| = 1, then the solution will be a constant solution.

3. If [A\1] < 1, then the solution will converge to zero.

20



Case Two: One Real Repeated Root

Suppose that Aj, Ay are the two characteristic roots of the equation and
suppose that Ay = Ay = X\ | the the general solution will be

y(n) = A\"(ay + agn)
Example: Consider the equation
z(n+2)+2z(n+1)+(n)=0
then the characteristic equation is
N +20+1=0
which has the solution A = —1, then the solution is of the form
z(n) = a1(—1)" + agn(—1)"

It is obvious that lim,, .., y(n) = lim, ., A"(a; + asn), so we can conclude
easily now that

1. If [A| > 1, then the solution y(n) will diverge.

2. If [\| < 1, then the solution will converge to zero since lim,,_,o nA" = 0.

Case Three: Two Complex Roots

The last case that we will consider for our equation, is when the roots
A1 and Ag are to be complex roots. Set A\ = a + i and Ay = a — 3. The
general solution will be

y(n) = ar(a+1i6)" + as(a — ifB)"
In polar coordinates the complex number a 4¢3 could be written as

r=+/a?+ (% a=rcosf, f=rsinb, gztan_l(é)

(67

21



Hence

y(n) = ay(rcosf+irsind)" + ay(rcosf —isinf)"
r"((ay + az) cos(nb) + i(a; — az)sin(nd))
= 1"(c1 cos(nb) + cosin(nh)).

where ¢; = a; + ay and ¢ = a1 — as.

Let . . .
COSp = —— SN = ———— = tan_l(—z)

NECET Ve +d 1

Then we can write the solution as

y(n) = Cr"cos(nf — p), C =/ +c2 (3.1.10)
Example: Consider the equation
z(n+2)+2zx(n+1)+5x(n) =0
the characteristic equation will be
N +20+5=0

which gives the solution
A=1+2%

then r = v/5 and 6 = tan™'(3).
the real formed solution will be

z(n) = 52 (¢; cos(nf) + ¢y sin(nh))

The solution y(n) clearly is oscillating since the cosine function oscillates.
But this oscillation can have three different cases

1. If » < 1, then \; and Ay = )\ lie inside the unitary disk and our solution
will converge to zero.

2. If r =1, then A\; and Ay = A lie on the unitary disk and the solution
will oscillate in constant magnitude.

22



3. If r > 1, then \; and Ay = )\; lie outside the unitary disk and the
solution will diverge.

Theorem 3.4. [1] The following statements hold :

1. All solutions of (3.1.9) oscillate about zero if and only if the character-
1stic equation has no positive real roots.

2. All solutions of (3.1.9) converge to zero if and only if

maz{|Ai|,|Xa]} <1

Consider the second order nonhomogeneous difference equation
y(n+2) +pry(n+1) + pay(n) = M (3.1.11)

where M is nonzero. Suppose that y* is an equilibrium point of such equation,
then
Y +py +py =M

then
. M

v 1+ p1+po

But as we know, the general equation of nonhomogeneous equations is

y(n) = yp(n) + ye(n) (3.1.12)

*

and for this equation we can take y,(n) = y*.
following theorem.

Thus we can conclude the

Theorem 3.5. [1] The following statements hold :

1. All solutions of (3.1.11) oscillate about y* if and only if the char-
acteristic homogeneous equation of (3.1.9) has no positive real
T001S.

2. All solutions of (3.1.11) converge to y* if and only if maz{|A1],|Xe|} < 1
where \1 and Ay are the roots of the homogeneous characteristic
equation of (3.1.9).

23



3.2 Higher-Order Scalar Difference Equations

In this section we will take into consideration some stated theorems that
will be so useful for us in our study of higher-order difference equation. We
concentrate on the the theorems that study the local and global asymptotical
stability.

3.2.1 Asymptotic Stability Theorems of Linear Scalar
Equations

Consider the second order difference equation
z(n+2)+pz(n+1) +px(n) =0 (3.2.1)
the characteristic equation is
M 4pd+p, =0 (3.2.2)
Theorem 3.6. [1] The conditions
L+pi+p2>0, 1—=pi+p>0, 1—p2>0

are sufficient and necessary conditions for the equilibrium point of equations
(3.2.1) and (3.1.11) to be asymptotically stable.

These conditions can be written as
|p1| <1+ P < 2

Theorem 3.7. [1] The zero solution of (3.2.1) is asymptotically stable if and
only if
P <1+p2<2

Theorem 3.8. [1] The zero solution of the third order homogeneous differ-
ence equation

r(n+3) +prx(n +2) + pax(n+1) + psz(n) =0 (3.2.3)
will be asymptotically stable if and only if

IpL+ ps| < 14 p2, and |ps — pips| < 1 — p?
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Consider the kth-order equation
z(n+1) —ax(n) + bx(n — k) (3.2.4)

Theorem 3.9. [1] Let a be a nonnegative real number, b an arbitrary real
number, and k a positive integer. The zero solution of (3.2.4) is asymptoti-
cally stable if and only if

(k+1)
jal <=

and
1. |a| < b < (a®+1—2la|cosd)z for k odd, or

2. b—al <1 and |b] < (a® +1—2|a|cos @)z for k even,
where ¢ is the solution in (0, m) of

sin(kf) 1
sin(k+1)0  |a|

Lets be back to the general form of the kth-order homogeneous difference
equation

z(n+k)+px(n+k—1)+pxn+k—2)+.... +pr—1z(n+1) +prz(n) =0
(3.2.5)

Theorem 3.10. [1] The zero solution of (3.2.5) is asymptotically stable if
¥F L pl <1 (3.2.6)
and the zero solution of this equation is unstable if

[p1] = B, il > 1 (3.2.7)

3.2.2 Linearization of Nonlinear Equations
Consider the k+1-order difference equation of the form
z(n+1) = f(z(n),z(n—1),....,x(n —k)) (3.2.8)

where f: I*! — I is a continuous function, and z_g, T_g41, ....., Tg are
the initial conditions. So there exists a unique solution {x(n)}>2_, such that
x(=k)=z_p,x(=k+1)=2_gy1,....., 2(0) = xo.

25



Definition 3.3. A point x* € I is an equilibrium point of (3.2.8) if

Definition 3.4. An equilibrium point x* of (3.2.8) is stable if for any given
e > 0, there exists 0 > 0 such that if

(|le(=k) — 2*| + |z(=k+ 1) — 2"+ .... + |2(0) — z*|) < 0,

then
|z(n) —2*| <e for all n > —k.

If f is continuously differentiable in some neighborhood around x*, then we
can linearize (3.2.8) around z*. Thus, by chain rule, the linearized equation
around z* becomes

u(n +1) = pou(n) + pru(n — 1) + ... + pru(n — k) (3.2.9)
where
pi = . [ A

The characteristic equation of (3.2.9) is given by
ML g XN —p N — L — =0 (3.2.10)

Example: Consider the nonlinear difference equation

1

2) =2 1)? — —

z(n+2)=2x(n+1) e
We can find the equilibrium point by

T =21 —

K|

this can be written as
273 — 72 —1=0

which is
(Z-1)2F+z+1)=0

Then the equilibrium point of this equation is z = 1.
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Take f(u,v) =2u? — 1 then

of _
ou

of 1
4U, %_ﬁ

So , our linearized equation around the equilibrium point z = 1 is
z(n+2)=4z(n+1) + z(n)
which can be written as
z(n+2)—4z(n+1) —2(n) =0

Theorem 3.11. (The Linearized Stability Result)

Suppose that f is continuously differentiable on an open neighborhood around
(x*, 2%, ..., x*), where x* is an equilibrium point of (3.2.8). Then the following
statements are true:

1. If all the characteristic roots of (3.2.10) lie inside the unit disk in the
complex plane, then the equilibrium point x* of (3.2.8) is locally asymp-
totically stable.

2. If at least one characteristic root of (3.2.10) is outside the unit disk in
the complex plane, the the equilibrium point x* of (3.2.8) is unstable.

3. If one of the characteristic roots of (3.2.10) lies on the unit disk and
all the other roots lie either inside or on the unit disk in the complex
plane, then the equilibrium point x* of (3.2.8) may be stable, unstable,
or asymptotically stable.

3.2.3 The Global Stability Theorems of Nonlinear Equa-
tions

Consider the difference equation of order (k+1)
z(n+1)= f(z(n),z(n—1),...,x(n —k)) (3.2.11)
where f is continuously differentiable on I and x* € 1.

Theorem 3.12. Let x* be an equilibrium point of (3.2.11) and let f be sat-
1sfying the following:
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1. fis nonincreasing in each of the arguments; that means that if a < b
then f(...,a,...) < f(...,b,...).
2. (u—x9)[f(u,u,....;u) —u] <0 for allu € I and u # x*.

then with all the initial conditions (x(0),x(—=1),....,x(—=k)) € I, we have all
xz(n) € I for alln > —k, also lim, ., x(n) = x*.

Definition 3.5. The function f(uq,us, ....,ug1) is said to be weakly mono-
tonic if f is nondecreasing or nonincreasing in each of its arguments; that
means if a < b then either

flona,..) < f(.;b,...)or f(..;a,...) > f(...,b,...)

where a and b lie in the jth slot, where 1 < j < k+ 1 and all other slots are
filled with some fized numbers z1, 2o, ..., Zj_1, Zjt1, o) Zht1-

The following theorems was discussed by Elaydi in [1], and they are the
most useful theorems that we depend upon.

Theorem 3.13. Consider the difference equation

k
Tps1 = Zizoxn_iFi(:ﬂn, Tty ooy Ty = 0,1, ... (3.2.12)
with initial conditions x_y, T _jy1,...., o € [0,00), where

1. ke{1,2,...};

2. Fy,Fy,...,Fy e C[0,00)",[0,1)];

3. Fy, Fy, ..., Fy are nonincreasing in each argument;

4o 3 o Fi oyt o yi) < 1 for all (o, y1, .., yi) € (0,1)%;
- Fo(y,y, .., y) >0 forally > 0.

v

Then, x = 0 is globally asymptotically stable for such equation.

Theorem 3.14. Consider the difference equation

Yni1 = f(Yns Yn-r);n = 0,1, ... (3.2.13)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] X [a,b] — [a, b

s a continuous function satisfying the following properties:
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(a) f(u,v) is nondecreasing in u and nondecreasing in v.
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
= f(m,m) and M = f(M, M),

then m = M. Then Fq.3.2.13 has a unique equilibrium iy and every
solution of Fq.3.2.13 converges to .

