
BIRZEIT UNIVERSITY
FACULTY OF GRADUATE STUDIES

COMPARISON OF RESIDUE MOTION
CORRELATION IN BPTI USING VACUUM AND

SOLVENT MOLECULAR DYNAMICS
SIMULATIONS

by

Basem Al-’Ajarmeh

A Thesis Submitted

in Partial Fulfillment of the
Requirements for the Degree

MASTER OF SCIENTIFIC COMPUTING

Approved, Thesis
Committee:

Dr. Wael Karain

Dr.Mazen Hamed

Dr.Hani Awad

Birzeit, Palestine

February, 2005

ABSTRACT

Correlated motions in protein molecules play a very important role

in the function of the protein. The method of essential dynamics was

used in this work to study these correlated motions in the protein Bovine

Pancreatic Trypsin Inhibitor(BPTI). Molecular dynamics trajectories were

simulated using the program NAMD both in solution and in vacuum for

20ns. Several diagnostic tests were performed on the trajectories: RMSD,

temperature factor, correlation maps, and essential dynamics(PCA) anal-

ysis as well. The results were compared for the two environments, and

inspected for their behavior versus time. The main contribution of this

work is that this is the longest reported simulation for this protein and

offers new insights into how the atoms of the protein behave versus time

for ”long” simulations.

Acknowledgments

I am very thankful to Dr. Wael Karain for all his help and support as

my thesis advisor. I would also like to thank Dr.Hassan Shebli, Dr.Aziz

Shawabkeh, Dr. Ali Jaber and the computer department staff. Finally a

special thanks to my family.

Contents

Abstract ii

Acknowledgments iii

List of Figures viii

List of Tables xvi

1 Background in Molecular Dynamics 1

1.1 State of the Art in Protein Essential Dynamics 1

1.2 Introduction . 1

1.3 Historical Background . 4

1.4 Statistical Mechanics . 5

1.5 Classical mechanics . 6

1.6 Integration Algorithms . 9

1.6.1 Verlet . 10

1.6.2 The leap-Forg . 11

1.6.3 Velocity Verlet . 12

1.6.4 Beeman’s . 12

1.7 Molecular Mechanics and Modeling 13

1.7.1 Introduction . 13

1.7.2 Classical force field component 15

v

1.7.3 The Anatomy of a Molecular Mechanics force field . 16

1.8 Essential Dynamics . 28

1.8.1 Background . 28

1.8.2 Introduction to ED 29

1.8.3 Multivariate covariance and correlation 30

1.8.4 Principal component analysis PCA 32

1.8.5 Essential Dynamics Technique for Protein 36

1.9 Molecular and Essential Dynamics Tools used 47

1.9.1 NAMD: MOLECULAR DYNAMICS SIMULATION 47

1.9.2 V MD:Visual Molecular Dynamics: Computer Tool 49

1.9.3 Unix Cat Trajectory Binary File (Catdcd) 50

1.9.4 Byte Order Reverser Flipdcd 51

1.9.5 matlab and its interrupter Octave 52

1.9.6 Principal Component Analysis Tool (CARMA) . . 53

2 Results and Analysis 55

2.1 Molecular and Essential Dynamics Method used 55

2.1.1 Preparation of the Protein Molecule 56

2.1.2 neutralized of BPTI 61

2.1.3 neutralization of BPTI in a water box 63

2.1.4 Simulation of BPTI in both Vacuum and Solution . 65

vi

2.1.5 Minimization . 68

2.1.6 Heat . 68

2.1.7 Equilibration . 68

2.1.8 Dynamics: Control production phase 69

2.1.9 Analysis . 69

2.2 Analysis of results . 77

2.2.1 B-Factors . 77

2.2.2 Root Mean Square Deviation RMSD: 83

2.2.3 Kinetic Energy: . 85

2.2.4 Correlation Maps: 87

2.2.5 Eigenvalues . 94

2.2.6 Motions Along Eigenvectors for 20 ns 98

2.2.7 Motions Along Eigenvectors for each ns separately . 105

2.2.8 Trajectory projected on planes 108

2.2.9 Probability distributions of the Motions 117

2.2.10 Projecting several separate eigenvectors onto first ns 123

3 Conclusions 125

A Routine java Code 127

A.1 rotation class . 127

vii

A.2 Corrolation and Analysis class 136

A.3 projection class . 142

A.4 Extract cα from Trajectory DCD 144

A.5 Convert DCD File Format To PDB format class 145

A.6 Extract Important Data From NAMD Logfile class 146

B Files Format 149

B.1 PDB Format . 149

B.2 PSF Format . 150

B.3 A force field parameter Format 150

B.4 A configuration file Format 151

B.5 Parameter file Format . 152

B.6 Topology file Format . 152

B.7 DCD trajectory format . 152

C NAMD Configration File 153

C.1 NAMD Configration File in Vacuum 153

C.2 NAMD Configration File in water 154

C.3 PBC Periodic Boundary Condition 161

References 163

List of Figures

1.1 Molecular dynamics vs Experimental technique; why we

need to study bimolecular structure, dynamics, and function 3

1.2 Force field type relation. The mathematical form of the

potential energy terms differs from force field to another . 18

1.3 The stretching energy . 19

1.4 The stretching two atoms motion 20

1.5 bending energy curve . 21

1.6 bending energy angle . 21

1.7 Dihedral Energy . 22

1.8 Dihedral angle . 23

1.9 The electrostatic potential 24

1.10 The electrostatic atom partial charge 25

1.11 Van der Waals interaction energy 26

1.12 Urey-Bradley Energy Potential 26

1.13 improper dihedral energy 27

1.14 Divide the structure overall matrix M into substructure ma-

trices M1, M2, etc, of smaller size that can fit in computer

memory . 43

ix

1.15 For each substructure matrix M1, M2, etc, find the sum

and number of rows in each one 44

1.16 Find the average for the all structure column as X1, X2,

etc, and divide it on total number of rows 45

1.17 Find the deviation of each column’s structure 46

2.1 Molecular Dynamics technique, MD simulation phases . . . 57

2.2 BPTI in vacuum . 66

2.3 BPTI in Solution after ionization 67

2.4 Comparison of rms fluctuations from simulation and from

crystallographic B-factors. Fluctuations computed for Cα

(57 atom) atoms sampled from 0-20 ns water simulation. . 80

2.5 Comparison of rms fluctuations from simulation and from

crystallographic B-factors. Fluctuations computed for Cα

atoms (57 atom) sampled from 0-20 ns vacuum simulation. 81

2.6 The Hunenberger [40] crystallographic B-factors for differ-

ent window length. 82

2.7 Calculated rms Cα deviation (RMSD) of dynamic struc-

tures from the initial structure vs. time from the MD sim-

ulation for 20ns on BPTI. 84

2.8 kinetic energy for 20ns simulation. 86

x

2.9 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 1ns simulation

for water (Top) and vacuum (Bottom) 88

2.10 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 5ns simulation

for water (Top) and vacuum (Bottom) 89

2.11 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 6ns simulation

for water (Top) and vacuum (Bottom) 90

2.12 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 10ns simula-

tion for water (Top) and vacuum (Bottom) 91

2.13 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 15ns simula-

tion for water (Top) and vacuum (Bottom) 92

2.14 Calculated residue-residue-based correlated motions (Dy-

namic Cross Correlation Maps DCCM) after 20ns simula-

tion for water (Top) and vacuum (Bottom) 93

xi

2.15 Eigenvalues, in decreasing order of magnitude for water

(Top) and vacuum (Bottom) simulations obtained from Cα

coordinates covariance matrix after 1ns. 95

2.16 Eigenvalues, in decreasing order of magnitude for water

(Top) and vacuum (Bottom) simulations obtained from Cα

coordinates covariance matrix after 10ns. 96

2.17 Eigenvalues, in decreasing order of magnitude for water

(Top) and vacuum (Bottom) simulations obtained from Cα

coordinates covariance matrix after 20ns. 97

2.18 Motions of 20ns along first eigenvector obtained from the

Cα coordinates covariance matrix of the water simulation

(Top) and the vacuum simulation (Bottom) 100

2.19 Motions of 20ns along second eigenvector obtained from the

Cα coordinates covariance matrix of the water simulation

(Top) and the vacuum simulation (Bottom) 101

2.20 Motions of 20ns along third eigenvector obtained from the

Cα coordinates covariance matrix of the water simulation

(Top) and the vacuum simulation (Bottom) 102

xii

2.21 Motions of 20ns along twentieth eigenvector obtained from

the Cα coordinates covariance matrix of the water simula-

tion (Top) and the vacuum simulation (Bottom) 103

2.22 Motions of 20ns along fiftieth eigenvector obtained from the

Cα coordinates covariance matrix of the water simulation

(Top) and the vacuum simulation (Bottom) 104

2.23 Motions along several eigenvectors (1,2,3,50) obtained from the

Cα 1ns coordinates covariance matrix of the water simulation

(upper row) and the vacuum simulation (lower row), (A) 1ns

motions after the first ns, (B) 1ns motions after the fifth ns

(C) 1ns motions after the tenth ns (D) 1ns motions after the

fifteenth ns (E) 1ns motions after the twentieth ns 107

2.24 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.

(A) Horizontal axis: displacement along first eigenvector.

Vertical axis: displacement along second eigenvector. . . . 110

xiii

2.25 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.

(A) Horizontal axis: displacement along first eigenvector.

Vertical axis: displacement along third eigenvector. 111

2.26 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.(A)

Horizontal axis: displacement along second eigenvector. Ver-

tical axis: displacement along third eigenvector. 112

2.27 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.(A)

Horizontal axis: displacement along first eigenvector. Ver-

tical axis: displacement along fourth eigenvector. 113

2.28 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.(A)

Horizontal axis: displacement along first eigenvector. Ver-

tical axis: displacement along fifth eigenvector. 114

xiv

2.29 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.(A)

Horizontal axis: displacement along first eigenvector. Ver-

tical axis: displacement along twentieth eigenvector. 115

2.30 Projection of the trajectory (water simulation in Top and

vacuum simulation Bottom) on the planes defined by two

eigenvectors from the Cα coordinates covariance matrix.

(A) Horizontal axis: displacement along twentieth eigen-

vector. Vertical axis: displacement along fiftieth eigenvector.116

2.31 Probability distributions for the displacements along first

eigenvectors for both the water simulation (Top) and the

vacuum simulation (Bottom). 118

2.32 Probability distributions for the displacements along second

eigenvectors for both the water simulation (Top) and the

vacuum simulation (Bottom). 119

2.33 Probability distributions for the displacements along third

eigenvectors for both the water simulation (Top) and the

vacuum simulation (Bottom). 120

xv

2.34 Probability distributions for the displacements along twen-

tieth eigenvectors for both the water simulation (Top) and

the vacuum simulation (Bottom). 121

2.35 Probability distributions for the displacements along fiftieth

eigenvectors for both the water simulation (Top) and the

vacuum simulation (Bottom). 122

2.36 Projection of one set of eigenvectors onto another for both

water (left column) and vacuum simulation (right column).

(A) Eigenvectors calculated from first ns on second ns. (B)

Eigenvectors calculated from first ns on third ns. (C) Eigen-

vectors calculated from first ns on fifth ns. (D) Eigenvec-

tors calculated from first ns on tenth ns. (E) Eigenvectors

calculated from first ns on fifteenth ns. (F) Eigenvectors

calculated from first ns on twentieth ns. 124

B.1 The Protein Data Bank 149

C.1 In Periodic boundary condition when a particle moves in

the central box, its periodic image in every one of the other

boxes moves with exactly the same orientation in exactly

the same way. 162

List of Tables

Chapter 1

Background in Molecular Dynamics

1.1 State of the Art in Protein Essential Dynamics

Essential dynamics (PCA) is an essential tool for studying motions of

proteins[1, 2, 3, 4, 5, 6, 7]. Saarela et, al. [1] employed (PCA) to show that

motions of native BPTI are more correlated than those of its mutants in

1 ns (nanosecond) simulations . Arcangeli et. al.[8] also used it to study

correlated motions in copper protein plastocyanin and azurin[9] using 1.1

ns time scale (internal) simulation.

This study presents what we believe is the longest reported essential

dynamics study for BPTI. It should add new insight information to the

intense research field of protein dynamics

1.2 Introduction

Understanding how a protein functions require knowledge of the inter-

nal motions of its atoms [10]. Recent evidence indicates that the catalytic

activity of an enzyme depends on such correlated motions [11]. These

motions range from hundredths (10−2Ao) to tens of an angstrom in mag-

nitude, and from less than picosecond to several seconds in duration [12].

Progress in fighting diseases or building antibodies that have the ability

2

to deal with and minimize a virus’s activity depends on the understanding

of such motions.

Experimental techniques such as X-Ray diffraction, NMR, Neutron

Scattering are used to study the biomolecular structure, dynamics, and

function (Fig 1.1). Theoretical methods are used in parallel with these ex-

perimental techniques. One of the principal tools now used in the theoreti-

cal study of biological molecules is molecular dynamics (MD) simulations.

This computational method calculates the time dependent activities and

behavior of a molecular system. MD simulations offer complete informa-

tion on the fluctuations and conformational changes (Essential Dynamics)

of proteins and nucleic acids [13].

Molecular dynamics simulates the motions of a system of particles. It

begins with the energy of the system as a function of atomic coordinates.

The potential energy function is approximate, but it can be easily modified

or tinkered with in order to see how a certain parameter affects the results.

The equations of motion are used to calculate the position of each atom

as a function of time [12].

Simulation of a protein system at the atomic level could retrieve quan-

titative and / or qualitative information about the structure function re-

lationship of the protein. Newtonian Dynamics are used in molecular

3

Figure 1.1 Molecular dynamics vs Experimental technique; why we need
to study bimolecular structure, dynamics, and function

4

dynamics simulation to calculate the motion of atoms by determining the

net force and acceleration experienced by each atom.

1.3 Historical Background

The concept of Molecular Dynamics (MD) simulations was introduced

in 1957 to study-hard sphere interactions[14]. This led to many important

approaches relating to the behavior of simple liquids [15]. A study of the

creation of defects induced by radiation damage using MD was performed

in 1960. This study was one of the first examples of a molecular dynamics

calculation with a continuous potential based on a finite difference time

integration method. The calculation for a 500-atom system was performed

on an IBM 704, and took about a minute per time step[16, 17].

In 1964, the first simulation using a realistic potential for liquid argon

was carried out[13]. In 1967 the phase diagram of argon using the Lennard-

Jones potential was calculated, and correlation functions were calculated

to test theories of the liquid state[17].

Recently, large amount of work is done on: molecular dynamics simula-

tions of solvated proteins, protein-DNA complexes as well as lipid systems

tackling a variety of issues including the thermodynamics of ligand binding

and the folding of small proteins. MD simulation techniques are exten-

sively used in experimental procedures such as X-ray crystallography and

5

NMR structure determination [15].

The recent development in both computer hardware and software allow

the performance of realistic simulations of large systems like a protein

surrounded by 3000 water molecules[15].

MD applications now exist in many areas sush as liquids, defects, frac-

tures, surfaces, friction, clusters, bimolecular, electronic properties and

dynamics, and many others[15].

1.4 Statistical Mechanics

A molecular dynamics simulation gives the positions and velocities of

atoms as a function of time. To translate this information into knowledge

about macroscopic properties such as pressure, energy, and heat capacities,

statistical mechanics is used.

The goal is to understand and predict macroscopic phenomena from

the properties of individual molecules making up the system. The system

could range from a collection of solvent molecules to a solvated protein.

In order to connect the macroscopic system to the microscopic system,

time independent statistical averages are often introduced. These aver-

ages, corresponding to an experimental observable parameter, are defined

in terms of ensemble averages. An ensemble average is an average taken

over a large number of replicas of the system considered simultaneously.

6

These replicas are obtained from a sufficiently long molecular dynamics

trajectory. A physical quantity such as pressure is calculated as an arith-

metic average of the pressure value at many instances in time along the

trajectory. This is possible according to the ergodic hypothesis of statis-

tical mechanics which states that the time average equals the ensemble

average.

For example, the average kinetic energy of a system is calculated as

shown in equation 1.1[18]

K =< K >=
1

M

M∑

j=1

{
N∑

i=1

mi

2
vivi}j (1.1)

where M is the number of configurations in the simulation, N is the num-

ber of atoms in the system, mi is the mass of the particle i and vi is the

velocity of particle i.

A molecular dynamics simulation must be sufficiently long so that

enough representative conformations are sampled.

1.5 Classical mechanics

Molecular Dynamics simulations rely heavily on Newton’s second law,

F = ma, where F is the force exerted on the particle, m is its mass and

a is its acceleration. Once the force acting on each atom is known, its

acceleration, velocity, and position can be easily found as functions of

7

time. The method is deterministic: once the positions and velocities of

each atom are known, the state of the system can be calculated at any

time in the future or in the past.

Newton’s equation of motion is given by

Fi = miai (1.2)

where Fi is the force exerted on particle i, mi is the mass of particle i and

ai is the acceleration of particle i. The force can also be expressed as the

gradient of the potential energy,

Fi = −∇iV (1.3)

Combining these two equations yields

−∂V

∂ri

= miai = mi
∂2ri

∂t2
(1.4)

where V is the potential energy of the system, and ri is the position of

particle i.