Theorem 3.15. Consider the difference equation

Yns1 = [ Wns Yn—k);n=10,1,... (3.2.14)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] x [a,b] — [a,b]
s a continuous function satisfying the following properties:
(a) f(u,v) is nondecreasing in u and nonincreasing in v.
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
m = f(m, M) and M = f(M,m),

then m = M. Then Fq.3.2.14 has a unique equilibrium iy and every
solution of Fq.3.2.14 converges to .
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Part 11

A Study of Some Nonlinear
Difference Equations
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Chapter 4

Dynamics of a Rational

Difference Equation
at+Brp YT,k

In+l = "B, +Cx,

4.1 Introduction
In this chapter, we will study the nonlinear rational difference equation

o+ Bx, + YT,k
Bz, +Cx,_

Tpi1 = n=20,1,... (4.1.1)
where the parameters «, 3, v, B, C and the initial conditions x_, ..., z_1, g
are positive real numbers, £ = {1,2,3,...}.

Our concentration is on invariant intervals, periodic character, the char-
acter of semi-cycles and global asymptotic stability of all positive solutions
of Eq.4.1.1.

It is worth mentioning that the results in [20],[11],[12],[14],[17] are special
cases of our main results.

The global stability of Eq.4.1.1 for k& = 1 has been investigated in [20].
They showed, in respect to variation of the parameters, the positive equilib-
rium point is globally asymptotically stable or every solution lies eventually in
an invariant interval. Kulenovic and Ladas, in addition, considered Eq.4.1.1
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in their monograph [16].

Dehghan in [18] investigated the global stability, invariant intervals, the
character of semi-cycles, and the boundedness of the equation
xn
ey = —m P 019, (4.1.2)
Tn + qTn—k
where the parameters p and ¢ and the initial conditions z_g, ..., z_jand
xy are positive real numbers, k = {1,2,3,...}.

Li and Sun [17] investigated the periodic character, invariant intervals,
oscillation and global stability of all positive solutions of the equation

Ly, + Ty
oy = P Tk 01,2, (4.1.3)
q + Tpk
where the parameters p and ¢ and the initial conditions z_g, ..., z_jand
xo are positive real numbers, k = {1,2,3,...}.

DeVault [12] investigated the global stability and the periodic character
of solutions of the equation

g = LIk 019, (4.1.4)
qxn—i_xnfk

where the parameters p and ¢ and the initial conditions x_y,...,z_jand
x are positive real numbers, k = {1,2,3,...}.
In [20] , the equation

a+ ﬁxn + YTn—1
Bz, +Cx,,_1

Tni1 = (4.1.5)

was studied by M.M. El-Afifi. He studied the local and global stability and
the semi-cycles of this equation.
Our interest now to study and solve Eq.4.1.1 in the general case.

The change of variable x,, = %yn in [20] changes the equation

o+ ﬂxn + VYXn-1

=0,1,...
Bz, + Cx,_ "

Tpy1 =
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into the equation

gy = LY Tl n=01,.. (4.1.6)
Yn + qYn—1
WhereP:%,lzl,q:%.
This change of variable works for our equation also and we will show that.
Let x,, = %yn, then the equation

a+ B'xn + YTn—k
Bz, +Cx,_s

Tnt1 = n:(),l,...

can be changed to become

2

ﬂy _a—i_%yn"i_%yn—k
S Yn+1 —
B ﬁyn + %yn—k

then
0532 + 362yn + ’YﬁByn—k

Yl = ﬁszn + Cﬁ2ynfk

taking out the term (32B from the dominator , we get

% + Yn + %yn—k

Yn+1 =

Yn + %yn—k
then Dbyt s
Ynt1 = vt T n=0,1,.. (4.1.7)
WhereD:%,p:%,q:%.

Before studying the behavior of solutions of this rational difference equa-
tion, we will review some definitions and basic results that will be used
throughout this chapter.

Lemma 4.1. [1][15] Let I be some interval of real numbers and let
[T =

be a continuously differentiable function . Then for every initial conditions
Tpy 1,20 €1, k={1,2,3,...}. , the difference equation
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Tpi1 = f(Tn, Tp-g), m=0,1,.. (4.1.8)

has a unique solution {x,}.
n=-—k

Definition 4.1. We say that a solution {y,}>> . of a difference equation
Ynt1 = f(Yns Yn_1, -, Yn_k) 18 periodic if there exists a positive integer p such
that Yn+p = Yn. The smallest such positive integer p is called the prime period
of the solution of the difference equation.

Definition 4.2. The equilibrium point y of the equation

Yn+1 = [ WU Yn—1, -, Yn—k),n = 0,1, .. (4.1.9)

1s the point that satisfies the condition

y=r09 0

Definition 4.3. [1] Let § be an equilibrium point of Eq.4.1.9. Then the
equilibrium point y is called

1. locally stable if for every e > 0 there exists 6 > 0 such that for all
Ytor Y=kt 1 -y Yo € L with [y — Yl + [y—pt1 — Y|+ ... + [yo — | <6, we
have |y, — y| < € for all n > —k,

2. locally asymptotically stable if it is locally stable and if there exists v > 0
such that for all y_j, y_gs1, - Yo € I with ly_r, — gl + |y—rxr1 — 7| + ... +
lyo — y| < 7y, we have limy_ooYn = 7.

3. a global attractor if for ally_x, y_k+1, ..., Yo € I, we have lim,_ooyn =Y.

4. globally asymptotically stable if y 1s locally stable and i is a global at-
tractor.

Let

p:%(:ﬁ,ai) and q:g—i(i‘,j)

where f (u,v) is the function in Eq.4.1.8 and T is an equilibrium of the
equation. Then the equation

Yn41 = PYn + @Wn—k, n=0,1,.. (4.1.10)
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is called the linearized equation associated with Eq.4.1.8 about the equi-
librium point z. Its characteristic equation is

ML oA — g =0 (4.1.11)

Theorem 4.1. [1][11][14][15][16] Linearized Stability. Consider the dif-
ference equation

Ynt1 = DY + QWar, 1 =0,1,..

(a) If both roots of the equation have absolute values less than one, then
the equilibrium y of the equation is locally asymptotically stable.
(b)If at least one of the roots of the equation has an absolute value greater
than one, then i is unstable .
(c)Both roots of the equation have absolute values less than one if and
only if
pl<1l—g<2

i this case, 1y is a locally asymptotically stable.
(d)Both roots of the equation have absolute values greater than one if and

only if
lgf >1 and  [p[>|1 -

i this case, i is a repeller.
(e)One root of the equation has an absolute value greater than one while
the other root has an absolute value less than one if and only if

P +4p>0  and Ip| > |1 —q|.

in this case, 1y is unstable and is called a saddle point.

4.2 The Equilibrium Points

Next we investigate the equilibrium points of the nonlinear rational difference
equation

D+ vy, + py,—
Yoy = ——In T PYn—k n=01,.. (4.2.1)
Yn + QYn—k
where the parameters p,q, D and the initial conditions y_x, ..., ¥y_1,%o

are positive real numbers, k = {1,2,3,...}.
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The equilibrium points of Eq.4.2.1 are the positive solutions of the equa-

tion

D+y+py
y+qy

D+ygp+1)
y(g+1)

hence the equilibrium point is given by

1+p++/(1+p)?2+4D(1+q)
2(q+1)

g:

To find the linearization of our problem, consider

_ D+u+pv
f(u,v) - u—l—qv
now,
of _ (u+qv) — (D +u+pv)
ou (u 4+ qu)?
SO
f wlg—p)—D
ou (u+ qv)?
hence -
O 5.5 = ylg—p) =D
Ou™™ (a5 +9)
also
of _ulp—q) —qD
ov (u+ qu)?
hence _
O 5 5) = ylp —4q) —¢D
Ov ™ (a5 +9)

so, the linearized equation is

y(q —p) —- D, N y(p—q) —qD
(g +79)3? ™ (g7 + 9)?

Zn+l = Zn—k
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and its characteristic equation is

vkt Y@ —p) — Dk ylg—p) —¢D
(q9 + 9)? (¢y +9)?

-0 (4.2.3)

4.3 The Local Stability

The following facts are important to study the local stability
Lemma 4.2. [1] Assume that a,b are real numbers and k € {1,2,...}. Then
la| + 10| < 1 (4.3.1)
is a sufficient condition for the asymptotic stability of the difference equation
Ynt1 +ayp + 0y =0, n=0,1,.... (4.3.2)
Suppose in addition that one of the following two cases holds.
1. k odd and b < 0.

2. k even and ab < 0.

Then 4.3.1 is also a necessary condition for the asymptotic stability of
Eq.4.3.5.

Lemma 4.3. [1] Assume that a,b are real numbers. Then
la| <b+1<2

is a necessary and sufficient condition for the asymptotic stability of the dif-
ference equation

Ynik + Y + by =0, n=0,1,.... (4.3.3)

Lemma 4.4. Assume that all the roots of the characteristic equation of the
above equation lie inside the unit circle, then the positive equilibrium is locally
asymptotically stable.
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Theorem 4.2. Let iy be an equilibrium point of Eq.4.2.1, then y is locally
asymptotically stable.

Proof. The equilibrium point y of Eq.4.2.1 is

1+p++/(1+p)?+4D(1+q)
2(¢g+1)

j=
and the linearized equation about it is

yla—p)—D  yp—q) —qD
— 2 —
(a7 +9) (a7 +9)
We will use Lemma 4.3 to show that ¢ is asymptotically stable. From our
linearized equation we have

Zn+l = n—k

y(qg—p)—D
(qu+9)?

y(q—p) +qD

(g +7)?

a=—

b:

But as
(T +q9)°* = (1+ (D + (1+p)y)
Then
ylg—p)—D
(I+a)(D+ (1+p)y)
ylg —p) +4¢D
(I + gD+ (1 +p)y)

Its easy to show that

la| <b<b+1
and as
b<1
Then we proved that
la] <b+1<2

Then by Lemma 4.3 we can say that the equilibrium point ¢ is asymp-
totically stable.
This completes the proof. n
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4.4 Analysis of Semi-Cycles

Definition 4.4. We say that a solution {y,} of a difference equation

Yn+1 = f(yn; Yn—1y -+ yn—k) (44]->
158 bounded and persists if there exist positive constants P and ) such that
P<uz,<@Q for n=-1,0,....

Definition 4.5. A positive semi-cycle of a solution {y,} of Fq.4.4.1 con-
sists of a “string” of terms {yi, Yis1,---,Ym}, all greater than or equal to the
equilibrium iy, with | > —k and m < oo and such that

either | = —k, orl > —kand y,_1 <y

and
either m = oo, or m < oo and Yy, 41 < Y.

Definition 4.6. A negative semi-cycle of a solution {y,} of E£q.4.4.1 consists
of a “string” of terms {y;, Y11, -, Ym}, all less than the equilibrium g, with
[ > —k and m < oo and such that

either | = —k, orl > —kandy,_1 > ¥

and
either m = oo, or m < oo and Y11 > 9.

The first semi-cycle of a solution starts with the term y_; and is positive
if y_ > y and negative if y_j < 7.

Definition 4.7. A solution {y,} of Eq.4.4.1 is called nonoscillatory if there
exists N > —k such that y, >y for alln > N ory, <y for alln > N.
And a solution {y,} is called oscillatory if it is not nonoscillatory.

Now, we will list some theorems which will be useful in our investigation.

Theorem 4.3. [15] Assume that f € [(0,00) x (0,00), (0,00)] is such that:
f(z,y) is increasing in x for each fized y, and f(x,y) is decreasing in y for
each fixed x. Let & be a positive equilibrium of equation

Tpr1 = f(Tn, Tn_k) (4.4.2)

Then except possibly for the first semi-cycle, every oscillatory solution of
Eq.4.4.2 has semi-cycle of length at least k. Furthermore, if we assume that
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flu,u) =z (4.4.3)

and
flx,y) <z foreveryz <y<zx (4.4.4)
then {x,} oscillates about the equilibrium T with semi-cycles of length
k41 or k+ 2, except possibly for the first semi-cycle which may have length
k. The extreme in each semi-cycle occurs in the first term if the semi-cycle
has two terms and in the second term if the semi-cycle has three terms, and
in the k + 1 term if the semi-cycle has k + 2 terms.

Theorem 4.4. [15] Assume that f € [(0,00) x (0,00), (0,00)] is such that:
f(z,y) is increasing in x for each fived y, and f(x,y) is increasing iny for
each fixed x. Let T be a positive equilibrium of Eq.4.4.2. Then except possibly

for the first semi-cycle, every oscillatory solution of Eq.4.4.2 has semi-cycle
of length k.

Now, we give necessary and sufficient condition for Eq.4.2.1 to have a
prime period-two solution and we exhibit all prime period-two solutions of
the equation.

Theorem 4.5. If k is even, then Eq. 4.2.1 has no nonnegative prime period-
two solution.

Proof. Let k is even. Assume for the sake of contradiction that there exist
distinctive nonnegative real number ® and W, such that

ey, U D W
is a prime period two solution of Eq.4.2.1, then ® and VU satisfy
_ D+py+ V¥
U+ v

and
 D+pd+9

q® + @
SO
U(p+1)+D
U(g+1)
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and

D+®(p+1)
O(g+1)

By substituting ® into the equation of ¥ we get easily that
U(g+1)(D+(p+1)¥)=DV(g+1)+(D+V¥(p+1)(p+1)

then we get that

D
U(W—-1)=——
q+1
After solving the quadratic equation
D
V20— —— =0
q+1
we get that
4D
2

but as /1 + 7 > 1 and ¥ is nonnegative , then
14+4/1 +
V=—
2

The same could be done for ®, and then

L4+ /1+22
p=—V
2

so & = W. This contradicts the hypothesis that & and ¥ distinct nonneg-
ative real number.
Thus there exists no prime periodic-two solution for the Eq.4.2.1.

]

Theorem 4.6. If k is odd, then Eq. 4.2.1 has no nonnegative prime period-
two solution.
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Proof. Let k is odd. Assume for the sake of contradiction that there exist
distinctive nonnegative real number ® and W, such that

U D

is a prime period two solution of Eq.4.2.1, then & and ¥ satisfy

D+ V +pd
U4 qd
and
D+ P+ pV¥
D qU
Solving such two equations using MATLAB will show that the two solu-
tions are identical, then as a result

o=y

and that is contradicts the fact that ¥ and ¥ must be different.
Then Eq. 4.2.1 has no prime two-periodic solution if k is odd.
This completes the proof. O

Then we can get out this results.
Corollary 4.1. Eq. 4.2.1 possess no prime periodic-two solution.

Semi-cycle analysis of the solution of Eq.4.2.1 is a powerful tool for a
detailed understanding of the entire character of solutions.

Next, we present some results about the semi-cycle character of solutions
of Eq.4.2.1.

Theorem 4.7. Let {y,} be a nontrivial solution of Eq.4.2.1, then the fol-
lowing statements are true:

1. Assume D + p > q, then {y,} oscillates about the equilibrium y with
semi-cycles of length k + 1 or k + 2, except possibly for the first semi-
cycle which may have length k. The extreme in each semi-cycle occurs
in the first term if the semi-cycle has two terms and in the second term
if the semi-cycle has three terms, and in the k+1 term if the semi-cycle
has k + 2 terms.
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2. Assume D + p < q, then either {y,} oscillates about the equilibrium y
with semi-cycles of length k after the first semi-cycle, or {y,} converges
monotonically to y.

Proof. 1. The proof follows from Theorem 4.3 by observing that the con-
dition D + p > ¢ implies that the function
D+ x+py
flay) = ———
T+ qy

is increasing in x and decreasing in y. This function also satisfies
conditions 4.4.3, 4.4.4.

2. The proof follows from Theorem 4.4 by observing that the condition
D + p < ¢q implies that the function

D+ z+py
fl,y) = ———
T+ qy

is decreasing in x and increasing in y.
The proof is complete. O

We now examine the existence of intervals which attract all solution of
Eq.4.2.1.

Theorem 4.8. Let {y,} be a solution of Eq.4.2.1. Then the following state-
n=—=k

ments are true :
(1) Suppose D + p < q and assume that for some N > 0.

D+p
YN—ks - YN—1, YN € {T’l] ;

then I
Yn € [j,l} , for alln > N.
q
(2) Suppose D + p > q and assume that for some N > 0.
D +
YN—k; - YN-1, YN € |:17Tp:| )

then 5
Yn € [1,j} , for alln > N.
q
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Proof. (1) If for some N > 0,

D+p
YN—ky -y YN-1, YN c |: 71:| )

then % < yn_r <1, then

D +yn + pyn—i

YN+1

YN + QYN—k
< yn +D +p
T oyn g2
< 1.

Now take into consideration that the function

D +u—+pv

flu) = =

is increasing in u and decreasing in v. Then for

D+ yn + pyn—k
YN + QYN—k

YnN+1 =

Yn+1 1S increasing in yy for some fixed value for yy_x.
We can take this fixed value for yy_; to be l.and since % <yny <1
then

D +yn + pyn—i

y g
N YN + QYN—k
D+p
- D+="+p
1
N (D+p)(1+y)
- 1D+p
a1+ ,=2)
> Dtp
q

By Mathematical Induction we can prove that

D+p

<y, <1 foralln>N
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Then

D
Un € {j’l} foralln > N.
q

(2) This proof is similar to the above one. If for some N > 0,

D+p

YN—ks - YN-1, YN € [LT

then 1 <yy_x < %,then

YN+1

v

>

D +yn + pyn—i

YN + QYN—k
yv + D +p

yn + g2k
1.

E

As we saw, yy1 is increasing in yy_j for some fixed value for yy.

We can take this fixed value for y to be 1.and since since 1 < yy_

then
~ D+yn+pyn—s
Yn+1 =
YN + qYN—k
D+1+p22
< T
La=”
(D+1)
< D+pP + o
- g 1+D+p
< D+pl+D+p
- g 1+D+p
< Do
q
By Mathematical Induction we can prove that
D
1<y, < tr foralln> N
Then D
Yn € {1,ﬂ}  for all n > N.
q

The proof is complete.
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Let {y,} be a solution of Eq.4.2.1. Then the following identities are hold

n=—=k
D

e—p) _ In—k
1 —1=(q—p) L2~ ~ 445
Ynt1 (¢ —p) o T (4.4.5)

D+p.  (1- (%))yn + D(1 = Yn—+)

Ynt1 — ( ) = (4.4.6)

yn'+'qynfk

oo
First we will analyze the semi-cycles of the solution {y,} under the
n=—*k
assumption that

D+p>q, g>p (4.4.7)

The following result is a direct consequences of 4.4.5-4.4.6.

Lemma 4.5. Assume that 4.4.6 holds and let {y,} be a solution of Fq.4.2.1.

n=—=k
Then the following statements are true:

1. If for some N >0, yn_r < (D +p)/q, then yn+1 > 1;
If for some N >0, yy_r = D/(q — p), then yy11 = 1;
If for some N >0, yn— > D/(q — p), then yy+1 < 1;
If for some N >0, yn_ > 1, then yy+1 < (D +p)/q;
If for some N >0, yy_r <1, then yn+1 > 1;

If for some N >0, 1 <yn_i < (D+p)/q, then 1 <yni1 < (D+p)/q;

A I

If for some N >0, 1 < yn—p, yn < (D+p)/q, then1 <y, < (D+p)/q,
for alln > N; Thats [1,(D+p)/q] is an invariant interval of Eq.4.2.1.

8. 1<y<(D+p)/q,
Indeed: when D+ p > q

Dq+ Dp+p* > pg+ Dp
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Dq > pq+ Dq — Dp — p*
Dq > (D +p)(q —p)
D D
> +p
q—p q

Theorem 4.9. Assume that Eq.4.2.1 holds. Then every nontrivial and oscil-
latory solution of Eq.4.2.1 which lies in the interval [1, (D + p)/q], oscillates
about § with semi-cycle of length k or k + 1.

o0
Now we will analyze the semi-cycles of the solution {y,} under the as-
n=—k
sumption that

D+p<gq,q>p (4.4.8)
The following is a direct consequences of 4.4.5-4.4.6 and 4.4.8.