To further clarify this concept, a one-dimensional example is discussed:

F = m · dv

dt
= m · d2x

dt2
(1.5)

Taking the acceleration as constant

a =
dv

dt
(1.6)

8

an expression for the velocity can be easily found by integrating equation

1.6 giving

v = at + v0 (1.7)

And since

v =
dx

dt
(1.8)

the position x is found by integrating equation 1.8 obtain

x = vt + x0 (1.9)

Combining this equation with the expression for the velocity (equation

1.7), we obtain the following relation which gives the value of x at time t

as a function of the acceleration, a, the initial position, x0 , and the initial

velocity, v0.

x = at2 + v0t + x0 (1.10)

The acceleration is given as the derivative of the potential energy V (equa-

tion 1.4) with respect to the position, r,

a =
1

m

dV

dr
(1.11)

Thus, to calculate a trajectory, one only needs the initial positions of the

atoms, an initial distribution of velocities, and the acceleration, which is

determined by the gradient of the potential energy function V [19].

9

The initial positions can be found from experimental structures, such

as the x-ray crystal structure of the protein or the solution structure de-

termined by NMR spectroscopy.

The initial distribution of velocities is obtained by assigning random

velocities from a maxwellian distribution at a given temperature, with the

added constraint of zero total linear momentum P ,

P =
N∑

i=1

mivi = 0 (1.12)

The temperature can be calculated from the velocities using the relation

[13].

T =
1

3N

N∑

i=1

|pi|
2mi

(1.13)

where N is the number of atoms in the system, and pi is the momentum

of particle i.

1.6 Integration Algorithms

The potential energy is a function of the atomic positions (3N) of all

the atoms in the system. Due to the complicated nature of this function,

there is no analytical solution to the equations of motion; they must

be solved numerically[13].

Numerous numerical algorithms have been developed for integrating

the equations of motion. The most widely used are Verlet, The leap-

10

frog, Velocity Verlet, and Beeman’s. All these algorithms assume that the

positions, velocities and accelerations can be approximated by a Taylor

series expansion:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 + ... (1.14)

v(t + δt) = v(t) + a(t)δt +
1

2
b(t)δt2 + ... (1.15)

a(t + δt) = a(t) + b(t)δt +
1

2
c(t)δt2 + ... (1.16)

where r is the position in three dimensions 3D, v is the velocity (the

first derivative with respect to time), a is the acceleration (the second

derivative with respect to time), b is third derivative with respect time,

etc.

1.6.1 Verlet

In Verlet algorithm r(t + δt) and r(t− δt) are expanded using Taylor

series

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 + ... (1.17)

r(t− δt) = r(t)− v(t)δt +
1

2
a(t)δt2 + ... (1.18)

Summing these two equations, we get

r(t + δt) = 2r(t)− r(t− δt) + a(t)δt2 (1.19)

11

The Verlet algorithm uses positions and accelerations at time t and the

positions from time t− δt, to calculate new positions at time t + δt. The

Verlet algorithm uses no explicit velocities. It is straightforward to im-

plement and storage requirements are modest. However, it only offers

moderate precision[13].

1.6.2 The leap-Forg

r(t + δt) = r(t) + v(t− 1

2
δt)δt (1.20)

v(t +
1

2
δt) = v(t− 1

2
δt) + a(t)δt (1.21)

In this algorithm, velocities are calculated at time t + 1/2δt and are sub-

sequently used to calculate the positions, r, at time t + δt. In this way,

the velocities leap over the positions, and then the positions leap over

the velocities. The advantage of this algorithm is that the velocities are

explicitly calculated, however, the disadvantage is that they are not cal-

culated at the same time as the positions. The velocities at time t can be

approximated by the relationship[13]:

v(t) =
1

2
[v(t− 1

2
δt) + v(t +

1

2
δt)] (1.22)

This algorithm yields positions, velocities and accelerations at time t.

12

1.6.3 Velocity Verlet

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 (1.23)

v(t + δt) = v(t) +
1

2
[a(t) + a(t + δt)]δt (1.24)

This algorithm yields positions, velocities and accelerations at time t[13].

1.6.4 Beeman’s

This algorithm is closely related to the Verlet algorithm

r(t + δt) = r(t) + v(t)δt +
3

2
a(t)δt2 − 1

6
a(t + δt)δt2 (1.25)

v(t + δt) = v(t) + v(t)δt +
1

3
a(t)δt− 5

6
a(t)δt2

−1

6
a(t− δt)δt (1.26)

The advantage of this algorithm is that it provides a more accurate

expression for the velocities and better energy conservation. The disad-

vantage is that the more complex expressions make the calculation more

expensive[13].

There are three conditions that must be satisfied in any algorithm that

integrates equations of motion[13, 20]:

• The algorithm should conserve energy and momentum,

13

• It should be computationally efficient,

• It should be also allow long time step for integration.

1.7 Molecular Mechanics and Modeling

1.7.1 Introduction

Molecular Mechanics (MM) aims to develop mathematical theories

(models) to rationalize and predict experimental observations[21]. It de-

scribes molecular structure and properties in a practical manner [22], con-

centrating on the structural aspects of molecules and not on the electronic

aspects.

The Born-Oppenheimer approximation states that the equation of the

molecule motions Ψ(r, R) (r is electron position, R is nuclei position) can

be separated into two parts: the electrons in the constant field of the

fixed nuclei Ψ(r|R) (time-independent Schrödinger equation) and the

Newton-like equation of movement for the nuclei Θ(R)(time-dependent

Schrödinger equation). [23].

Ψ(r, R) = Ψ(r|R)Θ(R) (1.27)

where Ψ(r|R) electronic wavefunction parametrically depends on the ionic

position R variables. The equation of motion for the electrons is:

(Ke + V)Ψ(r, R) = Ee(R)Ψ(r, R) (1.28)

14

where Ke is kinetic energy of electron, Ee energy eigenvalues of electronic

motions, V is the electronic potential.

The equation of motion for nuclei consists of a quantum part [23]

(Ke + Ee(R))Θ(R) = ET Θ(R) (1.29)

and a classical part

m
d2R

dt2
= −∇Ee(R) (1.30)

These two motions can be studied independently, one by quantum me-

chanics and the other by molecular mechanics MM [23, 24].

In MM the motions of the nuclei in molecules are studied, while

those of the electrons are not[25]. Its range of applicability includes

molecules containing thousands of atoms such as proteins, as well as or-

ganics, oligonucleotides, peptides, and saccharides. It also deals with the

molecule’s environment be it vacuum or solvent, in the ground state only.

It extends to thermodynamics and kinetic properties as well [22].

Molecular dynamics, conformational energy searching, and docking, re-

quire a large number of energy evaluations. MM procedures and methods

offer great computational speed allowed by the following principles[22]:

1. Nuclei and electrons are lumped into atom-like particles,

2. Atom-like particles are spherical in shape and have a net charge,

15

3. Interactions are based on springs and classical potentials,

4. Interactions must be reallocated to specific set of atoms,

5. Interactions determine the spatial distribution of atom-like particles

and their energies.

1.7.2 Classical force field component

The classical force field consists of the analytical form of the inter-

atomic potential energy U = Ee(R) as a function of the atomic coordi-

nates of the molecule; and also consist from the parameters that enter

U .

Any force field contains the necessary building blocks for the calcula-

tion of energy and force[23]:

• A list of atom types as C, O, N, H,etc.

• A list of atomic charges

• Rules for atom-types

• Functional forms of the components of the energy expression

• Parameters for the function terms

• Rules for generating parameters that have not been explicitly defined

16

• A defined way of assigning functional forms and parameters

1.7.3 The Anatomy of a Molecular Mechanics force field

There are two types of energy terms in the force field: Valence (bonded

or internal), and non-Valence terms[26, 27]. The bonded interactions typ-

ically include all terms related to the chemical bonds within the molecule

such as bond strength, angle bend, and torsion rotation, while the non-

Valence interactions include terms that are independent of atomic connec-

tivity such as the Coulomb (electrostatic attraction/ repulsion) and the

Van Der Waals interactions[22, 28].

The mechanical molecular model considers atoms as spheres, and bonds

as springs that have the ability to stretch, bend, and twist[21, 22]. These

simplifying assumptions make the mathematics of atoms (spheres of char-

acteristic radii) much simpler than that with a quantum treatment[22].

Any given conformation of a molecule is associated with a certain

amount of energy; and MM aims to predict it. MM energies have no

meaning as absolute quantities, but the energy difference between more

than two molecules conformation does[22]. A simple and common MM

energy expansion equation is given by[22, 27, 21, 28, 26, 23]:

Energy = Energy valence(Bonded) + Energy(non−Bonded) (1.31)

17

Energy = Stretching+Bending+Torsion+(non−Bonded)Interaction

(1.32)

The energy equations with parameters that describe the behavior of dif-

ferent kinds of atoms and bonds, are called a force-field or Potential En-

ergy Function[29]. The most common force fields types are AMBER,

CHARMM, GROMOS and OPLS/AMBER (Fig 1.2)[27, 20]. Force fields

are an intensive area of research under development in a number of lab-

oratories. The mathematical form of the potential energy terms differs

from force field to another (Fig 1.2), but the more general and common

form potential energy have these energy types:

1. Stretching Energy

The stretching energy equation is based on Hooke’s law [22]. Stretch-

ing energy represents the interaction between atomic pairs where

atoms are separated by one covalent bond. From IR spectroscopy

the relation between bonds and energy is plotted in (Fig1.3) and the

stretch atom motion is shown in (Fig1.4) [21]. Stretching energy

approximates the energy of a bond as a function of displacement

18

Figure 1.2 Force field type relation. The mathematical form of the poten-
tial energy terms differs from force field to another

19

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

900

1000

Bond

E
ne

rg
y

Figure 1.3 The stretching energy

from the ideal bond length equilibrium, r0. The stiffness. of the

bond spring is kb. Unique kb and r0 parameters are assigned to each

pair of bonded atoms based on their types as C−C, C−H, O−C,

etc[22].

Ebond−stretch =
∑

pairs

kb(r − r0)
2 (1.33)

This equation estimates the energy associated with vibration about

the equilibrium bond length (Fig1.3)[23, 27]. This model tends to

break down as a bond is stretched toward the point of dissociation.

[22, 30].

20

Figure 1.4 The stretching two atoms motion

2. Bending Energy

The bending energy equation is also based on Hooke’s law [22]. It

is associated with the variation of the bond angles theta θ from the

ideal value θ0, which is also represented by a harmonic potential.

From IR spectroscopy the relation between angles and energy is

plotted in (Fig1.5) [21]. The bend angle motion is shown in (Fig1.6)

Ebond−bend =
∑

angles

kθ(θ − θ0)
2 (1.34)

Values of θ0 and kθ depend on the chemical type of atoms forming

the angle [22, 21, 27, 23, 30]. Unique parameters for angle bending

are assigned to each bonded triplet of atoms based on their types as

C − C − C, C −O − C, C − C −H, etc.

The effect of kb (stretching) and kθ (Bending) parameters is to ex-

21

Figure 1.5 bending energy curve

Figure 1.6 bending energy angle

22

Figure 1.7 Dihedral Energy

pand the slope of the parabola. Larger values mean that more energy

is required in deforming an angle or bond from its equilibrium state

(Fig1.5) and (Fig 1.6).

3. Torsion Energy (Dihedrals)

The energy is modeled by a simple sinusoidal periodic function [22].

The torsion angle potential models the presence of steric barriers

between atoms separated by 3 covalent bonds (1, 4 pairs) [27]. From

IR spectroscopy the relation between bonds and energy is plotted in

(Fig 1.7)[21]. The dihedral angle rotation is shown in (Fig 1.8)

23

Figure 1.8 Dihedral angle

Edih =
∑

1,4pairs

kφ(1 + cos(nφ− δ)) (1.35)

The kφ parameter controls the amplitude of the periodic curve, the

n parameter its periodicity, and δ shifts the entire curve along the

rotation angle axis φ . Unique parameters for Dihedral (torsional

rotation) are assigned to each bonded quartet of atoms based on

their types as C −C −C −C, C −O−C −N , H −C −C −H, etc

(Fig 1.8) [22, 21, 27, 23, 30].

4. Non-bonded Energy Terms

(a) Electrostatic energy: The electrostatic interaction between

a pair of atoms is represented by the coulomb potential. [27]

The electrostatic energy is a function of the charge on the non-

bonded atoms, their interatomic distance rij, and a molecular

dielectric D expression that accounts for the decrease of elec-

24

Figure 1.9 The electrostatic potential

trostatic interaction by the environment such as solvent[22].

Electrostatic interaction derived from quantum chemistry, ther-

modynamics, and empirical schemes. [21] The equation of elec-

trostatic interaction between any two charges q is:

Eelectrostatic =
∑

non−Bonded(pairs)

qiqj

Drij

(1.36)

(Fig 1.9). The electrostatic atom partial charge is shown in

(Fig 1.10)

(b) Van der Waals energy The Van der Waals interaction be-

tween two atoms arises from a balance between repulsive and

25

Figure 1.10 The electrostatic atom partial charge

attractive forces[27]. It occurs at short range, and rapidly dies

off as the interacting atoms move apart by a few angstroms.

Repulsion occurs when the distance between interacting atoms

becomes less than the sum of their contact radii[22]. The elec-

trostatic interaction is derived from quantum chemistry, ther-

modynamics, and empirical schemes. [21] The equation of Van

der Waals interaction is (Fig 1.11)[23]:

EV anderWaals =
∑

non−Bonded(pairs)

(
Aij

r12
ij

− Cij

r6
ij

) (1.37)

In addition to these terms some force fields like CHARMM have

two extra energy terms. First, the Urey-Bradley term that is an

interaction based on the distance between atoms separated by two

bonds (1, 3 interaction) [27]. The equation of Urey-Bradley is:(Fig

1.12) [23].

EUB =
∑

kUB(S − S0)
2 (1.38)

26

Figure 1.11 Van der Waals interaction energy

Figure 1.12 Urey-Bradley Energy Potential

27

Figure 1.13 improper dihedral energy

The second additional term is the improper dihedral term that

is used to maintain chirality’s and planarity[27]. The equation of

improper dihedral energy is:

Eω =
∑

kω(ω − ω0)
2 (1.39)

(Fig1.13) [23]. The parameter kω, kUB, kφ, kθ ,and kb are obtained

from studies of small model compounds and comparisons to the ge-

ometry and vibrational spectra in gas phase. [27].

There are certain limitations to force fields. One of the most impor-

tant is that no extreme changes in electronic structure are allowed;

events such bond making or breaking are not allowed.

Electronic transitions, photon absorption, Electronic transport phe-

nomena, and proton transfer (acid base reaction) cannot be modeled

[23, 27]. Some research groups try to mix quantum mechanics and

28

molecular mechanics force fields to model such phenomena.

The power of the force field approach comes from many of its ad-

vantages. The force field-based simulations can handle large sys-

tems, that are several orders of magnitude faster (and cheaper) than

quantum-based calculations. Furthermore, the analysis of the en-

ergy contributions can be done at the level of individual or classes of

interactions. And finally, the modification of the energy expression

to prejudice the calculation [23].

1.8 Essential Dynamics

1.8.1 Background

There are different methods used to investigate the states of pro-

tein conformation. One such method is the root mean square deviation

(RMSD) of Cα (alpha carbon) atoms in a protein trajectory for every

structure [33]. RMSD describes the ”distance” between two (aligned)

conformations (protein frames) of a (bio)polymer (or group of selected

atoms)[23].

RMSD = [<
∑

N

(r1a − r2a))
2 >]1/2 (1.40)

where N number of atoms, and the brackets < ... > represent a time

average. r1a, r2a are the x, y, z position coordinates of the first and the

29

second conformations for the same atom[8].

RMSD = [
1

N

N∑

i=1

< (∆xi)
2 + (∆yi)

2 + (∆zi)
2 >]1/2 (1.41)

Another method for investigating protein motions in conformational space

is ”Essential Dynamics”[32, 33]. Essential dynamics, often used under

different names such as Principal Component Analysis PCA or quasi-

harmonic analysis, is used to analyze the huge data of intermolecular mo-

tions produced in MD simulations [1]. Essential dynamics is a tool that

extracts large concentrated motions from protein MD trajectories[1, 2],

so it is is able to separate concerted motions from the uninteresting local

motions[3].

1.8.2 Introduction to ED

Essential Dynamics (ED) has become one of the most interesting and

widely used techniques to investigate protein dynamics. ED methods are

used to distinguish between the random atom fluctuations from the larger

intensive fluctuations [3]. The study of time dependent characteristic of

proteins is important for gaining insight into many biological processes

and functions such as protein open and close ion channel.

The basic idea of ED is to separate the conformational space into two

subspaces: an essential sub-space containing only a few degrees of freedom

30

and a remaining space in which the motions can be considered as physically

constrained. The essential degrees of freedom describe motions which are

relevant to the function of the protein, while the physically constrained

subspace describes irrelevant local fluctuations.

The internal motion of a protein is described by a trajectory X(t), a

N-dimensional vector of all atomic coordinates. The essential dynamics

method consists of

• Fitting atom trajectories to a reference frame. This step removes

overall translational and rotational motions, since only internal mo-

tions of the protein are interesting to analyze for protein conforma-

tions.

• Constructing a covariance matrix and determining essential motions

using the Principal Component Analysis (PCA) technique.

1.8.3 Multivariate covariance and correlation

Multivariate analysis covariance and correlation technique is based on

building a matrix of size (nxp) consisting of the variables p and its ob-

servation n. In molecular dynamics simulations, the variables are protein

atoms and the observations are atomic positions (trajectory) with respect

to time. The data is thought of as a set of p n-dimensional vectors of atom

31

trajectories, that is,

xi = [xi1, xi2, ..., xin] (1.42)

and so

X = [x1, x2, ..., xp] (1.43)

where, xj is the trajectory vector containing values of one of the atoms

for all n positions through time. We can define[34]:

• The mean x1, taken to be the mean of each variable over all the

positions as

X = [x1, x2, ..., xp] (1.44)

where X is mean total matrix.