Lemma 4.6. Assume that 4.4.8 holds and let {;Z} be a solution of Eq.4.2.1.
Then the following statements are true: .
1. If for some N >0, yn_r. > (D +p)/q, then yni1 < 1;
If for some N >0, yy_r = D/(q — p), then yy11 = 1;
If for some N >0, yn_r < D/(q —p), then yni1 > 1;
If for some N >0, yn_x < 1, then yny11 > (D +p)/q;
If for some N >0, ynv_ < (D +p)/q, then yyi1 > (D +p)/q;

If for some N >0, (D+p)/q < yn—i <1, then (D+p)/q < yni1 < 1;

NS v L e

If for some N >0, (D+p)/q < yn—k,yn < 1, then (D+p)/q <y, <1,
for alln > N; Thats [1,(D+p)/q] is an invariant interval of Eq.4.2.1.

8. (D+p)/g<y<l,
Indeed: when D+ p < q
Dq+ Dp +p* < pqg+ Dp
Dq < pg+ Dg — Dp — p?
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Dq < (D +p)(q—p)
D D
< s
q—p q
Theorem 4.10. Assume that Eq.4.2.1 holds. Then every nontrivial and os-

cillatory solution of Eq.4.2.1 which lies in the interval [(D+p)/q, 1], oscillates
about y with semi-cycle of length at least k + 1.

Next we will analyze the semi-cycles of the solution {y,} under the

n=—=k
assumption that
D+p=gq (4.4.9)
In this case Eq.4.2.1 reduces to
D+, —
Ynp1 = ot Yn T PUn-k (4.4.10)

Yn + (D +p)yn—k
with the unique equilibrium point y = 1. Also Eqs.4.4.5-4.4.6 reduce to

D(l - yn—k)
1= 4411
Yt Y + (D + D)Yn—i ( )

and so the following results follow immediately.

Lemma 4.7. Let {y,} be a solution of Fq.4.4.10. Then the following state-

n=—=k
ments are true:

1. If for some N >0, yn_r < 1, then yyi+1 > 1;
2. If for some N >0, yv_r =1, then yyi1 = 1;

3. If for some N >0, yny_r > 1, then yy11 < 1;

Corollary 4.2. Let {y,} be a nontrivial solution of Eq.4.4.10. Then {y,}

n=—*k n=—*k
oscillates about the equiltbrium 1.

Now assume that D +p > ¢ and let {y,} be a solution which does not
n=—k

eventually lie in the interval I = [1,(D + p)/q]. Then one can see that the

solution oscillates relative to the interval I = [1, (D +p)/q|, essentially in the

following two ways:
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1. k+1 consecutive terms in ((D + p)/q,o0) are followed by k+1 consec-
utive terms in ((D + p)/q, o0) and so on. The solution never visits the
interval (1, (D + p)/q).

2. There exists exactly k terms in ((D + p)/q,o0), which is followed by
exactly k terms in (1, (D + p)/q), which is followed by exactly k terms
in (0,1), which is followed by exactly k terms in (1, (D +p)/q), which is
followed by exactly k terms in ((D +p)/q, 00), and so on. The solution
visits consecutively the intervals

-y (D+p)/q,00), (L, (D+p)/q),(0,1), (1, (D+p)/q), (D+p)/q;00), ...
in order with k terms per interval.

The situation is essentially the same relative to the interval [(D +p)/q, 1]
when D 4+ p < q.

4.5 The Global Stability

The next results are about the global stability for the positive equilibrium of
Eq.4.2.1.
Here are the theorems that we need.

Theorem 4.11. Consider the difference equation

Ynt1 = f(YnsYnr),n =0,1... (4.5.1)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f :la,b] x [a,b] — [a,b]

s a continuous function satisfying the following properties :

(a) f(z,y) is non-increasing in each of its arguments;

(b) If (m, M) € [a,b] x [a,b] is a solution of the system f(M,M) = m
and f(m,m) =M then m = M.

Then Eq.4.5.1 has a unique equilibrium 1 and every solution of Eq.4.5.1
converges to .

Theorem 4.12. Consider the difference equation

Yn+1 = f(yna yn—k)a n = 07 1 (452)
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where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that
f : [aab] X [avb] - [aab]

s a continuous function satisfying the following properties :

(a) f(x,y) is non-decreasing in x € [a,b] for each y € |a,b], and f(x,y)
is non-increasing in y € [a,b] for each x € [a,b];

(b) If (m, M) € [a,b] x [a,b] is a solution of the system f(m, M) =m and
f(M,;m) =M then m = M.

Then Eq.4.5.2 has a unique equilibrium y € [a,b] and every solution of
Eq.4.5.2 converges to y.

Now we will apply these theorems on our equation.

Theorem 4.13. Assume that D + p > q, then the positive equilibrium of
Eq.4.2.1 on the interval [1, %] 1s globally asymptotically stable.

Proof. This proof can be done easily depending on Theorem 4.11.
Assume that D + p > ¢ and consider the function

D +z+py
zy) = TP 453
o) = 22 (4.53)
First, note that f(x,y) on the interval [1, %] is nonincreasing in both of

its arguments x, y.
Second, let (m, M) € [a,b] X [a,b] is a solution of the system f(M, M) =m
and f(m,m) = M, then

D+ M+pM
e M+ qgM
and D
M= 2 Emdpm
m —+ qgm

but as we showed that our equation has no periodic-two solutions, then
the only solution is m = M.
So, the both conditions of Theorem 4.11 hold, so, If § is an equilibrium point
of Eq. 4.2.1, then every solution of Eq. 4.2.1 converges to ¥ in the interval
1, %]. As 7 is asymptotically stable, then it is globally asymptotically
stable on [1, %}.

[]
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Theorem 4.14. Assume that D + p < q, then the positive equilibrium of
Eq.4.2.1 on the interval [%, 1] is globally asymptotically stable.

Proof. This proof can be done easily depending on Theorem 4.12.
Assume that D + p < ¢ and consider the function

_ D+x+py

f(z,y) P

(4.5.4)

First, note that f(x,y) on the interval [?]

nonincreasing in y.
Second, let (m, M) € [a,b] X [a,b] is a solution of the system f(m, M) =m
and f(M,m) = M, then

, 1 is nondecreasing in x, and

D+m+pM
m=———
m + qM
and D
Voo P MApm
M + qm

but as we showed that our equation has no periodic-two solutions, then
the only solution is m = M.
So, the both conditions of Theorem 4.12 hold, so, If § is an equilibrium point
of Eq. 4.2.1, then every solution of Eq. 4.2.1 converges to ¥ in the interval
[%, 1]. As gy is asymptotically stable, then it is globally asymptotically
stable on [%, 1].
O

4.6 Numerical Discussion

Here in this section, we will study the global stability of our equation nu-
merically based on some data and figures that we can get using MATLAB 6.5.

Examplel:
Assume that Equation 4.1.1 holds, take k = 2, a =1, 8 =2, v = 1,
B =2, C = 3. So the equation will be reduced to the following:
1422, +x,-9

n g ; :O7 ]_7 461
Tntl 2x, + 31, o " ( )
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We assumed that the initial points {x_o, z_1, 20} all to be € (0, 00) and
are {0.2,0.5,1} .

The change of variable z,, = %yn changes the equation into the equation

D+ Yo + Py
gy = — Y T Pn=2 n=01,.. (4.6.2)
yn+qyn—2

whereD:%:0.5,p:%:0.5,q:%:1.5.

then the theoretical positive equilibrium point will be § = 0.83851648071345.

=

1
0 20 40 60 80 100 120

Figure 4.1: The Behavior of the Equilibrium point of the Equation v, =
0.54+yn+0.5yn—2
yn+1~5yn72

By theory, the equilibrium point 7 is globally asymptotically stable, and
it is obvious from Figure4.1 that it is globally asymptotically stable, as we
have shown theoretically.Lets take another example now.

Example2:
Assume that Equation 4.1.1 holds, take k = 4, a =3, 8 =1, v = 2,
B =4, C'=5. So the equation will be reduced to the following:
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34+ 2, + 22,4
4z, + Dxp_4a

Tpp1 = , n=0,1,.. (4.6.3)

We assumed that the initial points {x_4, z_3,...,20} all to be € (0, 00)
and are {2,1.4,1.3,0.9,1.5} .

The change of variable x,, = %yn changes the equation into the equation

D +vy, n—
Yn + qYn—a

WhereD:%:&p:%:2,q:%:1.25.

then the theoretical positive equilibrium point will be § = 2.

45

351 q

1
20 40 [=in] 80 100 120

Figure 4.2: The Behavior of the Equilibrium point of the Equation v, =
3+yn+2yn—a
yn+1-25yn—4

By theory, the equilibrium point § = 2 is globally asymptotically stable,

and it is obvious from Figure4.2 that it is globally asymptotically stable, as
we have shown theoretically.
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Here, it is obvious that from Figure4.2 that our equilibrium point is
around the point 2.

Example3:
Assume that Equation 4.1.1 holds, take k =2, a =1, g =1, v = 1,
B =1, C'=2. So the equation will be reduced to the following:

1 + Ty + Tho

=0,1,.. 4.6.5
Tn + 2xn72 " o ( )

Tnt1 =

We assumed that the initial points {x_o, x_1,20} all to be € (0,00) and
are {2, 8,3} .

The change of variable x,, = %yn changes the equation into the equation

D n —
yn+qynf2
WhereD:%zl,p:%zl,q:%:Z

then the theoretical positive equilibrium point will be § = 1.

Its obvious from figure that the equilibrium point y = 1 is globally asymp-
totically stable.
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02k b

1
0 20 40 [=in] 80 100 120

Figure 4.3: The Behavior of the Equilibrium point of the Equation v, =
1+yn+yn72
yn+2yn—2
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Chapter 5

Global Asymptotic Stability of
the Higher Order Equation

_axptbr,
In+1 = A+Bzx,,_;

5.1 Introduction

Our goal in this chapter is to study the rational higher order difference equa-

tion
ATy, + bx,_p

Tl = A+ Bx,_;

where a, b, A, B are all positive real numbers, £ > 1 is a positive integer, and
the initial conditions x_x, x_g11, ..., To are nonnegative real numbers.

Here, we recall some basic notations and definitions and results that was
discussed in Part One.

(5.1.1)

Definition 5.1. The equilibrium point y of the equation

Ynt1 = f(Yns Yn—1, s Yn—k),n = 0,1, .. (5.1.2)

1s the point that satisfies the condition

g = f(g7y7 "'7?)'

Definition 5.2. Let § be an equilibrium point of Eq.5.1.2. Then the equilib-
rium point y is called
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1. locally stable if for every e > 0 there exists 0 > 0 such that for all
Ytor Y=kt 1, -y Yo € L with [y — Yl + [y—pt1 — Y|+ ... + [yo — | <6, we
have |y, — y| < € for alln > —k,

2. locally asymptotically stable if it is locally stable and if there exists v > 0
such that for all y_g,y_gs1,-, Yo € T with |y_x — G|+ |y_ps1 — G|+ ... +
lyo — 4| < 7y, we have limy,_ooYn = 7.

3. a global attractor if for ally_k, y_g+1, ..., Yo € I, we have lim,_ooyn = 4.

4. globally asymptotically stable iof i 1s locally stable and i s a global at-
tractor.

Theorem 5.1. (Linearized Stability).
Consider the difference equation

Ynt+1 = DYn + QYn—k; n=20,1,..

(a) If both roots of the equation have absolute values less than one, then
the equilibrium y of the equation is locally asymptotically stable.

(b)If at least one of the roots of the equation has an absolute value greater
than one, then y is unstable .

Theorem 5.2. Assume that a,b are real numbers and k € {1,2,...}. Then
la| +|b] < 1 (5.1.3)

is a sufficient condition for the asymptotic stability of the difference equation
Yn + @Ypn— + by =0, n=0,1,.... (5.1.4)

Suppose in addition that one of the following two cases holds.

(a) k odd and b < 0.

(b) k even and ab < 0.

Then 5.1.3 is also a necessary condition for the asymptotic stability of Fq.5.1.4.

Theorem 5.3. Assume that a,b are real numbers. Then |a] <b+1<2 isa
necessary and sufficient condition for the asymptotic stability of the difference
equation

Yn + @Y + by, =0, n=0,1,.... (5.1.5)
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Theorem 5.4. Consider the difference equation

k
Tpi1 = Z Oxn_iFi(:)sn, Tpt1yeoy Tp_p)n = 0,1, ... (5.1.6)
with initial conditions x_k, T _gy1, ....,To € [0,00), where
1. ke{1,2,...};

o, By, Fy € C0,00)" 1 [0,1)];
. Fo, Fy, ..., F}, are nonincreasing in each argument;

2

3

4. ZfZOF,-(yO,yl, yr) < 1 for all (yo,y1, ., ye) € (0,1)F;
5. Fo(y,y,....,y) >0 for ally > 0.

Then, & = 0 is globally asymptotically stable for such equation.

Theorem 5.5. Consider the difference equation

Ynit1 = f(Yns Yn-r);n = 0,1, ... (5.1.7)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] X [a,b] — [a,b]
s a continuous function satisfying the following properties:
(a) f(u,v) is nondecreasing in u and nondecreasing in v.
(b) If (m, M) € [a,b] x [a,b] is a solution of the system
m = f(m,m) and M = f(M, M),

then m = M. Then Eq.5.1.7 has a unique equilibrium i and every solu-
tion of Eq.5.1.7 converges to y.

Theorem 5.6. Consider the difference equation

Ynit1 = f(Yns Yn-r);n = 0,1, ... (5.1.8)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] X [a,b] — [a,b]

s a continuous function satisfying the following properties:
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(a) f(u,v) is nondecreasing in u and nonincreasing in v.
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
m = f(m, M) and M = f(M,m),

then m = M. Then Eq.5.1.8 has a unique equilibrium iy and every solu-
tion of Fq.5.1.8 converges to y.

5.2 The Equilibrium Points

Next, we investigate the equilibrium points of our rational difference equa-
tion,

ax, + bx,_p

Tprl = —————

where a, b, A, B are all positive real numbers, £ > 1 is a positive integer, and
the initial conditions x_x, x g1, ..., o are nonnegative real numbers.

The equilibrium points of Eq.5.2.1 are the positive solutions of the equa-
tion

(5.2.1)

aZ + bx
A+ Bz
(a+b)x
A+ Bz

Then,
T(A+ BZ) = (a+b)Z
T(A+Bx—a—-b)=0
So, T = 0 is always an equilibrium point of Eq.5.2.1, and when a+b > A,

- . . _ a+b—A
Eq.5.2.1 has another positive equilibrium point , T = “==.

To find the linearization of our problem, consider

au + bv
A+ Bv

/ (u7v) =

now,
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ﬁ_ a
ou A+ Bv

of  (A+ Bv)b— (au+bv)B)
o (A+ Bv)?

SO

af Ab — au

v (A+ Buv)?

Hence, for z = 0,

aof _ a
%(x, z) = 1
also
af b
ov(z,z) A
So, the linearized equation about the zero equilibria is

a b
Zn+1 = 3 <”n +

A Zzn—k

and its characteristic equation is

b
Aot Dk 0
A A 0

For the positive equilibria z = %2=4,

% (2,5) = 2
ou T & a+b
also

of A—a

oz, z)  a+b

So, the linearized equation about the positive equilibria is

a +A—a
Zn Zp—
a+b at+bp "k

Zn+l =

60
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and its characteristic equation is

g1 0 _Aza 5.2.5
a+b a+b (5.2.5)

5.3 The Local Stability of the Equilibrium
Points

5.3.1 The Local Stability of the Zero Equilibrium Point

Our equation posses the equilibrium point # = 0 always in all of the following
cases:

l.a+b< A
2. a+b=A
3.a+b>A

We will study the stability of £ = 0 in all of the cases.

The Casea+b< A

Theorem 5.7. The zero equilibrium point & = 0 will be locally asymptotically
stable when a + b < A.

Proof. The characteristic equation of the zero equilibrium point is

b
SN2 20 (5.3.1)

k+1
A A A

where a,b,A,B are all positive real numbers.

By applying Theorem 5.2, and as we assume a + b < A, then it is easy
then to show that £ = 0 is asymptotically equilibrium point.
This completes the proof. n
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The case a+b= A

Theorem 5.8. The zero equilibrium point T = 0 will be locally stable when
a+b=A.

Proof. Our difference equation is

ax, + br,_i

Ln+1 A+ Bz, ., ( )

Let {,,}5° _, be a nonnegative solution of our equation with the initial points
T foyennens , To are to be nonnegative.
Let € > 0 and

|2k —Z| <€y |0 — T < €

So,and since T = 0,
0<x <e,...... ,0<29<e€

Then, when a +b= A

axry + br_;
r = —
! A —|— Bi_k
axy + br_y
< -
A
(a+Db)e
<
A
< €

So, 0 < x; < €, and by Mathematical Induction we get
0<z,<eVn>—k

Then,
|z, —Z| < €,Vn > —k

By definition, then z = 0 is a locally stable equilibrium point when a+b = A.
This completes the proof. O

The Casea+b> A

Theorem 5.9. The zero equilibrium point T = 0 is unstable when a+b > A
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Proof. The characteristic polynomial of the zero equilibrium point

b
A) = AR Sy D
7o) D2
is a continuous function for all A.
For A =1,
a b A—(a+Vb)
NHN=1————=

and since a +b > A, f(1) < 0.

But also, as A — oo
/\lim f(A)=00>0

(5.3.3)

By Roll’s Theorem, we can say that f(A) has a zero solution \g, where

f()\o) =0and )\ € (1,00)

Then there exists a solution \g, where A\ lies outside the unitary disk.

By Theorem 5.1, £ = 0 is unstable equilibrium point when a + b > A.

This completes the proof.

O

5.3.2 The Local Stability of the Positive Equilibria

. o . 7. . = a+b_A
Our equation posses a positive equilibrium r = *“=

a+b> A. The linearized equation of this equilibrium point is
a n A—a
Zn Zn—
at+b" " a+p "

Zn+l =

and its characteristic equation is

a+b a+b

Lets apply Theorem 5.2 under the both cases A > a and A < a.

63

under the condition

(5.3.4)

(5.3.5)



(1) The case A > a:

a A—al  a+]A—d
a+bl |a+b| a+b
_at+A-a
B a+b
A
 a+b
Then the necessary condition
A <1
a+b
can be written as
a<A<a+bd
(2) The case A < a:
a A—a|l  a+]A—d
a+b a+b| a+b
_ata—A
B a+b
20— A
a+b
Then the necessary condition
2a — A
i |
a+b

can be written as
a—b<A<a

If we combine the both cases, we get the following theorem.

Theorem 5.10. If k is odd or if k is even, the unique positive equilibrium
point T = % will be locally asymptotically stable if and only if a — b <
A<a+bd.
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5.4 The periodic Two Solution

We study here the periodic solution of our equation,

ax,, + bx,_i

0.4.1
A + Bl’n_k ( )

Tnt1 =

Lets assume that the two periodic nonnegative solution of our equation
will be in the form

et w? ¢7 w? ¢7 et
If k is odd then,
Tyl = Tpk (5.4.2)
By so we get,
_ap+ by
P = AT Bu (5.4.3)
a) + bo
= 4.4
°= A+ Bo (5:4.4)

This yields to
Y(A+b+ ByY) = a¢p

O(A+b+ Bo) = ap)

By subtract the second equation from the first we get the equation

(A+a+0b)( — ¢)+ B(* —¢*) =0 (5.4.5)

(Y —¢)A+a+b+BW+¢)) =0 (5.4.6)

Then, either ¢ = ¢ or (Y +¢) = —% which is impossible since both ¢
and ¢ are nonnegative. Then in this case there is no two periodic nonnegative
solution for our equation.

Lets now take k to be even and see what we will get.

If k is even then,

Ty = Tp_i (5.4.7)
So, b+ b
ap +
Y= B (5.4.8)



) + b

¢ = AT Bu (5.4.9)
We get that
YA+ BY) = (a+b)y
V(A+ Bo) = (a+b)¢
By subtract both equations we get
(p—vU)(A+a+b)=0 (5.4.10)

Then either ¢ =1 or A = —(a+b) which i also impossible. Then also in
this case there exists no two periodic nonnegative solution for our equation.
We can conclude the following thus.

Theorem 5.11. There exists no two periodic nonnegative solution for the

equation

axy, + bx,_p
Tpg] = —————
1 A+ Bx,_;

under any condition.

5.5 The Global Stability

Here also we will consider the two equilibrium points separately.