• Sample covariance (measure of linear association between pairs of

atoms i and j) given by the matrix

Cov(X) = S (1.45)

with elements

sij =
1

n− 1

n∑

k=1

(xik − xi)(xjk − xj) i = 1, .., p j = 1, .., p (1.46)

32

A negative covariance implies that most trajectory positions with large

values for atom i have small values for atom j or vice versa. A positive

covariance implies that either large or small values are obtained for both

atoms, and zero covariance implies that there is no particular association

between the variables over the whole trajectory[34]. The sample variance

is given by determinant of covariance matrix S.

1.8.4 Principal component analysis PCA

PCA is a way of identifying patterns in data, and expressing the data

in such a way in order to highlight the similarities and differences in that

data. PCA is a powerful tool for analyzing data because of its ability

to recognize patterns and compress the data. This means that PCA can

reduce the number of dimensions without much loss of information[35].

The steps needed to perform a Principal component analysis PCA on

a set of data are [35]:

• Get the Data.

• Subtract the mean (average) from each of data dimensions,

• Calculate the covariance matrix by taking the dot product between

each column with the other.

• Calculate the eigenvectors and eigenvalues of the covariance matrix.

33

• Choosing suitable components and forming a feature vector, reduce

the dimension of data and compress it. Choose in the feature vector

the eigenvectors with largest eigenvalue (components).

• Derive the new data set by taking the transpose of the feature vector

and multiplying it with the original data set.

The objectives of Principal Components Analysis are[34, 36].

• Dimensionality reduction, helping the understanding of a large data

set.

• Determining of linear combinations of variables, that can be thought

of as a new set of axes that have been rotated from the original axes

to fit the data better (find important relationships between variables

by using smaller set).

• Choosing of the most useful variables; finding a smaller sets of base

vectors that still describe the data well.

• Visualization of multidimensional data by decomposing the original

data into sets of distinct patterns over time points that can be re-

combined to create the original data. Find most common patterns

in the data and visualize it in reduced component space.

34

• Identification of fundamental variables, this allows the examination

of the influence of a given variable on the most influential compo-

nents.

• Identification of groups of objects.

The trajectories set that are obtained from the MD simulation are or-

ganized into (nxp) matrix, where p is the atoms (variables), and n is the

observation frames of moving trajectories with respect to time (atom posi-

tions). The covariance matrix of the atoms trajectory is the (pxp) matrix.

S = Cov(X), from equation 1.50 the elements of matrix S are constructed

from the deviation of the jth coordinate from its column average at a time

i [34]. To find the principal component of any data we search for p uncor-

related, linear combination of vectors x1, x2, ...xp with maximum variance

[34] Equation 1.43.

We search for p-dimensional vector ai that gives the p principal com-

ponents

y1 = a11x(1) + a21x(2) + ... + ap1x(p) = a1X (1.47)

y2 = a12x(1) + a22x(2) + ... + ap2x(p) = a2X

...

yp = a1px(1) + a2px(2) + ... + appx(p) = apX (1.48)

35

This system of p linear combinations where aij is scalar constant, the

variance of the ith linear combination is.

V ar(yi) = V ar(aix) = aiV ar(x)ai (1.49)

Those variances in equation 1.47 are maximized. The variance of the ith

principal components is

V ar(yi) = aiSai (1.50)

Subject to the constrain aiai = 1, since the variance increases by in-

creasing ai[34]. The principal components are found by maximizing aiSai

subject to aiai = 1. The results are the coefficients of the principal com-

ponents which are the eigenvector of the covariance matrix, so equation

1.47 became:

y1 = e11x(1) + e21x(2) + ... + ep1x(p) = e1X (1.51)

y2 = e12x(1) + e22x(2) + ... + ep2x(p) = e2X

...

yp = e1px(1) + e2px(2) + ... + eppx(p) = epX (1.52)

Where ei is the eigenvector corresponding to the ith largest eigenvalue, λi,

of the covariance matrix S. The spectral decomposition of S is:

S =
p∑

i=1

λieiei ⇒ eiSei = λi (1.53)

36

From equation 1.50 the variance of the ith principal component is its eigen-

value, λi, and the total variance is the summation of all eigenvalues of

each principal component. From that we can calculate the proportion of

each principal component (its rank) with respect to total variance. These

eigenvectors of the covariance matrix or the coefficients of principal com-

ponents provide us with the correlation information between the kth atom

trajectory and the ith principal component[34].

1.8.5 Essential Dynamics Technique for Protein

There are some steps for the essential dynamics method:

• Fitting and aligning atom trajectories to a reference frame. This

step removes overall translational and rotational motions, since only

internal motions of the protein are interesting to analyze. A simple

procedure (Kabsch, 1976) was used to find the best rotation and

translation for a given vector set into another vector by minimizing

the weighted sum of squared deviations[37, 38, 3].

• Constructing a covariance matrix and determining essential motions

using Principal Component Analysis PCA (see section 1.8.4).

• Calculating the cross-correlation matrices for the Cα atoms. It is

possible to calculate the matrices using either the Cartesian dis-

37

placements of each of the x,y,z coordinates (of the Cα atoms), or,

by taking the dot product of the atomic displacements from their

average values.

• Calculating of the corresponding eigenvalues and eigenvectors by

Single Value Decomposition (SVD) method.

• Calculating the projection of the atomic fluctuations on chosen eigen-

vectors.

• Projecting of the trajectory on selected (significant) eigenvectors

with larger eigenvalue.

• Constructing an artificial trajectory depicting the motion due to a

single (selected) eigenvector.

• Projecting the trajectory on selected (significant) eigenvectors from

different parts of the simulation in order to show the similarities of

the eigensates.

Fiting and Aligning the structure

To study the internal atom motions of a protein requires the removal

of all translation and rotation motions from its trajectory[37, 3, 2, 32].

Finding the transformation matrix that fits and aligns the atoms of one

38

protein structure x (frame) to another protein structure y (frame) in an

optimal way can be done by the following procedure [37]. Let xn and yn

(n=1,2,...,N (Number of atoms)) two configration structure (frames), and

wn be the weight corresponding to each pair of atoms for xn frame and yn

frame.

• compute 3X3 matrix R with components

rij =
N∑

n=1

(w(n) ∗ (yn,i − comyi) ∗ (xn,j − comxj)) (1.54)

where i,j take values from one to three to represant the atom trajec-

tory components x, y, z. comy is the centroid of the yn frame, and

comyi is the x center component of yn frame if i = 1.

• Form RT R matrix.

• Find the eigenvalues and eigenvectors of RT R in a matrix.

• Transpose the eigenvector matrix a to put the vectors in rows

• Sort the eigenvalues and its corresponding eigenvectors from largest

to smallest

• Determine

bi =
3∑

j=1

Rij ∗ aij (1.55)

39

• Compute U that minimize the rms

uij =
3∑

k

(bki ∗ akj) (1.56)

Check the determinant of U. If it’s negative, we need to flip the

sign of the last row. U is the rotation matrix that takes one protein

structure to another[appendix A.1].

Covariance matrix

We want to investigate a trajectory of protein through time in terms

of the relationship between individual variables (atoms and their position

through time)[39]. The mean tells us where the middle point of the data

is, but not more. X =
∑

(xi)/n where xi refers to an individual number

in the data set, n is the number of elements in the data set, and X ”X

bar” indicates the mean of the set. The mean does not provide us with

any information about the spread of the data. The standard deviation s

(SD) of a data set measures the spread of the data around the mean. So

it is ”the average distance from the mean of the data set to a point”.

s =

√√√√(
∑

(Xi −X))2

(n− 1)
(1.57)

Variance also measures the spread of data in the data set. It is identical to

the standard deviation s. Variance is the square of the standard deviation

s2. Standard Deviation and variance just measure the spread of data in one

40

dimension but covariance measures the spread of data and the relationship

between the dimensions if they exist in the data sets[39]. The formula of

covariance is very similar to the variance formula[39].

V ar =

∑
((Xi −X)(Xi −X))

(n− 1)
(1.58)

Cov =

∑
((Xi −X)(Yi − Y))

(n− 1)
(1.59)

The covariance always measures the relationship correlation between

two dimensions of a data set, but in MD trajectory we have 3N (N number

of atoms) dimensions. There is more than one covariance measurement

that needs to be calculated. For example, for three dimensions x, y, and

z we need to calculate Cov(x,y), Cov(x,z), Cov(y,z). This means we need

to calculate n!
(n−2)!∗2 covariances plus n variance value or n(n+1)

2
.

For efficient use, and to deal with this calculation, the covariance values

are arranged in a matrix called the covariance matrix with coefficients

Cij =
∑

(xi − x) ∗ (yi − y) (1.60)

Each entry in the covariance matrix is the result of calculating the

covariance between two separate dimensions.

The diagonal elements of the covariance matrix (i = j) correspond to

the mean-square (m.s.) fluctuations of atom i. They can be converted to

41

simulated atomic B-factors, Bi, using the relation[40, 27]:

Bi = (
8π2

3
Cii) (1.61)

B-factor describes the reduction of the intensity of Bragg scattering due

the motion of atoms about their equilibrium position.

For a 20ns long MD trajectory containing 57 Cα atoms, you need

to calculate the averages for 3N dimensions by using for each dimension

400,000 different values from each frame in the course of trajectory. Then

save the deviation from each dimension average in new feature data matrix

with dimension of (400, 000 × 171) for water and other one for vacuum.

After that find the dot product of each column with the other, which

means the covariance between these two dimensions.

If more than 400000 structure for simulation of 20 ns are used in the es-

sential dynamics analysis, it becomes computationally impossible to build

the corresponding covariance matrix (on the average PIV workstation with

about 256 MB of memory). Both CPU time and memory needed to build

the covariance matrix from all structures increase rapidly with the size of

the system (approximately proportional to N2)[2].

It is possible, however, to overcome this problem by dividing the over-

all structure matrix to substructure matrices because each part of the

structures adds new aspects and meaning to the covariance matrix. The

42

procedure is as follows:

• Divide the structure matrice of 400000× 171 into substructure ma-

trices of smaller size that can fit in the computer memory (1ns

20000× 171) (Fig1.14).

• For each substructure matrix, find the sum and number of rows as

(Fig1.15).

• Find the average for the all structure matrix by add the summation

of step 2 and divide it by the total number of rows (Fig1.16).

• Find the deviation of each column’s structure (frame) from the col-

umn averages from step 3 separately (Fig1.17).

• Find the dot product between every two columns (covariance) in

each substructure matrix separately, and save them in a subcovari-

ance square matrix with dimension number of columns.

• Add these subcovariance matrcies to get the total covariance matrix

of overall structures.

The mathematical proof of the above method for covariance matrix is as

follows:

Cij =
n=N∑

n=1

(Xin− < Xi >)(Xjn− < Xj >) (1.62)

43

Figure 1.14 Divide the structure overall matrix M into substructure ma-
trices M1, M2, etc, of smaller size that can fit in computer memory

44

Figure 1.15 For each substructure matrix M1, M2, etc, find the sum and
number of rows in each one

45

Figure 1.16 Find the average for the all structure column as X1, X2, etc,
and divide it on total number of rows

46

Figure 1.17 Find the deviation of each column’s structure

47

Dividing the X matrix with the same number of columns and different

number of rows is equivalent to dividing the covariance matrix summation

in equation 1.62 as

Cij =
n=M∑

n=1

(Xin− < Xi >)(Xjn− < Xj >)+
n=M1∑

n=M

(Xin− < Xi >)(Xjn− < Xj >)+..

(1.63)

so that the covariance matrix will be

Cij =
i=(N/M)∑

i=1

n=M∑

n=1

(Xin− < Xi >)(Xjn− < Xj >) (1.64)

1.9 Molecular and Essential Dynamics Tools used

1.9.1 NAMD: MOLECULAR DYNAMICS SIMULATION

NAMD was published by the Theoretical Biophysics Group at the

University of Illinois, it is an object-oriented molecular dynamics code for

a parallel system consisting of tens of processors. NAMD was designed for

high-performance simulation of large bimolecular systems and distributed

free of charge along with the source code [33]. The NAMD computational

scientific tool exist for all hardware platforms. The documentation, fea-

tures, training, and news are available from http://www.ks.uiuc.edu/Research/namd/.

NAMD can run under individual windows or UNIX workstations, as well

as on clusters of workstation networks.

NAMD is funded by the National Institutes of Health (NIH), which

48

is National Center for Research Resources for Macromolecular Modeling

and Bioinformatics [33].

NAMD computes atomic trajectories by solving equations of classical

mechanics (equations of motion) numerically. Realistic simulation of sys-

tems as large as an enzyme surrounded by 30000 water molecules can be

performed.

NAMD has many advantages over the previous molecular dynamics

simulation packages, such as X−PLOR[41] and CHARMM [27], the most

important difference is that the previous tools were developed for serial

machines.

Other advantages for NAMD are:

• Force Field Compatibility: NAMD can accept many force force field

types.

• Efficient full electrostatics algorithms that reduce the computational

complexity from (N ∗N) to (N ∗ log(N)).

• NAMD uses a multiple time step algorithm.

• Compatibility in input and output file formats with other tools.

• Dynamics simulation options: It can carry several options such as

constant energy and temperature.

49

• NAMD is easy to modify and extend because it was designed using

object-oriented style and written in C + +.

NAMD uses a set of files to build the molecular system simulation envi-

ronment. These include input, output, and configuration parameter files

that have special formats. These requirement files supply NAMD with

all the information needed in order to performe molecular dynamics sim-

ulation.

1.9.2 V MD:Visual Molecular Dynamics: Computer Tool

V MD is a Molecular Visualization program designed for the interactive

visualization and analysis of a molecular dynamics simulation. V MD uses

an object-oriented design, and is written in C++. V MD was developed

by the theoretical biophysics group at the University of Illinois and the

Beckman Institute [42].

Some features of V MD include:

• General molecular visualization tools to display molecules containing

any number of atoms.

• It can read most of the formate files like PDB, and DCD. It can

also convert from one format to another automatically, using the

scientific tool Babel[43]. It can display the structure in various ways

50

including licorice, ribbons, van der Waals, spheres, and molecular

surfaces[43].

• Rendering the molecular structure directly to many file formats such

as a postscript , ray tracing programs format, Raster3D, POV 4,

Rayshad, jpeg, etc.

• V MD support for several input and output devices other than the

usual monitor, keyboard, and mouse. These include magnetic, track-

ers, haptic feedback devices, wands, dial boxes, etc. These device

are used to get position and orientation information of the molecular

systems.

• It understands Tcl scripts language[44] and uses it to perform molec-

ular analysis commands. These commands include methods to ex-

tract information about a set of atoms and molecules, vector and

matrix routines for coordinate manipulation, and functions for com-

puting values like the center of mass, radius of gyration, and root

mean square deviation rmsd.

1.9.3 Unix Cat Trajectory Binary File (Catdcd)

Before get into CatDCD tool it is important to describe DCD trajec-

tory formate file. DCD is a binary formate file divided into two parts. The

51

header that contains information like number of atoms, number of frame,

time step between frames , date of modification, formate type (charmm,

x-plor)...etc. These things exist in three main blocks, each block begin

with integer number (four byte in length) and end with the same integer

thats show how many bytes exist into this block. In each place in the

block exist specific data type as ”COOR” after the first integer.

The rest of the DCD file is three binary blocks of the trajectory

positions or velocities of each atom in the frame until the end of all

frames(Appendix B.7).

Catdcd functions much like the Unix ”cat” command [45]: it con-

catenates trajectory DCD files into a single DCD file. It also allows the

specification of atoms and frames that need to be written into the output

file. Thus DCD’s can be split up as well as combined to form trajectory

files.

1.9.4 Byte Order Reverser Flipdcd

FlipDCD is a small utility tool distributed with the NAMD package

[46]. It is used to reverse the endianism (byte ordering) of binary DCD tra-

jectory files of Charmm, and NAMD. This can be useful when running

simulations on one architecture and visualizing or analyzing the results on

another hardware architecture.

52

Platform such as windows or unix use different byte orders. Unix uses

little endianism and windows uses big endianism.

FlipDCD provides a mechanism for converting the endianism (byte or-

dering) of CHARMM , X − PLOR, and NAMD DCD trajectory files.

DCD files may be loaded by visualization and analysis programs on plat-

forms with the opposite byte ordering of the platform on which they were

originally generated. This allows one to use a Windows PC to read DCD

trajectories generated on a Sun or an unix and allows a Sun or an win-

dows to read trajectory files produced on a PC cluster running Linux.

FlipDCD does the endianism conversion by memory mapping the DCD

file[46], and converting the endianism in-place. This provides a relatively

high performance method to perform endianism conversion.

1.9.5 matlab and its interrupter Octave

Matlab (Matrix laboratory) is an interactive software system for nu-

merical computations and graphics[47]. Matlab is especially designed

for matrix computations: solving systems of linear equations, comput-

ing eigenvalues and eigenvectors, factoring matrices, and so forth. In

addition, it has a variety of graphical capabilities, and can be extended

through programs written in its own programming language[47].