5.5.1 The Global Stability of the Zero Equilibria

We study the global stability of the zero equilibrium point under the condi-
tion a + b < A.

Our equation
ax, + bx,_p

5.5.1
A+ Bx,_; ( )

Tp4+1 =

can be written as

a b
Tn+1 = A+ BJTn_kxn + A—{—Bl'n_kxn_k

(5.5.2)

Lets apply Theorem 5.4 now. We can consider Fj = #M and Fi,...[,_1 =

0 and Fj = m. Then it is obvious that that theorem could be applied
so easily since:
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ke {l,2,...};
. Fy, Fy € C[[0,00)"",]0,1)];

[\]

3. Fy, Fj are nonincreasing in each argument;

4. Fy+ F, = A+‘§;b_k, and since a +b < A,

a+b
A+ Bz, _
a+b

o+ F, =

<1
< 1

5. Fo(y,y,...,y) = g5, > 0forally > 0.

We can conclude now

Theorem 5.12. The zero equilibrium point * = 0 s globally asymptotically

stable for the equation
ax, + br,_i

Tptl =
1 A+ Bz,
under the condition a +b < A.

5.5.2 The Global Stability of the Positive Equilibria

We study the global stability of the positive equilibria under the condition
a+b> A
Our equation as we said before could be written as

a b
ntl = n n— 5.5.3
Tnt1 A—l—BQ?n,k‘x + A—FBiL‘n,kx b ( )
So, take
a
= b4

f(u,v) is always increasing in the argument u. For v, f(u,v) can either
being increasing or decreasing in such argument.
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First, consider the case when f(u,v) is increasing in the argument v. We
will apply now Theorem 5.5, we will show that m=M where,

m= f(m,m) = (/Oll—t—g:nl (5.5.5)
M:ﬂMMﬁéE%% (5.5.6)

So we get that,
m(A+ Bm —(a+b))=0

M(A+BM —(a+b)=0
and since we are looking for the positive solution we get that,

_A
m:M:E%r— (5.5.7)

Then, m = % is a global attractor. For this case we can say that the
positive equilibrium point & = % is globally asymptotically stable.

Second, consider the case when f(u,v) is decreasing in the argument v.
We will apply Theorem 5.6, we will show that m=M where,

am + bM
aM + bm
Suppose that m = % and show that M=m.

As we proved , our equation possess no periodic two solution under any
condition, by so we can conclude easily that the only solution foe such system

is that
at+b—A

B
So positive equilibrium point z = “+%_A is globally asymptotically stable.

M:m:

68



at+b—A
B

Theorem 5.13. The positive equilibria ¥ = 15 a globally asymptoti-

cally stable point of the equation

ax, + bx,_x
Tpp1 = ———
1 A+ Bz,

under the condition a +b > A.

5.6 Numerical Discussion

In this section, we investigate some examples that include all the case that
the two equilibrium points are globally asymptotically stable by theory in
order to illustrate the results we got. The examples were carried on MAT-
LAB 6.5.

Examplel:
Assume that Equation 5.1.1 holds, take k = 2, A =4, B =3, a =1,
b = 2. So the equation will be reduced to the following;:

Tp + 21['”_2

2.6.1
4 + 31‘1@—2 ( )

Tnt+1 =
In this case, a +b = 3 < A = 4 We assumed that the initial points
T_9,x_1,x9 € [0,00) are to be respectively {0.7,0,1.2}.
By theory, the zero equilibrium point under the condition a + b < A is
globally asymptotically stable as it is also obvious from Figure5.1.

Example2:
Assume that Equation 5.1.1 holds, take k = 3, A =6, B = 2, a = 4,
b= 2. So the equation will be reduced to the following:

4II§'n -+ 21'71,3

5.6.2
6 + 2.Tn_3 ( )

Tp1 =

In this case, a+b = 6 = A We assumed that the initial points x_3,z_o,x_1,2¢ €
[0,00) are to be respectively {0.5,1.2,1.9,2.4}.

By theory, the zero equilibrium point under the condition a + b = A is
globally asymptotically stable as it is also obvious from Figure5.2.
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Figure 5.1: The Behavior of the Zero Equilibrium Point of z, ., = %Tx;
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Figure 5.2: The Behavior of the Zero Equilibrium Point of z,,; = EJ;T’E;
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Example3:

Assume that Equation 5.1.1 holds, take k = 4, A =3, B=5,a =1,
b = 5. So the equation will be reduced to the following

.  Tp+OTpy
T S B,y

(5.6.3)
In this case, a +b = 6 > A = 3 We assumed that the initial points

T_4,T_3,T_9,T_1,%9 € [0,00) are to be respectively {0,0.4,1,0.8,1.3}. Here
the positive equilibrium point will be

. a+b-—A
r= —

3
=-=0.6
B )
14
12} 1
1 - 4
0at 1
£
s
06t 1
04t
02
D 1 1 1 1 1
0 20 40 B0 a0 100
n

120
Tpn+5Tp_4

Figure 5.3: The Behavior of the Positive Equilibrium Point of z,,; =
3+5Tn 4

Figure5.3.

By theory, the positive equilibrium point z = 0.6 under the condition
a+ b > A should be globally asymptotically stable as it is also obvious from

So, all what we have to say now is that our theoretical discussion was
satisfied with the data we get from our numerical discussion. So we have
correctly illustrated our study for the equation z,,; =

ary+bx,
A—l—B(En,k :
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Chapter 6

On the Dynamics of the
Rational Difference Equation

A B
Tn = =2+ —2—
n Lpn—k Ln—3k

6.1 Introduction

In [2] the periodicity of the difference equation

Ynr = A+ L p=0,1,... (6.1.1)

Yn—k

where y_g, ..., y_1, yo, A € (0,00) and k € {2,3,4,...} was studied.
It was shown in [3] that for the case k = 1 the positive equilibrium
y =14 C of Eq.6.1.1 is globally asymptotically stable for C' > 1. In [2], the
periodicity of Eq.6.1.1 was investigated.
In [4] the equation
A N B

)
Tn—k Tn—3k

Ty = (6.1.2)
was studied. The local and global stability was investigated for such an
equation, also the semi-cycles analysis was done. It was proved that the
equilibrium point of such and equation y = 1 4 C' is globally asymptotically
stable.

In this chapter, other related results of asymptotic, periodicity, and semi-
cycles of a more general formula are investigated.
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We list below some definitions and basic results that will be needed in
this chapter.

Definition 6.1. We say that a solution {y,}>> . of a difference equation
Ynt1 = fYns Yn—1, -, Yn_k) 1S periodic if there exists a positive integer p such
that Yn1p = Yn. The smallest such positive integer p is called the prime period
of the solution of the difference equation.

Definition 6.2. The equilibrium point y of the equation

Yns1 = JWnsYUn—1, o, Yn—k),n = 0,1, ... (6.1.3)

is the point that satisfies the condition

g = f(g7y7 ""g)'

Definition 6.3. Let y be an equilibrium point of Eq.6.1.3. Then the equilib-
rium point i is called

1. locally stable if for every e > 0 there exists 6 > 0 such that for all
Yk Ykt ds oy Yo € 1 with ly— — Y| + |Y—gt1 — Y| + .. + |yo — Y| < 0, we
have |y, — gy| < € for all n > —k,

2. locally asymptotically stable if it is locally stable and if there exists v > 0
such that for all y_ g, y_ts1, .- Y0 € T with ly_r — 4|+ |y—xr1 —g| + ...+
lyo — g| < 7y, we have lim,_ocyn = 7.

3. a global attractor if for ally_k, y_g+1, ..., Yo € I, we have lim,_ooyn = 4.

4. globally asymptotically stable iof iy 1s locally stable and i s a global at-

tractor.
In [4] the change of variables y, = “*2=% changes the equation
A B
Ty = )
Tn—k Tn—3k
into the form
Yn—k
Yn—2k

We will try now to show this.
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Let y,, = =*=2=£ then we can get easily that z, = i—yfk. Substituting this
in our equation we get

By, A B
= +
Tn—k Tn—k Tn—3k

Multiplying the equation by z,,_ we get

By, = A+ B2k

Tn—3k
But from our assumption we can get that
Tn—kTn—2k Byn—k
Yn—k = T SO Tpn—k =
Tp—2k
Also
Tn—2kLn—3k Byn o
Yn—2k = ——F —— SO Tp_gp =
B Tp—2k
From so we can conclude that
Tn—k _ Yn—k
Tp—3k Yn—2k
Substituting back in our equation to get
Yn = é + Yn—k
" B Yn—2k
which can be written Y
Yn—2k

where C' = % >0 ,Y_2k+1, Y—2k+2,---» Yo € (0,00) and k € {1,2,3,4,...}.

Let ¢ be the equilibrium point of (6.1.4), then

j=C+ (6.1.5)

Q|

so we can conclude that

N
I
—_
+
Q
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6.2 The Local Stability of the Equilibrium
Point

We want now to find the linearized equation of Eq.6.1.4 about the positive
equilibrium y =1+ C.

Let f(u,v) = C'+ %, then

of 1
ou v
af —u
du 2
then
of . . 1 1
0ynfk( 7y)*§*1+—0
of . . -y -1 -1
G9)=—g=—=—""

O Y T Ty T 14 C

The linearized difference equation will become

1 1
Zn =2k (6.2.1)

o —an S —
1+0™F 1+
which can be written as

1
Zn — T =%n—k t

1
=0 6.2.2
1+C 1+ o2 (6.2.2)

Lemma 6.1. [6][5][7] Assume that a,b are real numbers and k € {1,2,...}.
Then

la] + b < 1 (6.2.3)

15 a sufficient condition for the asymptotic stability of the difference equation

Yn + QYp_r + by =0, n=0,1,.... (6.2.4)

Suppose in addition that one of the following two cases holds.

(a) k odd and b < 0.
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(b) k even and ab < 0.
Then 6.2.3 1s also a necessary condition for the asymptotic stability of Fq.6.2.4.

Lemma 6.2. [6/[5][7] Assume that a,b are real numbers. Then

la| <b+1<2

1s a necessary and sufficient condition for the asymptotic stability of the
difference equation

Yn + Y + by =0, n=0,1,.... (6.2.5)

The above two lemmas prove that for all values of C' > 1, the equilibrium
point of 6.1.4 is locally asymptotically stable.