Many such programs come with the system; a number of these extend

53

matlab’s capabilities to nonlinear problems, such as the solution of initial

value problems for ordinary differential equations. Matlab is designed to

solve problems numerically, that is, in finite precision arithmetic. There-

fore it produces approximate rather than exact solutions, and should not

be confused with a symbolic computation system (SCS)[47] such as Math-

ematica or Maple. It should be understood that this does not make Matlab

better or worse than an SCS; it is a tool designed for different tasks and

is therefore not directly comparable.

Matlab performs many matrix computations. Among the most useful

is the computation of eigenvalues and eigenvectors with the eig command.

If A is a square matrix, then ev = eig(A) returns the eigenvalues of A in

a vector, while [V,D] = eig(A) returns the spectral decomposition of A:

V is a matrix whose columns are eigenvectors of A, while D is a diagonal

matrix whose diagonal entries are eigenvalues of A[47].

1.9.6 Principal Component Analysis Tool (CARMA)

CARMA is a molecular dynamics principal component analysis and

distance map calculator. It can do most essential dynamics analysis with

some limitations[38]. It supports most of the steps required for a principal

component analysis of molecular dynamics trajectories.

Carma can [38]:

54

• Read a PDB file, or, a DCD (trajectory) and its corresponding PSF

file, and produce postscript file(s) containing a grayscale represen-

tation of the corresponding Cα-Cα distance map(s).

• Read a DCD (and its PSF) file and calculate the average Cα-Cα

distance map over all defined frames plus an additional map con-

taining the root mean square deviation of these Cα-Cα distances

from their average values (over the same set of frames).

• read a DCD (and its PSF) file and perform most of the steps involved

in a principal component analysis of the trajectory (Cα atoms only).

Chapter 2

Results and Analysis

2.1 Molecular and Essential Dynamics Method used

Following is a recipe of how to perform a MD simulation of BPTI

using NAMD:

Four files should be supplied:

• Protein Data Bank (PDB), file which stores atomic coordinates and/or

velocities for the molecular system. PDB files may be generated by

hand, but they are also available via the Internet for many proteins

at http://www.pdb.org (Appendix B.1).

• Protein Structure File (PSF), which stores structural information of

the protein, such as various types of bonding interactions(Appendix

B.2).

• A force field parameter file. A force field is a mathematical expres-

sion of the potential which the atoms in the system feel. CHARMM,

X-PLOR, AMBER, and GROMACS are four types of force fields,

and NAMD is able to use any one of them. The parameter file sets

bond strengths, equilibrium lengths, etc(Appendix B.3).

• A configuration file, in which the user sets all the options that

56

NAMD should adopt in running a simulation. The configuration

file tells NAMD how the simulation is to be run(Appendix B.4).

There are six steps in any typical MD simulation (Fig2.1):

• Prepare molecule: get pdb and psf files for your molecular system,

• Minimization: reconcile observed structure with force field used at

zero temperature.

• Heating: raise the temperature of the system to the desired one.

• Equilibration: Ensure system is stable by monitoring system tem-

perature.

• Dynamics:(Production phase)simulate under certain condition then

collect your data.

• Analysis: evaluate the observable macroscopic level properties for

your collected data.

2.1.1 Preparation of the Protein Molecule

This step involves generating the NAMD required files to represent

BPTI protein. Steps:

57

Figure 2.1 Molecular Dynamics technique, MD simulation phases

58

1. A PDB of BPTI is available through the internet at www.rcsb.org

(Appendix A.1) format]. The X-ray structure of 6PTI.pdb was ob-

tained from the Protein Data Bank (PDB). This structure does

not contain the hydrogen atoms of BPTI. Some modification on

6PTI.pdb is required by adding hydrogen atoms. The PDB file that

will be generated with the PSF will contain guessed coordinates for

hydrogen atoms of the structure. The minimization step in MD

simulation will ensure hydrogen atom positions are reasonable.

2. A PSF of BPTI must be created from the initial PDB (6PTI), pa-

rameter, and topology files(Appendix B.6)[48]. Topology files avail-

able through internet at

http://www.pharmacy.umaryland.edu/faculty/amackere/research.html.

Parameter files contain the force constants necessary to describe the bond,

angle, torsion energy, and non-bonded interaction (Van der Waals and

electrostatics). Parameter files also suggest parameters for setting up the

energy calculations (Appendix B.5). Topology files contain atom types

that are assigned to identify different elements and different molecular

orbital environments[23], in addition to the charge that is assigned to

each atom. The topology file contains the connectivity between atoms

(Appendix B.6) that are available at

59

http://www.pharmacy.umaryland.edu/faculty/amackere/research.html.

To build the PSF and the modified PDB files for BPTI:

1. Split the input file 6PTI.pdb into two segments one called 6PTI protein.pdb

and the other called 6PTI water.pdb using the grip UNIX command[50].

2. Run V MD in text mode and type the following lines in the prompt

of V MD

(a) package require psfgen

Runs psfgen[20] plug in program within VMD1.8.1 or later ver-

sion that is a very useful to create PSF file.

(b) topology top all22 port.inp

Loads the topology file top all22 port.inp in order to read the

topology definitions for the residues of BPTI.

(c) segment BPTI pdb 6PTI protein.pdb

Builds the segment of BPTI that contains all atoms (sequence

of residues) of 6PTI protein.pdb. Also it adds hydrogen atoms.

Some error reading first and, last residues are normal[20].

(d) patch DISU BPTI:5 BPTI:55

(e) patch DISU BPTI:14 BPTI:38

60

(f) patch DISU BPTI:30 BPTI:51

Add some patch residues after the segment BPTI is built.

These contain all angle and dihedral terms explicitly. The

patches are applied for the disulfide link [20].

(g) alias residue HIS HSE

Changes the residue name of histidine to the proper name found

in the topology file. HSE is one of three names for histidine,

based on the protonation state of its side group. [See appendix

for Histidine residues].

(h) alias atom ILE CD! CD

The atom named CD1(αcarbon) in the isoleucine residue is

renamed as ”CD”, its proper name from the topology file. Since

isoleucine contains only α carbon atom. The PSF file dose not

use the number label ”CD”.

(i) coordpdb 6PTI protein.pdb BPTI

Coordinates are read from 6PTI protein.pdb, residues and atom

names are matched. Old segment labels are overrides by BPTI.

(j) guesscoord

Coordinates of missing atoms (like hydrogen) are guessed based

61

on residue definitions from the topology file. These guessed

atoms will be positioned to the correct places in the minimiza-

tion step.

(k) writepdb BPTI.pdb

A new PDB file with complete coordinates of all atoms includ-

ing hydrogen, is written.

(l) writepsf BPTI.psf

A PSF file with complete structural information of the protein

is written.

3. Force field parameter file of CHARMM is available in the internet.

At this point the PSF and the PDB files of BPTI are ready for a

simulation in the vacuum environment, but for a solution environ-

ment there is a need to solvate and ionize the BPTI in a water

box.

2.1.2 neutralized of BPTI

The BPTI protein needs to be solvated, i.e., put inside water (solution

environment) so as to be similar to the cellular environment.

There are several reasons for solvating the BPTI. Many biological

processes occur in aqueous solution. Solvation effects play a vital role in

62

determining molecular conformation electronic properties, binding ener-

gies, etc.

Solvation of BPTI is done in two steps. First, the solvent molecules

(water molecule) are added to the molecular system BPTI. Second, the

solvent is modeled as a continuum dielectric environment (water environ-

ment).

To build the PSF and the PDB files for BPTI in water box, the

following commands are written at V MD prompt:

• package require solvate

Places the solvate package in the correct place. V MD will be now

able to call it for adding water molecule.

• solvate BPTI.psf BPTI.pdb −t 6 −o BPTI water

The solvate package will put BPTI described in BPTI.psf, BPTI.pdb

(generated before) in a box of water that is large enough to avoid

the interaction between the protein and its image (from the other

side) in the next cell of Periodic Boundary Condition (PBC) (see

appendix C.3). The -t option used to create the water box dimen-

sion such that there exist a layer of water 6 Å (Angstrom) in each

direction. The -o option creates the output files BPTI water.psf and

63

BPTI water.pdb for BPTI with water box. The water box should

be large enough, this mean the water will still significantly immerse

the protein when it is fully extended in order to be sure protein is

inside the water box[49].

• set everyone [atomselect top all]

• measure minmax $everyone

Analyzes all atoms in the system and gives the minimum and max-

imum values of x, y, and z coordinates of the entire protein water

system. These minmax values are defined relative to the origin of

the coordinates system BPTI that are set by the initial pdb file. The

center of the water box is determined by calculating the midpoint of

each of the three box sides x, y, and z coordinates (next command

line).

• measure center $everyone

Determines the center coordinates of the water box center.

2.1.3 neutralization of BPTI in a water box

Ions are placed in the water to represent a typical biological environ-

ment. The ions are especially necessary if the protein carries an excess

64

charge. In that case, the number of ions should be chosen to make the sys-

tem neutral. The ions present will protect the regions which carry charge,

and make the entire protein environment more stable. They should be

placed in regions of potential minima because they will be forced to those

regions during the simulation. The PSF file contains the charge of each

atom, which is used to determine the net charge of the molecular system

(protein).

proc get total charge molid top {

eval ”vecadd [[atomselect molid all] get charge]”

}

Returns the total charge of molecular system where molid is an molecular

index passed to the procedure that determine which protein to chose.

package require autoionize

Running autoionize with no arguments gives a short overview of the syn-

tax. You can add ions in either of the following two ways: Specify the

number of ions, or let the package calculate the net charge and neutralize

the protein.

autoionize −psf BPTI water.psf −pdb BPTI water.pdb −is 0.05

Tells autoionize to compute the sodium and chlorine ion numbers so that

the net charge of the system is zero, and the average ionic strength of the

65

solution is (in this case) 0.05. Alternatively, autoionize place the given

numbers of the sodium (NNa) and chlorine (NCl) ions as user want. In

this case, the system may not be electrically neutral. autoionize provide

additional options:

−o < prefix >, output file prefix (default ’ionized’);

−from < distance >, min distance from molecule (default 5A);

−between < distance >, min distance between ions (default 5A).

2.1.4 Simulation of BPTI in both Vacuum and Solution

NAMD Configuration File

A NAMD configuration file contains a set of dynamics options and

values that control how the molecular system will be simulated. The

number of timesteps to perform, initial temperature, etc are some of these

options. Each line in the configuration files consists of an case insensitive

keyword and a value. The keyword and the value are separated only by a

space or equal sign and space(Appendix C).

Any NAMD configuration parameter file must has these necessary pa-

rameters: numsteps (number of steps), coordinates, structure, parameters,

exclude, outputname, and one of the following: temperature, velocities,

or binvelocities (binary velocity format). The previous parameters spec-

ify the most basic properties of the molecular dynamics simulation. The

66

Figure 2.2 BPTI in vacuum

67

Figure 2.3 BPTI in Solution after ionization

68

configuration parameters files for NAMD in both environment is given in

Appendix C.

2.1.5 Minimization

The BPTI system was minimized for 500 steps with the Conjugate

Gradient method using NAMD in order to remove any strong Van Der

Waals interactions that may exist. Otherwise these lead to local structural

distortion and result in an unstable simulation[13].

2.1.6 Heat

Initial velocities at zero (K) temperature are assigned (now each atom

have zero velocity)to each atom of the system and newton’s equations of

motion are integrated to propagate the BPTI in time. The BPTI was

heated from zero to 300 K in 20 ps (picoseconds) time scale using langevin

dynamics method.

2.1.7 Equilibration

Once the desired temperature of 300 K is reached, the vacuum sim-

ulation of BPTI continues and during this phase several properties are

monitored. In particular, the pressure, the temperature, and the energy

on the system[13] as well as the structure. The aim of the equilibration

phase is to run the simulation until these properties become stable with

69

respect to time. If the temperature increases or decreases significantly,

the velocities can be scaled such that the temperature returns to near its

desired value. The BPTI was equilibrated for 40 ps in 300 K using the

temperature reassignment parameters method[20].

2.1.8 Dynamics: Control production phase

The final step of the simulation is to run the simulation in production

phase for 20ns. The production of the 20 ns MD simulation was done

at 300 K. Appendix C shows the control parameters and values for the

vacuum and the solvent simulations such as timestep, space partitions, ba-

sic dynamics, electrostatic, multiple timestep algorithm, constrains, fixed

atoms, temperature control, and the periodic boundary condition[20].

The coordinates of all atoms were saved for analysis every 50 steps in

trajectory DCD files (Appendix B.6), giving a total of 400000 structures

(frames) of total size (30) GB (GigaByte) for solution and 400000 structure

of size (5) GB for vacuum.

2.1.9 Analysis

The total trajectory DCD files will contain all information about all

atoms’ positions in the protein during the course of the simulation. The

Cα atoms in the protein contain the interesting information[51, 1, 32] of

70

the protein states. The tool catdcd [45]was used to filter out (separate)

these atoms Cα from the trajectory DCD files. First, the file containing

the index for Cα is prepared using the V MD tool. After opening the

protein in V MD the following lines are typed at the prompt

••• >> set ca [atomselect top ”name CA”]

>> $ca get index

>> $ca writepdb ca.pdb

The index is copied and saved in a text file called index.txt. The last line

is used to save only Cα atom information in PDB format for later use.

(Note in VMD program CA means Cα alpha carbon)

The instruction that allowed to separate Cα atoms from DCD trajec-

tory files is: (Note Go to the directory where catdcd installed (bin catdcd

directory) and type the following at windows or unix prompt)

$./catdcd -i index.txt -o calpha.dcd /root/simulationresult/yourTrajectoryfile.dcd

This line produce a new trajectory DCD file called calpha.dcd in the

bin directory of catdcd containing only C-alpha atoms trajectory. To deal

with the big sized DCD files, it is helpful to store the Cα trajectories in

several files. Catdcd is a powerful tool for splitting and combining DCD

files. Load ca.pdb that was created before using V MD with the new DCD

71

file ”calpha.dcd”.

There is a need to fit and align the protein structures (frames) to a

reference frame. This frame is chosen as the first frame after the simula-

tion has fully equilibrated at the desired temperature. In this work the

structure after 250ps was chosen as the reference frame.

The following tcl[44] script procedure (in V MD editor) fit and align the

protein structures:

• proc fit align structure {{mol top}} {

• # use frame 5000 for the reference

• set reference [atomselect $mol ”name CA” frame 5000]

• $reference writepdb ref.pdb

• # the frame being compared

• set compare [atomselect $mol ”name CA”]

• set num steps [molinfo $mol get numframes]

• for {set frame 5000} {$frame $num steps {incr frame} {

• # get the correct frame

72

• $compare frame $frame

• #compute the transformation using Kub algorithem

• set trans mat[measure fit $compare $reference]

• # do the alignment

• $compare move $trans mat

• } #end of loop

• } #end of script

After that go to the V MD Display window to check if the protein is fitted

and aligned to the reference structure (frame), then save the new coor-

dinates in a new DCD file. This file contains the fitted and the aligned

trajectory. Note when V MD saves the coordinates it assumes a unix

platform even if the operation is performed from a windows platform.

Therefore, The DCD file is written as binary little endian. So you must

know which platform and which byte order the DCD file has. This is easily

done using flipdcd tool that comes with the NAMD distribution package.

Go to the NAMD bin directory and type the following at windows or

unix prompt

73

$./flipdcd yourDCDfile.dcd

This command Gives the byte order and converts it from little endian to

big or vice versa. We can now use the V MD prompt to calculate the

RMSD values for all structureS after the fit and align was done by typing

the following

• proc get rmsd {{mol top}} {

• set f [open vacuum rmsdall.dat a]

• # use frame 5000 for the reference

• set reference [atomselect $mol ”name CA” frame 5000]

• # the frame being compared

• set compare [atomselect $mol ”name CA”]

• set num steps [molinfo $mol get numframes]

• for {set frame 5000} {$frame $num steps} {incr frame} {

• # get the correct frame

• $compare frame $frame

• # compute the RMSD

74

• set rmsd [measure rmsd $compare $reference]

• puts $f ”$rmsd”

• }

• close $f

• }

Plot the RMSD values you get in the file called vacuum rmsd all.dat as

shown in Fig2.7.

The structures are now read from the DCD file and loaded to a java

classes’ anadcd.java (Appendix A.2) in order to find the covariance as

follows:

1. This class ”anadcd.java”(Appendix A.2) finds the covariance ma-

trix (equation 1.64)and the ”B-factor” (equation 2.1) (Temperature

Factor) of the protein)[52].

2. Plot the ”B-factor” (equation 2.1, Appendix A.2) to compare it with

the experiment values from protein data bank. Temperature-factor”

or ”Debye-Waller factor (Fig 2.4) is a factor that can be applied

to the X-ray scattering term for each atom (or for groups of atoms)

that describes the degree to which the electron density is spread

75

out. While the theory is that the B-factor indicates the true static

or dynamic mobility of an atom, it can also indicate where there are

errors in model building[23]. B-factor calculated from course of MD

simulation as in (equation1.61)

Bi =
8

3
π2 < ∆r2

i >=
8

3
π2 < cii > (2.1)

∆ri = ri− < ri >t (2.2)

where ∆ is the mean-square fluctuation of atom i, cii is covariance

(equation 1.64), and ri is trajectory position of particle i.

3. Use correlation.java class (Appendix A.2) to find the correlation map

matrix.

correlationij =
cij√

cii ∗ cjj

(2.3)

4. Carma tool was used to plot the correlation map (equation 2.3) by

typing the following in carma binary directory under unix prompt

$cat corrolationmap.txt ‖./carma gcc−

This produced a figure in ps format at the same directory of carma bin

called stdio.carma.ps. Rename this figure to overcome the problem of

reproduce other picture of the same name as shown in (Fig2.9).

76

5. After that Matlab was used to find the associated eigenvector and eigen-

value for the covariance matrix.

6. Plot the eigenvalue of each Cα with respect to its index in matlab as seen

in Fig2.15.

7. Use class eigproject.java (Appendix A.3)class to make a projection with

each eigenvector for each structure. For example, the dot product between

the first eigenvector values and trajectory data structure (frame), repeat

the dot product again with all structures this is also must done with

each eigenvectors. For simplicity do the projection with the significant

eigenvectors and two or three nonsignificance eigenvectors.

8. Plot the projection values for each eigenvector with respect to structure

index as shown in Fig2.18 and Fig2.23.

9. Plot the distribution of the projection values as shown in Fig2.31.

10. Plot the projection values on planes defined by projections between two

eigenvectors as shown in Fig2.25.

11. Form a correlation map by taking the dot product between eigenvectors

from different covariance matrices and plotting them using the carma tool

as shown in Fig2.36.

77

2.2 Analysis of results

2.2.1 B-Factors

To validate simulation results, different properties are usually calcu-

lated and compared to experimental data. These properties include struc-

tural properties such as crystallographic temperature factors (B-factors),

energetic properties such as heat capacity, and dynamical properties such

as viscosity[53].

In this work, B-factor experimental data, readily available from X-ray

diffraction data for almost any protein from protein data banks [19], were

used to check the validity of simulation results. The B-factor value for the

atom is proportional to the mean-square fluctuation for the position of

that atom. X-ray diffraction is used to determine atom electron densities.

These densities are smeared due to the motion of atoms. If a Gaussian

model is used to fit the spread of the electron density around the average

position of each atom, the width of the Gaussian can be related to the

”Debye-Waller factor”(equation 2.4), or B-factor (equation 1.61), by the

following equation [54]:

(∆ri)
2 =

3Bi

8π2
= cii (2.4)

where ∆ is the mean-square fluctuation of atom i, cii is covariance

(equation 1.64), and ri is trajectory position of particle i.

78

Figure 2.4 shows B-factor values calculated for water simulations rang-

ing in time from 1ns to 20 ns, compared to experimental (crystallographic)

values. The following observations were made:

1. Except for two regions, the first between the 10th and 20th residues,

and the second between the 36th and the 40th residues, the simulation

results give good qualitative agreement with the experimental values.

2. The simulation results do not show strong dependence on the time

length of each simulation. This suggests that the B-factor values

converge quickly.

3. The B-factor values in the two regions mentioned above increase

considerably with time.

Figure 2.5 shows B-factor values calculated for vacuum simulations

ranging in time from 1ns to 20 ns, compared to experimental (crystallo-

graphic) values. The following observations were made:

1. The simulation values give good qualitative agreement with the ex-

perimental values, except at the 48th and 49th residues.

2. The simulation values are consistently less than the experimental

values, again except at the 48th and 49th residues.

79

3. The simulation values show almost no dependence on the length of

the simulation.

B-factor values calculated from simulations usually give only qualita-

tive agreement with crystallographic values [40] as shown in Hunenberger

work (Fig2.6). However, it is standard procedure in molecular dynamics

simulations to perform this test to check for the validity of the simulation

before further analysis is performed.

80

0 10 20 30 40 50 60
0

20

40

60

80

100

120
B−Factor water simulation 20 ns

Residue Number

B
−

F
ac

to
r

[A
2]

Experiment
1 ns simulation
5 ns simulation
10 ns simulation
15 ns simulation
20 ns simulation

Figure 2.4 Comparison of rms fluctuations from simulation and from crys-
tallographic B-factors. Fluctuations computed for Cα (57 atom) atoms sampled
from 0-20 ns water simulation.

81

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40
B−Factor Vacuum 20 ns simulation

Residue Number

B
−

F
ac

to
r

[A
2]

Experimantal
1 ns simulation
5 ns simulation
10 ns simulation
15 ns simulation
20 ns simulation

Figure 2.5 Comparison of rms fluctuations from simulation and from crys-
tallographic B-factors. Fluctuations computed for Cα atoms (57 atom) sampled
from 0-20 ns vacuum simulation.

82

Figure 2.6 The Hunenberger [40] crystallographic B-factors for different
window length.

83

2.2.2 Root Mean Square Deviation RMSD:

The calculated root mean square deviation RMSD of the calculated

molecular dynamics structures from the initial equilibrated structure is

shown versus time for the water simulation (Fig2.7 top), and the vacuum

simulation (Fig2.7bottom). The equilibrium value for the water simula-

tion converges to an average value close to 2 angstroms. The equilibrium

value for the vacuum simulation converges to a value of 1.45 angstroms.

Hueneberger et.al. [40] reported an average value of 1.82 angstroms for

a 1.1 ns water BPTI simulation. Similar values are reported for other

proteins. This test is performed to evaluate the stability of the molecular

dynamics simulation.

84

Figure 2.7 Calculated rms Cα deviation (RMSD) of dynamic structures
from the initial structure vs. time from the MD simulation for 20ns on BPTI.

85

2.2.3 Kinetic Energy:

The kinetic energy of the protein is directly proportional to its tem-

perature. To check the stability of the simulation, the kinetic energy was

calculated versus time. Simulations were performed at 300 K. Figure 2.8

shows how the kinetic energy of the protein behaves versus time. It con-

verges in water to a value of 5850 [Kcal/mol] after 0.5 ns, and It converges

in vacuum to a value of 680 [Kcal/mol] after 0.5 ns,. Thus the protein

temperature remains constant throughout the simulation, a necessary con-

dition for the validity of analysis results.

86

Figure 2.8 kinetic energy for 20ns simulation.

87

2.2.4 Correlation Maps:

Figures (2.9, 2.10, 2.11, 2.12, 2.13, 2.14) shows correlation maps of

residues in the protein in both water (Top) and vacuum (Bottom). Each

graph relates how the motion of each residue correlates with all other

residues at a certain time. If both residues have large positive or large

negative displacements from their average positions, then their correlation

is close to 1, and this is shown as a dark spot on the map. If there is

no correlation between the residues, the coefficient is close to zero, and is

shown as a white spot. Negative correlation values where one residue has a

large positive displacement, and the other has a large negative value, were

also normalized to positive values, and are also shown as a dark spot with

a value close to one. As is clear from the Figure 2.9, the water correlation

maps show more dark areas signifying more correlation between residues.

The correlation maps for vacuum show pretty much a constant picture of

correlation very unlike the water simulation. These correlation maps might

be the key to understanding which areas in the protein work together to

perform different functions.

88

Figure 2.9 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 1ns simulation for water (Top) and
vacuum (Bottom)

89

Figure 2.10 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 5ns simulation for water (Top) and
vacuum (Bottom)

90

Figure 2.11 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 6ns simulation for water (Top) and
vacuum (Bottom)

91

Figure 2.12 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 10ns simulation for water (Top) and
vacuum (Bottom)

92

Figure 2.13 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 15ns simulation for water (Top) and
vacuum (Bottom)

93

Figure 2.14 Calculated residue-residue-based correlated motions (Dynamic
Cross Correlation Maps DCCM) after 20ns simulation for water (Top) and
vacuum (Bottom)

94

2.2.5 Eigenvalues

Plots of the eigenvalues(amplitude of the atom motion), versus the

eigenvector index calculated by diagonalizing the covariance matrix through-

out the 20ns solvent simulation (Fig2.15 Top, Fig2.16 Top, and Fig2.17

Top) and the 20ns vacuum simulation (Fig2.15 Bottom, Fig2.16 Bottom,

and Fig2.17 Bottom) are shown. The three figures at 1ns, 10ns, 20ns

show a steep decrease in the eigenvalues after a few eigenvectors. This

means that a few eigenvectors are enough to describe the protein motion,

leading to a substantial simplification in the description of such a mo-

tion. The time window for each calculation was 500ps. An eigenvector

with a large eigenvalue signifies a correlated motion among the atoms of

the protein along that direction. This similarity in behavior, whereby the

eigenvalues are significant for a few eigenvectors, suggests that short sim-

ulations might be sufficient to extract such information without the need

for lengthy simulations.

95

Figure 2.15 Eigenvalues, in decreasing order of magnitude for water (Top)
and vacuum (Bottom) simulations obtained from Cα coordinates covariance
matrix after 1ns.

96

Figure 2.16 Eigenvalues, in decreasing order of magnitude for water (Top)
and vacuum (Bottom) simulations obtained from Cα coordinates covariance
matrix after 10ns.

97

Figure 2.17 Eigenvalues, in decreasing order of magnitude for water (Top)
and vacuum (Bottom) simulations obtained from Cα coordinates covariance
matrix after 20ns.

98

2.2.6 Motions Along Eigenvectors for 20 ns

It is possible to represent a trajectory at a certain instant in time by

projecting it in the direction of one of the essential space eigenvectors. This

is performed by taking the dot product between the atom coordinates of

the protein at a certain time, and the components of an essential dynamics

eigenvector. By repeating this procedure versus time, one can study the

motion of the protein in a certain direction, and how it changes versus

time.

The projection of the 20ns solution trajectory in the direction of five

eigenvectors is shown in Top figures: 1st (Fig2.18), 2nd (Fig2.19), 3rd

(Fig2.20), 20th (Fig2.21), 50th (Fig2.22) for the solvent simulation (Top

figures) and the vacuum simulation (Bottom figures). Each graph shows

how the displacement of the protein trajectory changes with time along the

eigenvectors. As can be seen in Top figures (Fig2.18), (Fig2.19), (Fig2.20),

there is significant correlated motion along the first three eigenvectors. In

figures Top (Fig2.21), (Fig2.22), the displacement basically hovers around

zero. This indicates that the motions along these two directions are ran-

dom in nature. The vacuum simulations in (Fig2.18), (Fig2.19), Fig2.20)

Bottom) show no correlated motions, even along the directions of the first

three significant eigenvectors. This was also true for the displacement

99

along the 20th (Fig2.21 Bottom) and the 50th (Fig2.22 Bottom) eigenvec-

tors. However, a sudden ”jump” in the displacement is seen in Bottom of

figures (Fig2.18, Fig2.21, Fig2.22 Bottom). It is not clear if this ”jump”

has significance, or is merely an artifact of the simulation.

From this one can conclude that only in water simulations, the first

few eigenvectors contain significant information about protein correlated

motions.

100

Figure 2.18 Motions of 20ns along first eigenvector obtained from the Cα
coordinates covariance matrix of the water simulation (Top) and the vacuum
simulation (Bottom)

101

Figure 2.19 Motions of 20ns along second eigenvector obtained from the
Cα coordinates covariance matrix of the water simulation (Top) and the vacuum
simulation (Bottom)

102

Figure 2.20 Motions of 20ns along third eigenvector obtained from the Cα
coordinates covariance matrix of the water simulation (Top) and the vacuum
simulation (Bottom)

103

Figure 2.21 Motions of 20ns along twentieth eigenvector obtained from
the Cα coordinates covariance matrix of the water simulation (Top) and the
vacuum simulation (Bottom)

104

Figure 2.22 Motions of 20ns along fiftieth eigenvector obtained from the
Cα coordinates covariance matrix of the water simulation (Top) and the vacuum
simulation (Bottom)

105

2.2.7 Motions Along Eigenvectors for each ns separately

It is preferable to be able to reduce the running time of a simulation

to a minimum, and still get the same results one would get from a longer

simulation. With this in mind, the 20 ns trajectory is divided into twenty

1 ns trajectories. For each of the 1 ns trajectories, a set of eigenvectors

is calculated. The trajectory is then projected along the 1st, 2nd, 3rd, and

50th eigenvectors. This process is repeated twenty times, and the results

are compared for each 1 ns. The question to be answered here is: Can a

small part of the trajectory represent the whole trajectory when it comes to

discussing the projection along eigenvectors? As can be seen by comparing

Fig2.23A and Fig2.23B for example, it is clear that the projection of the

first 1 ns trajectory along the eigenvectors is different than the projection

of the 5th 1 ns trajectory along the eigenvectors. However, if Fig2.23B, C,

D are compared for the first eigenvector, a qualitatively similar behavior is

seen. The projection value is steady and then increases sharply to a new

steady state. Thus if the correlated motion along a certain eigenvector

happens to have a time constant of 5 ns, a repeatable behavior will be

seen. But interestingly enough, this does not apply to the projections at

20 ns.

In general, breaking up the trajectory into 1 ns pieces does not give

106

the same results obtained from a 20 ns trajectory for all the motions. It is

interesting to note further that the projections for the vacuum simulations

along the eigenvectors consistently show random motion.

107

Figure 2.23 Motions along several eigenvectors (1,2,3,50) obtained from
the Cα 1ns coordinates covariance matrix of the water simulation (upper row)
and the vacuum simulation (lower row), (A) 1ns motions after the first ns, (B)
1ns motions after the fifth ns (C) 1ns motions after the tenth ns (D) 1ns motions
after the fifteenth ns (E) 1ns motions after the twentieth ns

108

2.2.8 Trajectory projected on planes

It is possible to project a trajectory along a plane defined by two eigen-

vectors. The trajectory is represented as a pair of coordinates on this

plane. The two points represent the projection of the trajectory along the

two different eigenvectors. By following the projection pair versus time,

one can get a visual representation of where the protein spends significant

amounts of time. This might be used to define a ”state” of correlated

motion. The Top of Figure (Fig2.25) shows the projection of the 20 ns

trajectory on a plane defined by the first and second eigenvectors for the

water simulation. One can discern two different states represented by the

almost elliptical structures connected by a narrow strip. The bottom of

Figure (Fig2.25) shows the projection of the 20 ns trajectory on a plane

defined by the first and second eigenvectors for the vacuum simulation.

Two different ”states” are represented by the two circular patches. For

comparison, the top and bottom columns of Figure (Fig2.30) show the

projection of the 20 ns simulation along a plane defined by the twenti-

eth and fiftieth eigenvectors for the water and the vacuum simulations

respectively. One can discern two circular patches that basically hover

around zero. Both cases represent random motion that shows no corre-

lation. A similar behavior occurs when the trajectory is projected along

109

non-significant eigenvectors.

110

Figure 2.24 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix. (A) Horizontal axis: displacement along
first eigenvector. Vertical axis: displacement along second eigenvector.

111

Figure 2.25 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix. (A) Horizontal axis: displacement along
first eigenvector. Vertical axis: displacement along third eigenvector.

112

Figure 2.26 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from
the Cα coordinates covariance matrix.(A) Horizontal axis: displacement along
second eigenvector. Vertical axis: displacement along third eigenvector.

113

Figure 2.27 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix.(A) Horizontal axis: displacement along first
eigenvector. Vertical axis: displacement along fourth eigenvector.

114

Figure 2.28 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix.(A) Horizontal axis: displacement along first
eigenvector. Vertical axis: displacement along fifth eigenvector.

115

Figure 2.29 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix.(A) Horizontal axis: displacement along first
eigenvector. Vertical axis: displacement along twentieth eigenvector.

116

Figure 2.30 Projection of the trajectory (water simulation in Top and
vacuum simulation Bottom) on the planes defined by two eigenvectors from the
Cα coordinates covariance matrix. (A) Horizontal axis: displacement along
twentieth eigenvector. Vertical axis: displacement along fiftieth eigenvector.

117

2.2.9 Probability distributions of the Motions

Figures (Fig2.31, Fig2.32, Fig2.33, Fig2.34, Fig2.35) shows the dis-

tribution functions for the displacements along a number of significant

eigenvectors in water (top of Fig2.31, Fig2.32, Fig2.33, Fig2.34, Fig2.35)

and vacuum (bottom of Fig2.31, Fig2.32, Fig2.33, Fig2.34, Fig2.35). No-

tice that the non-Gaussian distributions belong to the first eigenvectors.

This attests to the random nature of motion along the higher eigenvec-

tors. In other words, all significant correlated motions are described by

the first few eigenvectors. This behavior is more pronounced in the water

simulation.

118

Figure 2.31 Probability distributions for the displacements along first
eigenvectors for both the water simulation (Top) and the vacuum simulation
(Bottom).

119

Figure 2.32 Probability distributions for the displacements along second
eigenvectors for both the water simulation (Top) and the vacuum simulation
(Bottom).

120

Figure 2.33 Probability distributions for the displacements along third
eigenvectors for both the water simulation (Top) and the vacuum simulation
(Bottom).

121

Figure 2.34 Probability distributions for the displacements along twentieth
eigenvectors for both the water simulation (Top) and the vacuum simulation
(Bottom).

122

Figure 2.35 Probability distributions for the displacements along fiftieth
eigenvectors for both the water simulation (Top) and the vacuum simulation
(Bottom).

123

2.2.10 Projecting several separate eigenvectors onto first ns

The set of eigenvectors evaluated for each nanosecond separately was

projected on the set of eigenvectors evaluated from the first nanosecond.

The idea is to check for repeatability in the eigenvector sets. These pro-

jections are represented as correlation maps with values ranging from 0

(light) to 1 (dark). There is a clear difference in behavior between the

water(Fig2.36a) simulation results and the vacuum (Fig2.36b) simulation

results. There is a clear correlation between the eigenvector sets resulting

from the water simulation. The vacuum eigenvector sets only show a clear

correlation between the first and the 10th nanoseconds.