Lemma 6.3. (/1/,/8]) The difference equation

Yn — Y + by =0, n=0,1,.... (6.2.6)
is asymptotically stable iff 0 < |b] < 1/2 cos(kk—L)

We can conclude now this lemma.

Lemma 6.4. Consider Fq.6.1.4. If C' > 2COS(kk—+7T2) — 1 then the unique
positive equilibrium y = 1 + C' of Eq.6.1.4 is locally asymptotically stable,

while if C' < 2005(%) — 1 then the positive equilibrium is unstable.

Proof. The proof is a direct consequence of the conditions in Lemma 6.3.
For the Linearized equation

If C > 2003(%) — 1 then
km
C+1 >2(:os(k+2)
So
0< ! < !
1+C 2cos(kk—L)

Now from Lemma 6.3 we can conclude easily that the equilibrium point
y = 1+ C' is asymptotically stable.

By the same technique we can show that if C' < 2008(:—;) — 1 then
y = 1+ C is unstable. O
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In [4], it was based on the following theorem in order to proof that the
positive equilibrium oint ¥y = 1 + C' is asymptotically stable.

Theorem 6.1. [}/ Consider the equation

1 1

2— =
s L s

0

1. If both of the quadratic roots of the above equation lie in open unit disk,
then the equilibrium point y of Eq 6.1.4 is locally asymptotically stable.

2. If at least one root of the above equation has absolute value greater than
one, then the equilibrium point iy of Eq 6.1.4 is unstable.

3. A necessary and sufficient condition for both roots of the above equation
to lie inside the open unit disk is

pl<l—qg<2

In this case the locally asymptotically stable equilibrium y of Eq 6.1.41s
also called a sink.

4. A necessary and sufficient condition for both roots of the above equation
to have absolute value greater than one is

gl >1  and  |p[ <|1—q|.
In this case the equilibrium point iy of Eq 6.1.4is called a repeller.

5. A necessary and sufficient condition for one root of the above equation
to have absolute value less than one and the other root to have absolute
value greater than one is

p’+4¢>0 and |p|>|1—q|.

In this case the unstable equilibrium point §y of FEq 6.1.4 is called a
saddle point.

The following result is one of the results in [4] but not proved, here we
will prove it.

Theorem 6.2. The equilibrium point y = 14+C' of Eq 6.1.4 is asymptotically
stable iff C'>1.
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Proof. Lets be back to our Linearized equation around y =1+ C

1

Zn — ———=Zn_k T+
1+Cc""

1
Zn—or = 0
1407
The characteristic equation here will be

1
1+C

1

AF =
+1+C

)\2]6

0 (6.2.7)

taking § = A\* will transform this equation into

1 1
2
— 0 =0 6.2.8
1rc’ "1t0 (6.2.8)
for this equation we have p = —HLC and ¢ = HLC If we assume that
C > 1 then we get that
1 C
<
1+4C 1+C
but after doing our computations we get that
C 1
1=13¢ m P=17¢
then putting all together to get that
1 C

< <
1+C 1+C -

So by the above theorem, we get that the two roots lie inside the open uni-
tary disk, for so || < 1.
But since § = A\¥ this means that || < 1 implies that |\| < 1.

And from so we can conclude easily that C' > 1 is both necessary and
sufficient condition for the positive equilibrium point y = 1+ C' to be asymp-
totically stable.

The proof is complete.
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6.3 Analysis Of The Global Stability, And
The Semi-Cycles Of Solutions

In this section we will show that every positive solution of Eq.6.1.4 is globally
asymptotically stable and thus we get as a corollary the boundedness and
persistence of solutions.

Definition 6.4. We say that a solution {y,} of a difference equation y, 1 =
FWns Yn1, -y Yn—k) 18 bounded and persists if there exist positive constants P
and () such that

P<uz,<@Q for n=-1,0,....

Definition 6.5. A positive semi-cycle of a solution {y,} of Fq.6.1.3 con-
sists of a “string” of terms {yi, Yis1,- -, Ym}, all greater than or equal to the
equilibrium i, with [ > —k and m < oo and such that

either | = —k, orl > —kand y;,_1 < ¥y

and
either m = oo, or m < oo and Yy, 41 < Y.

Definition 6.6. A negative semi-cycle of a solution {y,} of E£q.6.1.3 consists
of a “string” of terms {y;, Yis1,- -, Ym}, all less than the equilibrium g, with
[ > —k and m < oo and such that

either | = —k, orl > —kandy,_1 > 7

and
either m = oo, or m < oo and Y11 > ¥.

The first semi-cycle of a solution starts with the term y_j; and is positive
if y_ > y and negative if y_j < ¥.

Definition 6.7. A solution {y,} of Eq.6.1.3 is called nonoscillatory if there
exists N > —k such that y, >y for alln > N orvy, <y for alln > N.
And a solution {y,} is called oscillatory if it is not nonoscillatory.

Now we will present one of our results on the Eq.6.1.4.

Theorem 6.3. Eq.6.1.4 has no solution of prime period 2 if C =1 or k is
even.
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Proof. Assume that our solution is of prime period p = 2 and takes the form
@ O WL

If k is even then ® = ¥ = (' + 1, this leads to a contradiction with our
assumption.So, in this case p # 2.

Ifkisoddthenq):C—l—%and\IJ:C’+%.
It follows that
=0 -C

and
=U—-C

S e | e

Multiplying the last two equations, we get
(v-CO)o-0C)=1

Thus,
S#Cand ¥ #C

Moreover, we conclude that

1
v = C
o0
But on the other hand, we have
1 1 1
D vz P2
Therefore, we get
1 1
-1
v * )
Solving for ¥, we get
)
V=
1+
but as ) o I o
—=1-— d —=1——
v o " U
we get that
C C
l——4+1—==1
) * v



which leads to ] 1

2-C(=+ =

(\I’ + )

but as % + % = 1 we get that C' = 1. By so, in order to have a solution of
period p = 2, C must equal 1.

=1

We can conclude that the periodic solution of prime period p = 2 takes

P P
the form ceey q), ey CI)7 Trgr

This completes the proof.
O

Now we will study the global asymptotic stability for the general case
ke{l,2,3,4,..}.

Theorem 6.4. [9] Consider the difference equation

Y1 = fUns Yn—r);n =0,1,... (6.3.1)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] X [a,b] — [a,b]
is a continuous function satisfying the following properties:
(a) f(u,v) is nonincreasing in u and nondecreasing in v.
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
m = f(M,m) and M = f(m, M),

then m = M. Then Eq.6.3.1 has a unique equilibrium y and every solu-
tion of Fq.6.3.1 converges to y.

Theorem 6.5. [1] Consider the difference equation

Ynt1 = f(WYns Yn—r);n =10,1, ... (6.3.2)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that
f:a,b] x [a,b] — |a, b

1 a continuous function satisfying the following properties:
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(a) f(u,v) is nonincreasing in u and nonincreaing in v.
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
m = F(M, M) and M = f(m,m),

then m = M. Then Eq.6.53.2 has a unique equilibrium i and every solu-
tion of Fq.6.3.2 converges to .

Here is another result from [4], but we will present it in a different way.

Lemma 6.5. Let C' > 1. Then every solution of Fq.6.1.4 is bounded and
persists.

Proof. For n > 3k, the following inequality hold

1+C
C<y,<C+——
Yn C
since, our difference equation was become
Yn—2k
SO y
C =y, — n—k
Yn—2k

so we can conclude
C<y, foralln>0

Now, from the equation we get

Ynan = C + Yn
Yn—k
but also from our equation we get
n C 1
Yn  _ N

Yn—k Yn—k Yn—2k
But since y, > C for all n > 0 ,then for all n > 2k vy, > C and
Yn—2t > C, by so

Yn
Yn—k

_C, 1 1 14C
c'cT e C
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then
Yn 1+C

ok = C C+——
Ynyk = C + <+C

Yn—k
we get by the end that

1
C<yn+k<C++TC for all n > 2k

So
1
C<yn<C++TC for all n > 3k
This completes the proof. O
Here is another own result for the Eq.6.1.4.

Theorem 6.6. Let C' > 0. Then the unique positive equilibrium y = 14+C' of
FEq.6.1.1 is a global attractor.

Proof. Define f(u,v) = C + u/v on the interval [C,C + %] Then the
result follows directly from Theorem 6.5.
Since f is nonincreasing in both u and v then

M
m=f(M,M)=C+5;=C+]1

and m
M:f(m,m):C'—I—E:CHLl

Then it is shown that m = M, so we can conclude from Theorem 6.5 that
y =1+ C'is a global attractor. O

Theorem 6.7. Let C > 1. Then the unique positive equilibrium y = C' + 1
of Eq.6.1.4 is globally asymptotically stable.

Proof. Let

I = lim inf {y,} > 0and S = lim sup {y,} < occ.
Then it is easy to see from Eq.(6.1.4) that

I
SSC’—}—?andIzC—I—g.
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Thus
IS<ClI+SandIS>CS+1.

From here it follows that
CS+1<CI+ 85,

or

(C-1S<(C-1I.
Thus if C' > 1 then S < I, and the result follows.

Another proof can be held easily, We have shown that If C' > 1 then
the equilibrium of point ¥ = 1+ C of Eq 6.1.4 is asymptotically stable,
and we also showed in the last theorem that for all C > 0, y =14+ C is a
global attractor, then we get that for C' > 1, then § = 1 + C is a globally
asymptotically stable equilibrium point of Eq 6.1.4. O

In [4], it was showed that the solution {y,} of Eq 6.1.2 oscillates about
the equilibrium y with a semi-cycle of length wt most 3k.

Theorem 6.8. [}/ Let {y,} be a nontrivial solution of Eq.6.1.4, C" > 1,
k > 1. Then every semi-cycle has at most 3k terms.

Proof. Assume that we have a positive semicycle with yy > y to be its first
term.
If yvix < yny then

yN+2k:O+yN+k<C+y—N:O+1:g
YN YN

We conclude that the theorem holds true in this case.

If yvix > yn then

yN+2k=C+yN+kZC'+y—NZZJ

YN YN
But as
Ynson = C + YN+k < O+ yN_+k
YN Y
YN+k

< C+
- 1+C
< YNtk
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then

ZJN+3k:C+M < O 4 INEh
YN+k YN=k
< C+1
<y
Also in this case the theorem hold true.
This completes the proof. n

The following result was not studied in [4].