124

Figure 2.36 Projection of one set of eigenvectors onto another for both
water (left column) and vacuum simulation (right column). (A) Eigenvectors
calculated from first ns on second ns. (B) Eigenvectors calculated from first ns
on third ns. (C) Eigenvectors calculated from first ns on fifth ns. (D) Eigen-
vectors calculated from first ns on tenth ns. (E) Eigenvectors calculated from
first ns on fifteenth ns. (F) Eigenvectors calculated from first ns on twentieth
ns.

Chapter 3

Conclusions

A 20 ns molecular dynamics simulation was performed on the protein

BPTI in water and in vacuum. This is the longest reported simulation

in the literature. These simulations were analyzed and compared. The

following are the results:

1. The B-factor analysis shows qualitative agreement with experiment,

with the vacuum results showing slightly better agreement.

2. The RMSD values converged close to 2 angstroms in water simula-

tion and 1.45 angstroms in vacuum simulation.

3. A more dynamic correlation map resulted from the water simula-

tion. This could be the starting point for future research to try and

determine which residues correlate exactly with each other.

4. The PCA technique results show that only a few eigenvectors, or

correlated motions, can describe the significant non-random motion

of the protein in water and in vacuum.

5. The water simulation showed clear correlated motion along the sig-

nificant eigenvectors, while the vacuum simulation did not.

126

6. The analysis showed that a 1ns simulation was not enough to give

repeatable results for motions of the protein along significant eigen-

vectors.

7. The water simulation showed clear states where it spent time along

certain eigenvectors. The vacuum simulation did not.

8. By looking at the probability distribution of the motion amplitude,

it was made clear that the only non-random motions were along

significant eigenvectors.

9. Projecting sets of eigenvectors from different time regions of the 20

ns simulation show repeatability for the water simulation only.

There are plenty of future research directions that are possible based on

this work. The most attractive would be to try and point at specific

motions and explain their physical or chemical origin: Which atom pair

initiates a certain bending motion, or a certain open-close mechanism?

The answers to these questions could be the key to controlling the motions

and the function of this and other proteins.

Appendix A

Routine java Code

A.1 rotation class

import java.io.*; import java.util.Date; public class dcd {

FileWriter out; PrintWriter outdata;

public dcd() {

}

int[] backbone;

public static void main(String[] args)throws IOException {

dcd dcd1 = new dcd();

dcd1.read_dcd_fit();

}

/*find the squre of value*/

public float sqr(float sq)

{

return sq*sq;

}

/*calculate rmsd between two frame*/

public double rmsd(Frame ref, Frame mob)

{

double dx,dy,dz,dr;

dr=0;

for(int i=0;i<mob.num_Atom;i++)

{

dx=sqr(mob.atoms[i].get_X() - ref.atoms[i].get_X());

//dx=dx*dx;

dy=sqr(mob.atoms[i].get_Y() - ref.atoms[i].get_Y());

// dy=dy*dy;

dz=sqr(mob.atoms[i].get_Z() - ref.atoms[i].get_Z());

// dz=dz*dz;

dr+=dx+dy+dz;

}

dr=Math.sqrt(dr/mob.num_Atom);

return (dr);

128

}//end rmsd

public double rmsd(float []com, Frame mob)

{

double dx,dy,dz,dr;

dr=0;

for(int i=0;i<mob.num_Atom;i++)

{

dx=sqr(mob.atoms[i].get_X() - com[0]);

//dx=dx*dx;

dy=sqr(mob.atoms[i].get_Y() - com[1]);

// dy=dy*dy;

dz=sqr(mob.atoms[i].get_Z() - com[2]);

// dz=dz*dz;

dr+=dx+dy+dz;

}

dr=Math.sqrt(dr/mob.num_Atom);

return (dr);

}//end rmsd

public void read_dcd_fit()throws IOException

{

int[] backbone={4 ,27 ,42 ,54 ,76 ,84 ,103 ,117 ,131 ,146 ,167 ,181 ,187

,204 ,212 ,234 ,244 ,268 ,287 ,306 ,330 ,351

,371 ,392 ,406 ,416 ,438 ,448 ,455 ,476 ,484 ,501 ,515 ,535 ,551 ,572 ,579 ,

588 ,596 ,620 ,630 ,652

,676 ,690 ,704 ,724 ,746 ,757 ,767 ,782 ,796 ,804 ,821 ,845 ,861 ,869 ,879};

out =new FileWriter("c:\\val.txt");

outdata=new PrintWriter(out);

//FileInputStream readdcd=new FileInputStream("F:\\thesis data\\ca_1-2ns.dcd");

FileInputStream readdcd=new FileInputStream("C:\\Program Files\

\University of Illinois\\VMD\\proteins\\alanin.dcd");

DataInputStream ReadDcdData=new DataInputStream(readdcd);

// System.out.println(ReadDcdData.readInt());

int nn = ReadDcdData.readInt();System.out.println(nn);

ReadDcdData.skipBytes(4);

int number_frame = ReadDcdData.readInt();

System.out.println("number of frame: " + number_frame);

129

ReadDcdData.skipBytes((nn-8));

System.out.println();

System.out.println(ReadDcdData.readInt());

System.out.println(ReadDcdData.readInt());

//end first part

ReadDcdData.skipBytes(164);

System.out.println(ReadDcdData.readInt());

System.out.println(ReadDcdData.readInt());

ReadDcdData.skipBytes(4);

System.out.println(ReadDcdData.readInt());

//end secand part

//end part three

int s= ReadDcdData.readInt();

System.out.println();

System.out.println(s/4+" number of atoms");

Frame ref=new Frame(s/4);

for(int i=0;i<s/4;i++)

{

ref.atoms[i].x= ReadDcdData.readFloat();

}

ReadDcdData.readInt(); /*Begin for all frame*/ Date end=new

Date();

ReadDcdData.readInt(); for(int i=0;i<s/4;i++)

{

ref.atoms[i].y= ReadDcdData.readFloat();

}

ReadDcdData.readInt(); ReadDcdData.readInt(); for(int

i=0;i<s/4;i++)

{

ref.atoms[i].z= ReadDcdData.readFloat();

}

ReadDcdData.readInt();

//end refrence frame

//begin mobile frame

130

int kk=1000; System.out.println(end.toString()); Frame mob=new

Frame(s/4);

//for(int ss=0 ;ss< 41300;ss++){

for(int ss=0 ;ss< 100;ss++){

ReadDcdData.readInt();

for(int i=0;i<s/4;i++)

{

mob.atoms[i].x= ReadDcdData.readFloat();

}

ReadDcdData.readInt(); ReadDcdData.readInt(); for(int

i=0;i<s/4;i++)

{

mob.atoms[i].y= ReadDcdData.readFloat();

}

ReadDcdData.readInt(); ReadDcdData.readInt(); for(int

i=0;i<s/4;i++)

{

mob.atoms[i].z= ReadDcdData.readFloat();

}

ReadDcdData.readInt();

//end mobil

mob=translate(ref,mob);

//mob=translate(mob);

//ref=translate(ref);

float comx[]=new float[3]; comx=center_frame(ref); float

comy[]=new float[3]; comy=center_frame(mob);

//md.fit meme=new md.fit();

/* a) compute R matrix

* R= r(i,j)= sum(w(n)*(y(n,i)-comy(i))*(x(n,j)-comx(j)))

*/ float R[][]=new float[3][3];

//R=meme.matfit(ref,mob,R);

//mob=new_data(R,mob);

//System.out.println(rmsd(ref,mob) +" new algo");

for(int i=0;i<3;i++)

131

{

for(int j=0;j<3;j++)

{

float tmp=0;

//int nx=0,ny =0,nz=0;

for(int n = 0 ; n < ref.num_Atom ; n++)

{

/* tmp+=(mob.atoms[n].get_corr(i)-comy[i])*(ref.atoms[n].get_corr(j)-comx[j])

/(ref.num_Atom*ref.num_Atom);*/

tmp+=(mob.atoms[n].get_corr(i))*(ref.atoms[n].get_corr(j));

}

R[i][j]=tmp;

}

}

//show rotation matrix

/* for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{System.out.print(R[i][j]+"\t");

}System.out.println();

}*/

/* find Rt R transpose*/

float Rt[][]=new float[3][3];

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{Rt[i][j]=R[j][i];

}

}

/* find RtR transpose*/

float RtR[][]=new float[3][3];

RtR=matix_multiplay(Rt,R);

float tmp_RtR[][]=new float[4][4];

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

tmp_RtR[i][j]=RtR[i][j];

}

/* //test

132

tmp_RtR[0][0]=112;tmp_RtR[0][1]=137;tmp_RtR[0][2]=162;

tmp_RtR[1][0]=129;tmp_RtR[1][1]=159;tmp_RtR[1][2]=189;

tmp_RtR[2][0]=146;tmp_RtR[2][1]=181;tmp_RtR[2][2]=162;*///end test

/*b) find the eigenvalues and eigenvectors of RtR by jaccobi method*/

float evalue[]=new float[3];

float evector[][]=new float[3][3];

md.jacobi jacobi1=new md.jacobi();

float eye[][]=new float[3][4];

eye=jacobi1.jacobi(tmp_RtR,evalue,evector);

//System.out.println("eye eye");

//show e value e vector

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{evector[i][j]=eye[i][j];

}

evalue[i]=eye[i][3];

}

/* transposition the evector matrix to put the vectors in rows*/

float vectmp;

vectmp=eye[0][1]; eye[0][1]=eye[1][0]; eye[1][0]=vectmp;

vectmp=eye[0][2]; eye[0][2]=eye[2][0]; eye[2][0]=vectmp;

vectmp=eye[2][1]; eye[2][1]=eye[1][2]; eye[1][2]=vectmp;

/* for(int i=0;i<3;i++)

{

for(int j=0;j<4;j++)

{System.out.print(eye[i][j]+"\t");

}System.out.println();

}*/

// System.out.println("rorororo");

/* b) 4) sort so that the eigenvalues are from largest to smallest

* (or rather so a[0] is eigenvector with largest eigenvalue, ...)*/

if (eye[0][3] < eye[1][3]) {

SWAP_Evector(eye,0, 1);

}

if (eye[0][3] < eye[2][3]) {

133

SWAP_Evector(eye,0, 2);

}

if (eye[1][3] < eye[2][3]) {

SWAP_Evector(eye,1, 2);

}

//show eye

/* for(int i=0;i<3;i++)

{

for(int j=0;j<4;j++)

{System.out.print(eye[i][j]+"\t");

}System.out.println();

}*/

/* c) determine b(i) = R*a(i) or {R*eye}*/

float b[][]=new float[3][3];

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{float tmp=0;

for(int k=0;k<3;k++)

{

tmp+=R[j][k]*eye[i][k];

}

b[i][j]=tmp/(float)Math.sqrt((double) eye[i][3]);

}

}//end b(i)

//normalize b(i)

/* for(int i=0;i<3;i++)

{float tmp=0;

for(int j=0;j<3;j++)

{

tmp+=b[i][j]*b[i][j];

}

tmp=(float)Math.sqrt((double)tmp);

for(int j=0;j<3;j++)

{

b[i][j]=b[i][j]/tmp;

}

}*/

/* d) compute U = u(i,j) = sum(b(k,i) * a(k,j))*/

134

float U[][]=new float[3][3];

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{float tmp=0;

for(int k=0;k<3;k++)

{

tmp+=b[i][k]*eye[j][k];

}

U[i][j]=tmp;

}

}

//end U

/* System.out.println("rorororo U");

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{System.out.print(U[i][j]+"\t");

}System.out.println();

}*/

/*Make allignment between two frames*/

mob=new_data(U,mob);

//comx=center_frame(ref);

//comy=center_frame(mob);

//System.out.println(comx[0]+"\t"+comx[1]+"\t"+comx[2]+" hhhh");

//System.out.println(comy[0]+"\t"+comy[1]+"\t"+comy[2]+" hhjj");

/*open file to write row*/

/* for (int i=0;i< mob.num_Atom;i++) { for (int j=0 ;j<

backbone.length;j++) {

if (i==backbone[j]) {

outdata.print(mob.atoms[i].get_corr(0)+"\t"+mob.atoms[i].get_corr(1)+"\t"+

mob.atoms[i].get_corr(2)+"\t"); } } } outdata.println();*/

//end write fitted data

Date basem=new Date();;

//end.getTime();

basem.getTime();

135

if(ss%kk==999) System.out.println(basem+"\t"+ss);

comx=center_frame(ref);

System.out.println(rmsd(comx,mob));

//System.out.println("end rmsd fit align "+rmsd(moba,mob));

}//end of for loop for all frame

outdata.close();

}//end of read dcd file

//find center of each frame

public float[] center_frame(Frame frame1) { float center[]=new

float[3]; center[0]=0; center[1]=0; center[2]=0; for(int i=0;

i<frame1.num_Atom; i++) { center[0]+=frame1.atoms[i].x;

center[1]+=frame1.atoms[i].y; center[2]+=frame1.atoms[i].z; }//end

for center[0]=center[0]/frame1.num_Atom;

center[1]=center[1]/frame1.num_Atom;

center[2]=center[2]/frame1.num_Atom;

return center; }//end center of frame method public float[][]

matix_multiplay(float A[][],float B[][]) { float C[][]=new

float[3][3]; for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{float tmp=0;

for(int s=0; s<3 ; s++)

tmp+= A[i][s] * B[s][j];

C[i][j]=tmp;

}

}

return C; }//end matrix multiplay /* function swap the col

transform to rows */ public float[][] SWAP_Evector(float

vector[][], int i, int j) {

float v,v1;

for(int s=0; s<4;s++)

{

v = vector[i][s]; vector[i][s] = vector[j][s]; vector[j][s] = v;

}

return vector;

136

} /* find the new dat after the fit and align*/ public Frame

new_data(float U[][], Frame frame) { for(int

kk=0;kk<frame.num_Atom;kk++) { for(int i=0;i<3;i++)

{float tmp=0;

for(int j=0;j<3;j++)

{

tmp+=U[i][j]*frame.atoms[kk].get_corr(j);

}frame.atoms[kk].set_corr(i,tmp);

}

// System.out.println(frame.atoms[kk].get_corr(0)

// +"\t"+frame.atoms[kk].get_corr(1)+"\t"+frame.atoms[kk].get_corr(2));

} return frame; }//end method /*translation removal vector*/

public Frame translate(Frame ref) { float Rcen[]=new float[3];

float origin[]=new float[3]; float Dist[]=new float[3]; Rcen=

center_frame(ref); origin[0]=0;origin[1]=0;origin[2]=0; for(int

i=0; i<3;i++) Dist[i]= Rcen[i]-origin[i]; for(int i=0;

i<ref.num_Atom;i++) { for(int s=0;s<3;s++)

ref.atoms[i].set_corr(s,ref.atoms[i].get_corr(s)-Dist[s]);

} Rcen= center_frame(ref);

//System.out.println(Rcen[0]+"\t"+Rcen[1]+"\t"+Rcen[2]);

return ref;

} public Frame translate(Frame ref1,Frame mob1) { float Rcen[]=new

float[3]; float Mcen[]=new float[3]; float Dist[]=new float[3];

Rcen= center_frame(ref1); Mcen= center_frame(mob1); for(int i=0;

i<3;i++) Dist[i]=Mcen[i]- Rcen[i];

for(int i=0; i<mob1.num_Atom;i++) { for(int s=0;s<3;s++)

mob1.atoms[i].set_corr(s,mob1.atoms[i].get_corr(s)-Dist[s]);

} return mob1; }

}//end class

A.2 Corrolation and Analysis class

import java.io.*; public class anadcd {

float A[][]=new float[20000][171];

137

public anadcd() {

}

public static void main(String[] args)throws IOException {

anadcd anadcd1 = new anadcd();

float sum[]=new float[171];

float ava[]=new float[171];

for (int m=0;m<171;m++) sum[m]=0;

int N_raw=20000;

int N_col=171;

float Cov[][]=new float[N_col][N_col];

for(int i=0; i<N_col; i++)

for (int j=0; j<N_col; j++)

Cov[i][j]=0;

FileInputStream readdcd;

DataInputStream ReadDcdData;

/*loop until the end of data */

//for (int nano=1;nano<21;nano++){

/*loop to find colom avarages*/ for (int ns=20;ns<21;ns++){

readdcd=new FileInputStream("D:\\Documents and Settings\\Administrator\\allvacuum20ns.dcd");

//readdcd=new FileInputStream("D:\\newdata\\20-fa-nsv.dcd");

//readdcd=new FileInputStream("D:\\basem\\"+ns+"ns");

ReadDcdData=new DataInputStream(readdcd);

/* System.out.println(ReadDcdData.readInt());

ReadDcdData.skipBytes(88);

ReadDcdData.skipBytes(172);*/

ReadDcdData.skipBytes(276);

ReadDcdData.skipBytes(3540000);

for (int m=0;m<171;m++) sum[m]=0; for(int i=0; i<N_col; i++)

for (int j=0; j<N_col; j++)

Cov[i][j]=0;

//int m= ns-1;

for (int m=0;m<ns;m++){

//ReadDcdData.skipBytes(20000*236*m);

//end part three

int s1=228; int fra =0; System.out.println(s1/4+" number of atoms

"+ ns);

while(fra<20000)/*begin get data all 20000 frame from file*/ {

for(int j=0;j<3;j++)//for begin get data frame from file {

ReadDcdData.readInt();

138

for(int i=0;i<57;i++)

anadcd1.A[fra][3*i+j]=ReadDcdData.readFloat();

ReadDcdData.readInt();

}//end for 1 end hold all frame data fra++; }//end while for all

20000 frame for(int j=0;j<N_col;j++)

sum[j]+=anadcd1.Sum_coloun(j,N_raw);/* add all values*/

}//end for m

ReadDcdData.close();

readdcd.close();

/*find over all average*/

for(int j=0;j<N_col;j++)

{ ava[j]=anadcd1.ava_Col_Number(sum[j],N_raw,ns);

// System.out.println(ava[j]);

}

FileWriter avadata=new FileWriter("d:\\newdata\\vacuum\\vava-"+ns+".txt");

for(int j=0;j<171;j++)

{

avadata.write(ava[j]+"\n");

}

avadata.close();

/*find the covariance matrix for each nanosecand then add them*/

readdcd=new FileInputStream("D:\\Documents and Settings\\Administrator\\allvacuum20ns.dcd");

// readdcd=new FileInputStream("D:\\newdata\\20-fa-nsv.dcd");

//readdcd=new FileInputStream("D:\\basem\\"+ns+"ns");

ReadDcdData=new DataInputStream(readdcd);

/* FileOutputStream writedcd=new FileOutputStream("d:\\newdata\\ava"+ns+".dcd");

DataOutputStream WriteDcdData=new DataOutputStream(writedcd);

/* System.out.println(ReadDcdData.readInt());

ReadDcdData.skipBytes(88);

ReadDcdData.skipBytes(172);

ReadDcdData.skipBytes(12);//end part three*/

byte store[]=new byte[276];

ReadDcdData.read(store);

ReadDcdData.skipBytes(3540000);

// WriteDcdData.write(store);//write the header for the dcd file

//ReadDcdData.skipBytes(20000*236*m);

for (int m=0;m<ns;m++){

int s1=228;

int fra =0;

System.out.println("atoms "+ m);

139

while(fra<20000) { for(int j=0;j<3;j++)//for 1 {

ReadDcdData.readInt();

for(int i=0;i<57;i++)

anadcd1.A[fra][3*i+j]=ReadDcdData.readFloat();

ReadDcdData.readInt();

}//end for 1 fra++; }//end while

for(int j=0;j<N_col;j++)

{

for(int i=0;i<N_raw;i++)

{

anadcd1.A[i][j]=anadcd1.Div_from_Ava(anadcd1.A[i][j],ava[j]);

}

}

/*Write the average to the dcd file*//*

fra =0; while(fra<20000) { for(int j=0;j<3;j++)//for 1 {

WriteDcdData.writeInt(57*4);

for(int i=0;i<57;i++)

WriteDcdData.writeFloat(anadcd1.A[fra][3*i+j]);

WriteDcdData.writeInt(57*4);

}//end for 1 fra++; }//end while /*the new covariance matrix is

look like*/

for(int i=0;i<N_col;i++)

{

for(int j=0;j<=i;j++)

{

Cov[i][j]+=anadcd1.Dot_Col(i,j,N_raw);//here rasha

Cov[j][i]=Cov[i][j];

}

}

}//end for m/*if i need to do*/ for(int i=0;i<N_col;i++)

{

for(int j=0;j<=i;j++)

{

Cov[i][j]=Cov[i][j]/(N_raw*(ns));

Cov[j][i]=Cov[i][j];

}

140

}

/* for(int j=0;j<N_col;j++)

{

for (int i = 0; i <= j; i++)

{

Cov[j][i] = Cov[i][j];

}

}*/

ReadDcdData.close();

readdcd.close();

//WriteDcdData.close();

/*find Bfactor and save them in file */

float bfactor[]=new float[57];

bfactor=anadcd1.Bfactor(Cov);

FileWriter Bfactorf=new FileWriter("d:\\newdata\\vacuum\\vBfactort_"+ns+".txt");

for(int j=0;j<57;j++)

{

Bfactorf.write(bfactor[j]+"\n");

}

Bfactorf.close();

FileWriter covf=new FileWriter("d:\\newdata\\vacuum\\"+ns+"-covv.txt");

//show covaraince matrix in file

for(int i=0;i<N_col;i++)

{

for(int j=0;j<N_col;j++)

{

covf.write(Cov[i][j]+"\t");

}covf.write("\n");

}

covf.close();

System.out.println("color matrix");

/* try{

// open file to writ matrix of color number

// plot=new FileOutputStream("c:\\plot.txt");

FileWriter plots1 =new FileWriter("c:\\newdata\\plot_1-ns.txt");

for(int i=0;i<N_col;i++)

{

for(int j=0;j<N_col;j++)

141

{

for(int s=1;s<Range.length;s++)

{

if ((Cov[i][j] >= Range[s-1]) || (Cov[i][j] > Range[s]))

plots1.write(s);

}plots1.write("\n");

//plots.print(analysis1.color_matrix[198*i+j]);

// System.out.print(analysis1.color_matrix[198*i+j]+",");

}

// plots.println();

}plots1.close();

}catch (IOException ex) {System.out.println(ex.getMessage());}

*/

}//end ns

//}//endnano

}//end main

/*find the sum of all col*/

public float Sum_coloun(int Y_colNumber,int N_Raw)

{float sum1;

sum1=0;

for(int i=0;i<N_Raw;i++)

sum1+=A[i][Y_colNumber];

return sum1;

}

//find the avarage fro each col

public float ava_Col_Number(float Sum_Col_Num,float Num_Raw,int ns)

{

return Sum_Col_Num/(Num_Raw*ns);

}

//find divaction from avarage

public float Div_from_Ava(float value,float avarage)

{

return value-avarage;

}

//multiplay two col

public float Dot_Col(int i_col1,int j_col2,int Raw_length)

{

float val=0;

142

for(int s=0;s<Raw_length;s++)

{

val+=A[s][i_col1]*A[s][j_col2];

}

return val;

}

public float absval(float val)

{if (val >= 0) return val;

else return -val;

}

public float min(float a,float b)

{

if(a>b) return b;

else return a;

}

public float max(float a,float b)

{

if(a>b) return a;

else return b;

}

/*calculate the Bfactor (tempreture factor)*/ public float[]

Bfactor(float [][]cov) {float bfactor[]=new float[57];

for(int i = 0; i < 57; i++)

{float sum=0;

for(int j = 0; j < 3; j++)

sum+=cov[3 * i + j][3 * i + j];

bfactor[i] = (8/3)*(22/7)*(22/7)*(sum);

}

return bfactor;

} }

A.3 projection class

import java.io.*; public class eigproject {

public eigproject() {

}

public static void main(String[] args)throws IOException {

eigproject eigproject1 = new eigproject();

float eign1[][] = new float[171][171];

143

float eign2[][] = new float[171][171];

int nano1 = 1;//nano1<11;naon1++){

FileReader read = new FileReader("d:\\newdata\\pca_gw\\eigvd"+ nano1 + ".txt");

StreamTokenizer in = new StreamTokenizer(read);

for (int i = 0; i < 171; i++){

for (int j = 0; j < 171; j++) {

in.nextToken();

if (in.ttype == StreamTokenizer.TT_NUMBER){

eign1[i][j] = (float)in.nval;

//System.out.print(eign1[i][j]+"\t");

}

}//System.out.println();

}/*output file to write data*/

int nano2 = 20;

FileReader read2 = new FileReader("d:\\newdata\\pca_gw\\eigvd"+ nano2 + ".txt");

StreamTokenizer in2 = new StreamTokenizer(read2);

for (int i = 0; i < 171; i++){

for (int j = 0; j < 171; j++) {

in2.nextToken();

if (in2.ttype == StreamTokenizer.TT_NUMBER){

eign2[i][j] = (float)in2.nval;

//System.out.print(eign2[i][j]+"\t");

}

}//System.out.println();

}/*output file to write data*/

FileWriter wr = new FileWriter("D:\\newdata\\pca_gw\\map120.txt");

/*project just two eigvector to make thier plane*/

for (int i = 0; i < 171; i++)

{

for (int j = 0; j < 171; j++)

{float sum=0;

for (int s = 0; s < 171; s++)

{

sum+=eign1[s][i]*eign2[s][j];

}//System.out.println(sum);

wr.write(sum+" \t");

}wr.write(" \n");

}wr.close();

}

}

144

A.4 Extract cα from Trajectory DCD

import java.io.*; public class getcalphacoor {

public getcalphacoor() {

}

public static void main(String[] args) throws IOException{

getcalphacoor getcalphacoor1 = new getcalphacoor();

int caindex[]={4, 27, 42, 54, 76, 84, 103, 117, 131, 146, 167, 181, 187, 204,

212, 234, 244, 268, 287, 306 ,330, 351, 371, 392, 406 ,416, 438, 448 ,455

,476 ,484 ,501 ,515 ,535 ,551 ,572 ,579 ,588, 596, 620, 630, 652 ,676

,690 ,704 ,724 ,746 ,757 ,767 ,782 ,796 ,804 ,821 ,845 ,861 ,869 ,879};

float A[] = new float[1000];

float CaCoorFrame[]=new float[caindex.length];

FileInputStream readdcd=new FileInputStream("d:\\catdcd\\20nsv.dcd");

DataInputStream ReadDcdData=new DataInputStream(readdcd);

FileOutputStream writedcd = new FileOutputStream("D:\\ca2.dcd");

DataOutputStream WriteDcdData = new DataOutputStream(writedcd);

byte store[] = new byte[276];

float copy[]=new float[882];

float index[]={0,0,0,0,0};

ReadDcdData.read(store);

WriteDcdData.write(store);

ReadDcdData.close();readdcd.close();

readdcd=new FileInputStream("z:\\vacuum-assgin.dcd");

ReadDcdData=new DataInputStream(readdcd);

ReadDcdData.skipBytes(312);

//for (int k = 0; k < 316; k++)System.out.print((char)store[k]);

int x=0;

System.out.println(caindex.length);

while(x<400200)

{

ReadDcdData.readInt();

for (int kk = 0; kk < 882; kk++) {/* {for (int k = 0; k < 4; k++)

index[k]= ReadDcdData.readByte();

index[4]=index[0]+index[1]+index[2]+index[3];

System.out.println(index[4]+"\t"+kk);

145

*/copy[kk]= ReadDcdData.readFloat();

}

ReadDcdData.readInt();

// System.out.println(copy[4]+"\t");

WriteDcdData.writeInt(57*4);

for (int k = 0; k < 57; k++)

{

WriteDcdData.writeFloat(copy[caindex[k]-1]);

}

WriteDcdData.writeInt(57*4);

x++;

if (x%10000==0) System.out.println(x);

}

readdcd.close();

}

}

A.5 Convert DCD File Format To PDB format class

import java.io.*; public class producexyzdata {

public producexyzdata() {

}

public static void main(String[] args) throws IOException{

producexyzdata producexyzdata1 = new producexyzdata();

float A[]=new float[171];

for(int ns=9;ns<21;ns++){

FileInputStream readdcd = new FileInputStream("D:\\Documents and Settings\\Administrator\\v"+ns+"ns.dcd");

// FileInputStream readdcd = new FileInputStream("D:\\basem\\"+ns+"ns");

DataInputStream ReadDcdData = new DataInputStream(readdcd);

FileWriter wr = new FileWriter("D:\\v"+ns+"ns.txt");

System.out.println(ReadDcdData.readInt());

ReadDcdData.skipBytes(88);

ReadDcdData.skipBytes(172);

ReadDcdData.skipBytes(12);

/*read each fame and write it in out file*/

int s1=228;

int fra =0; System.out.println(s1/4+" number of atoms "+ ns);

while(fra<20000)/*begin get data all 20000 frame from file*/ {

for(int j=0;j<3;j++)//for begin get data frame from file {

146

ReadDcdData.readInt();

for(int i=0;i<57;i++)

A[3*i+j]=ReadDcdData.readFloat();

ReadDcdData.readInt();

}//end for 1 end hold all frame data fra++; for(int i=0;i<171;i++)

wr.write(A[i]+"\t");

wr.write(" \n");

}//end while for all 20000 frame wr.close();

ReadDcdData.close();

readdcd.close();

}//end each ns

}

}

A.6 Extract Important Data From NAMD Logfile
class

import java.io.*; public class Namdlog {

public Namdlog() {

}

public static void main(String[] args) throws IOException{

Namdlog namdout1 = new Namdlog();

FileReader fr=new FileReader("D:\\basimout.txt");

boolean app=true;

FileWriter fw=new FileWriter("D:\\matlabtest\\vacuumENERGY1.txt",app);

StreamTokenizer in=new StreamTokenizer(fr);

in.nextToken();

String remark;

int counttitels=0;

int countenergy=0;

boolean energytiming=true;

String ETITEL[]=new String[15];

double ENERGY[]=new double[15];

double ENERGY2 =100;

double ENERGY1 =10;

while (in.ttype != StreamTokenizer.TT_EOF)

{

147

if (in.ttype == StreamTokenizer.TT_WORD)//first if

{

remark=in.sval;

if (remark.equals("ETITLE")) //2ed if

{

counttitels++;

if (counttitels==1) //3ed if

{

for(int i=0;i<15;i++)

if (in.nextToken() == StreamTokenizer.TT_WORD) ETITEL[i]=in.sval;

for(int i=1;i<15;i++){System.out.print(ETITEL[i]+"\t");}

//System.out.println();

}//3ed if

}//2ed if

} //first if

//end read header

//begin read energy data

if (in.ttype == StreamTokenizer.TT_WORD)//first if

{remark=in.sval;

if (remark.equals("ENERGY")) //2ed if

{

countenergy++;

if ((countenergy!=1)&& (countenergy!=0))//3ed if

{

for(int i=0;i<15;i++)

if (in.nextToken() == StreamTokenizer.TT_NUMBER)

{ENERGY[i]=in.nval;}

if (ENERGY[1]%1000!=900)

{if ((ENERGY[12]>=(ENERGY1-30))&&(ENERGY[12]<=(ENERGY1+30)))

// if ((ENERGY[10]>=(ENERGY2-100))&&(ENERGY[10]<=(ENERGY2+100)))

{

fw.write(ENERGY[1]+"\t"+ENERGY[12]+"\t"+ENERGY[10]+"\t");

}ENERGY1=ENERGY[12];ENERGY2=ENERGY[10];

148

}

fw.write(" \n");

}//3ed if

}//2ed if

} //first if

in.nextToken();

}//end while

fw.close();

}

}

Appendix B

Files Format

B.1 PDB Format

PDB Files The term PDB can refer to the Protein Data Bank (http://www.rcsb.org/pdb/),
to a data file provided there, or to any file following the PDB format.
Files in the PDB include information such as the name of the compound,
the species and tissue from which is was obtained, authorship, revision
history, journal citation, references, amino acid sequence, stoichiometry,
secondary structure locations, crystal lattice and symmetry group, and fi-
nally the ATOM and HETATM records containing the coordinates of the
protein and any waters, ions, or other heterogeneous atoms in the crystal.
Some PDB files include multiple sets of coordinates for some or all atoms.
Due to the limits of x-ray crystallography and NMR structure analysis,
the coordinates of hydrogen atoms are not included in the PDB.

Here are the ATOM records for the first two residues of ubiquitin from
the 1UBQ entry in the PDB:

Figure B.1 The Protein Data Bank

The fields seen B.1 in order from left to right are the record type, atom
ID, atom name, residue name, residue ID, x, y, and z coordinates, occu-
pancy, temperature factor (called beta), segment name, and line number.

150

B.2 PSF Format

B.3 A force field parameter Format

A PSF file, also called a protein structure file, contains all of

the molecule-specific information needed to apply a particular

force field to a molecular system. The CHARMM force field is

divided into a topology file, which is needed to generate the PSF

file, and a parameter file, which supplies specific numerical

values for the generic CHARMM potential function. The topology

file defines the atom types used in the force field; the atom

names, types, bonds, and partial charges of each residue type; and

any patches necessary to link or otherwise mutate these basic

residues. The parameter file provides a mapping between bonded and

nonbonded interactions involving the various combinations of atom

types found in the topology file and specific spring constants and

similar parameters for all of the bond, angle, dihedral, improper,

and van der Waals terms in the CHARMM potential function.