Theorem 6.9. Let k be odd and let

Ykt 1> Y=2k43: - Y=1 S C+ 1, 0> y_opi0, Y—opqa, ..., Yo > C + 1

Then, the solution {yn}> o1 is oscillatory and every semi-cycle has length
at most 2k. Moreover, every term of {yn}o> o1 is strictly greater than C'+1
with the possible exception of the first 2k semi-cycles, no term of {y,}5°, is
ever equal to C' + 1.

Proof. Just notice that, for any n > 1, we can get from Eq.6.1.4 that

Yon = C+ Yon—k
Yon—2k
but since k is odd, then 2n — k is also odd and 2n — 2k is even. So by the

assumption we get
Yon—k

Yo = C' + <C+1
Yon—2k
Also,
Yon—2k+1

but since k is odd, then 2n — k4 1 is even and 2n — 2k 4 1 is odd. So by the
assumption we get

Yon+1 = C + —an—k+1 >CH+1
Yon—2k+1

The result then follows. O
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6.4 The Periodic Behavior of The Solution

Here we will show that the equilibrium point of the solution of Eq.6.1.2 is
periodic of period k. From Eq.6.1.2, we obtain

A B
Ton—k Ton—3k
and 4 B
Top_k = + (6.4.2)
Lon—2k Lon—4k
and 4 B
Ton—3k — -+ (643)

Lon—4k Lon—6k
So it follows that

A B

T2n—2k T2n—4k Ton—4k T2n—6k

Based on what was done in [4], we obtain the following statements which
outline properties of Eq.6.1.2. Their proofs are based on Eq.6.4.4.

Lemma 6.6. [/ Let {x,} be a positive solution of Eq.6.1.2. Then the fol-
lowing statements hold:

1. For N >0, let
my = Min(Ton—ak, Tan—2k; T2N)

My = Max(zan_ak, Tan—2k, Tan)

Then my < Tontoar < My forl>1

: Tonk+i _ < _
2. lim, o 1 fori=0,1,...,k—1

Proof. 1. Define the function f

f(‘/L‘7y7 Z) -

8 [
+

< |
_I_

< [
+ |

|
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It is obvious that f is increasing in x, y, and z. So

A B
TaN+2k = 3 5 T i

T2N T2N -2k T2N —2k T2N —4k

but from the definition of My, we get

Now by Mathematical Induction we can prove easily that
Tontak < My

We will do the same but for my,

A
TaN42k = —3 5 T 3 B
ToN TON -2k TON —2k TON —4k

but from the definition of my, we get

A B

4B
mN mN

ToNy2k = =my

B
my mpn
Now by Mathematical Induction we can prove easily that

ToN+olk = MN
It is proved now that

my < Tonior < My foralll>1

. It was shown that the sequence {y,} converges to the equilibrium

point,so
- Tonlon—k
Yon = B
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converges to the equilibrium.

We can conclude that {yonr+i} and {yenk—x+i} also converges to the

equilibrium. But
Yonk+i  Tonk+i

Yonk—k+i T(2n—2)k+i

As Y
. 2nk+i
lim —2Z2
n—=00 Yonk—k+i
Then
. Tonk+i
lim ————— =1

n—=00 T(2n—2)k+i

This completes the proof.

O

Lemma 6.7. [4] There exist positive numbers S and I such that I < z,, < S

for alln > 0.

Proof. This proof can be done so easily as similar as the previous proof of

Lemma 6.6(1).
From Eq.6.1.2, we obtain

A B
Ty = +
Tn—k Tn—3k
and so
A B

Tn—k — +

Tn—2k Tn—4k
So it follows that
In = —4 5 T 2 B
Tn—2k Tn—4k Tn—4k Tn—6k

For n > 0, let
my = Min<xn72ka Tn—4k, xn76k)

M, = MCLZII(LU”,QIC, Tn—4k, xn76k)

and take
S =sup M,

and
I =infm,
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Then we can show easily that
I<m(n) <z, <M(n)<S
This completes the proof. O

Theorem 6.10. [25] Let {z,} be a positive solution of Eq.6.1.2. Then there
exist positive constants ly, ly, ...l_1 such that ljly; = A+B and lim,,_, o Topkri =
l fori=0,1,...k—1

Proof. We show that that the sequence {zg,x4:} for i = 0,1,...,k — 1 are
Cauchy. By Lemma 6.6 and Lemma 6.7 and Fq.6.4.2, We have

Lonki 1‘ | T2nk+i — Lonk—2k+i > Lonk+i — L2nk—2k+i
Tonk—2k+i Tonk—2k+i o S
Since
. Tonk+i
lim |—————— —1|=0
n—00 | Lonk—2k+i
Hence,

lim |Zonk4i — Tonk—2k+s] =0, 1 =0,1,..,k —1
n—oo

Since {z,} is bounded by Lemma 6.6 , lim, . Tonr1; exists and is a
positive number [;.
We can conclude from above that

li = li—Qk = li+2k

Finally, from Eq.6.4.2 we see

A B
Tonk—k+i = +
Lonk—2k+i Tonk—Aak+i
we observe that 4 B
lick =

li—ok  li—ak
Since lZ = ll;gk = li74k and lifk = li+2k7k = li+k then

A+ B
livk = I
So we have
liykli=A+B
This completes the proof. O
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6.5 Numerical Discussion

In this section, to illustrate the result of this study, two numerical examples
are given, which were carried on MATLAB 6.5.

Examplel:
Assume that Equation 6.1.2 holds, take k = 4, A = 5, B = 3. So the
equation will be reduced to the following:

5 3
Ty = + , (6.5.1)
Tp—a  Tn-12
We assumed that the initial points x_11, £_10, ..., T € (0,00) are all to
be equal 1.
Using the change of variables:y, = *%5=*. The corresponding equation
will be as follows:
yn = C + It (6.5.2)
Yn—8

WhereC’:§> 1.

By theory, the equilibrium point y = 1+ C' = 2.666667, and it is obvious
from Figure 6.2 that it is globally asymptotically stable, as we have shown
theoretically.Lets take another example now.

Example2:
Assume that Equation 6.1.2 holds, take k = 2, A =9, B = 4. So the
equation will be reduced to the following:

9 4
Ty = + , (6.5.3)

Ln—2 Ln—6

Taking the initial points x_5, z_4,..., g € (0,00) are respectively to be
0.6, 0.82, 1.7, 2.7, 1.2, 0.5 .

Using the change of variables:y, = “%=2. The corresponding equation
will be as follows:
yo = C + 2, (6.5.4)
Yn—a
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1
0 20 40 60 80 100 120

Figure 6.1: The Behavior of the Equilibrium point of the Equation z, =
5 3
Tn—4 Tn—12

y(m)
m

1
0 20 40 [=in] 50 100 120

Figure 6.2: The Behavior of the Equilibrium point of the Equation vy, =
C+ &=

Yn—8
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Figure 6.3: The Behavior of the Equilibrium point of the Equation z, =
9 4

Tp—2 Tn—6

y(m)
o

1
0 20 40 [=in] 50 100 120

Figure 6.4: The Behavior of the Equilibrium point of the Equation y, =
C+ =2

Yn—4
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where C' = % > 1.
Here, it is obvious that from Figure 6.4 that our equilibrium point is

around the point 1.4. Lets calculate it theoretically, y = 1 + C' = 3.25. We
have gotten it.

93



Part 111
The MATLAB 6.5 Codes
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%% On The Dynamics OFf A Higher Order Rational Difference Equations
% Program |

% Aseel Fahat
%o 1055354

clear all
format long

forintf1," 'n Input the constants ofvour difference Equation 'n');

forintfil,'a =1,
A =1nput' ",
frintf1,B=";
B =input" 7,
fprintfil,'m =%,
m = input' ',
fprintfi1, k=",
k =1nputi' ;

forintf(1, ' Input the initial conditions of your Equation n');
x=1nputi' ", Yn=12,...

for n=-3*m*l+1: 100

1f(n=0)
x(n+3 M ¥lo= Afuint 2%m*l0 + Biuln);
end
end

fprintfi1, The equilibnium of the sequence z(n) 157,
% _har = sgqrifA+B)

plot(x];
fprint 1, Sn Input some integer in order to continue '),
e=input(' ",

C=AF;
fprint 1, %n The equilibrivm of the v{n) sequence1s?;
v har = C+1

for n=-2*m*l+1: 100

yi{n+2 *m*k= xint 3¥*m*) *aint+2 *m LB,
end

plot(y);
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%% On The Dynamics OFf A Higher Order Rational Difference Equations
% Program 2

% Aseel Farhat
%% 10553534

clear all
fortnat long

forintf1," 'n Input the constants ofvour difference Equation 'n');

forintfi1,'alfa =1,
alfa= input'";
fprintf1, beta= ",
heta = input' %;
fprintf{1,'gamma="7;
gatntma = input(' 7;
frintfi1,'B=";

B =1nput(' 7,
forintfi1,'C=";
C=1input 7,
forintfi1, k=",

L =inputi" ",

forint 1, Sn Input the initial conditions of your Equation ',
x=1nputi' ", Yn=1,2

......

D = (al fa*heta)f (h eta*heta)
p= gamma'beta
q=C/B

forintf(1, wn The equilibrium of the ¥(n) sequence 157,
y_bar = ({1+p)+sqr((1+p)" 2+4¥D* (1+q )2 *(1+ g

for o= 100

1f(n=0)
1 yintht 1) = (Dy(ntlop* yln)) (rint )+ g vy (o),
elze
yintk+ 1= Bfbeta*z(n+k+17),
end
end

plot(y);
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¥ OnThe Dynaraics OF & Hizher Order Rational Differe nice Equations
¥ Program 3

Yo Bseel Farhat
% 1055334

clear all
formmat long

frentf1," n Ingmt the constants of your difference Ecquation 'n'),

freintf1,'5 =",
L=1inmit] ),
forintf1, B = ;
B = mput’ 7,
froeintf 1,2 =",
a = mpt(’ ),
freintf 1, =",
b= ingut(");
frointf 1,k =",
k= input(";

frointf 1, "z Ingnat the initial conditions of your Equation '),
x =input' 7, mr=12,  kH

forn=1:100

wnEA1D) =0 e roHk) + bl W0 & 4 B ),
end
x_bar= (a+h-A)0(B)

Flot{ )
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