The PSF file contains five main sections of interest: atoms,

bonds, angles, dihedrals, and impropers (dihedral force terms used

to maintain planarity). The following is taken from a PSF file for

BPTI. First is the title and atom records: PSF

6 !NTITLE
REMARKS FILENAME=”bpti19.psf”
REMARKS PROTEINASE INHIBITOR (TRYPSIN) 13-MAY-87 6PTI
REMARKS BOVINE PANCREATIC TRYPSIN INHIBITOR
REMARKS BOVINE (BOS TAURUS) PANCREAS
REMARKS A.WLODAWER
REMARKS DATE:26-Jun-00 21:34:43 created by user:

557 !NATOM
1 BPTI 1 ARG HT1 HC 0.350000 1.00800 0
2 BPTI 1 ARG HT2 HC 0.350000 1.00800 0
3 BPTI 1 ARG N NH3 -0.300000 14.0067 0
...
571 !NBOND: bonds
3 5 5 18 18 19 5 6

151

6 7 7 8 8 9 9 10
...
818 !NTHETA: angles
3 5 18 3 5 6 5 18 19
18 5 6 5 6 7 6 7 8
...
345 !NPHI: dihedrals
3 5 6 7 5 6 7 8
6 7 8 9 7 8 9 11
...
254 !NIMPHI: impropers
5 3 18 6 9 8 11 10
11 12 15 9 22 20 25 23
...
112 !NDON: donors
9 10 12 13 12 14 15 16
15 17 3 1 3 2 3 4
...77 !NACC: acceptors
19 18 26 25 32 31 33 31
35 34 47 46 54 53 63 62
...
24 !NNB
45 44 43 97 96 95 210 209
208 224 223 222 236 235 234 328
...
217 0 !NGRP
0 0 0 5 0 0 7 0 0
11 0 0 14 0 0 17 0 0

B.4 A configuration file Format

Visit this site

http://www.ks.uiuc.edu/Training/SumSchool/materials/sources/ tutorials/02-

namd-tutorial/namd-tutorial-html/node24.html

152

B.5 Parameter file Format

Visit this site

http://www.ks.uiuc.edu/Training/SumSchool/materials/sources/ tutorials/02-

namd-tutorial/namd-tutorial-html/node23.html

B.6 Topology file Format

Visit this site
http://www.ks.uiuc.edu/Training/SumSchool/materials/sources/ tutorials/02-
namd-tutorial/namd-tutorial-html/node22.html

B.7 DCD trajectory format

The trajectory DCD format is structured as follows (FORTRAN

UNFORMATTED, with Fortran data type descriptions):

HDR NSET ISTRT NSAVC 5-ZEROS NATOM-NFREAT DELTA 9-ZEROS

‘CORD’ #files step 1 step zeroes (zero) timestep

(zeroes)

interval

C*4 INT INT INT 5INT INT DOUBLE

9INT

==

NTITLE TITLE

INT (=2) C*MAXTITL

(=32)

==

NATOM #atoms INT

==

X(I), I=1,NATOM (DOUBLE) Y(I), I=1,NATOM Z(I), I=1,NATOM

==

Appendix C

NAMD Configration File

C.1 NAMD Configration File in Vacuum

NAMD configuration file for BPTI

molecular system

structure bpti.psf

force field

paraTypeCharmm on

parameters par_all22_prot.inp

exclude scaled1-4

1-4scaling 0.4

approximations

switching on

switchdist 8

cutoff 12

pairlistdist 13.5

margin 0

stepspercycle 20

integrator

rigidbonds all

timestep 1

154

commotion no

output

outputenergies 50

outputtiming 50

outputpressure 50

outputMomenta 50

binaryrestart no

restartname bpti_bas

restartfreq 50

dcdfile vacuum-sim-test

run-specific parameters

molecular system

coordinates bpti_equil.coor

velocities bpti_equil.vel

#output

outputname bpti_sim

numsteps 20000000

C.2 NAMD Configration File in water

#namd configration file for minimize the water molecle while bpti

atom fixed

#molecular system

155

structure

/home/basim/namd_2.5b1_linux-i686/thesis/water/raw_data/water_bpti.psf

coordinates

/home/basim/namd_2.5b1_linux-i686/thesis/water/minmization_file/water_bpti_min.coor

temperature 0

#the full path is needed

#force field

paraTypeCharmm on

parameters toppar/par_all22_prot.inp

parameters toppar/par_all27_prot_lipid.inp

restartname water_bpti.pdb

restartfreq 50

binaryrestart no

#output

outputenergies 50

outputtiming 50

outputMomenta 50

outputPressure 50

xstFreq 50

156

dcdFreq 50

wrapAll on

wrapNearest on

#integrator

#rigidbonds all

timestep 1

nonbondedFreq 2

stepspercycle 20

fullElectFrequency 2 # PME only every other step

#Approximations

switching on

switchdist 8.5

cutoff 10

pairlistdist 11.5

157

cellBasisVector1 44.484 0 0

cellBasisVector2 0 40.844 0

cellBasisVector3 0 0 41.317

cellOrigin 7.652 4.835 3.977

margin 5

Pme on

PmeGridsizeX 32

PmeGridsizeY 32

PmeGridsizeZ 64

#basic simulation

exclude scaled1-4

1-4scaling 0.4

#fix bpti atoms

fixedatoms on

fixedAtomsForces on

158

#bpti file fixed add water

fixedatomsfile

/home/basim/namd_2.5b1_linux-i686/thesis/water/raw_data/fix.pdb

fixedAtomsCol B

langevin on

langevinDamping 10

langevinTemp 300

langevinHydrogen no

langevinPiston on

langevinPistonTarget 1.01325

langevinPistonPeriod 200

langevinPistonDecay 100

langevinPistonTemp 300

useGroupPressure yes # smaller fluctuations

useFlexibleCell yes # allow dimensions to fluctuate

independently

useConstantRatio yes # fix shape in x-y plane

159

#output

binaryoutput off

outputname equil_out_wat_fix

run one step to get into scripting mode

minimize 0

turn off until later

langevinPiston off

minimize nonbackbone atoms (atom fixed)

minimize 5000

output min_wat_fix

heat fixed atom (water)

langevin on

run 5000

output heat_fix

160

#equilibration 10ps

langevinPiston on

run 10000

output equil_fix

min all atoms

langevinPiston off

fixedAtoms off

minimize 10000

output min_all_wat

heat all

langevin on

run 10000

output heat_all_wat

#equilibration 40ps all

langevinPiston on

run 40000

161

output equil_all_wat

langevinPiston off

langevin off

run 20000000

output endsim

C.3 PBC Periodic Boundary Condition

Periodic boundary conditions involve surroundings the system (Pro-

tein) under study with identical virtual unit cells. the surrounding virtual

systems interact with atoms in the real system, creating an environment in

which the system effectively sees no vacuum as in (FigC.1). These model-

ing conditions are effective in eliminating surface interaction of the water

162

Figure C.1 In Periodic boundary condition when a particle moves in the
central box, its periodic image in every one of the other boxes moves with
exactly the same orientation in exactly the same way.

molecules which make the system somewhat different than an in vacuum

environment.

As one molecule leaves the central box its image enters through the

opposite face. No walls at boundary and the system has no surface.

163

References

1. Saarela, J.A., Tuppurainen, K., Per?kyl?, M., Santa, H. and
Laatikainen, R. ”Correlative Motions and Memory Effects in Molec-
ular Dynamics Simulations of Molecules: Principal Components and
Rescaled Range Analysis Suggest That the Motions of Native BPTI
Are More Correlated Than Those of Its Mutants.” Biophys. Chem.,
2002, 95, 49-57.

2. Van Aalten, A comparison of techniques for calculating protein Es-
sential Dynamics, 1996.

3. Huitema, H. Van Liere, R, Interactive Visualization of protein dy-
namics, IEEE Visualization,465-468 (1999).

4. M. F. van Aalten, J. B. C. Findlay, A. Amadei and H. J. C. Berendsen.
Essential dynamics of the cellular Retinol-binding protein: evidence
for ligand induced conformational changes. Protein Eng. 8 1129-1136
(1995).

5. G. Chillemi, M. Falconi, A. Amadei, G. Zimatore, A. Desideri and
A. Di Nola. The essential dynamics of Cu, Zn superoxide dismutase:
suggestion of intersubunit ommunication. Biophys. J., 73, 1007-1018
(1997).

6. A. Amadei, M.A. Ceruso and A. Di Nola. On the convergence of the
coordinates basis set obtained by the essential dynamics of proteins
molecular dynamics simulations. Proteins: Structure, Function, and
Genetics., 36 , 419-424 (1999).

7. I. Daidone, A. Amadei, D. Roccatano and A. Di Nola Molecular dy-
namics simulation of protein folding by essential dynamics sampling:
folding landscape of horse heart cytochrome c. Biophys. J. 85, 2865-
2871 (2003).

8. Arcangeli C, Bizzarri AR, Cannistraro S. Molecular dynamics simu-
lation and essential dynamics study of mutated plastocyanin: struc-
tural, dynamical and functional effects of a disulfide bridge insertion
at the protein surface. Biophys Chem. 2001 Sep 18;92(3):183-99.

9. P. Cioni, E. d. Waal, G. W. Canters, and G. B. Strambini Effects
of Cavity-Forming Mutations on the Internal Dynamics of Azurin
Biophys. J., February 1, 2004; 86(2): 1149 - 1159.

164

10. Huber, R. Bennett, Jr., W. S. (1983). Functional significance of
flexibility in proteins. Biopolymers, 22, 261-279.

11. Thomas H. Rod, Jennifer L. Radkiewicz, and Charles L. Brooks, III
Correlated motion and the effect of distal mutations in dihydrofolate
reductase PNAS 100: 6980-6985; published online before print as
10.1073/pnas.1230801100

12. Vitkup D, Ringe D, Karplus M, Petsko GA. (2002) Why protein R-
factors are so large: a self-consistent analysis. Proteins. 46:345-354.

13. National Institutes of Health (NIH), Center for Molecular
Modeling (CMM) (NIHInfo@OD.NIH.GOV), Molecular Mechan-
ics and Modeling- Why. [Online]Available, November, 2004.
http://cmm.info.nih.gov/modeling/guide documents/molecular
mechanics document.html.

14. Alder, B. J., and T. E. Wainwright. 1957. Phase transition for a hard
sphere system. J. Chem. Phys. 27:1208-1209.

15. Doucet, Jean-Pierre and Jacques,Webber. Computer-Aided Molecu-
lar Design. Academic press inc, U.S. San Diego, CA 92101, p123,
p171, p127, p138.

16. D.Frenkel and B.Smit, ”Understanding Molecular Simulation - From
algorithms to applications”, Academic Press, 1996.

17. Furio Ercolessi.
Historical notes. [Online]Available http://www.fisica.uniud.it/ erco-
lessi/md/md/node7.html, November, 2004.

18. D.McQuarrie, Statistical Mechanics (Harper Row, New York, 1976),
pp. 544-553.

19. F.C.Bernstein, T.F.Koetzle, G.J.Williams, E.E.Meyer Jr., M.D.Brice,
J.R.Rodgers, O.Kennard, T.Shimanouchi, M.Tasumi, ”The Protein
Data Bank: A Computer-based Archival File For Macromolecular
Structures,” J. of. Mol. Biol., 112 (1977): 535.

20. Laxmikant Kal, Robert Skeel, Milind Bhandarkar, Robert Brunner,
Attila Gursoy, Neal
Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan,

165

and Klaus Schulten. NAMD2: Greater scalability for parallel molec-
ular dynamics. Journal of Computational Physics, 151:283-312, 1999.
http://www.ks.uiuc.edu/Training/SumSchool/materials/sources/tutorials/
02-namd-tutorial/namd-tutorial-html/node4.html

21. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swami-
nathan, and M. Karplus, ”CHARMM: A Program for Macromolec-
ular Energy, Minimization and Dynamics Calculations,” Journal of
Computational Chemistry 187(4)(1983).

22. National Institutes of Health (NIH), Center for Molecular Modeling
(CMM)
(NIHInfo@OD.NIH.GOV), Molecular Mechanics, [Online]Available,
http://cmm.info.nih.gov/modeling/guide documents/molecular
mechanics document.html, November, 2004.

23. Laxmikant Kal, Robert Skeel, Milind Bhandarkar, Robert
Brunner, Attila Gursoy, Neal Krawetz, James Phillips, Ar-
itomo Shinozaki, Krishnan Varadarajan, and Klaus Schulten.
(Guide) NAMD2: Greater scalability for parallel molecular dy-
namics. Journal of Computational Physics, 151:283-312, 1999.
http://www.ks.uiuc.edu/Research/namd/current/ug/

24. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semiclassi-
cal Limit, London Math. Soc. Lecture Notes Series 268, Cambridge
University Press (1999).

25. Kim Baldridge. Molecular Mechanics. [Online]Available
http://www.sdsc.edu/ kimb/molmech.html, November, 2004.

26. Kian-Tat Lim, Sharon Brunett, Mihail Iotov, Richard B. McClurg,
Nagarajan Vaidehi, Siddharth Dasgupta, Stephen Taylor, William A.
Goddard III: Molecular dynamics for very large systems on massively
parallel computers: The MPSim program. Journal of Computational
Chemistry 18(4): 501521 (1997) K T Lim Thesis Chapter 2.

27. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus, CHARMM: A Program for Macromolecular
Energy, Minimization, and Dynamics Calculations, J. Comp. Chem.
4, 187217 (1983) http://www.ch.embnet.org/MD tutorial/.

28. Stewart, W. Introduction to Molecular Modeling. Stewart’s Thesis,
[Online]Available,

166

http://cat.middlebury.edu/ chem/chemistry/students/williamson/stewartdocs/thesis.html,
November, 2004.

29. Mackerel 1995, phys. Chem. 102, 3586.

30. Nicholas Breen, Conformational Search: M.D. M.C. and S.D. [On-
line]Available,
http://lungo.chem.columbia.edu/biophys 2002/search/backgroundII.html
, November, 2004.

31. protein dynamics simulations from nanosecond to microseconds by
Sebastian D, Peter E. Elsevier Science 1999.

32. A. Amadei,A.B.M Linssen, and H.J.C. Berendsen. Essential dynamics
of proteins. Protein: Structure, Function and Genetics, 17(4):412-425,
1993.

33. Doniach, S. Eastman, P.. Protein dynamics simulation from nanosec-
onds to microseconds. Elsevier Science 9:157-163(1999).

34. Warmels, R.H.: , Princi-
pal Components Analysis ”multivarient Analysis ” [Online]Available,
http://www.eso.org/projects/esomidas/doc/user/98NOV/volb/node212.html,
November, 2004.

35. Norris. V , Multivariate Analysis and Reverse Engineering of Sig-
nal Transduction Pathways, Chapter 2 - Multivariate analysis, [On-
line]Available, http://www.iam.ubc.ca/ nor-
ris/research/amythesis.pdf, November, 2004.

36. MAM1

37. Kabasch, W. A solution for the best rotation to relate two sets of
vectors. (1978) A34, 827-828.

38. Nicholas M. Glykos, presently at FORTH, IMBB, Heraklion, Crete,
Greece. Please send comments, suggestions and bug reports to glyko-
scrystal2imbbḟorth.gr or glykos@imbb.forth.gr.

39. Student Tutorials, COSC453 2004 ”chapter 3”, [Online]Available,
http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf.
November, 2004.

167

40. Hnenberger, P.H., Mark, A.E. van Gunsteren, W.F., Fluctuation and
cross-correlation analysis of protein motions observed in nanosecond
molecular dynamics simulations. J. Mol. Biol, 252, 492-503 (1995).

41. C.D. Schwieters, J.J. Kuszewski, N. Tjandra and G.M. Clore, Guide
of The Xplor-NIH NMR Molecular Structure Determination Package,
J. Magn. Res., 160, 66-74 (2003).

42. Humphrey, W., Dalke, A. and Schulten, K., ”VMD - Visual Molec-
ular Dynamics”, J. Molec. Graphics, 1996, vol. 14, pp. 33-38.
¡http://www.ks.uiuc.edu/Research/vmd/¿

43. Walters, P. Stahl, M. Babel File Format Converter, [Online]Available,
http://www.osc.edu/PET/CCM/skeleton/software/tested/ms-
dos/babel/babel.html, November, 2004.

44. Butler, D, Basics of the
Tcl Language, [Online]Available, http://www.csc.calpoly.edu/ dbut-
ler/tutorials/winter96/tcl/tclbasics.html. November, 2004.

45. Gullingsrud. J, CatDCD - Concatenate DCD files. [Online]Available,
http://www.ks.uiuc.edu/Development/MDTools/catdcd/.
November, 2004.

46. Phillips,
J. FlipDCD DCD file endianism converter. [Online]Available,
http://www.ks.uiuc.edu/Development/MDTools/flipdcd/
November, 2004.

47. Faber, K. On Solving Generalized Eigenvalue Problems Using MAT-
LAB Journal of Chemometrics, v 11, n 1, 1997, p 87, Compendex.

48. MacKerell, A. University of Maryland: CHARMM Empirical Force
Fields Online]Available,
http://www.pharmacy.umaryland.edu/faculty/amackere/param/toppar/toppar c31b1.tar.gz
November, 2004.

49. The Board of Trustees of
the University of Illinois, Building Gramicidin A. [Online]Available,
http://www.ks.uiuc.edu/Research/namd/tutorial/NCSA2002/hands-
on/main.html. Mon, Aug 19 2002.

168

50. Stonebank. M. UNIX Tutorial Two, [Online]Available,
http://www.ee.surrey.ac.uk/Teaching/Unix/unix2.html. October
2002.

51. M. F. van Aalten, A. Amadei, A. B. M. Linssen, V. G. H. Eijsink,
G. Vriend and H. J. C. Berendsen. The essential dynamics of Ther-
molysin: confirmation of the hinge-bending motion and comparison
of simulations in vacuum and water. Proteins: Structure, Function,
and Genetics. 22, 45-54 (1995).

52. Proteins. Structures and Molecular Properties” T.E. Creighton, W.H.
Freeman Co., New York (1984) Chapter 6 pp 204-220.
http://adelie.biochem.queensu.ca/ rlc/teaching/definitions.shtml,
November, 2004.

53. W. van Gunsteren. Validation of molecular dynamics simulation. .
Comput. Phys., 108:6109-6116, 1998.

54. Karplus M, Petsko GA. Molecular dynamics simulations in biology.
Nature 347(6294):631-9 (1990).

55. Amadei, A. B. M. Linssen and H. J. C. Berendsen. Essential dynamics
of proteins. Proteins: Structure, Function, and Genetics, 17, 412-425
(1993).

56. Balsera M.A, Principal Component Analysis and long time protein
dynamics. J. Phys. Chem. 100:2567-2572 (1996).

57. Luo, J. Bruice, T. C.. Ten nanosecond molecular dynamics simula-
tion of the motions of the horse liver alcohol dehydrogenasePhCH2O-
complex. Proc. Natl. Acad. Sci (USA), 2002, 99, 16597-16600.

58. Kitao, A,Nobuhiro Go. Investigating protein dynamics in collective
coordinate space. Elsevier Science 9:164169(1999).

